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Abstract. The de Rham-Hodge theory is a landmark of the 20th Century’s
mathematics and has had a great impact on mathematics, physics, computer

science, and engineering. This work introduces an evolutionary de Rham-

Hodge method to provide a unified paradigm for the multiscale geometric
and topological analysis of evolving manifolds constructed from a filtration,

which induces a family of evolutionary de Rham complexes. While the present

method can be easily applied to close manifolds, the emphasis is given to more
challenging compact manifolds with 2-manifold boundaries, which require ap-

propriate analysis and treatment of boundary conditions on differential forms

to maintain proper topological properties. Three sets of unique evolutionary
Hodge Laplacians are proposed to generate three sets of topology-preserving

singular spectra, for which the multiplicities of zero eigenvalues correspond to
exactly the persistent Betti numbers of dimensions 0, 1 and 2. Additionally,
three sets of non-zero eigenvalues further reveal both topological persistence

and geometric progression during the manifold evolution. Extensive numerical
experiments are carried out via the discrete exterior calculus to demonstrate

the potential of the proposed paradigm for data representation and shape anal-

ysis of both point cloud data and density maps. To demonstrate the utility
of the proposed method, the application is considered to the protein B-factor

predictions of a few challenging cases for which existing biophysical models
break down.
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1. Introduction. The de Rham-Hodge theory reveals that the cohomology of an
oriented closed Riemannian manifold can be represented by harmonic forms. It
also holds for an oriented compact Riemannian manifold with boundary by forcing
certain boundary conditions, such as absolute and relative cohomology [56]. This
theory has been proved to be fundamentally important throughout algebraic geom-
etry. It studies differential geometry and algebraic topology with partial differential
equations (PDEs). The understanding of the de Rham-Hodge theory requires a
variety of contemporary mathematical techniques including differential geometry,
algebraic geometry, elliptic PDE, abstract algebra, topology, et al.

The de Rham-Hodge theory has a wide range of applications, including not
only mathematics, but also graphics/visualization [63, 76], physics/fluids [24], vi-
sion/robotics [29, 44] and astrophysics/geophysics [40, 1]. Among all these applica-
tions, most of them rely upon the Hodge theory result, i.e., the Helmholtz-Hodge
decomposition. It is one of the fundamental theorems in dynamical problems, de-
scribing a vector field into the gradient and curl components.

Due to the orthogonal decomposition, the analysis of vector fields becomes easier
since certain properties such as incompressibility and vorticity of fluid dynamics
can be studied on the orthogonal subspace. Such an orthogonal decomposition was
first applied on a finite-dimensional compact manifold without boundary [32] and
then was developed for manifolds with boundaries [59]. Pushed by the visualization
community, the implementation of orthogonal decomposition integrates a variety
of boundary conditions with discrete vector fields expressed as discrete differential
forms into two potential fields and harmonic fields [76]. The boundary conditions
of the decomposition preserve orthogonality. The duality revealed by tangential
and normal boundary conditions provides compact spectral representations of the
Laplace operators in the de Rham-Hodge theory. The spectra of de Rham-Laplace
operators provide a quantitative approach to understanding topological spaces and
geometry characteristics of manifolds and have been applied to biomolecular mod-
eling and analysis [77]. The development of discrete exterior calculus (DEC) is the
driving force for de Rham-Hodge theory analysis and application [2, 19].

Over half a century ago, Kac asked a famous question, “can one hear the shape
of a drum?” [35]. Zelditch noticed that different drums may be distinguished
by imposing restrictions with analytic boundary [75]. However, the traditional
spectral analysis cannot fully resolve the shape of a drum due to the isospectrum
from different geometric shapes. Innovative theoretical development is required to
solve this long-standing spectral geometry problem.

In the last few decades, geometric analysis has made great progress in under-
standing shapes that evolve in time. Geometric flows [69] or geometric evolution
equations have been extensively studied in mathematics [62, 30, 42] and many pro-
cesses by which a curve or surface can evolve, such as the Gauss curvature flow and
the mean curvature flow. Numerical techniques based on level sets were devised
by Osher and Sethian [53] and have been extended and applied by many others in
geometric flow analysis [68, 15, 21]. More recently, as the progress in contempo-
rary life sciences, a large number of problems of unveiling the structure-function
relationship of biomolecules and understanding of biomolecular systems, requires
multiscale geometric modeling and analysis [5, 68, 16]. However, compared with
the investigations on curves and surfaces, a small amount of geometric explorations
focuses on the evolution of compact manifolds specific to R3 due to the difficulty
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of computations. Additionally, it is rare to resolve topology from a nonlinear geo-
metric PDE. Using a minimal molecular surface model [5], Wang and Wei studied
the topological persistence via the evolutionary profiles of the Laplace-Beltrami
flow [66]. As a result, features of topological invariants are computed from the
geometric PDE based filtration. There has been much effort in pure mathematics
to understand the convergence of Riemannian manifolds in terms of sequences of
submanifolds in metric spaces. However, the involved Gromov-Hausdorff distance
can be computationally very difficult.

With the advancements in data development and computational software, per-
sistent homology has been promoted as a new multiscale approach for data analy-
sis [78, 22]. The traditional topological approaches describe the topology of a given
object without invoking the metric or coordinate representations. Whereas, per-
sistent homology bridges algebraic topology and multiscale analysis. The essential
difference is that persistent homology analyzes the persistence of the topological
space through a filtration process, which is a family of simplicial complexes under a
series of inclusion maps. Therefore a series of complexes are constructed based on
filtration, which captures topological features changing over a range of spatial scales
and reveals the features’ topological persistence. In some sense, persistent homol-
ogy can embed geometric information to topological invariants such that “birth”
and “death” of connected components, rings, or cavities can be monitored by topo-
logical measurements during geometric scale changes. The original idea of vary-
ing scales was introduced by Frosini and Landi [26] and by Robins in 1990s [58].
Edelsbrunner et al. formulated the persistent homology and developed the first
efficient computational algorithm [23]. Zomorodian and Carlsson generalized the
mathematical theory [78]. Persistent homology has stimulated much theoretical
development[13, 22, 17, 10, 41, 67]. Among them, the persistent spectral graph gen-
erates both topological persistence and spectral analysis [67]. Persistent homology
has been applied to a variety of fields, including image analysis [14, 55, 60, 6], image
retrieval [27], chaotic dynamics verification [43, 36], sensor network [18], complex
network [38, 34], data analysis [51, 64], computer vision [60], shape recognition [20]
and computational biology [74, 72, 71, 28, 37].

One of the first integrations of persistent homology and machine learning was
developed for protein classification in 2015 [9]. Since then, persistent homology has
been utilized as one of the most successful methods for the multiscale representa-
tion of complex biomolecular data [11, 12, 8]. Two other multiscale representations
of complex biomolecular data have also been proposed and found tremendous suc-
cess in worldwide competitions in computer-aided drug design [46, 47]. One of
them is based on multiscale graphs [52], or more precisely, multiscale weighted
colored graphs [7]. Eigenvalues of the graph Laplacians of multiscale weighted
colored graphs were shown to provide some of the most powerful representations
of protein-ligand binding interactions [45]. The other representation utilizes the
curvatures computed from multiscale interactive molecular manifolds [48]. The
multiscale shape analysis offers an efficient means to discriminate similar geome-
tries. A common feature which is crucial to the success of the aforementioned three
mathematical data representations is that they either create a family of multiscale
topological spaces, or generate a family of multiscale graphs, or construct a family of
manifolds, indicating the importance of the multiscale analysis in the representation
of complex data with intricate internal structures.
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Inspired by the aforementioned ideas, we introduce an evolutionary de Rham-
Hodge method for data representation. The present evolutionary de Rham-Hodge
method is developed by integrating differential geometry, algebraic topology, and
multiscale analysis. It is noted that the fusion of algebraic topology and multiscale
analysis leads to persistent homology, the combination of differential geometry and
multiscale analysis renders manifold convergence [61], while the union of differential
geometry and algebraic topology results in the de Rham-Hodge theory. For a given
dataset, using the evolutionary filtration developed in early work [66], we construct
a sequence of evolving manifolds that lead to a geometry-embedded filtration under
inclusion maps. The evolutionary de Rham-Hodge method is established on this
sequence of manifolds. In general, the evolution of the manifolds can be either
topological persistence which involves topological changes or geometric progression
which does not involve topological changes. We are interested in both the data
analysis by evolutionary Hodge decompositions associated with various differential
forms and the data representations via the evolutionary spectra of de Rham Laplace
operators defined on the sequence of manifolds. The evolutionary spectra reveal
both the topological invariants and the geometric shapes of evolving manifolds.
Such an evolutionary spectral analysis has great potential to “hear the shape of a
drum”.

In this work, we concern both close 2-manifolds and compact manifolds in R3

with boundaries, which require the enforcement of appropriate boundary condi-
tions on differential forms to ensure topological properties. Much effort has been
given to the understanding and implementation of appropriate boundary condi-
tions for the evolutionary de Rham-Hodge method, which results in three sets of
unique evolutionary Hodge Laplacians. The multiplicities of the zero eigenvalues
of these evolutionary Hodge Laplacians provide the 0th, 1st, and 2nd persistent
Betti numbers. Their non-zero eigenvalues further portray the geometric shape and
topological characteristics of data.

The rest of this paper is organized as follows. Section 2 is devoted to a brief
review of the de Rham-Hodge theory, which includes the topics of the de Rham
complex and Hodge decomposition. Then, the discrete forms and spectra generated
by de Rham-Hodge theory are discussed in Section 2. Readers familiar with the
content in the above primer are recommended to start from Section 3, where the
evolutionary de Rham-Hodge method is formulated. To demonstrate the utility
and usefulness of the present method, we present the evolutionary de Rham-Hodge
analysis of geometric shapes in Section 4. The application of the present method
is given to the protein flexibility prediction in Section 5. We consider a few cases
that are challenging to the existing models in computational biophysics. Finally, a
conclusion is given in Section 6.

2. A primer on de Rham-Hodge theory. To introduce the evolutionary de
Rham-Hodge method, we briefly review the de Rham-Hodge theory to establish
notation. We first discuss differential geometry and de Rham complex on smooth
manifolds before reviewing the Hodge decomposition. Then, we illustrate the DEC
discretization of the de Rham-Laplace operators and analyze their spectra.

2.1. Differential geometry and de Rham complex. Differential geometry is
the study of shapes that can be represented by smooth manifolds of an arbitrary
dimension. A differential k-form ωk ∈ Ωk(M) is an antisymmetric covariant tensor
of rank k on manifold M . Roughly speaking, at each point of M , it is a linear map
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from an array of k vectors into a number, which switches sign if any two of the
vectors are swapped. In general, it gives a uniform approach to define the integrals
over curves, surfaces, volumes, or higher-dimensional oriented submanifolds of M .
More precisely, the antisymmetric rank-k covariant tensor linearly maps k edges
from the first vertex of each k-simplex in a tessellation of the k-submanifold into a
number, creating a Riemann sum that converges to an integral independent of the
tessellation.

In R3, 0-forms and 3-forms can be recognized as scalar fields, as the antisymme-
try permits one degree of freedom (DoF) per point, whereas 1-forms and 2-forms
are considered vector fields as they require three DoFs per point. Our following
discussion is specific to 3-dimensional (3D) volumes bounded by 2-manifolds in R3.

The differential operator (i.e., exterior derivative) dk maps from the space of k-
form on manifold, Ωk(M) to Ωk+1(M). It can be regarded as an antisymmetrization
of the partial derivatives of a k-form. As such, it is a linear map dk : Ωk(M) →
Ωk+1(M) that satisfies the Stokes’ theorem over any (k+1)-submanifold S in M :∫

S
dkωk =

∫
∂S
ωk, (1)

where ∂S is the boundary of S and ωk ∈ Ωk(M) is an arbitrary k-form. Con-
sequently, a key property of differential operator, dkdk−1 = 0, follows from that
boundaries are boundaryless (∂∂S = 0). This implies that an exact form (image
of a (k−1)-form under differential) is closed (i.e., is in the kernel of differential).
The differential operator indeed provides a unification of a number of commonly
used operators in 3D vector field analysis. Depending on the degree k of differential
forms, dk can be regarded as gradient (∇), curl (∇×) and divergence (∇·) opera-
tors for 0-, 1- and 2-forms, respectively, e.g., d0 takes the gradient of a scalar field
(representing a 0-form) to a vector field (representing a 1-form).

With the linear spaces of k-forms treated as abelian groups under addition and
the linear maps d treated as group homomorphisms, they form a sequence that
fits the definition of a cochain complex as dkdk−1 = 0. This cochain complex of
differential forms on a smooth manifold M is known as the de Rham complex :

0 Ω0(M) Ω1(M) Ω2(M) Ω3(M) 0.d0 d1 d2 d3

Note that d3 maps 3-forms to 4-forms, but k-forms for k > 3 are always zero in R3

due to antisymmetry.
The Hodge k-star ?k (also called Hodge dual) is linear map (and hence also a

group isomorphism) from a k-from to its dual form, ?k : Ωk(M) → Ωn−k(M).
Due to the antisymmetry, both k-forms and their dual (n−k)-forms have the same
DoF

(
n
k

)
=
(
n

n−k
)
. More specifically, for an orthonormal basis (e1, e2, . . . , en),

?k(ei1 ∧ei2 ∧· · ·∧eik) = ej1 ∧ej2 ∧· · ·∧ejn−k , where ∧ denotes the antisymmetrized
tensor product and (i1, ..., ik, j1, ..., jn−k) is an even permutation of {1, 2, ..., n}. The
associated (e1, e2, . . . , en) is a basis for 1-forms and ei1 ∧ · · · ∧ eik form a basis for
k-forms.

As ?k and dk can only operate on k-forms, we can omit the superscript of the
forms or the operators when the dimension is clear from the context. The (L2-)inner
product of differential forms for two k-forms α, β ∈ Ωk(M) can be defined as

〈α, β〉 =

∫
M

α ∧ ?β =

∫
M

β ∧ ?α. (2)
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Table 1. Exterior (odd rows) vs. traditional (even rows) calculus
in R3. f0, v1, v2 and f3 stand for 0-, 1-, 2- and 3-forms with their
components stored in either a scalar field f or vector field v.

order 0 order 1 order 2 order 3

form f0 v1(a) v2(a,b) f3(a,b, c)

f v · a v · (a× b) f [(a× b) · c]
d df0 dv1 dv2 df3

(∇f)1 (∇× v)2 (∇ · v)3 0

? ?f0 ?v1 ?v2 ?f3

f3 v2 v1 f0

δ δf0 δv1 δv2 δf3

0 (−∇ · v)0 (∇× v)1 (−∇f)2

∧ f0∧g0 f0∧v1 f0∧v2, v1∧u1 f0∧g3, v1∧u2

(fg)0 (fv)1 (fv)2, (v×u)2 (fg)3, (v · u)3

Under these inner products, the adjoint operators of d are the codifferential opera-
tors δk: Ωk(M) → Ωk−1(M) , δk = (−1)k ?4−k d3−k?k for k = 1, 2, 3. In 3D, they
can be identified with −∇·, ∇× and −∇ for δk, k = 1, 2, 3 respectively in vector
field analysis. Equipped with codifferential operators δk, the spaces of differential
forms now constitute a bi-directional chain complex,

Ω0(M) Ω1(M) Ω2(M) Ω3(M).
d0 d1

δ1

d2

δ2 δ3

Finally, the exterior calculus notations and their counterparts in traditional calculus
are summarized in Table 1. The exterior calculus operations are strictly equivalent
to the vector calculus operation in flat 3-dimensional space. A 0- or 3-form can be
identified as a scalar function f : M ⊂ R3 → R, while a 1- or 2-form is identified
with a vector field v : M → R3. Thus, we can use f0, v1, v2, or f3 to denote a
scalar field f or vector field v regarded as a 0-, 1-, 2-, or 3-form, respectively.

2.2. Hodge decomposition for manifolds. Hodge theory can be seen as the
study of nonintegral parts (cohomology) of (scalar/vector) fields through the anal-
ysis of differential operators. Thus, it is often conveniently and concisely described
by differential k-forms and the exterior calculus of these forms, as discussed in the
previous section.

We first establish the aforementioned adjointness between the differential and
codifferential operators. Through integration by part and the Stokes’ theorem
Eq. (1),

〈dα, β〉 = 〈α, δβ〉+

∫
∂M

α ∧ ?β. (3)

Thus, either for a boundaryless manifold (∂M = ∅) or for forms that vanish on
boundary (α|∂M = 0 or ?β|∂M = 0), the boundary integral vanishes, i.e.,

∫
∂M

α ∧
?β = 0. In such cases, the adjointness, 〈dα, β〉 = 〈α, δβ〉, implies that d and δ
satisfy the important property of adjoint operators—the kernel of a linear operator
is the orthogonal complement of the range of its adjoint operator.
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If we denote the space of normal forms as Ωkn = {ω ∈ Ωk|ω|∂M = 0} and
the space of tangential forms as Ωkt = {ω ∈ Ωk| ? ω|∂M = 0}, the orthogonal

complementarity can be expressed as Ωk = ker δk⊕dΩk−1
n and Ωk = ker dk⊕δΩk+1

t .
With im dk−1 ⊂ ker dk (based on the property of the cochain complex dkdk−1 = 0),
the complementarity restricted to ker dk implies

ker dk = Hk ⊕ dΩk−1
n , (4)

where Hk = ker dk ∩ ker δk is the space of harmonic forms, which are defined to be
both closed and coclosed. Substituting the above equation into Ωk = ker dk⊕δΩk+1

t ,
we obtain the three-component Hodge decomposition,

Ωk = dΩk−1
n ⊕ δΩk+1

t ⊕Hk. (5)

Thus, any ω ∈ Ωk can be uniquely expressed as a sum of three k-forms from the
three orthogonal subspaces,

ω = dαn + δβt + h, (6)

where αn ∈ Ωk−1
n , βt ∈ Ωk+1

t and h ∈ Hk. Note that the potentials α and β do not
have to be unique and a variety of gauge conditions can be specified to make them
unique.

2.2.1. Boundaryless manifolds. When ∂M=∅, Ωk = Ωkt = Ωkn, we can establish an
isomorphism between the cohomology (of the de Rham complex described in the
previous section) and the harmonic space, as was developed by Hodge.

In this case, Eq. (4) can be written as

ker dk = Hk ⊕ im dk−1. (7)

Thus, we can find a unique element in Hk that corresponds to each equivalence class
in the de Rham cohomology Hk

dR = ker dk/im dk−1 (quotient spaces induced by the
de Rham cochain complex). This bijection implies Hk ∼= Hk

dR, which indicates Hk
is a finite-dimensional space with its dimension determined by the topology of the
manifold.

Moreover, we can identify Hk as the kernel of a particular second-order dif-
ferential operator, the de Rham-Laplace operator, or Hodge Laplacian, defined as
∆k ≡ dk−1δk + δk+1dk. Through the adjointness between d and δ, we have

〈∆α, α〉 = 〈(dδ + δd)α, α〉 = 〈dα, dα〉+ 〈δα, δα〉. (8)

Denoting Hk∆ ≡ ker ∆k, the above equation implies that Hk∆ = ker ∆k = ker dk ∩
ker δk = Hk for boundary-less manifolds.

As a direct consequence, we rewrite Eq. (5) as

Ωk = im dk−1 ⊕ im δk+1 ⊕Hk∆. (9)

The importance of the decomposition lies in that the first two components can be
expressed as the derivatives of some potential functions and the last non-integral
part is spanned by the finite-dimensional harmonic space, whose dimension is de-
termined by the topology of the domain due to the above-mentioned isomorphism.
For example, for Ωk with k = 1, 2, this decomposition is often recognized as the
Helmholtz-Hodge decomposition of vector calculus in 3D, v1 = ∇f0 +∇× u2 + h1

and v2 = −∇f3 +∇× u1 + h2.
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Table 2. Boundary conditions of tangential and normal form

type f0 v1 v2 f3

tangential unrestricted v · n = 0 v ‖ n f |∂M = 0

normal f |∂M = 0 v ‖ n v · n = 0 unrestricted

2.2.2. Manifolds with boundary. For 3-manifolds with 2-manifold boundary, we need
additional boundary conditions to have a finite dimensional kernel for the Lapla-
cians, as in this case, H = ker d ∩ ker δ ( H∆. Through integration by part with
the boundary, we have

〈∆α, α〉 = 〈(dδ + δd)α, α〉 = 〈dα, dα〉+ 〈δα, δα〉+

∫
∂M

(δα ∧ ?α− α ∧ ?dα). (10)

Thus, if we can eliminate the boundary integral by restricting the space of forms,
the kernel of ∆ will be the intersection of the kernel of d and δ. Indeed, there
are a variety of choices to satisfy boundary conditions, e.g., forcing the support of
the differential form to be in the interior of manifolds. However, an option that is
consistent with common physical boundary conditions is to restrict the differential
form α in the decomposition to be tangential to the boundary ?α|∂M = 0 or normal
to the boundary α|∂M = 0 as we have required for the potentials. Then, one
natural choice to eliminate both terms in the boundary integral is to force dα to be
tangential when α is tangential and force δα to be normal when α is normal. In
other words, we modify the definition Ωt to be the space of tangential forms with
tangential differential, i.e., αt ∈ Ωt if and only if

? αt|∂M = 0, ?dαt|∂M = 0. (11)

Similarly, we modify the definition of Ωn to be the space of normal forms with
normal codifferential, i.e., αn ∈ Ωn if and only if

αn|∂M = 0, δαn|∂M = 0. (12)

To illustrate the boundary conditions explicitly, we consider a moving frame,
which is formed at each boundary point by two tangent vectors of the boundary
surface t1 and t2 and the normal vector to the surface n, with the typical convention
that they form a right-hand orthonormal frame with the normal pointing outward.
As a 1-form v1 is tangential if ?v1(t1, t2) = v2(t1, t2) = v · (t1 × t2) = v · n = 0,
it matches the condition that the corresponding vector field is tangential to the
boundary. Similarly, a 1-form v1 is normal to the boundary, if v1(ti) = v · ti = 0
for i = 1, 2, thus it is the equivalent to v is normal to the boundary. For a 2-
form v2, its normal (tangential) boundary condition is the same as the tangential
(normal) boundary condition of v1. Therefore, normal (tangential) 2-forms should
have their corresponding vector fields tangential (normal, resp.) to the boundary.
Additionally, tangential 3-forms (normal 0-forms) are zero on the boundary whereas
normal 3-forms (tangential 0-forms) automatically satisfy the boundary condition.
In Table 2, we summarized these choices of the boundary conditions for tangential
and normal k-forms in 3D.

In vector field representation, the boundary conditions Eqs. (11) and (12) are
equivalent to the following. The choice of a 1-form in Ω1

t (a 2-form in Ω2
n) is

equivalent to enforcing a tangential vector field v to have its curl to be normal to
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the boundary, i.e., adding two homogeneous Neumann boundary conditions to the
(Dirichlet-type) tangentiality,

v · n = 0, ∇n(v · t1) = 0, ∇n(v · t2) = 0. (13)

For a normal vector field v (1-forms in Ω1
n or 2-forms in Ω2

t ), it amounts to adding
one homogeneous Neumann boundary condition derived from the zero divergence
on the boundary to the (Dirichlet-type) orthogonality constraints,

v · t1 = 0, v · t2 = 0, ∇n(v · n) = 0. (14)

For an unrestricted function f (tangential 0-forms or normal 3-forms), it amounts
to forcing its gradient to be tangential at the boundary (Neumann-type),

∇nf |∂M = 0, (15)

and a function f for tangential 3-forms (normal 0-forms) satisfies the homogeneous
Dirichlet boundary condition

f |∂M = 0. (16)

With these modified boundary conditions, we still have the same Hodge decom-
position,

Ωk = dΩk−1
n ⊕ δΩk+1

t ⊕Hk. (17)

This is because dΩn (or δΩt) remains the same regardless of whether Ωn (or Ωt)
contains the additional boundary conditions, as they can be seen as part of the gauge
condition that restricts the potentials but not their differential (codifferential).

As mentioned above, with the boundary, Hk is no longer finite dimensional or
the kernel of of Laplacians Hk∆. However, if we restrict ∆ to Ωt or Ωn and denote
the corresponding operator as ∆t and ∆n respectively, we can still find finite di-
mensional kernels Hk∆t

and Hk∆n
that correspond to Hk ∩Ωt or Hk ∩Ωn orthogonal

to im d and im δ.
In fact, the harmonic spaceHk can be further decomposed into tangential, normal

harmonic forms and exact-coexact harmonic forms Hk = (Hk∆t
+Hk∆n

)⊕ (dΩk−1 ∩
δΩk+1) as proposed by Friedrichs [25]. Moreover, in flat 3D space, all three sub-
spaces are orthogonal to each other. The third space can be seen as the infinite-
dimensional space of solutions to Laplace equations in dimension k ± 1 with either
normal or orthogonal boundary conditions. Thus, we can focus on the Laplacian
operators that are either tangential or normal for analysis.

In total, there are 8 different Hodge Laplacians (∆k
t and ∆k

n for k = 0, 1, 2, 3)
and 8 associated finite dimensional harmonic spaces. Friedrichs also noted that
for manifolds with boundary, the tangential harmonic spaces are isomorphic to the
absolute de Rham cohomology Hk∆t

∼= Hk(M) and the normal harmonic spaces

are isomorphic to the relative de Rham cohomology Hk∆n

∼= Hk(M,∂M). From
the dimensionality of the corresponding homology (Betti numbers) of the manifold

M , together with the Hodge duality between Hk∆t
and H3−k

∆n
, we can obtain the

dimensions of all these harmonic spaces: βk = dimHk∆t
= dimH3−k

∆n
. Roughly,

speaking, β0 is the number of connected components, β1 is the number of rings, β2 is
the number of cavities and β3 is 0 asM in flat 3D cannot contain any noncontractible
topological 3-sphere.
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2.3. Discrete forms and spectral analysis. In practical applications, the de
Rham-Hodge theory is often computed for decompositions and spectral analysis. In
both cases, the discretization of exterior derivatives is required. We follow one typ-
ical discretization of the exterior calculus on differential forms, the discrete exterior
calculus (DEC) [19]. A major technical aspect is the handling of arbitrarily com-
plex geometric shapes in 3D. In spectral analysis, the Hodge Laplacian operators
and their boundary conditions are to be implemented such that the key topological
property of d ◦ d = 0, which defines the de Rham cohomology, is preserved in the
discrete version by DEC in complex computational domains. First, the domain of
differential forms, in this case, a 3-manifold embedded in 3D Euclidean space is
tessellated into a 3D simplicial complex, i.e., a tetrahedral mesh. Any k-form ω is
represented by its integral on oriented k-D elements (k-simplex) of the mesh, listed
as a vector W with the length equaling the number of k-simplices. More specifically,
a discrete 0-form is the assignment of one real number per vertex, a discrete 1-form
is the assignment of one value per oriented edge, a discrete 2-form is the assignment
of one value per oriented triangle and a discrete 3-form is the assignment of one
value per tetrahedron (tet). The choice of orientation per k-simplex is arbitrary
since the antisymmetry of a k-form guarantees that the integral on that k-simplex
only changes its sign.

Now the linear operator dk is represented by a sparse matrix Dk, which is im-
plemented as the transpose of the signed incidence matrix between k-simplices and
(k+1)-simplices, with the sign determined by mutual orientation. Furthermore, an
arbitrary orientation for each k-simplex is chosen up to an even permutation, which
is an order set of k+1 vertices. An oriented k-simplex is defined as

σ = [v0, v1, ..., vk]. (18)

The boundary operator ∂ is defined as

∂σ =

k∑
i=0

(−1)i[v0, v1, ..., v̂i, ..., vk], (19)

where v̂i means that the ith vertex is removed. The discrete boundary operator will
take all the 1-degree discrete lower faces of σ with an induced orientation. Thus
the discrete exterior derivative operator Dk is just a matrix filled with −1, 0, 1. The
discrete Hodge star matrices Sk is just converting primal forms and dual forms by
the following equation

1

|σk|

∫
σk

ω =
1

| ∗ σk|

∫
∗σk

?ω. (20)

Thus, the discrete Hodge star operator is a diagonal matrix. This can be seen as
the consequence of the aforementioned Stokes’ theorem, because the integral of dω
on each (k+1)-simplex is exactly the sum of the integral of ω on the boundary of
the (k+1)-simplex, which is the union of its consistently oriented k-simplex faces.

Thus, the defining property in de Rham-Hodge theory Dk+1Dk = 0 is preserved
through as the boundary of the boundary is empty. As shown in Fig. 1, the ad-
joint operator δk is implemented as S−1

k−1D
T
k−1Sk, where Sk is discretization of the

L2-inner product between two discrete k-forms such that (W k
1 )TSkW

k
2 is an ap-

proximation of 〈ωk1 , ωk2 〉. In this work, we use the lowest order diagonal matrices
for Sk for simplicity, but higher-order Galerkin matrices for k-form basis can be
developed with proper treatment on matrix inversion for better accuracy. Such a
discrete Hodge star operator can also be seen as a mapping from a discrete k-form
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0-form 1-form 2-form 3-form

dual 3-form dual 2-form dual 1-form dual 0-form

D0

S0

D1

S1
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0 S−1

1

DT0

S−1
2

DT1

S−1
3

DT2

Figure 1. Discrete de Rham cohomology; Dk is the combinatorial
operators such that Dk+1Dk = 0; Sk is the discrete Hodge stars.

to a discrete dual (3−k)-form defined on the basis associated with dual elements
of a dual mesh to the tet mesh. Obviously, this field needs more effort from the
computational mathematics community.

With both the differential operators and the Hodge stars discretized, the discrete
counterpart of a Hodge Laplacian ∆k is defined as S−1

k Lk through products and
summations of these matrices following the continuous version, here

Lk = DT
k Sk+1Dk + SkDk−1S

−1
k−1D

T
k−1Sk. (21)

The reason that Lk is used frequently as the discrete Hodge Laplacian instead of
S−1
k Lk is its symmetry. Alternatively, we can also see Lk as the quadratic form on

the space of discrete k-forms, such that WTLkW is an approximation of 〈ω,∆ω〉.
In our analysis of volumetric shapes, we conjecture that the evolution of topo-

logical and geometric structures is related not only to the null spaces of Hodge
Laplacians, but also to the general spectra of these operators, in particular, those
eigenvalues that are close to zero. The associated eigen differential forms can be
found through a generalized eigenvalue problem for the discrete Hodge Laplacian
and Hodge star operators

LkW
k = λkSkW

k. (22)

For illustration purpose, we can reformulate Eq. (22) as a regular eigenvalue
problem,

L̄kW̄
k = λkW̄ k, (23)

where L̄k = S
−1/2
k LkS

−1/2
k and W̄ k = S

1/2
k W k. Then, to partition the spectrum

of the modified discrete Hodge Laplacian, we express it as the sum of two semi-
positive-definite matrices,

L̄k = D̄T
k D̄k + D̄k−1D̄

T
k−1, (24)

where D̄k = S
1/2
k+1DkS

−1/2
k . We can observe that the cohomology structure is main-

tained as D̄k+1D̄k = 0. Moreover, now the adjoint operator of D̄k, in the L2 inner
products defined by the Hodge stars, is simply its transpose D̄T

k . Thus, the entire
spectrum of L̄k can be studied through the singular value decomposition of the
discrete differential operator

D̄k = Uk+1ΣkV
T
k , (25)

where Uk+1 and Vk are orthogonal matrices and Σk is a rectangular diagonal ma-
trix with non-negative real elements. We can recognize the nonzero spectra of the
modified Hodge Laplacian as the union of the squares of the nonzero entries from
Σk and Σk−1, since

L̄k = VkΣ2
kV

T
k + UkΣ2

k−1U
T
k . (26)

Note that for 0- or 3-forms, one of the Σ’s contains only zeros.
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Based on the Hodge decomposition Eq. (17), we can also notice that the columns
of Vk that correspond to nonzero singular values in Eq. (26) are orthogonal to those
of Uk, which means the entire k-form space is spanned by harmonic forms (eigen
form with eigenvalue 0) and those column vectors of Vk and Uk.

For domains with boundaries, the tangential or normal forms are restricted by
Dirichlet and/or Neumann boundary conditions, which can be implemented by
whether to include the boundary elements or not for Dk. We denote the discrete
differential operator for tangential (normal) k-forms as Dk,t (respectively Dk,n).
For the detail on the construction of these matrices, readers are referred to our
previous work [76]. In summary, for the four types of k-form (k = 0, 1, 2, 3) with
two boundary conditions, there are 8 different discrete Hodge Laplacians (Lk,t and
Lk,n) in total, such that

Lk,t = DT
k,tSk+1Dk,t + SkDt,k−1S

−1
k−1D

T
t,k−1Sk,

Lk,n = DT
k,nSk+1Dk,n + SkDn,k−1S

−1
k−1D

T
n,k−1Sk.

(27)

Based on the above singular value analysis, the non-zero spectrum of L̄k is the
union of squared singular values of D̄k and those of D̄k−1. Therefore, for each
type of boundary conditions, the spectra of the four discrete Hodge Laplacians
only depend on the singular spectra of D̄0, D̄1 and D̄2. Furthermore, in Table 2,
the same set of boundary conditions is shared between tangential 1-forms and the
normal 2-forms, between tangential 2-forms and normal 1-forms, between normal
3-forms and tangential 0-forms and between tangential 3-forms and normal 0-forms.
This duality between tangential k-forms and normal (3−k)-forms is also present in
the corresponding operators between these forms, more specifically, the equivalence
exists between D̄0,t and D̄T

2,n, D̄1,t and D̄T
1,n and D̄2,t and D̄T

0,n. We thus reduce
the 8 different spectra of Hodge Laplacians to 3 distinct sets of different singular
spectra. We denote the set of singular values of D̄0,t for the tangential gradient
eigen field by T , the set of the singular values of D̄1,t for the curl eigen field by C
and the set of the singular value set of D̄2,t for tangential divergent eigen field by
N .

Although each of the 8 spectra for Hodge Laplacians defined on smooth manifolds
can be represented by the combination of one or two sets of the T , C and N , the
numerical calculations of the singular values of the equivalent differential operators
can deviate from these due to the different DoFs in the representations for different
discrete forms, as well as the inaccuracy introduced by the approximation of Hodge
star and differential operators. While the numerically computed singular values of
tangential k-forms D̄k,t can deviate from those of normal (3−k)-forms D̄T

2−k,n, as

the observation in previous work [77], with increased resolution, the low frequencies
converge reasonably well.

3. Evolutionary de Rham-Hodge method. In this section, we introduce the
evolutionary de Rham-Hodge method to analyze the topological and geometric prop-
erties throughout the evolution of manifolds. We first discuss the existing data that
motivates the present theoretic formulation. Then, we provide the mathematical
description of manifold evolution, followed by the definitions of the associated per-
sistence and progression. We extend the usual study of cohomology (associated
to zero eigenvalues of Hodge Laplacians) to employing the leading small non-zero
eigenvalues to facilitate the concepts of persistence and progression so that the
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variations of topological spaces (β0, β1 and β2) can be traced to the changes in the
eigenvalues away from or towards zero as the geometry evolves.

3.1. Data and their de Rham-Hodge analysis. Most commonly occurred data
are closed manifolds, such as star surfaces, earth surfaces, brain surfaces, and molec-
ular surfaces. The de Rham Laplace operator can be applied to compute eigenfunc-
tions and eigenvalues for the geometric shape analysis. Another interesting type of
data includes scalar or vector functions defined on closed manifolds, such as tem-
perature or ocean currents on the earth’s surface and in compact manifolds with
boundaries, such as the electron densities or electrostatic potentials in proteins or
the magnetic fields around the earth. The Hodge decomposition can be directly
applied to these functions. For smooth scalar functions, surface contours can be
specified to generate compact manifolds with boundaries. The geometric shape
analysis via the de Rham Laplace operator can be carried out. A special class of
data is the density distributions, either obtained from cryogenic electron microscopy
(cryo-EM), magnetic resonance imaging (MRI) or created from quantum mechan-
ical calculations. In this situation, one can render a family of inclusion surfaces
by systematically varying the density isovalues. The de Rham-Hodge analysis and
modeling of this family of inclusion surfaces are the objects of the present theoretical
development.

The evolutionary de Rham-Hodge method developed in this work can also be
applied to point cloud data, such as stars in the universe, atoms in biomolecules,
and the output of 3D scanning processes. In this situation, one can carry out a
discrete to continuum map to create volumetric density functions from point clouds
[70, 49]. Then, a family of inclusion surfaces can be obtained for the evolutionary
de Rham-Hodge analysis.

Flexibility rigidity index (FRI) density is a useful tool to construct a continuous
density distribution from a set of discrete point cloud data inputs. By selecting
an isovalue from the FRI density, one can further generate a boundary surface,
which composes the 3-manifold with a 2-manifold boundary. Moreover, one can
also use the Gaussian dielectric function to generate density distributions [31, 65].
FRI density has been shown to be particularly straightforward to implement and
computationally stable on any point cloud [49] and is defined by the following
position-dependent rigidity (or density) function [70]

ρ(r, η) =

N∑
j=1

Φ(‖r− rj‖; η) (28)

where r is a point in space, N is the number of particles, rj is the location of a
data point j, η is a scaling parameter and Φ(·; η) is a correlation function, i.e.,
a real-valued monotonically decreasing function with the following admissibility
conditions

Φ(‖r− rj‖; η) = 1, as ‖r− rj‖ → 0,

Φ(‖r− rj‖; η) = 0, as ‖r− rj‖ → ∞,
(29)

One used families of correlation functions is the generalized exponential functions

Φ(‖r− rj‖; η) = exp(−(‖r− rj‖/η)κ), κ > 0. (30)

Here, the weight η is application-dependent, e.g., the multiplication of a scaling
parameter and the van der Waals radius rvdwj of the atom at rj for molecular
data. In fact, η can be chosen as anisotropic function to induce a multidimensional
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persistent homology filtration [73]. In our numerical tests, we use the generalized
exponential function with κ = 2, which is known as the Gaussian function. A
family of 3-manifolds can be defined by a varying level set parameter (isovalue)
c ∈ (0, cmax), where cmax = max ρ(·, η),

Mc = {r|ρ(r, η) ≤ cmax − c}, (31)

which has the level-set of ρ as its boundary ∂Mc = {r|ρ(r, η) = cmax − c}.

3.2. Manifold evolution. Hodge theory studies the de Rham cohomology groups
of a smooth manifold M and established the bijection from equivalence classes in
a cohomology group to a harmonic differential form in the null space of the corre-
sponding Hodge Laplacian. While these harmonic forms associated with the zero
eigenvalues in the spectra of Hodge Laplacians carry some geometric information in
addition to the topology, the non-zero spectra provide richer geometric information
than the multiplicity of zero. However, the geometry is not uniquely determined by
the spectra of the Hodge Laplacians (even for planar shapes), as one cannot hear
the shape of a drum [35]. Thus, we propose to extend the study of de Rham-Hodge
theory to a family of smooth manifolds instead of one specific manifold and track the
spectral changes in a sequence of manifolds. Such a family of manifolds controlled
by a continuous filtration parameter is sometimes called the evolution of manifolds
embedded in an ambient manifold, which in our case is the 3D Euclidean space.

The evolution of manifolds is often defined through a smooth map from a basic
manifold B to a family of submanifold {Mc} of an ambient manifold M at a given
instant (the value of parameter c treated as time). More precisely, it is the smooth
map F : B × [0, cmax] → M such that F c = F (·, c) is an immersion for every c.
The one-parameter family of subsets of M , {F c(B)}c≥0 is then called the evolving
manifold. However, such a Hodge Lagrangian description makes it hard to handle
topological changes, especially if each mapping is restricted to be an embedding.
Therefore, in this work, we directly use the Eulerian representation described by Mc

in Eq. (31). This level-set bounded volume evolution handles both the geometric
progression and topological changes in a consistent fashion. As Morse functions are
dense in continuous functions, we can assume ρ(r, η) to be a Morse function without
loss of generality, since otherwise, we can use symbolic perturbation to make it a
Morse function. We can regularly sample the interval (0, cmax) at n sample locations,
forming an index set I = {c0, c1, ..., cn}, such that none of the parameters are one
of the isolated critical values through symbolic perturbation if necessary. Noting
that Mc are only non-manifold when c is a critical point of the Morse function, the
snapshots of the evolving manifold, {F c}c∈I , are all manifolds. Thus, they form a
filtration of manifold M , with the inclusion map Il,l+1 : Ml ↪→ Ml+1 linking each
pair of consecutive manifolds and

M0 M1 M2 · · · Mn M = Mcmax .
I0,1 I1,2 I2,3 In−1,n In,n+1

If (cl, cl+p) does not contain any critical points of ρ(r, η) and the largest critical
value smaller than cl is cc, the inclusion map Il,l+p : Ml ↪→Ml+p is also homotopic
to a homeomorphism from Ml to Ml+p, which can be constructed by moving every
point r with ρ(r, η) > cmax − cc along the gradient integral line of ρ(·, η) to a point

r̂ such that ρ(r, η)− ρ(r̂, η) = (cl+p− cl)e1− cl−cc
ρ(r,η)−cmax−cc . When the two parameter

values are similar, one can also see that the above map is nearly isometric since the
deformation is close to an identity map.
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When (cl, cl+p) contains critical points of the Morse function, there is no smooth
homeomorphism between Ml and Ml+p as the level set through topological changes.
Without loss of generality, we can assume that there is only one critical point, which
can be classified as (local) minimum, 1-saddle, 2-saddle, or (local) maximum, based
on the signature of the Hessian of ρ. As all minima of ρ are at the value of 0,
the interval may only contain the latter three types: if it is a maximum, one 2nd
homology generator in Ml will be mapped to 0 in Ml+p for the mapping induced
by the inclusion; if it is a 2-saddle, either Ml has a 1st homology generator mapped
to 0 or Ml+p contains a 2nd homology generator not in the image of the induced
mapping from H(Ml) to H(Ml+p); similarly, if it is a 1-saddle, either Ml has a 0th
homology generator mapped to 0 or Ml+p contains a 1st homology generator, not in
the image of the induced mapping. Through the isomorphisms among the de Rham
cohomology, singularly homology, simplicial homology and simplicial cohomology,
we can use the persistent homology to study the mapping between the de Rham
cohomologies indirectly. However, we found that direct construction can reveal
some additional insight on the relation and persistence of the harmonic forms across
different manifolds, as we discuss next.

3.3. Persistence of harmonic forms.

3.3.1. Normal harmonic forms. Drawing an analogy from persistent homology, we
first attempt to construct a homomorphism from closed forms on Ml to closed forms
on Ml+p, i.e., from ker dl to ker dl+p, if we use the subscript l to denote the operator
defined on Ml. For manifolds with boundary, one realizes that this is not possible
for tangential forms through the isomorphism relations to cochain and chain spaces
on simplicial complexes, but rather straightforward for normal forms in the discrete
case. More specifically, we can map k-forms in Ml by setting values for simplices
in M c

l,p = Ml+p\Ml to 0, i.e., a 0-padded k-cochain on Ml+p as the image of a
k-cochain on Ml assuming that Ml has a tessellation that is a subcomplex of the
tessellation of Ml+p. The reason that the image of ωl ∈ ker dl remains in ker dl+p
is that the value of dωl+p on any (k+1)-simplex with one or more faces in ∂Ml is
still 0, as ωl|∂Ml

= 0.
However, in the continuous case, setting ω to 0 in M c

l,p creates either discontinuity
or at least large δω near the boundary. A smoother extension of the ω from Ml to
Ml+p can be defined by minimizing the Dirichlet energy 〈dω, dω〉+ 〈δω, δω〉 in M c

l,p,
which leads to simply a Laplace equation ∆ω = 0. The boundary of M c

l,p is the union
of ∂Ml and ∂Ml+p with the orientation of the former flipped. Recall that when ω
is normal to the boundary i.e., ωl|∂Ml

= 0, we also impose the condition that δω is
normal to the boundary (δωl|∂Ml

= 0). For the extension, we keep this condition on
∂Ml+p, while on ∂Ml we impose the continuity instead, ωl+p|∂Ml

= ωl|∂Ml
. Note

that the resulting Laplace equation has a finite kernel identical to that of ∆n on
M c
l,p, so we can find a unique solution by forcing the solution to have 0 projection

to this kernel [76].
For instance, if we have a normal 1-form ωl to extend, we can impose the homo-

geneous boundary condition for the proxy vector field v on ∂Ml+p as in Eq. (14),

vl+p · t1 = 0, vl+p · t2 = 0, ∇n(vl+p · n) = 0; (32)

whereas on ∂Ml, we use a Dirichlet boundary condition for continuity vl+p = vl,
i.e.,

vl+p · n = vl · n, vl+p · t1 = 0, vl+p · t2 = 0. (33)
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We denote the map through this harmonic extension as El,p, i.e., ωl+p = El,p(ωl).
However, the minimization of Dirichlet energy does not imply δωl+p = 0 even when
δωl = 0. Nevertheless, dωl+p = 0 is always possible, since otherwise, one would be
able to perform a Hodge decomposition to find a tangential (k+1)-form βt in M c

l,p

and remove dωl+p by subtracting δβt from ωl+p. An alternative is to restrict the
extension to minimize 〈δω, δω〉 under the constraint dωl+p = 0 in M c

l,p, which results
in a fourth-order bi-Laplace equation. Since this discussion is mainly for theoretical
purposes, we assume the simple harmonic extension followed by a decomposition to
enforce dωl+p = 0 instead of a biharmonic extension. In Fig. 2 (a), we illustrate the
implementation of boundary conditions for the extension of normal harmonic forms
to the interior cavity. In this evolving process, the outside surface is fixed and the
inner cavity shrinks to null in order that the manifold with a cavity extends into
a solid ball. Under the boundary condition Eq. (33) on the interior surface, the
input normal harmonic forms (thin lines) are extended into the cavity, which also
preserve curl-free properties shown as thick lines in Fig. 2 (a).

Note that dE(ω) is a solution to the equation for solving the extension of dω, by
the uniqueness we impose, it must be E(dω). Thus, we can construct the following
commutative diagram on the de Rham complexes for normal forms on the filtration
of M :

Ω0
n(M0) Ω1

n(M0) Ω2
n(M0) Ω3

n(M0)

Ω0
n(M1) Ω1

n(M1) Ω2
n(M1) Ω3

n(M1)

Ω0
n(M2) Ω1

n(M2) Ω2
n(M2) Ω3

n(M2)

· · · · · · · · · · · ·

E0,1

d0

E0,1

d1

E0,1

d2

E0,1

E1,1

d0

E1,1

d1

E1,1

d2

E1,1

E2,1

d0

E2,1

d1

E2,1

d2

E2,1

which places the de Rham complex in the horizontal direction and the filtration-
induced extensions in the vertical direction.

Now, we can discuss the direct relation of bases of normal harmonic forms induced
by E. First, ωn ∈ ker dl implies El,p(ωn) ∈ ker dl+p. Thus, there is an injective
homomorphism from ker dl to ker dl+p. This induces a homomorphism from the

cohomology group ker dkl /im dk−1
l to ker dkl+p/im dk−1

l+p , which, through de-Rham
isomorphism between cohomology and harmonic spaces in Ml and Mlp , is equivalent

to a homomorphism from the harmonic spaceHk∆n,l
toHk∆n,l+p

. Instead of using the
mapping between the equivalence classes, we can actually directly pick the unique
harmonic representative hn ∈ ker dk ∪ ker δk+1 = Hk∆n

for each equivalence class

in the cohomology, as we can pick the closed form that is orthogonal to im dk−1

which is ker δk due to the adjointness between d and δ. However, for hn ∈ Hk∆n,l
, its

extension El,p(hn) is not necessarily an element of Hk∆n,l+p
. Nevertheless, composed

with the simple L2 projection onto the finite dimensional normal harmonic space
PHk∆n,l+p

, we have the linear map (also a homomorphism) Ψn,l,p = PHk∆n,l+p
◦El,p :

Hk∆n,l
→ Hk∆n,l+p

.
The map between these two normal harmonic spaces is neither necessarily injec-

tive nor necessarily surjective. In fact, if hn ∈ Hk∆n,l
is not in im Ψn,l−1,1, it is said

to be born at index l; if p is the smallest integer such that Ψn,l,p(hn) = 0, it is said
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(a) Normal harmonic forms (b) Tangential harmonic forms

Figure 2. Illustration of normal and tangential harmonic field ex-
tensions. Thick lines are the inputs and thin lines are the extended
outputs. Left charts in both (a) and (b) show harmonic fields and
their extensions while right charts give meticulous detail of interior
parts. (a) Normal harmonic forms. A solid ball with a cavity ex-
tends inward to a solid ball without cavity. The outside surface is
fixed. (b) Tangential harmonic forms. A torus extends to a solid
ball.

to die at index l+ p, with a persistence of p. This is consistent with the persistence
of the relative cohomology Hk(M,∂M) and the (absolute) homology H3−k(M).

3.3.2. Tangential harmonic forms. As there is a one-to-one correspondence between
tangential k-forms and normal (3−k)-forms, it is indeed sufficient to study the
tangential forms only. For completeness and flexibility in numerical implementation,
we provide a brief discussion on this dual case.

We first note that there is a homomorphism from coclosed forms on Ml to co-
closed forms on Ml+p, i.e., from ker δl to ker δl+p when restricted to tangential
forms Ωt(Ml). The same harmonic extension El,p can be obtained through the min-
imization of the Dirichlet energy 〈dω, dω〉+ 〈δω, δω〉 in M c

l,p. For tangential forms,

?ωl|∂Ml
= 0, we also impose the condition that dω is tangential to the boundary

(?dωl|∂Ml
= 0). We keep this condition on ∂Ml+p, on ∂Ml we impose continuity

ωl+p|∂Ml
= ωl|∂Ml

and dωl+p|∂Ml
= dωl|∂Ml

. A unique solution is again found by
forcing it to have 0 projection to the kernel of a mixed-type boundary condition
Laplace equation [76].

To illustrate it with a tangential 1-form ωl, we can impose the homogeneous
boundary condition for the proxy vector field v on ∂Ml+p as in Eq. (13),

vl+p · n = 0, ∇n(vl+p · t1) = 0, ∇n(vl+p · t2) = 0; (34)

whereas on ∂Ml, the Dirichlet boundary condition vl+p = vl is equivalent to

vl+p · t1 = vl · t1, vl+p · t2 = vl · t2, vl+p · n = 0. (35)

In this case, we can enforce El,p(ker δl) ⊂ ker δl+p. For example, Fig. 2 (b) shows the
extension of tangential harmonic forms from a torus to a solid sphere where both
boundary conditions Eqs. (34) and (35) are applied. The inputs (thick lines) are
only circulations shown in the right chart of Fig. 2 (b), while the extended outputs
(thin lines) are tangential harmonic forms as well. Therefore, we can construct the
following commutative diagram on the de Rham complexes for tangential forms on
the filtration of M :
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Ω0
t (M0) Ω1

t (M0) Ω2
t (M0) Ω3

t (M0)

Ω0
t (M1) Ω1

t (M1) Ω2
t (M1) Ω3

t (M1)

Ω0
t (M2) Ω1

t (M2) Ω2
t (M2) Ω3

t (M2)

· · · · · · · · · · · ·

E0,1 E0,1

δ1

E0,1

δ2

E0,1

δ3

E1,1 E1,1

δ1

E1,1

δ2

E1,1

δ3

E2,1 E2,1

δ1

E2,1

δ2

E2,1

δ3

Similar to the normal form case, through the composition with the simple L2

projection onto the finite dimensional tangential harmonic space PHk∆t,l+p
, we have

a linear map (also a homomorphism) between the tangential harmonic spaces of
different manifolds in the filtration, Ψt,l,p = PHk∆t,l+p

◦ El,p : Hk∆t,l
→ Hk∆t,l+p

. If

ht ∈ Hk∆t,l
is not in im Ψt,l−1,1, it is said to be born at index l. If p is the smallest

integer such that Ψt,l,p(ht) = 0, it is said to die at index l + p, with a persistence
of p. This is consistent with the persistence of the (absolute) cohomology Hk(M)
and the relative homology H3−k(M,∂M).

3.3.3. Relation among persistent cohomologies under different boundary conditions.
As discussed in section 2.3, with the duality through Hodge star, there are only three
independent singular spectra T , N and C for the three differential/codifferential
operators (two for gradient operators under tangential or normal conditions and
one curl operator with either tangential or normal boundary condition). The unions
of these spectra produce all the eigenvalues of the eight possible Hodge Laplacians
on an arbitrary compact manifold M embedded in a flat 3D space. Moreover, the
intersections of spaces spanned by left or right singular vectors of singular value 0
for these operators form the tangential and normal harmonic spaces. Thus, we can
restrict our discussion to either normal or tangential fields without loss of generality.

We now discuss the persistence from the perspective of evolving Hodge Laplacian
operators. Note that the following discussion is to provide theoretical backgrounds
for our proposed use of the evolution of eigenvalues, but not for implementations,
since some of the operators discussed may not be sparse matrices when discretized.
Recall that for any two manifolds Ml and Ml+p in any type of filtration, there is an
inclusion map Il,p : Ml ↪→Ml+p. We call Ml+p the p-evolution manifold of Ml. We
can directly investigate whether a harmonic form in Ml survived in its p-evolution
manifold, by defining a restricted subset Ω̃kp(Ml) of Ωk(Ml+p) and using it to define
modified differential and codifferential operators on Ml. This restricted subset is
given by

Ω̃kp(Ml) = {ω ∈ Ωk(Ml+p)|dkl+pω ∈ El,p(ker dk+1
l )}. (36)

This space can be equipped with a modified operator d̃kl+p that maps it to Ωk+1(Ml),

which is defined as the compound of dkl+p followed by the pullback through the

inclusion, i.e., d̃kl+p = I∗l,p ◦ dkl+p. Assuming that we use normal differential forms,

we have dk+1
l d̃kl+p = 0 on Ω̃kp(Ml) as a result of the definition of the restricted

space. For ω ∈ Ωk−1(Ml), we have dk−1
l+p El,p(ω) = El,p(d

k−1
l+p ω) ∈ El,p(ker dkl ), thus

El,p(Ω
k−1(Ml)) ⊆ Ω̃k−1

p (Ml) for p ≥ 0. Therefore, we can construct the following
the p-evolution differential form diagram
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(a) Persistence (b) Persistence and progression

(c) Identity map (d) Progression

Figure 3. Persistence and progression on benzene.

Ω0(Ml) Ω1(Ml) Ω2(Ml) Ω3(Ml)

Ω̃0
p(Ml) Ω̃1

p(Ml) Ω̃2
p(Ml)

d0
l

El,p
δ̃1
l+p

d1

δ1
l

El,p
δ̃2
l+p

d2
l

δ2
l

El,p
δ̃3
l+p

δ3
l

d̃0
l+p d̃1

l+p d̃2
l+p

where δ̃kl+p denotes the adjoint operator of d̃kl+p. Based on this diagram, the p-

evolution Hodge Laplacian ∆k
l,p: Ωk(Ml)→ Ωk(Ml) can be defined on Ml as

∆k
l,p = δk+1

l dkl + d̃k−1
l+p δ̃

k
l+p, (37)

which leads to the definition of the p-evolution harmonic space as Hkl,p = ker ∆k
l,p =

ker dkl ∩ ker δ̃kl+p. The p-evolution (tangential) k-form spectra are the sets of ∆k
l,p’s

eigenvalues for k = 0, 1, 2, 3. By comparing the p-evolution Laplace operator ∆k
l,p

and the Laplace operator ∆k
l,0, the eigenvalues of the unmodified part, δk+1

l dkl , are
preserved and the eigenvalues involving the pullback of the restricted operators
are varying with p. Next, we examine the part involving d̃k−1

l+p δ̃
k
l+p. For any α ∈

ker δ̃kl+p, and any β̃ ∈ Ω̃k−1
p (Ml), we have 0 = 〈δ̃kl+pα, β̃〉 = 〈α, d̃k−1

l+p β̃〉. For any

β ∈ Ωk−1(Ml), we have 〈δkl α, β〉 = 〈α, dk−1
l β〉 = 〈α, d̃k−1

l+p El,p(β)〉 = 0. Therefore,

ker δ̃kl+p ⊂ ker δkl ⊂ Ωk(Ml).
Thus, in terms of persistent cohomology, we may examine the kernel of p-

evolution Laplace operator for the persistence of topological features of Ml in Ml+p.
In the perspective of spectral analysis, this change is reflected in the multiplicity
of the eigenvalue 0, which changes if dim (ker δ̃kl ) < dim (ker δkl ), or remains un-

changed when dim (ker δ̃kl ) = dim (ker δkl ). In the former case, as shown in Fig. 3
(a), multiplicity of 0 (the number of connected components) is reduced for ∆0

l,p,

whereas ∆1
l,p has a new 0 (a tunnel) that is not present in ∆1

l,p. For the latter case,
the inclusion map is homotopic to a geometrical deformation of the manifold, which
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implies the same topology. Fig. 3 (d) illustrate an example where the size of tunnel
shrinks and the cohomology groups are isomorphic.

The spectra are continuous when corresponding manifolds are continuously de-
forming, since, as discussed above, when the level set values are close, the deforma-
tion is close to an isometric and the eigenvalues of Hodge Laplacian is determined
by the metric tensor. In particular, the smallest non-zero eigenvalues are continuous
if the dimension of null space is stable, but are typically non-differentiable when
the multiplicity of eigenvalue 0 is changed. The birth of non-zero eigenvalues is
the death of topological features, which signals the death of harmonic basis fields;
whereas the birth of zero eigenvalues indicates the birth of topological features.
Moreover, the changes in leading smallest non-zero eigenvalues can thus indicate
possible pending topological changes as well as the geometric properties when the
manifold evolves without topological changes.

For instance, for the l-th manifold of the filtration of M , {λTl,i}, {λCl,i} and {λNl,i}
give the eigenvalues of the T , C and N sets respectively. In particular, the multiplic-
ities of the zero eigenvalues in λTl,0, λCl,0 and λNl,0 are associated with Betti numbers

β0, β1 and β2, respectively. Additionally, λTl,1, λCl,1 and λNl,1 are the first non-zero
eigenvalues, which are known as the Fiedler values in graph theory, an indicator of
how well the graph is connected.

In summary, the correspondence established by the spectral analysis provides
us with tools to investigate both types of manifold evolution, with persistence for
topological features and spectral progression for the geometric properties.

4. Evolutionary de Rham-Hodge analysis of geometric shapes. In this
section, we present the application of the proposed evolutionary de Rham-Hodge
method. We demonstrate the spectral analysis with evolutionary de Rham Laplace
operators and illustrate their topological persistence and geometric progression asso-
ciated with submanifolds in R3. The evolving manifolds in our studies are generated
by applying Eq. (31) to point cloud datasets with a varying level set c, with a fixed
scaling parameter η.

For clarity, the first three examples are simple point sets consisting of few points.
The two-body set has the location coordinates in {(−1.5, 0, 0), (1.5, 0, 0)} and for
the four-body and eight-body sets. We duplicate the two-body set by translating
±1.5 along the y-axis and duplicate the four-body set by translating ±1.5 along
the z-axis respectively. Next, we present two concrete molecular examples with
interesting topological and geometric features, benzene (C6H6) and fullerene (C60).
Lastly, we illustrate a cry-EM data (EMD-1776) which has interesting properties.
We show in these proof-of-concept examples that the evolution of leading smallest
eigenvalues provides additional information to that of the persistent Betti numbers,
which are the same as those of persistent homology analysis. That is, we propose to
extend the evaluation of the manifold evolution from persistent Betti numbers (i.e.,
the multiplicity of the zero eigenvalues of evolutionary de Rham Laplace operators)
to a larger subset of the spectra.

4.1. Two-body system. Our first example illustrates the evolving manifold with
a two-body system, in which the initial two connected components merge into one.
In this evolution, only the number of components persistent β0 changes from 2 to
1, with the other Bettie numbers remain at 0 throughout. As shown in Fig. 4, the
two connected components gradually approach each other as the isovalue grows and
eventually touch each other as more volume is enclosed.
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a b c d

Figure 4. Snapshots of evolving manifold with the two-body sys-
tem. a, b, c and d are snapshots from the beginning to the end.
b and c show the transition of the Betti-0 number from 2 to 1.

i ii iii

Figure 5. Eigenvalues and Betti numbers vs isovalue (c) of the
two-body system with η = 1.19 and max(ρ) ≈ 1.0. i shows the
smallest eigenvalues of the T set. The drops at c = 0.6 corre-
spond to snapshots in Figs. 4 b and c. ii and iii show the smallest
eigenvalues of the C and N sets respectively.

The change in topology can be observed directly from the blue circle plots in
Fig. 4, where persistent β0 is dropped from 2 to 1 when c increased to around 0.6
and the curves for persistent β1 and β2 remained flat due to the lack of tunnels
or cavities in the system. However, the persistent Betti numbers do not provide
any information about the volume increase of the manifold during the evolution,
or the increase in the size of the tube-like structure between the two blobs around
the body centers after they touch. In contrast, the orange triangles in Fig. 5 show
how the first nonzero eigenvalues (Fiedler values) in the three singular spectra (T ,
C and N) demonstrated both the topological transition and geometric progression
in the evolving manifold.

First, one may observe that the discontinuity for the Fiedler values of the tangen-
tial gradient fields T coincides with the jump of persistent β0 in Fig. 5 i, whereas
the Fiedler values of the tangential/normal curl fields C and that of the normal
gradient fields N are both smooth as shown in Figs. 5 ii and iii. These behaviors
are consistent with the evolution process only having changes in the number of
connected components. More precisely, the multiplicity of the eigenvalue zero in T
is β0 = 2 at the beginning, so the Fiedler values can be seen as the third eigenva-
lue, whereas after the merging, it is switched to be the second eigenvalue, which
contributes to the discontinuity in its value. As we will see in later examples, this
behavior for the persistence to be directly observable in the discontinuity of Fiedler
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Figure 6. Snapshots of evolving manifolds with the four-body
system. a is the initial point of four components; b and c show
the transition of a ring formed and the persistent Betti-0 number
changes from 4 to 1. g and h show the vanishing of the ring and
the persistent Betti-1 number changes from 1 to 0.

a b c d

e f g h

values happening at the same isovalue when the Betti numbers jump to different
integers is generic, which indicates that the birth of non-zero eigenvalue and the
death of the harmonic basis are both linked to the death of topological features
(homology generators). Moreover, as the tube between the two blobs is created, the
extreme values of the first oscillation mode can be placed further apart along the
line connecting the two atoms. Thus, λTl,1 jumps to a small value. It grows as the
structure becomes stiffer when the narrow tube turns thicker before it eventually
decays again as the entire shape turns softer as a ball with a growing radius. Figs. 5
ii and iii show the smoothness of λCl,1 and λNl,1 which is consistent with the invariant
1st and 2nd Betti numbers.

4.2. Four-body system. As another example, we explore an evolution that in-
volves changes in both the number of components persistent β0 and the number of
tunnels β1. With two points added to the two-body set to form a planar square,
the evolving manifold can contain a tunnel for a range of isovalues, when each of
the four components touches two neighbors to form a ring, which will eventually
disappear as the level set value increases to the point that the tunnel in the mid-
dle is filled. During the same process, persistent β0 drops from four to one when
persistent β1 increased to one with the formation of the tunnel, but persistent β0

stays at 1 when persistent β1 changes back to zero with the disappearance of the
tunnel. The persistent Betti number β2 remains unchanged as there is no cavity in
the system.

In terms of the geometric measurements, the total volume continuously increases
and once the tunnel appears, the size of the handle dual to the tunnel also increases.
Finally, at the time of disappearing of the tunnel, two concave surfaces are formed
on each side of the blocked tunnel with the concavity decreases with an increasing
level set parameter.
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i ii iii

Figure 7. Eigenvalues and Betti numbers vs isovalue (c) of the
four-body system with η = 1.19 and max(ρ) ≈ 1.2. i shows the
smallest eigenvalues of the T set. At near c = 0.80, the persistent
Betti-0 number changes from 4 to 1. ii shows the smallest eigen-
values of the C set. At around c = 1.02, the persistent Betti-1
number changes from 1 to 0. iii shows the smallest eigenvalues of
the N set.

Fig. 7 shows all the Fiedler values varying over time, along with the relevant
Betti numbers. As both β0 and β1 change during the evolution, λTl,1 and λCl,1 are

non-differentiable for this example. On the other hand, β2 is invariant and thus λNl,1
is smooth. Fig. 7 i exhibits a similar pattern as the two-body case of λTl,1. As the

volume of the manifold increases, λTl,1 decays until the four components are con-

nected, at which point λTl,1 drops to a much smaller value. After the discontinuity,

the increasing handle size leads to an initial growth of λTl,1 due to the increased stiff-
ness of the system, before returning to the decreasing trend as the system becomes
more flexible with the increase in the overall volume. In Fig. 7 ii, one may observe
the difference compared with the first case as we introduce the changes in persistent
β1. When β1 changes from zero to one through the connection of the four compo-
nents, λCl,1 does not actually change much, because the tangential/normal curl field

is not largely influenced when the handle size is nearly zero. In stark contrast, λCl,1
is discontinuous when β1 changes back down to zero as the hole disappears. The
behavior of λCl,1 after the discontinuity is similar to that of λTl,1, an initial increase
in stiffness and then a decrease again. Moreover, by comparing Figs. 7 i and ii, we
observe that the value of λTl,1 starts to decrease just when λCl,1 is discontinuous, as
the structural change in the tunnel also contributed to the “stiffness” of the tan-
gential gradients. Finally, Fig. 7 iii shows the smooth Fiedler values λNl,1 with an
unchanged persistent β2.

In summary, from the second example, one can notice that λCl,1 can reveal the
information of persistent β1 and some geometric properties after the disappearance
of the hole. In addition, the coincidental topological changes, the birth of hole that
coincides with the death of a few connected components, can be distinguished by
the spectral functions λTl,1 and λCl,1.

4.3. Eight-body system. We constructed the simple eight-body system to ana-
lyze the behavior of Hodge Laplacian spectra with an evolving cavity in the filtra-
tion. In this system, not only multiple connected components and multiple tunnels
are involved, but a cavity also appears after the isovalue reaches a certain level
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f

Figure 8. Snapshots of evolving manifold with the eight-body
system. a presents the initial state with eight components. b
and c show the formation of 6 tunnels when the persistent Betti-
0 number changes from 8 to 1 and the persistent Betti-1 number
changes from 0 to 5. d and e illustrate that a cavity appears, so
the persistent Betti-1 number drops to 0 and the persistent Betti-2
number increases to 1. f shows a solid volume without cavity. The
gray planes cut manifolds to create cross-section views to illustrate
the process of the formation of cavity as shown in b’, c’, d’ and e’.

i ii iii

Figure 9. Eigenvalues and Betti numbers vs isovalue (c) of the
eight-body system with η = 1.53 and max(ρ) ≈ 1.1. i shows the
Fiedler values of the T set and persistent Betti-0 numbers. ii shows
the Fiedler values of the C set and persistent Betti-1 numbers. iii
illustrates the comparison of λCl,1 and persistent β2.

before disappearing eventually. Thus, the dimension-2 Betti number β2, which
measures the number of cavities, changes during this process.

As shown in Fig. 8, the eight symmetric components start as blobs around eight
vertices of a cube. Then they expand as the isovalue increases until they touch each
other and form 6 rings, one for each face of the cube. At this point, persistent β0

drops from 8 to 1, when persistent β1 increases from 0 to 5 (as five of the six tunnels
are independent homology generators). As the level set value increases to the point
that the tunnels are filled, persistent β1 drops back to 0, but persistent β2 increases
to 1 as a cavity formed inside the manifold. The cavity is filled up eventually and
persistent β2 drops back to 0.
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In Fig. 9, the Fiedler values as functions of isovalue are shown in Figs. 9 i and
ii, which exhibit similar behaviors as in the first two examples. As in the previous
example, the comparison between Figs. 9 i and ii shows that at c = 0.3 the spectral
function λTl,1 starts to decay when λCl,1 is discontinuous. Different from the previous
examples, the smallest eigenvalues in iii is no longer differentiable as persistent
β2 changes from one to zero near isovalue 0.5. Fig. 9 iii also indicates that at
the isovalue where λNl,1 is non-differentiable, λCl,1 starts to decrease. Moreover, the
simultaneous topological changes, the disappearance of tunnels and the appearance
of the cavity, can be observed in λCl,1. The disappearance of the cavity can be

observed from λNl,1. From these preliminary results of the evolutionary de Rham-
Hodge method, one may observe that the singular values in different spectra taken
as functions of the isovalue c not only illustrate the changes of topological features
of different dimensions throughout the evolution of the manifold but also reveal the
geometric features in different dimensions. Therefore, empirically, the importance
of low frequencies rather than the multiplicity of the zeroth frequency can already
be observed in these simplistic constructions for features of different dimensionality.
In the following, we demonstrate similar characteristics of spectral functions in two
molecular systems.

4.4. Benzene molecule. Benzene (C6H6) is a small organic chemical compound
which consists of six carbon atoms in a planar hexagon ring and six hydrogen atoms
each connected with one carbon atom. In this system, atoms have different van der
Waals radii, one for carbon and another for hydrogen. The carbon atoms are closer
to each other than the hydrogen atoms and form the benzene ring. Thus, benzene
is a perfectly simple yet realistic example to illustrate the evolutionary de Rahm-
Hodge method. With the benzene data, we use η = 0.45 to generate evolving
manifolds.

The first evolving manifold of benzene is generated at η = 0.45. In the beginning,
there are 12 components, with each smooth component center around one atom
location as shown in Fig. 10 a. The van der Waals radius of carbon atoms is
larger than that of hydrogen atoms, so the components associated with the carbon
atoms are larger. From Fig. 10 b to Fig. 10 c, the originally separated components
of the atoms start to connect pairwise, with a narrow tube formed between each
hydrogen to its bonded carbon and thus, the persistent Betti-0 number is reduced
to 6. The behavior of the manifold is similar to essentially six copies of our first
example, the two-body system, until the six components of Fig. 10 c start to form
a hexagonal ring, as shown in Fig. 10 d. At this point, there are six narrow tubes,
one for each bond between two adjacent carbon atom pairs. As the density function
continues to expand, the hexagonal ring evolves into a round cycle around a tunnel
with a shrinking diameter. As the diameter of the tunnel reduces to zero at some
parameter value between those of Fig. 10 g and Fig. 10 h, the noncontractible cycle
disappears. During this topological change, the tiny cycle in the middle of the
manifold in Fig. 10 g is filled up to form two concave surface patches in the middle
of the manifold in Fig. 10 h. The final topology of this system remains as a single
component with a volume larger than that of Fig. 10 h.

Fig. 11 shows the Fiedler values of the T , N and C sets and their relations with
the persistent Betti numbers when seen as a function of varying isovalues. First,
for the T set, λTl,1 has two jumps at c = 0.12 and c = 0.22, which divide the λTl,1
to three curve segments. Both discontinuities correspond to the decreases of the
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a b c d

e f g h

Figure 10. Manifold evolution of benzene with η = 0.45× rvdw.
a through h are snapshots from the start to the end. a and b show
the transition of the persistent Betti-0 number from 12 to 6. c and
d show the formation of a ring; The Betti-0 number changes from
6 to 1 and remains at one to the end, whereas the Betti-1 number
changes from zero to one. d, e, f and g illustrate the deformation
of the hexagonal tunnel to a round tunnel. From g to h, the ring
disappears and the Betti-1 number changes from 1 back to 0.

10-1

102

i ii iii

Figure 11. Eigenvalues and Betti numbers vs isovalue (c) of
the benzene system with η = 0.45 and max(ρ) ≈ 1.1. i shows the
smallest eigenvalues of the T set. The drops at c = 0.12 correspond
to snapshots in Figs. 10 a and b. The drops at c = 0.22 correspond
to snapshots in Figs. 10 c and d. ii shows the smallest eigenvalue
of the N set. The drops at c = 0.9 correspond to snapshots in
Figs. 10 g and h. iii shows the smallest eigenvalues of the C set.

persistent Betti 0, from twelve to six and then to one. As shown in Figs. 11 i, λTl,1
cannot only tell the topological changes but also give some additional information
of a continuous portion of the evolution. After c = 0.22, λTl,1 increases first and
reaches its maximum at c = 0.9 when the ring just disappears, at which point
the structure (for tangential gradients) starts to grow softer as an expanding blob
instead of a thicker ring. Fig. 11 ii presents the jump of λCl,1, which is correlated
to the disappearance of the hole as indicated by the change of Betti-1 number from
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one to zero. After the jump, λCl,1 also increases slightly first and decays in the end.
There is no cavity involved, so the spectral function shows a steady progression for
the C set as in our four-body example. One difference from that example is the
finer grid used in the calculation, in order to handle the initial small components
for the hydrogen atoms.

4.5. Buckminsterfullerene. The buckyball (C60) has a beautiful structure com-
posed of sixty carbon atoms. It has twenty hexagons and twelve pentagons that
resemble the pattern on a soccer ball, which has a rich structure with both geometric
symmetries and topology features. With our continuous density function, at certain
values of η, the manifold evolution covers all the possible values of the persistent
Betti-1 number allowed by the symmetry. However, it is difficult to cover all the
topological space for a density function associated with a single kernel size η. Thus
we propose to use a multiscale (with a few different kernel sizes) analysis of the
manifold evolution. By using different η’s to capture different sets of snapshots for
the evolving manifolds, we can compare the spectra across different kernel sizes η as
well as different control parameters c. We use the buckyball as an example for the
multiscale analysis of manifold evolution and demonstrate how the spectra provide
information on the evolution of their topological spaces and geometric features.

For kernel scaling parameter η = 0.5 × rvdw, the manifold evolution starts with
60 components as shown in Fig. 12 a. The components start the expansion, each
around the position of one carbon atom and merge into larger connected components
if they share a common pentagon in the skeleton structure as shown in Fig. 12 b.
This leads to the changes in persistent β0 (from 60 to 12) and persistent β1 (from 0
to 12). Fig. 12 c shows the snapshot right after the appearance of twenty hexagonal
holes. Next, each hole starts to shrink. As each pentagonal hole has a smaller size
than that of a hexagonal hole, we observe in Fig. 12 c to Fig. 12 d, the pentagonal
holes disappear before the hexagonal holes also disappear. Simultaneous to the
disappearance of hexagons, a cavity is created. In Fig. 12 e after the formation of
the cavity, both the outer surface and the inner surface contain numerous regions
of concavity and gradually, the shape evolves to resemble a slightly dented thick
spherical shell.

For analysis of this evolution, Fig. 13 illustrates the eigenvalues and Betti num-
bers versus the isolvaue c. Fig. 13 i gives the Fiedler values (smallest eigenvalue)
of the T set and β0. This Betti number has two drops, from 60 to 12 and then to
1. Within each interval of isovalues with the same persistent Betti number, λTl,1 is
changing smoothly as expected from our discussion on homeomorphic shapes with
a slowly evolving metric. Fig. 13 ii presents the information that the Fiedler values
of the C set can offer. For the interval, c ∈ [0.16, 0.5], persistent β1 remains at 31
and the continuous decrease in λCl,1 shows that the geometric structure is “softer”
for the curl fields as the handles grow thicker. Similarly, for intervals within which
persistent β1 equals to 19 or 1, λCl,1 is a smooth function within each interval but
is discontinuous at the boundary of these intervals where the topology transitions.
The Fiedler values of the N set are given in Fig. 13 iii, which, although mostly
smooth, also has changed in slope at isovalues associated with changes in connected
components and tunnels. As the examples become more complex, the spectral func-
tions also exhibit richer structure, with the advantage of indicating both topological
persistence and geometric progression.

For large and dense point sets as in this fullerene, the shape of the manifold
evolution is heavily influenced by the kernel size η. To show the importance of



3812 JIAHUI CHEN, RUNDONG ZHAO, YIYING TONG AND GUO-WEI WEI

a b c d

d’e e’

Figure 12. Illustration of fullurene (C60) manifold evolution with
η = 0.5 × rvdw. a presents sixty components around carbon atom
positions. a and b show that the components connect if they share
a pentagonal hole and persistent β0 changes from 60 to 12 and
persistent β1 changes from 0 to 12. c shows the hexagonal holes are
formed, resulting in the change of persistent β0 to 1 and persistent
β1 to 31. (There are 32 rings, but only 31 are independent in terms
of homology.) c and d show that the 12 pentagonal rings disappear
and the persistent Betti-1 number drops from 31 to 19. d and e
show that the 20 hexagonal rings disappear and a cavity forms
inside, so that persistent β1 drops to 0 and persistent β2 increases
to 1. The vertical plan cuts the manifolds that gives an illustration
of cavity in d’ and e’.

i ii iii

Figure 13. Eigenvalues and Betti numbers vs isovalue (c) of the
fullurene (C60) system with η = 0.5 × rvdw and max(ρ) ≈ 1.3. i
gives the Fiedler values of the T set and persistent β0. ii presents
the comparison of λCl,1 and persistent β1. iii shows the Fiedler
values of the N set and persistent β2.
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a b c d
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Figure 14. Illustration of fullurene (C60) manifold evolution with
η = 0.8× rvdw. a shows 12 initial solid pentagonal components. b
and c show the formation and contraction process of the 20 rings.
d is the snapshot right after the formation of the cavity. e shows
the final stage as a solid ball of this example.

i ii iii

Figure 15. Eigenvalues and Betti numbers vs isovalue (c) of the
fullurene (C60) system with η = 0.8 × rvdw; max ρ ≈ 2.5. i gives
the Fiedler values of the T set and persistent β0. ii presents the
comparison of λCl,1 and persistent β1. iii shows the Fiedler values
of the N set and persistent β2.

multiscale analysis, we create a second evolution with η = 0.8× rvdw and generate
the snapshots in Fig. 14. For the initial isovalue, as seen in Fig. 14 a, the manifold
consists of twelve pentagonal components. Unlike the evolution with η = 0.5×rvdw,
which contains pentagonal holes alongside hexagonal holes, here the pentagonal
components are already with the holes filled before the hexagonal holes are even
formed. Thus, the two evolutions cannot find a homeomorphism between their
stages even if any isovalues are allowed, which implies that they can reveal different
information regarding the system. As the components connect, twenty rings show
up as in Figs. 14 b and 14 c, with decreasing diameters for increasing isovalues.
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Once the cavity is formed, the large inner surface shown in Fig. 14 d starts to
contract and the manifold ends up as a solid ball in Fig. 14 e. As for the spectral
functions, Fig. 15 shows three plots of the Fiedler values of the T , C and N sets
and the persistent Betti numbers against the isovalues, respectively. Since the
components connect right after first two snapshots, Fig. 15 i shows the drop of λTl,1
in the third snapshot as persistent β1 changes from 12 to 1. The Fiedler values λTl,1
then increases before starting to decrease when persistent β1 drops to 0 when the
system can be seen as a shell growing softer with thicker membrane instead of a
structure growing stiffer with thicker supporting handles. Similarly, there are only
a few snapshots for the evolving manifold to have rings as they are quickly filled up.
In Fig. 15 ii, the Fiedler values λCl,1 already decreases quickly before plunging to a
small number at the point when holes disappear. During the period of the inner
surface contracting and outer surface expanding, λCl,1 increases first as the structure
grows stiffer for curl fields and then grows softer eventually near the very end of the
manifold evolution. In the last plot of Fig. 15, λNl,1 slightly increases at beginning
and then decreases smoothly. The disappearance of the cavity is captured at the end
of snapshots, thus there is a non-differentiable point at end of this spectral function.
We see in this evolution again, that the progression of the manifold evolution can
be observed in the spectral functions as well as the topological transitions.

5. Application. In this section, we present two examples to demonstrate the use-
fulness of the proposed evolutionary de Rham-Hodge method in biological appli-
cations. The first example shows the protein flexibility analysis by applying the
evolutionary de Rham-Hodge method and the second analyzes the cryo-EM density
map by using persistent spectra and topology.

5.1. Protein flexibility analysis. We apply the proposed evolutionary de Rham-
Hodge method to biomolecular flexibility analysis. Protein flexibility is strongly cor-
related protein functions, such as structural support, catalyzing chemical reactions
and allosteric regulation. It can be measured by many experimental approaches,
such as X-ray crystallograph and nuclear magnetic resonance (NMR) in terms of
B-factors or Debye-Waller factors. Qualitative prediction of protein B-factors is
important for understanding protein structure-function relationship. Many bio-
physical models, such as Gaussian network model (GNM) [4], anisotropic network
model (ANM) [3] and FRI [70] have been developed in the past for such a predic-
tion. Most of these methods are based on the graph network composed by selecting
Cα carbon atoms as nodes and connections between nodes as edges. However, ex-
isting approaches encounter many challenges for many macromolecules involving
multiscale interactions. In the present study, we consider a few challenging test
cases to demonstrate the utility and performance of the proposed evolutionary de
Rham-Hodge method.

The evolutionary de Rham-Hodge method evaluates a manifold generated by
Eq. (30) based on Cα carbon atoms and the B-factor at the i-th atom estimated by
L̄k in Eq (26) is given by

BEDH
k,i =

∑
l

al
∑
j

1

λkl,j
ωkl,j(ri)(ω

k
l,j(ri))

T , ∀λkl,j > 0, (38)

where al are parameters determined by a primitive machine learning algorithm
(i.e., linear regression) for filtration parameter l. In our computation, discrete
eigen fields ωkl,j are vectors of mesh points. Here, ωkl,j(ri) is computed by the
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Figure 16. Experimental and predicted B-factor values plotted
per residue (PDB IDs: 1CLL, 2HQK and 1V70). EXP: experi-
mental values; EDH: evolutionary de Rham-Hodge (10 isovalues)
method predicted values; GNM: Gaussian network method pre-
dicted values.

Figure 17. The structure of calmodulin (PDB ID: 1CLL) visu-
alized in Visual Molecular Dynamics (VMD) [33] and colored by
experimental B-factors (left), EDH (10 isovalues) predict B-factors
(middle) and GNM predicted B-factors (right) with red represent-
ing the most flexible regions.

Table 3. Pearson correlation coefficients in B-factor predictions
using GNM, mGNM and EDH for four proteins. Here, mGNM
stands for multiscale GNM with two different kernels [70]. NCα is
the number of residues. In cases of EDH, three different isovalue
sets are applied with 10, 20 and 40 points of equal spaces on the
interval of [0.1, 1.0].

PDB ID NCα GNM[70] mGNM[70] EDH (10) EDH (20) EDH (40)
1CLL 292 0.261 0.763 0.789 0.797 0.850
1V70 105 0.162 0.750 0.754 0.772 0.858
2HQK 216 0.365 0.833 0.854 0.880 0.886
1WHI 122 0.270 0.484 0.640 0.711 0.794

interpolation of a neighborhood around i-th atom with a cutoff radius d. In our
test, we use the grid spacing of mesh tetrahedron 1.6 Å, the cutoff radius d = 4.0 Å
and η = 2.72 Å. For a comparison, we consider the standard method, GNM, with
its cutoff distance of 7 Å. In Fig. 16, predicted B-factors of three proteins (PDB IDs:
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a b c d

Figure 18. Illustration of surfaces extracted with different isoval-
ues for EMD-1776. The isovalues for a, b, c and d are 0.14, 0.10,
0.07 and 0.04, respectively. In a, β0 is 12 and β1 and β2 are 0; In
b, β0 = 4, β1 = 4 and β2 = 0; In c, β0 = 1, β1 = 13 and β2 = 0; In
d, β0 = 1, β1 = 9 and β2 = 0.

1CLL, 2HQK and 1V70) are presented together with their experimental results. In
our method, 10 isovalues of equal spaces from 0.1 to 1 are calculated. The B-factors
of Cα atoms predicted from the evolutionary de Rham-Hodge (EDH) method are
more close to the experimental ones than those from GNM. Especially, Fig. 17
shows the flexibility of calmodulin of 1CLL obtained by experiment and theoretical
predictions. Clearly, by a comparison with experimental results, EDH predictions
are significantly better than those of GNM. Moreover, an advantage of evolutionary
de Rham-Hodge method is that one can simply increases the number of isovalues
to provide more geometry deformation information and attain better results. As
shown in Table 3, the increase of the number of snapshots on the same interval
delivers better predictions. The proposed EDH method outperforms other existing
methods.

5.2. Evolutionary de Rham-Hodge analysis of cryo-EM density map. Cryo-
electron microscopy (cryo-EM) is a power method for analyzing the structures of
biological systems. Cryo-EM density maps are generated by bombarding samples
by electron beams at cryogenic temperatures to improve the signal-to-noise ratio
(SNR) and constructed from a large number of 2D images using computational
methods. The projection (thin film) specimen scans collected from many different
directions comprise the basis of cryo-EM images. A major advantage of cryo-EM is
that it provides the image of specimens in a native environment without the need
to grow crystals and another advantage is its capability of providing 3D mapping
of entire cellular proteomes together with their detailed interactions at nanome-
ter or subnanometer resolution [50, 57, 39]. After illustrating the evolutionary de
Rham-Hodge analysis for the FRI density functions of known structures, we fur-
ther consider a realistic cryo-EM data, EMD-1776, which is for eye lens chaperone
alphaB-crystallin forms [54]. Here, we reveal the evolutionary spectra and persis-
tent topology associated with the manifold evolution of EMD-1776 density map.
Figure 18 depicts the surfaces extracted with different isovalues of EMD-1776. The
isovalues for Figures 18 a-b are 0.14, 0.10, 0.07 and 0.04, respectively. Betti num-
bers in these Figures are given as β0 = 12, β1 = 0 and β2 = 0 in Figure 18 a;
β0 = 4, β1 = 4 and β2 = 0 in Figure 18 b; β0 = 1, β1 = 13 and β2 = 0 in Figure
18 c; β0 = 1, β1 = 9 and β2 = 0 in Figure 18 d. In Figure 19, the eigenvalues
and Betti numbers of each filtration of the EMD-1776 system are presented. Note
the filtration is generated by controlling the isovalue of cryo-EM data. The index



EVOLUTIONARY DE RHAM-HODGE METHOD 3817

0

4

9

13

0

FiltrationFiltration Filtration
2.782.742.68 2.782.742.68 2.782.742.68

12

4

1
4

i ii iii

Figure 19. Eigenvalues and Betti numbers vs filtration of the
EMD-1776 density map. The filtration goes from 2.68 (the largest
isovalue (0.28) subtract by 0.14) to 2.78 (the largest isovalue (0.28)
subtract by 0.04). i gives the Fiedler values of the T set and per-
sistent β0. ii presents the comparison of λCl,1 and persistent β1. iii
shows the Fiedler values of the N set and persistent β2.

shown for x-axis is calculated by subtracting the isovalue from the largest isovalue,
in which the filtration has an inclusion relation. Similar to aforementioned results,
eigenvalues illustrates the persistence of Betti number, but also depicts the geom-
etry shape changing. In Figure 19 i, it shows that the eigenvalue λTl,1 encounters
discontinuity when the Betti-0 decreases from 12 to 4 and from 4 to 1. In Fig-
ure 19 ii, the eigenvalue λCl,1 is discontinuous when the Betti-1 decreases from 13 to
9. This behavior is consistent with those of our earlier observations.

6. Conclusion. While persistent homology has had tremendous success in data
science and machine learning via a multiscale analysis, it does not capture geometric
progression when there are no topological changes. In contrast, although de Rham-
Hodge theory provides a simultaneous geometric and topological analysis, it lacks
multiscale information. We introduce an evolutionary de Rham-Hodge method to
offer a unified multiscale geometric and topological representation of data. The
evolutionary de Rham-Hodge method is applied to analyze the topological and
geometric characteristics through the evolution of manifolds which are a family of 3D
multiscale shapes constructed from an evolutionary filtration process. In addition to
exactly the topological persistence that would be obtained from persistent homology,
the analysis of the evolutionary spectra of Hodge Laplacian operators portrays
geometric progression. Specifically, appropriate treatments of the Hodge Laplacian
boundary conditions give rise to three unique sets of singular spectra associated with
the tangential gradient eigen field (T ), the curl eigen field (C) and the tangential
divergent eigen field (N). The multiplicities of the zero eigenvalues corresponding
to the T , C and N sets of spectra are exactly the persistent Betti-0 (β0), Betti-1
(β1) and Betti-2 (β2) numbers one would obtain from persistent homology. Using
discrete exterior calculus in close manifolds or compact manifolds with boundary,
we show that investigating the first non-zero eigenvalues, i.e., Fiedler values, of the
T , C and N sets of evolutionary spectra unveil both the persistence for topological
features and the geometric progression for the shape analysis. For a proof-of-concept
analysis, the evolutionary de Rham-Hodge method is applied to a few benchmark
examples, including the two-body system, four-body system, eight-body system,
benzene (C6H6) and buckminsterfullerene (C60). Extensive numerical experiments
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demonstrate that the present evolutionary de Rham-Hodge method captures the
multiscale geometric progression and topological persistence of data.

The proposed evolutionary de Rham-Hodge method provides a solid founda-
tion for a wide variety of applications, including shape analysis, image process-
ing, computer vision, pattern recognition, computer aided design, network analysis,
computational biology and drug design. As a proof-of-concept, we demonstrate
the proposed de Rham-Hodge modeling and analysis by the B-factor prediction of
a few challenging cases for which the conventional methods encountered difficul-
ties. By using both eigenfunctions and eigenvalues at various scales, we show that
the present evolutionary de Rham-Hodge method outperforms existing methods in
computational biophysics for protein flexibility analysis. Since the evolutionary de
Rham-Hodge method can reveal both topological persistence and geometric progres-
sion, it will offer a powerful multiscale representation of data for machine learning,
including deep learning.

Finally, the present evolutionary de Rham-Hodge method opens new opportuni-
ties in further theoretical developments in differential geometry, such as the intro-
duction of multiscale analysis to Riemannian connection, tensor bundle, character-
istic class, index theory, and K-theory.
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