
Intrusion-Tolerant and Confidentiality-Preserving
Publish/Subscribe Messaging

Sisi Duan, Chao Liu, Xin Wang, Yusen Wu, Shuai Xu, Yelena Yesha, Haibin Zhang
University of Maryland, Baltimore County

Abstract—We present Chios, an intrusion-tolerant pub-
lish/subscribe system which protects against Byzantine failures.
Chios is the first publish/subscribe system achieving decentral-
ized confidentiality with fine-grained access control and strong
publication order guarantees. This is in contrast to existing
publish/subscribe systems achieving much weaker security and
reliability properties.

Chios is flexible and modular, consisting of four fully-fledged
publish/subscribe configurations (each designed to meet different
goals). We have deployed and evaluated our system on Ama-
zon EC2. We compare Chios with various publish/subscribe
systems. Chios is as efficient as an unreplicated, single-broker
publish/subscribe implementation, only marginally slower than
Kafka and Kafka with passive replication, and at least an order
of magnitude faster than all Hyperledger Fabric modules and
publish/subscribe systems using Fabric.

I. INTRODUCTION

Publish/Subscribe (pub/sub) is a popular messaging pattern

allowing disseminating information from publishers to differ-

ent subsets of interested subscribers via an overlay of brokers

(servers). Publishers advertise information to the brokers and

send publications as advertised. Subscribers express their

interests for receiving a subset of publications by issuing

subscriptions to brokers. Upon receiving publications from

publishers matching the interests of subscribers, brokers send

the corresponding publications to the interested subscribers.

One distinguishing feature of a pub/sub system is that it

decouples publishers and subscribers in both time and space:

publishers and subscribers do not need to know or synchronize

with one another. This feature enables both system flexibility

and scalability. Pub/Sub systems are widely used in practice,

such as Amazon SNS [4], AMQP [56], Apache Kafka [7],

FAYE [25], Google Cloud Pub/Sub [30], and MQTT [44].

Pub/Sub serves as the core middleware for numerous appli-

cations, e.g., data collection and analysis, Internet-of-Things

(IoT), network management and monitoring, streaming ser-

vices.

Despite their popularity, existing pub/sub systems (built in

both industry and academia) suffer reliability and confidential-

ity problems. Let us illustrate the issues with a health record

exchange pub/sub system [31], [24], where the actors include

patients and providers (physicians, hospitals, pharmacists),

both of which can be publishers and subscribers. Publications

may be medical files (e.g., reports, X-ray images) sent from

patients or providers to patients or providers. Publications

may also be new drug information and updates about the

availability of facilities sent from providers to patients. For

instance, an emergency unit receives a patient in critical

conditions and disseminates the patient medical files as a

publisher to various hospital units, while the hospital units may

submit subscriptions (e.g., specialties, qualifications, schedule

for patient admission and treatment sessions). As another

example, a new-born is identified by a hospital for a rare

dermatology disease. The hospital represents the new-born and

the parents to send the medical images to some local expert

dermatologists for timely treatment.

Consider another example of a market report notification

system, where publishers are private sectors publishing paid

market reports, and subscribers are investors who receive

reports according to their interests (e.g., reports for certain

categories, reports for specific periods). The brokers match

publications with the interests and send the publications to

interested (and paid) investors.

With the examples in mind, we now discuss the challenges

of building intrusion-tolerant pub/sub systems.

Confidentiality and fine-grained access control (Or: Two-
way information control). Publications in both exam-

ples (health records, private market reports) need to be

confidentiality-protected. In fact, confidentiality in pub/sub is

strongly tied to access control, a process by which subscribers

are granted access to certain publications based upon certain

rules. The middleware community has long been expecting

pub/sub systems where publishers can define by whom and

how their data can be accessed, preferably not just role-based

but also attribute-based.

For instance, the “ideal” situation for health record exchange

is that publishers (patients and providers on behalf of patients)

can decide by whom, when, and how their health records can

be viewed or used. Patients should be able to decide which

doctors can see their records, either exactly (by name), or those

that meet certain criteria (e.g., “D.C. doctors”, “more than 15-

year practice in dermatology”, “no malpractice history”) [19].

For the market report example, publishers may enforce access

control based on subscribers’ qualifications, attributes, and if

subscribers paid for the service (to the brokers).

Confidentiality-preserving pub/sub with fine-grained access

control enhances the conventional pub/sub systems with two-
way information control. In conventional pub/sub systems,

subscribers can filter the information via subscriptions, but

publishers cannot control who can receive the publications.

The one-way information control is undesirable for applica-

tions such as cross-domain pub/sub systems where publica-

tions need to be protected (as shown in the health exchange

319

2020 International Symposium on Reliable Distributed Systems (SRDS)

2575-8462/20/$31.00 ©2020 IEEE
DOI 10.1109/SRDS51746.2020.00039

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

and market report examples), most pub/sub systems in private

corporate networks, and any IoT and big data applications

where individual user data are sensitive.

Achieving the goal securely, however, is difficult. Existing

pub/sub systems with confidentiality or access control either

rely on non-cryptographic trusted domains (an overly strong

assumption), centralized architectures, and/or violate the de-

coupling feature of pub/sub systems [31], [32], [33], [54], [8],

[61], [40], [27], [58], [53]. Building a decentralized pub/sub

system with fine-grained access control is deemed to be a

major open problem [47]. First, the approach to encrypting

publications using the keys of subscribers does not work,

because, due to the decoupling feature of pub/sub systems,

publishers do not know the identities or keys of subscribers.

Second, publishers cannot encrypt the data using the keys

of brokers either, as brokers would know the publications in

plaintext. Even if a single broker is compromised, all historical

publications will be leaked.

Reliability. Another challenge of building intrusion-tolerant

pub/sub systems is reliability under Byzantine (arbitrary)

failures. Existing reliable pub/sub systems [20], [36], [38],

[39], [50] only achieve weak reliability notions. One particular

reliability notion is publication total order which guarantees

subscribers should receive relevant publications in the same

order. For instance, in the stock market, seeing a high price

followed by a low price means something very different from

seeing a low price followed by a high price; it is vital to

ensure that all subscribers receive the price information in the

same order. Publication total order would be easy to achieve

if brokers use Byzantine fault-tolerant (BFT) state machine

replication to maintain a total order of publications and ask

subscribers to deliver publications according to the total order.

Even so, due to the two-way control (publication filtering

via subscriber interests and publisher access control), not all
publications will be sent to all subscribers. Therefore, the

approach that brokers maintain a total order fail to work.

In particular, subscribers do not know if they should wait

for or skip publications with certain sequence numbers, as

subscribers do not know if the corresponding publications are

on the way or will never arrive.

Discussion. With the rise of blockchains, two pub/sub sys-

tems using blockchains (Hyperpubsub [62] and Trinity [50])

were proposed to defend against (Byzantine) failures. Both

systems make a black-box usage of existing pub/sub systems

and blockchain systems. Hyperpubsub uses Apache Kafka

and Hyperledger Fabric [6], while Trinity combines MQTT

and one of the four blockchains (Fabric, Tendermint [55],

and test networks for Ethereum [57] and IOTA [34]). The

two systems, however, suffer from at least three problems.

First, both systems are essentially auditing systems using

blockchains. The overall systems are not Byzantine fault-

tolerant, as neither Kafka (only partially crash fault-tolerant)

or MQTT (not fault-tolerant) can defend against Byzantine

failures. Both liveness and safety are violated if any brokers

of the two systems are compromised. Second, both Hyperpub

and Trinity leveraging fully-fledged blockchains have demon-

strated poor performance, because blockchains are essentially

storage systems not designed for pub/sub systems, and many

features of blockchains are not needed for pub/sub systems.

Third, both Hyperpubsub and Trinity directly combine existing

pub/sub and blockchains systems and therefore require a much

larger number of nodes and resources than a blockchain system

or a conventional pub/sub system.

Neither Hyperpubsub nor Trinity achieves confidentiality or

publication total order, two goals we aim to address in this

paper.

Our contribution. We design, implement, and evaluate Chios,

a Byzantine fault-tolerant (BFT) pub/sub system with fine-

grained access control and strong reliability, without sacri-

ficing the decoupling property of pub/sub. Chios’s security

assumption is standard to BFT and threshold cryptography,

i.e., an adversary cannot corrupt more than 1/3 of the total

brokers. We summarize our contribution in the following:

• We formally define the properties of a BFT and

confidentiality-preserving pub/sub system, covering strong

access control and message ordering guarantees, in the sense

of cryptography and reliable distributed systems.

• We demonstrate Chios is provably secure under our defini-

tions by devising and extending cryptographic and reliable

distributed system protocols (e.g., vector-label-input thresh-

old encryption, broadcast encryption with decentralized key

distribution). Chios is the first pub/sub system achieving

decentralized and fine-grained access control as well as

publication total order. We compare Chios with existing

pub/sub systems in Table I.

• Chios is versatile and modular, supporting three additional

and fully-fledged pub/sub instances designed to meet differ-

ent goals (e.g., different performance metrics, different ap-

plication scenarios). This includes an instance that combines

threshold encryption and broadcast encryption to enable more

efficient and dynamic access control. For the instance, we

also provide an optimized instantiation that is more efficient

than a trivial instantiation. Both the general protocol and the

instantiation use a novel approach to maintain the decoupling

property of pub/sub.

• We implement and evaluate Chios, showing that all its

variants are nearly as efficient as its unreliable (unreplicated)

counterpart and existing pub/sub systems (Kafka and Kafka

with passive replication) and orders of magnitude faster

than blockchain-based systems (Fabric, Trinity, Hyperpub-

sub). None of existing pub/sub systems or blockchain-based

systems achieve decentralized confidentiality or strong order

guarantees.

II. RELATED WORK

Fault-tolerant pub/sub. Most of industry pub/sub systems

(Apache Kafka [7], FAYE [25], Google Cloud Pub/Sub [30],

and MQTT [44]) do not have strong fault tolerance guarantees.

For instance, Kafka is crash fault-tolerant for its controller

part. For its broker components, most Kafka implementations

are not fault-tolerant, though Kafka can be configured to use

passive replication for weak fault tolerance. Pub/Sub systems

320

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

systems
brief

description

Byzantine

publisher

Byzantine

broker

confidentiality and

access control

publication

total order

publication

liveness

Chios
BFT and

confidentiality-preserving
� � decentralized; attribute-based � �

Kafka [7]
favor performance

over reliability
� � � � �

AMQP [56] “pub/sub for business” � � use trusted virtual host;

password for access control
� �

Hyperpubsub [62] auditing system for Kafka � � � � �
Trinity [50] auditing system for MQTT � � � � �

P2S [20] crash fault-tolerant � � � �� �
PubliyPrime [39] Byzantine failure detection � � � �� �

JM [36]
deconstructing BFT

using a large number of nodes
� � � � �

IRC [33] access control using ABE � � centralized authority needed;

expensive pairing-based crypto
� �

EventGuard [53] use trusted components � � trusted nodes for confidentiality � �
Table I

CHARACTERISTICS OF REPRESENTATIVE PUB/SUB PROTOCOLS. ��DENOTES PARTIAL SUPPORT. P2S AND PUBIYPRIME ACHIEVE WEAKER ORDERING

GUARANTEES THAN PUBLICATION TOTAL ORDER. (THE FORMAL DEFINITIONS OF PUBLICATION TOTAL ORDER AND PUBLICATION LIVENESS ARE

IN SEC. III-A.)

with strong reliability have been mostly studied for the case

of crash failures [38], [60], [20]. Only a handful of works

consider a weaker subset of Byzantine failures [36], [39]

and none of them achieve publication total order. Besides,

PubliyPrime [39] does not handle Byzantine publishers or

subscribers.
Pub/Sub with payload confidentiality. Confidentiality in

pub/sub systems can be generally divided into two cate-

gories [47]: 1) confidentiality for publication headers and

subscription constraints; 2) payload confidentiality (the ability

to hide the payload of the publications, e.g., the patient health

record). The confidentiality issue has become a major obstacle

to wider adoption of pub/sub systems [47].

Chios addresses payload confidentiality but not confidential-

ity for publication headers or subscription constraints. Most

prior pub/sub systems that handle payload confidentiality rely

on overly strong “trusted domain” assumptions and do not

maintain the decoupling feature of pub/sub systems that is

essential to pub/sub system flexibility and scalability [8], [61],

[40], [27], [58]. Srivatsa and Liu [53] devised EventGuard with

many goals similar to ours. EventGuard, however, assumes a

trusted service for confidentiality and authenticity.

Pub/Sub with access control (but no fault tolerance). While

there are a number of pub/sub systems [31], [32], [33], [54]

that use attribute-based encryption (ABE) [12] to achieve fine-

grained access control, they all suffer from the following prob-

lems: 1) Efficient ABE schemes rely on relatively slow pairing-

based cryptography. 2) All these systems use a trusted central

authority which is a single point of failure. While the so-called

decentralized ABE schemes exist [43], decentralization here

actually means that anyone can serve as an ABE authority by

creating a public key and issuing private keys to different users,

but it does not mean that the keys are generated interactively

among distributed nodes.
Reliable distributed systems with confidentiality. Several

works achieve confidentiality in distributed file or storage

systems that support store and retrieve operations [2], [28],

[35], [42], [17], [10], [48]. In these systems, clients apply

encryption, or secret sharing, to the data before the data is

uploaded to the system. Notably, Depspace [10] explores how

to use publicly verifiable secret sharing and hash function to

encrypt and locate client data, but it does not achieve lineariz-

ability. AVID [17] suggests the use of threshold encryption

to provide access control for Byzantine reliable broadcast and

asynchronous verifiable information dispersal. AVID, however,

considers a much simpler setting and does not have an

implementation.

Yin et al. [59] built a BFT protocol which privately pro-

cesses user data by separating agreement from execution and

using threshold signatures. Assuming the same architecture,

Duan and Zhang [23] provided a more efficient construction

that uses only symmetric encryption. Both protocols require a

lot more nodes than a conventional BFT protocol.

Many recent works [18], [14], [41] explore how to perform

private computation on blockchains using trusted execution

environments (TEEs), e.g., Intel SGX. These systems require

trusting a single TEE vendor (e.g., Intel). Some cryptographic

proposals use zkSNARKs [9] or multi-party computation [21]

to achieve private computation. These approaches are limited

in practice, as the cost to deal with generic operations is very

high, and the throughput is low.

III. SYSTEM AND THREAT MODEL

Background on pub/sub systems. Pub/Sub systems en-

able disseminating information from publishers (information

sources) to subscribers (interested recipients) via an over-

lay of brokers (servers). Publishers advertise information to

the brokers and send publications as advertised. Subscribers

express their interests for receiving a subset of publications

by issuing subscriptions. Brokers store subscriptions received

from subscribers. Upon receiving matching publications from

publishers, brokers send the corresponding publications to the

interested subscribers. Besides storing subscriptions, brokers

may maintain routing tables to deliver subscribers information.

321

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

The communication between publishers and subscribers is

decoupled both in time and space. In particular, publishers

and subscribers do not need to know or synchronize with one

another. Indeed, direct communication among end-customers

may not be possible. The decoupling feature enables flexible

and scalable information exchange and also avoids mainte-

nance and charging difficulties for end-customers. Moreover,

this allows anonymity between publishers and subscribers

(assuming brokers are correct).

This paper considers topic-based pub/sub, which is dom-

inant in industry pub/sub systems (e.g., Kafka, FAYE,

MQTT, Amazon SNS, Google Cloud Pub/Sub). In topic-

based pub/sub, a publication includes a header and a payload.

The header contains the topics and their values (e.g., ID

= “Alice”, county = “Orange”, price = “105”), while the

payload contains the complete bulk data. Correspondingly, a

subscription includes a set of constraints on the topics (e.g., ID

= “Alice”, county = “Franklin” or “Orange”, price = 100). The

brokers need to match publications against stored subscriptions

according to the constraints of the topics (“equation,” “and,”

“or” for topic-based pub/sub).

BFT. We consider BFT state machine replication (SMR)

protocols, where f out of n replicas may fail arbitrarily

(Byzantine failures) and a computationally bounded adversary

can coordinate faulty replicas. A replica delivers operations,

each submitted by some client. The client should be able to

compute a final response to its submitted operation from the

responses it receives from replicas.

A. Formalizing BFT Pub/Sub

Syntax. In our setting, publishers and subscribers are clients.

Publishers can be subscribers and vice versa. We use brokers,

servers, and replicas interchangeably. We consider an overlay

network, where brokers are connected in a complete graph.

A BFT pub/sub system consists of the following (possibly

interactive) operations (reg, advertise, sub, pub, notify, read).

An interactive registration algorithm reg is run by clients

and brokers. Through the reg algorithm, new clients can be

registered in the system and brokers can verify and store client

(access) attributes (e.g., ages, certificates) enabling them to

have access to publications in the future. For instance, a pub-

lisher may want only clients with certain attributes to see its

publications. Clients should be able to register independently,

and in particular, potential publishers and subscribers need not

know one another. A client may not need to decide at this stage

if the client would like to register as a publisher, a subscriber,

or both, but rather may do this later via advertise and sub.

Publishers advertise to the replicas information that will be

sent to all or a subset of clients. The advertise messages may

be viewed as special publications. Subscribers send brokers

subscriptions to express their interests via a sub operation.

Brokers store subscriptions received from subscribers. Upon

receiving matching publications from publishers via a pub
operation, brokers send the corresponding publications to

the interested subscribers via a notify operation. The read
operation is similar to that of popular pub/sub systems (e.g.,

Kafka) and allows a client to read particular data of interests

from brokers.

Operations (reg, advertise, sub, pub) change broker state

and are collectively called write operations. Operations (notify,

read) do not change broker state.

In our system, a publisher can send an encrypted publication

together with access control rules ac to the system. We say

a subscriber (a client) is authorized to see a publication m,

if the publisher submitting m has listed the subscriber in its

access control rules ac.

Goals. The goal of our secure BFT pub/sub system is to

achieve CIA (confidentiality, integrity, availability) against

malicious brokers, publishers, and subscribers. As in a BFT

system, we assume a strong adversary that can passively cor-

rupt f out of n replicas and adaptively corrupt an unbounded

number of clients. We divide the goals into confidentiality and

reliability goals.

Confidentiality and access control goals. We provide a uni-

fied definition of security covering all confidentiality aspects

(access control as specified by data providers and confiden-

tiality for non-subscribers and brokers). Specifically, given a

BFT pub/sub system, we associate the following game to an

adversary A in Fig. 1.

• A chooses to corrupt a fixed set of f brokers.

• A interacts with honest parties arbitrarily and chooses

to corrupt clients adaptively.

• A selects two messages m0 and m1, an ac, and a unique

tag tid that specifies an instance, and submits them to the

encryption oracle for the system. A cannot corrupt any

clients specified by ac (otherwise, A would have trivially

won the game). The oracle randomly selects a bit b and

computes an encryption c of mb with ac and tid, and

sends the ciphertext to A.

• A interacts with honest parties arbitrarily subject only

to the following two conditions that 1) A cannot ask the

decryption oracle for the ciphertext c with ac and tid, and

2) A cannot corrupt any clients specified by ac.

• Finally, A outputs a bit b′.

Figure 1. We define the advantage of the adversary A to be the absolute
difference between 1/2 and the probability that b′ = b.

Note it is easy to have a unique tid for a client operation

(e.g., using a concatenation of the client identity cid and

the timestamp of the operation ts). We comment that we do

not need to additionally define decryption consistency (as in

threshold encryption), as this is captured by Agreement 2 of

the reliability goals (introduced below).

Our definition is easily shown to imply input causality

(causal order) [51], which prevents the faulty replicas from

creating an operation derived from a correct client’s but that

is delivered (and so executed) before the operation from

which it is derived. The problem of preserving input causality

was introduced in BFT atomic broadcast protocols by Reiter

and Birman [51], later refined by Cachin et al. [15], and

322

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

recently generalized by Duan et al. [22]. Preserving causal

order equally makes sense in BFT pub/sub systems.

We do not aim to achieve confidentiality on publication

headers or subscription constraints, although they need to be

protected for some applications.

Reliability goals. We have the following reliability goals:

• Agreement 1: If any correct replica delivers a write opera-

tion m, then every correct replica delivers m.

• Agreement 2: If any correct subscriber delivers a pub-

lication p matching its subscription T , then every correct

subscriber who has the same subscription T and has access

to p delivers p.

• Total Order 1: If a correct replica has delivered write
operations m1,m2, · · · ,ms and another correct replica has

delivered m′
1,m

′
2, · · · ,m′

s′ , then mi = m′
i for 1 ≤ i ≤

min(s, s′).
• Total Order 2 (Publication total order): If a correct

subscriber has delivered p1, p2, · · · , ps for a subscription T
and another correct subscriber has delivered p′1, p

′
2, · · · , p′s′

for T , and if the two subscribers have the same access

attributes, then pi = p′i for 1 ≤ i ≤ min(s, s′).
• Liveness 1: If a write operation m is submitted to n −
f correct replicas, then all correct replicas will eventually

deliver m.

• Liveness 2 (Publication liveness): If a publisher is correct

and submits p matching a subscription T , then all correct

subscribers that issued a subscription T and have access to p
will eventually deliver p. If a subscriber issues a subscription

T , then it will deliver all authorized publications matching T .

• No Creation: If a subscriber delivers a publication, then the

publication was published by some publisher.

• No Duplication: A subscriber delivers no publications

twice.

Agreement 1, Total Order 1, and Liveness 1 are proper-

ties for all write operations. The other properties are ones

for pub/sub operations with respect to subscribers. We have

considered access control when defining these properties. The

properties can be easily simplified to work without considering

access control.

Prior formalization on reliable pub/sub systems [60], [20],

[50], [39] only consider a much smaller subset of properties we

defined here. In particular, a weaker notion of publication total

order was considered in several systems [60], [20], [50], where

neither subscription restraints nor access control rules are

considered, and total order is enforced among all publications

across all subscribers. The weaker notion is immediately

implied by the total order property of brokers (Total Order 1),

as subscribers can directly deliver publications in the sequence

number order determined by brokers. Moreover, in [60], Total

Order 1 is not required, because they did not use a state

machine replication approach.

No Creation and No Duplication have been previously

formalized by Jehl and Meling [36] but with different names

(“authentication” and “uniqueness”).

IV. THE CHIOS SYSTEM

Chios addresses two important problems in pub/sub sys-

tems, achieving decentralized, privacy-preserving pub/sub with

fine-grained access control, and ensuring publication total

order even with the two-way information control.

We first review threshold encryption. Then, we describe a

toy protocol achieving all security goals except publication to-

tal order. Finally, we show our core protocol (Chios) achieving

publication total order.

A. Review of VIL Threshold Encryption

Conventional labeled threshold encryption takes a single

string as the label. We extend the primitive to support a

vector of strings L = (L1, · · · , Ls) ∈ {0, 1}∗∗ as labels. By

a vector we mean a sequence of zero or more strings, and

we let {0, 1}∗∗ denote the space of all vectors. Our scheme

supports an arbitrary number of vectors, each of which can

be of arbitrary length.

Syntactically, a robust (t, n) VIL (variable-input-length)

threshold encryption consists of the following algorithms. A

probabilistic key generation algorithm TGen takes as input

a security parameter l, the number n of total servers, and

threshold parameter t, and outputs (pk, vk, sk), where pk is the

public key, vk is the verification key, and sk = (sk1, · · · , skn)
is a list of private keys. A probabilistic encryption algorithm

TEnc takes as input a public key pk, a message m, and a vector

label L, and outputs a ciphertext c. A probabilistic decryption

share generation algorithm ShareDec takes as input a private

key ski, a ciphertext c, and a label L, and outputs a decryption

share τ . A deterministic share verification algorithm Vrf takes

as input the verification key vk, a ciphertext c, a label L, and

a decryption share τ , and outputs b ∈ {0, 1}. A deterministic

combination algorithm Comb takes as input the verification

key vk, a ciphertext c, a label L, a set of t decryption shares,

and outputs a message m, or ⊥ (a distinguished symbol).

Our VIL threshold encryption scheme, TDH2-VIL, extends

the TDH2 threshold encryption by Shoup and Gennaro [52].

B. A Toy Protocol: Chios without Publication Total Order

System setup. We assume that the number of brokers is n, and

f out of n brokers can fail arbitrarily (Byzantine failures). We

set up an (f + 1, n) VIL threshold encryption (TGen, TEnc,

ShareDec, Vrf, Comb) so that a public key pk and verification

keys vk are associated with the system, while a secret key is

shared among all brokers, with a broker i having a key ski
for i ∈ [1..n].
Publisher and subscriber registration. In Chios, commu-

nication among publishers and subscribers is decoupled both

in time and space. Publishers and subscribers do not need to

know or synchronize with one another. A client (a publisher or

a subscriber) registers with brokers using their attributes. Dur-

ing the registration, the brokers collectively verify and store

client attributes. Chios runs BFT to ensure the registration

information is consistent among brokers. More specifically:

• A client sends its attributes and the corresponding proof to

brokers as a special registration operation.

323

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

• Upon receiving a registration operation, brokers verify the

correctness of client attributes. Brokers discard the operation

if the verification fails. (Note the verification of the client at-

tributes can be done offline or online, as in PKI registration.)

Brokers run the BFT protocol to assign a sequence number to

the registration operation and store the operation in sequence

number order. Brokers send replies signaling the success of

registration.

• Upon receiving f +1 matching replies, the client completes

the registration.

Advertisements and subscriptions. During the advertisement

process, publishers advertise to the system their publication

scopes, and the brokers broadcast the type of events to all po-

tential subscribers (who show an intent to receive subscriptions

during the registration process or later via subscriptions). The

advertise operation can be viewed as a special pub operation.

During the subscription process, subscribers submit their sub-

scriptions which are stored at the brokers. Advertisements and

subscriptions are treated as BFT write operations that need to

be ordered.

Publishing (with confidentiality and fine-grained access
control). Let ts, op, o, hr = [hr1..hrs], ac = [ac1..act], and p
be the timestamp, the operation type (pub), the executable op-

eration o (which makes Chios stateful), the header, the access

control policies, and the payload of a publication, respectively.

The header hr consists of the topics of a publication and

optionally additional associated-data that do not need to be

privacy-protected. The approach provides fine-grained (per-

publication) and attribute-based access control.

• A publisher cid takes as input ts, op, o, hr, p, and

ac, and computes a threshold encryption ciphertext as fol-

lows. The vector of labels L for the client is of the form

(cid, ts, op, hr, ac). The client cid takes as input the threshold

encryption public key pk, L, and p, and outputs a labeled

ciphertext (L, c)
$← TEnc(pk, p, L) using our vector-label-

input threshold encryption. It sends brokers (L, c) as a BFT

write operation.

• Upon receiving a client publication, brokers run the BFT

protocol to order the publication (by assigning a sequence

number to the publication), store the publication, and execute

the associated operation o in sequence number order. The

brokers send replies to the write request which may contain

the executed result for the publisher.

• Upon receiving f +1 matching replies, the client completes

the publish operation.

Notify. During the process, brokers enforce access control

and send publications to authorized and interested subscribers.

More specifically:

• Brokers decide authorized and interested subscribers for

a publication (L, c) by matching publication topics with

existing subscription constraints, checking access control

policies associated with the publication, and checking global

access control policies already installed in the brokers. For

authorized and interested subscribers, each broker i ∈ [1..n]
sends them its decryption share τi

$← ShareDecski
(L, c) and

the sequence number sn assigned to the labeled ciphertext

(L, c).
• Upon receiving f + 1 matching publications with valid
decryption shares from the brokers with the same sequence

number sn, a subscriber runs Comb to obtain the publication

in plaintext and delivers it.

Read. As in Kafka, Chios can serve as a storage system and an

authorized client can read stored data (publications) at brokers

via engaging a protocol between the client and brokers.

• A client sends brokers a read request for a particular

publication of the form (L, c).
• Upon receiving a read request, brokers decide if the client

is authorized by checking access control policies associated

with the publication. If the client is allowed to have access

to the publication, each broker i ∈ [1..n] sends the client its

decryption share τi
$← ShareDecski(L, c).

• Upon receiving f+1 matching replies with valid decryption

shares from the brokers with the same sequence number sn,

the client runs Comb to obtain the publication in plaintext

and delivers it.

The above system achieves all properties in Sec. III-A

except publication total order.

C. Chios with Publication Total Order

Intuitively, to achieve publication total order, each sub-

scriber needs to maintain a log of valid publications received

and deliver them according to the sequence number order

assigned by brokers; however, due to access control and

subscriber interests, not all publications will be sent to all

subscribers. Therefore, subscribers do not know if they should

wait for or skip publications with certain sequence numbers.

To tackle the issue, we first require servers to additionally

maintain topic-based sequence numbers in addition to the

global sequence numbers. Doing so, however, does not suffice,

as even if two subscribers have the same subscriptions, they

may not receive the same publications due to the access

control rules. We thus also require that servers send empty

messages with sequence numbers to subscribers who are not

authorized to receive the corresponding publications. This way,

subscribers can safely skip empty publications and go ahead to

deliver publications with larger publication sequence numbers.

We now describe in more detail how Chios achieves pub-

lication total order. As illustrated in Fig. 2, we maintain two

tables: a table for data blocks and a table for publication order

indices. The data block table maintains all operations in the

system, which are stored in the database. The publication order

index table contains metadata of the data blocks and can be

derived from the data block table. The index table is stored

either in the database or in memory.

For each operation, we store the sequence number (sn),

the client id (cid), the operation type (op), the message

payload (p), timestamp (ts), access control rules (ac), and the

publication topics (tp). Certain fields in the data blocks can

be NULL.

324

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

2 100,101 pub m2 10 price=“105”,
county=“Orange”

1000

6 m1 101 NULL write 1 1001

4 m0 NULL price=“105”

cid

pub

p
0

opts ac

1000

tp sn

Data Blocks

0-0,2-1

county=“Orange” 1-0

price=“105”

S-PS tp

Publication Order Indices

2

Figure 2. Data blocks and the publication order indices.

The publication order index table helps achieve topic-based

total order (i.e., total order for the publications according to

the topics). Specifically, for each topic, we maintain a simple

data structure S-PS, where the S field consists of the sequence

numbers of operations (sn, the same sequence numbers as in

the data blocks table), and the PS field consists of the per-topic

sequence numbers (ps).

The PS field contains incremental sequence numbers for

a specific topic, ensuring there is no gap in the sequence

numbers for operations with the same topic. For instance,

as shown in Fig. 2, in the data block table, operations with

sequence number 0 and 2 are publications. There are two

topics involved in the data block table: price = “105” and

county = “Orange”. Correspondingly, there are two topics in

the publication index table. As both publications have the

topic (price = “105”), the topic in the index table has two

S-PS numbers: 0-0 and 2-1. The numbers 0 and 2 in the S

field are the sequence numbers in the data block table, while

the numbers 0 and 1 in the PS field are per-topic sequence

numbers. Specifically, brokers distinguish three cases:

• For authorized and interested subscribers, each broker i ∈
[1..n] sends them (tp, ps, τi), where tp is the topic, ps is the

topic sequence number, and τi
$← ShareDecski(L, c) is the

decryption share for broker i.
• For unauthorized and interested subscribers, each broker

i ∈ [1..n] sends them (tp, ps,⊥), where ⊥ is a short

distinguished symbol denoting an empty message payload

(so that subscribers can safely skip the sequence numbers

for a particular topic).

• For uninterested subscribers, brokers send nothing.

Each subscriber maintains a log of publications (either

empty publications or publications in plaintext) for each topic

tp. It delivers publications according to the ps order, and

example of which is illustrated in Fig. 3. More specifically,

• Upon receiving f + 1 matching publications of the form

(tp, ps, τi) from different brokers, a subscriber runs Comb
to obtain a publication in plaintext p and stores p in Δ in its

ps’s position.

• Upon receiving f + 1 matching publications of the form

(tp, ps,⊥) from different brokers, the subscriber directly

skips the empty publication in the array Δ in its ps’s position.

• The subscriber delivers a publication p ∈ Δ with a sequence

number ps, if all publications with sequence numbers smaller

than ps are either delivered (for non-empty publications) or

skipped (empty publications).

V. A MODULAR FRAMEWORK

Chios provides a modular framework allowing trade-offs

between functionality, security, and efficiency. Chios currently

Figure 3. An example of how a subscriber delivers publications assuming
f = 1 and n = 4. The subscriber receives a sequence of messages from BFT
brokers and stores them in its buffer. It first receives f + 1 = 2 matching
messages with ps = 2. It then runs Comb to obtain a publication p2 in
plaintext and stores in its log. The subscriber has to wait until publications
with smaller sequence numbers (i.e., ps = 0, 1) have been dealt with. After
the subscriber receives 2 matching messages with ps = 0, it runs Comb to
obtain p1 and delivers p1. It then waits for messages with ps = 1. After
the subscriber receives two empty messages for ps = 1, it directly skips the
message and delivers message p2 stored.

supports four modules, including an encryption-free module

(Module 1), the module using threshold encryption (Module

2, the one we described in Sec. IV), a module using hybrid

encryption, and one with broadcast encryption. Due to space

limit, we mainly focus on the first two modules. We describe

the other two modules in greater detail in the full technical

report.

VI. IMPLEMENTATION

Chios consists of a Java library and a Python library with

about 30,000 lines of new code. We utilize BFT-SMaRt [11]

written in Java as the underlying consensus engine, as BFT-

SMaRt is “the most advanced and most widely tested im-

plementation of a BFT consensus protocol” [37]. We use

LevelDB [29] as the database. We extend the BFT-SMaRt

library and implement a key-value store service. The Java

library serves as an ordering service, which assigns a sequence

number to a client operation. Then, we wrap the library in

Python and develop all the core functionalities.

Client

Network

LevelDB

BlockStore

BFT Core

Crypto Library

Request
Handler
Threads

Pub/Sub

Registration

Pub/Sub
Handler
Threads

Reply
Handler
Threads

Figure 4. System architecture and message flow.

Fig. 4 illustrates the system architecture and the message

flow. The client operations are first handled through a request

handler thread pool and the operations are then relayed to the

BFT core. The BFT core batches concurrent client operations

and assigns a sequence number to each operation. The ordered

client operations are then processed by a pub/sub handler

thread pool. Each thread processes a client operation at a time

and outputs a reply according to the operation type. Chios uses

a batch-process, block-store approach, where operations are

batched according to a tunable parameter BlockSize, ordered,

processed, and the results are stored in the database in blocks.

325

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

We use ECDSA for authentication and use SHA-256 as

our hash function. We implement TDH2-VIL and threshold

PRF [16] using the Charm Python library [3]. We use the NIST

P-256 curve to provide 128-bit security. We use AES and CBC

with ciphertext stealing as our blockcipher and encryption

scheme, respectively, to implement the NNL scheme [45].

VII. EVALUATION

Settings. We deployed Chios on Amazon EC2 using up to

31 nodes for brokers and 25 nodes for clients (running up to

1,200 clients in total). Each node, by default, is a compute-

optimized c5.2xlarge type with 8 virtual CPUs (vCPUs) and

16GB memory. We also test the performance using a general-

purpose t2.medium type with two vCPUs and 4GB memory to

evaluate the performance on different hardware. We evaluate

our protocols in both LAN and WAN settings, where the LAN

nodes are selected from the same EC2 region, and the WAN

nodes are uniformly selected from different regions.

We evaluate the protocols under different network sizes

(number of replicas) and contention levels (number of con-

current clients). For each experiment, we use f to represent

the network size, where 3f + 1 brokers are launched in total.

We use P, C, and B to represent the encryption-free module

(Module 1), the threshold encryption module (Module 2),

and the broadcast encryption module, respectively. Let Mod
∈ {P,C,B} and let op(Mod) represent the operation op in

the operation using the Mod module. For instance, pub(C)
denotes pub operations for Module 2.

We examine the average latency under no contention where

only one client sends a single operation to the servers. We ex-

amine the throughput under high contention of client requests.

We evaluate the number of operations processed every second

for every 2,000 operations and use the average throughput of

the entire experiment.

Overview. For the minimum one failure setting (f = 1), the

Chios protocol with all desirable features (pub/sub, decentral-

ized confidentiality, and fine-grained access control), achieves

throughput of 45 kops/s for pub operations in LAN. To

rigorously demonstrate Chios’s performance, we first compare

Chios Module P with five other pub/sub systems. Next, we

evaluate the performance for different Chios Modules.

Comparison with five other pub/sub systems. We first

compare Chios Module P with the following five systems,

where Chios-Solo, Kafka, and Fabric-Solo are unreplicated

systems, while Kafka-Rep and Fabric-Kafka are crash fault-

tolerant systems:

− Chios-Solo. Unreplicated, single-node version of Chios.

− Kafka. As we summarized in Table I in Sec. I, Kafka favors

performance over reliability and does not achieve any security

or reliability goals which we surveyed even in the crash

failure model.

− Kafka-Rep. Kafka also supports passive (primary-backup)

replication for its brokers with no total order guarantees.

− Fabric-Kafka [6]. Fabric is a popular permissioned

blockchain system. Fabric currently does not protect against

Byzantine failures. Fabric-Kafka uses the Zookeeper [49]

unreplicated replicated
0

10

20

30
25.91 26.23

30.68

26.96

1.44 1.36

T
h

ro
u

g
h

p
u

t
(k

o
p

s/
s)

Chios-Solo

Kafka

Fabric-Solo

Chios
Kafka-Rep

Fabric-Kafka

Figure 5. Throughput of Chios, Chios-Solo, Kafka, Kafka-Rep, Fabric-Kafka,
and Fabric-Solo.

system in Kafka to achieve consensus and is thus only crash

fault-tolerant. Hyperpubsub is pub/sub auditing system using

Fabric (with Raft [46]) and it is thus slower than Fabric-

Kafka.

− Fabric-Solo [6] uses a single node for consensus and is thus

not fault-tolerant. One Trinity instance [50] uses Fabric-Solo

as its pub/sub auditing system and is slower than Fabric-Solo.

To evaluate the P module of Chios, we randomly assign

topic number for publications during evaluation. We imple-

ment a read/write smart contract for Fabric and use the

write operation for the write throughput. Our evaluation for

throughput is standard: publishers send brokers operations,

and we increase the number of publishers to obtain the peak

throughput. We first find out the number of publishers when

each system reaches peak throughput. To ensure a fair compar-

ison, we evaluate the systems under the same total workload.

Namely, the total number of operations sent publishers is the

same for all systems. We let the size of all operations be 1kB

and we utilize network sizes that tolerate one failure, i.e., four

for Chios and three for Fabric and Kafka.

We report the throughput in LAN using 200 clients of the

six systems in Fig. 5. Chios Module P is as efficient as Chios-

Solo and is only marginally less efficient than Kafka and

Kafka-Rep. Chios is significantly more efficient than Fabric-

Kafka and Fabric-Solo and thus even much more efficient than

Hyperpubsub and Trinity.

It is unfair to compare Chios with Kafka with more nodes,
as Kafka uses independent server instances for horizontal
scalability.
Latency of Chios modules. We assess the latency in both

the LAN and WAN settings. We let the BlockSize be one to

understand the latency caused by the protocol itself. In the

LAN setting, the network latency is relatively small, so the

overhead is more caused by the BFT agreement and execution

of operations (e.g., verifying operation types, database inter-

action). In the WAN setting, the network latency causes more

performance degradation than that in the LAN setting. For

the threshold encryption and broadcast encryption modules,

the latency evaluated includes the overhead of client-side

encryption.

For read operations. We assess the latency for read operations

in all three encryption modules as the network size increases.

Fig. 6(a) reports the latency for the LAN setting. As read(P)
involves no encryption, it has the lowest latency among all

326

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

f = 1 f = 5 f = 10
0

20

40

60

19.7

38.3

29.6

25.5

44.8

37.3

19.5

40

27.3

L
at

en
cy

(m
s)

read (P)

read (C)

read (B)

(a) Latency for read operations in the LAN
setting with f = 1, 5 and 10.

f = 1 f = 5 f = 10
0

200

400

600

365 379 374366 380 374365 376 372

L
at

en
cy

(m
s)

read (P)

read (C)

read (B)

(b) Latency for read operations in the WAN
setting with f = 1, 5 and 10.

f = 1 f = 5 f = 10
0

20

40

60

21.5

40.9

31.1

22.4

40.4

27.9

21.2

40.2

31.6

21.7

40.8

28.9

L
at

en
cy

(m
s)

pub (P) pub (C)

pub (B) sub

(c) Latency for pub operations in the LAN setting
with f = 1, 5 and 10.

f = 1 f = 5 f = 10
0

200

400

600

428
444 441428

445 438427
443 439431 445 441

L
at

en
cy

(m
s)

pub (P) pub (C)

pub (B) sub

(d) Latency for pub operations in the WAN
setting with f = 1, 5 and 10.

c5.2xlarge t2.medium
0

20

40

60

80

44.5

69.3

48.4

74.3

45.2

69

L
at

en
cy

(m
s)

pub (P)

pub (C)

pub (B)

(e) Latency for pub operations in the
LAN setting on different hardware
with f = 1.

32/128 64/265 128/512 256/1024 512/2048
0

20

40

60

24.3 24 25.3 26.7 26.6

21.2 21.9
23.5

21.9 21.5

L
at

en
cy

(m
s)

pub (B)

read (B)

(f) Latency for read(B) and pub(B) operations
in LAN with f = 1, where a/b represents that a
out of b subscribers are revoked.

Figure 6. Latency of different Chios modules.

0 50 200 500 1000
0

10

20

30

40

50

Number of clients

T
h
ro

u
g
h
p
u
t

(k
o
p
s/

s)

pub (P) pub (C)

(a) Throughput in the LAN as the
number of client threads increases.

1000 5000 10000 15000
25

30

35

40

45

BlockSize

T
h
ro

u
g
h
p
u
t

(k
o
p
s/

s)

pub (P) pub (C)

(b) Throughput in the LAN as the
size of block increases.

f = 1 f = 5 f = 10
0

10

20

30

18.17

14.21

8.51

16.11

7.89

3.77

T
h

ro
u

g
h

p
u

t
(k

o
p

s/
s)

pub (P)

pub (C)

(c) Peak throughput in the WAN
using 500 clients.

f = 1 f = 5 f = 10
0

10

20

30

40

50

37.31

33.38
30.6630.49

25.68
23.33

T
h
ro

u
g
h
p
u
t

(k
o
p
s/

s)

pub (P)

pub (C)

(d) Throughput in the LAN using
500 clients.

Figure 7. Throughput of different Chios modules.

three modules. For read(C), replicas verify the ac rules,

decrypt the ciphertext, and send decryption shares to the

clients. Additional overhead is thus incurred. For read(B),
we test the latency for the content distribution phase, as

the key distribution phase needs to be done only once. The

performance of read(B) is consistently better than that of

read(C), as it uses symmetric cryptography only. In the WAN

setting, the latency difference among the three modules is

smaller, as shown in Fig. 6(b), mainly because network latency

dominates the overhead.

For pub and sub operations. We report their latency in

Fig. 6(c) and Fig. 6(d). We also report the latency of pub using

different hardware in Fig. 6(e). We find that the latency for pub
operations is higher than that of read operations. We also find

that the latency difference for pub operations between the LAN

and WAN settings is much higher than that for read operations.

The findings are expected, as Chios implements the BFT read

optimization which reduces much communication overhead.

Other operations. In Fig. 6(f), we evaluate the performance of

read(B) and write(B) operations as the number of subscribers

increases. In all these experiments, we randomly revoke 1/4

of the total subscribers. We find for both operations, the

latency is steady, regardless of the number of subscribers. The

reason is that the broadcast encryption module uses symmetric

cryptography only for the content distribution phase.

Throughput of Chios modules. We evaluate the throughput of

Chios with varying BlockSize in the LAN setting when f = 1.

Fig. 7(a) demonstrates the throughput when the BlockSize is

the 5,000 and as the number of concurrent clients increases

from 25 to 1,000. The system reaches peak throughput when

the number of concurrent clients is larger than 800. The peak

throughput that we observe for pub (P) is around 40 kops/s

in LAN and 18 kops/s in WAN. We report the throughput

when the total number of clients is 375 and as the BlockSize

increases in Fig. 7(b). We observe that the throughput becomes

larger when the BlockSize increases; however, after BlockSize

is larger than 10k, the throughput ceases to increase. In all

experiments, the throuhgput for pub (C) is lower than that of

pub (P) due to the cryptographic overhead.

We report the throughput for pub (P) and pub (C) using

up to 31 servers and 500 concurrent clients for the LAN

setting and the WAN setting, in Fig. 7(d) and Fig. 7(c),

respectively. For both the LAN and WAN settings, we find that

the throughput for both modules degrade when the number

327

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

of servers increases (resembling that of BFT-SMaRt, the
consensus engine for Chios), and the throughput for pub (C)

degrades more significantly due to the cryptographic overhead.

VIII. CONCLUSION

We design and implement Chios, a highly efficient and

intrusion-tolerant pub/sub system. Chios addresses two major

challenges in pub/sub in terms of confidentiality and relia-

bility: Chios achieves decentralized confidentiality with fine-

grained and attribute-based access control and publication

total order with two-way information control. Chios provides

modular instances designed to meet different goals. Through

extensive evaluation, we demonstrate Chios is efficient.

REFERENCES

[1] B. Adida, O. de Marneffe, O. Pereira, and J.-J. Quisquater. Electing a
University President using open-audit voting: Analysis of real-world use
of Helios. EVT/WOTE 2009.

[2] A. Adya et al. FARSITE: Federated available and reliable storage for
incompletely trusted environments. OSDI ’02.

[3] J. A. Akinyele et al. Charm: a framework for rapidly prototyping cryp-
tosystems. Journal of Cryptographic Engineering, 3(2):111–128, 2013.

[4] Amazon Simple Notification Service (SNS). https://aws.amazon.com/sns/
[5] E. Androulaki, C. Cachin, A. D. Caro, and E. Kokoris-Kogias. Chan-

nels: Horizontal scaling and confidentiality on permissioned blockchains.
ESORICS 2018.

[6] E. Androulaki et al. Hyperledger Fabric: a distributed operating system
for permissioned blockchains. EuroSys 2018.

[7] Apache Kafka. https://kafka.apache.org/
[8] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch. Access control in

publish/subscribe systems. DEBS 2008.
[9] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer, and M. Virza.

SNARKs for C: Verifying program executions succinctly and in zero
knowledge. CRYPTO 2013.

[10] A. Bessani, E. Alchieri, M. Correia, and J. Fraga. DepSpace: A Byzan-
tine fault-tolerant coordination service. EuroSys 2008.

[11] A. Bessani, J. Sousa, and E. Alchieri. State Machine Replication for the
Masses with BFT-SMART. DSN 2014.

[12] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. IEEE S&P 2007.

[13] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. CRYPTO 2005.

[14] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti. Blockchain
and trusted computing: Problems, pitfalls, and a solution for Hyperledger
Fabric. SRDS 2019.

[15] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient
asynchronous broadcast protocols (extended abstract). CRYPTO 2001.

[16] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography.
Journal of Cryptology 18(3), 219–246.

[17] C. Cachin and S. Tessaro. Asynchronous verifiable information dispersal.
SRDS 2005.

[18] R. Cheng et al. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contract execution. EuroS&P, 2019

[19] CMS advances interoperability & patient access to health data through
new proposals. https://edit.cms.gov/newsroom/fact-sheets/cms-advances-
interoperability-patient-access-health-data-through-new-proposals

[20] T. Chang, S. Duan, H. Meling, S. Peisert, and H. Zhang. P2S: A fault-
tolerant publish/subscribe infrastructure. DEBS 2014.

[21] R. Cramer, I. Damgard, and J. Nielsen. Secure multiparty computation
and secret sharing. Cambridge University Press.

[22] S. Duan, M. K. Reiter, and H. Zhang. Secure causal atomic broadcast,
revisited. DSN 2017.

[23] S. Duan and H. Zhang. Practical state machine replication with confi-
dentiality. SRDS, 2016.

[24] Benjamin Eze et al. Policy-based data integration for e-health monitoring
processes in a B2B environment: experiences from Canada. JTAER 5, 1
(April 2010), 56–70.

[25] FAYE, Simple pub/sub messaging for the web. https://faye.jcoglan.com
[26] A. Fiat and M. Naor. Broadcast encryption. CRYPRO 1993.
[27] L. Fiege et al. Security aspects in publish/subscribe systems. DEBS’04.

[28] J. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure distributed storage
and retrieval. TCS, 243 (1-2): 363–389, 2000.

[29] S. Ghemawat and J. Dean. LevelDB, A fast and lightweight key/value
database library by Google. 2014.

[30] Google Cloud Pub/Sub. https://cloud.google.com/pubsub/
[31] M. Ion, G. Russello, and B. Crispo. An implementation of event and

filter confidentiality in pub/sub systems and its application to e-health.
CCS 2010.

[32] M. Ion, G. Russello, and B. Crispo. Supporting publication and sub-
scription confidentiality in pub/sub networks. SecureComm 2010.

[33] M. Ion, G. Russello, and B. Crispo. Design and implementation of a
confidentiality and access control solution for publish/subscribe systems.
Computer Networks 56, 7 (2012), 2014–2037.

[34] IOTA. https://www.iota.org/
[35] A. Iyengar, R. Cahn, C. Jutla, and J. Garay. Design and implementation

of a secure distributed data repository. IFIP ISC, 1998.
[36] L. Jehl and H. Meling. Towards Byzantine fault tolerant pub-

lish/subscribe: a state machine approach. HotDep 2013.
[37] A. Kate, Y. Huang, and I. Goldberg. Distributed key generation in the

wild. IACR Cryptology ePrint Archive 2012: 377 (2012).
[38] R. Kazemzadeh and H. Jacobsen. Reliable and highly available dis-

tributed publish/subscribe service. SRDS 2009.
[39] R. Kazemzadeh and H. Jacobsen. Publiyprime: Exploiting overlay

neighborhoods to defeat byzantine publish/subscribe brokers. University
of Toronto, 2013.

[40] H. Khurana. Scalable security and accounting services for content-based
publish/subscribe systems. SAC 2005.

[41] A. E. Kosba et al. Hawk: The Blockchain Model of Cryptography and
Privacy-Preserving Smart Contracts. IEEE Security & Privacy 2016.

[42] J. Kubiatowicz et al. OceanStore: An architecture for global-scale
persistent storage. ASPLOS, 2000.

[43] A. B. Lewko and B. Waters. Decentralizing Attribute-Based Encryption.
EUROCRYPT 2011.

[44] MQTT. www.mqtt.org/
[45] D. Naor, and M. Naor, and J. B. Lotspiech. Revocation and tracing

schemes for stateless receivers. CRYPTO 2001.
[46] D. Ongaro and J. Ousterhout. In search of an understandable consensus

algorithm. ATC, 2014.
[47] E. Onica, P. Felber, H. Mercier, and E. Rivière. Confidentiality-

preserving publish/subscribe: A survey. ACM Comput. Surv., 2016.
[48] R. Padilha and F. Pedone. Belisarius: BFT Storage with confidentiality.

NCA 2011.
[49] P. Hunt, M. Konar, F. Junqueira, and B. Reed. ZooKeeper: Wait-free

Coordination for Internet-scale Systems. ATC, 2010.
[50] G. S. Ramachandran et al. Trinity: A Byzantine fault-tolerant distributed

publish-subscribe system with immutable blockchain-based persistence.
ICBC.

[51] M. K. Reiter and K. Birman. How to securely replicate services. ACM
TOPLAS, vol. 16 issue 3, pp. 986–1009, ACM, 1994.

[52] V. Shoup and R. Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. EUROCRYPT ’98.

[53] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services with
EventGuard. CCS 2005.

[54] M. A. Tariq, B. Koldehofe, and K. Rothermel. Securing Broker-Less
Publish/Subscribe Systems Using Identity-Based Encryption. IEEE Trans.
on Parallel and Distributed Systems 25, 2 (2014), 518–528.

[55] Tendermint core. https://github.com/tendermint/tendermint
[56] S. Vinoski. 2006. Advanced message queuing protocol. IEEE Internet

Computing 10, 6 (2006).
[57] G. Wood. Ethereum: A secure decentralised generalised transaction

ledger. Byzantium Version.
[58] A. Wun and H.-A. Jacobsen. A Policy Management Framework for

Content-Based Publish/Subscribe Middleware. Middleware 2007.
[59] J. Yin et al. Separating agreement from execution for Byzantine fault

tolerant services. SOSP 2003.
[60] K. Zhang, V. Muthusamy, H-A. Jacobsen. Total order in content-based

publish/subscribe systems. ICDCS 2012.
[61] Y. Zhao and D.C. Sturman. Dynamic Access Control in a Content-based

Publish/Subscribe System with Delivery Guarantees. ICDCS 2006.
[62] N. Zupan, K. Zhang, and H-A. Jacobsen. Hyperpubsub: a decentral-

ized, permissioned, publish/subscribe service using blockchains: demo.
Middleware Posters and Demos 2017.

328

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 15:53:21 UTC from IEEE Xplore. Restrictions apply.

