2019 IEEE International Conference on Big Data (Big Data)

Scalability Analysis of Blockchain on a
Serverless Cloud

Alex Kaplunovich
Computer Science Department
University of Maryland
Baltimore, USA
akaplunl@umbc.edu

Abstract—While adopting Blockchain technologies to automate
their enterprise functionality, organizations are recognizing
the challenges of scalability and manual configuration that the
state of art present. Scalability of Hyperledger Fabric is an
open challenge recognized by the research community. We
have automated many of the configuration steps of installing
Hyperledger Fabric Blockchain on AWS infrastructure and
have benchmarked the scalability of that system. We have used
the UCR (University of California Riverside) Time Series
Archive with 128 timeseries datasets containing over 191,177
rows of data totaling 76,453,742 numbers. Using an automated
Serverless approach, we have loaded this dataset, by chunks,
into different AWS instances, triggering the load by SQS
messaging. In this paper, we present the results of this
benchmarking study and describe the approach we took to
automate the Hyperledger Fabric processes using serverless
Lambda functions and SQS triggering. We will also discuss
what is needed to make the Blockchain technology more robust
and scalable.

Keywords — blockchain, serverless, AWS Cloud, Lambda,
automation, messaging, benchmark

L INTRODUCTION

Organizations are increasingly looking at Blockchain
technologies to automate tracking of their enterprise
functions and data. Many applications are also trying to
incorporate Blockchain into their functionality. However,
scalability remains the biggest challenge of Blockchain.
Rapid elasticity, one of the key characteristics of Cloud
computing [7], requires instant scalability of the resources
and hence there is a potential of Blockchain technologies not
performing optimally on a cloud infrastructure.

To address this concern, we are currently quantifying the
performance and scalability of Blockchain frameworks on
Cloud infrastructure. As a first step, we have run
experiments to benchmark the performance of Hyperledger
Fabric on the Amazon Web Services (AWS) platform.
Hyperledger Fabric, a project hosted by the Linux
Foundation, is an open source blockchain framework
implementation, hosting smart contracts (chaincodes). The
Fabric allows developers to create a network and define
schema and security constraints/permissions.

Currently, many steps related to installation, deployment,
configuration, maintenance, monitoring and running of
Hyperledger Fabric are manual. We have significantly

978-1-7281-0858-2/19/$31.00 ©2019 IEEE 4214

Karuna P. Joshi
Information Systems Department
University of Maryland
Baltimore, USA
karuna.joshi@umbc.edu

Yelena Yesha
Computer Science Department
University of Maryland
Baltimore, USA
yeyesha@umbc.edu

automated these steps by using the latest Cloud techniques
like AMI images, instance templates, and Serverless
functions triggered by SQS messages to load the data. After
installing the Hyperledger Fabric and other necessary
components (including Composer and Composer restful
server), we created a schema and started uploading data from
the UCR Timeseries dataset. All the results were saved into a
No-SQL DynamoDB for future analytics. Once we installed
and tested our large dataset on one instance, we observed
that using our automation methodology, we could easily run
our tests on other instances in the Cloud. AWS Cloud
provided us the option to only pay for the time we used the
server instances. Moreover, we could launch any number of
servers on AWS and our work was easily reproducible since
we could repeat the same experiments later. To further cut
costs, we used Spot instances that provide up to 90 percent
cost savings compared to On-Demand instances. One of the
potential problems with spot instances is that they can be
terminated if the discounted price becomes unavailable.
However, as our experiments per server took several hours
(not days), we could rely on spot instances.

Our experiments have demonstrated that Hyperledger
Fabric blockchain while an excellent technology, requires
further automation and scalability functionality for Cloud
platforms. In this paper, we initially discuss the background
and related work in this area. In section III (A through I), we
describe the platform we configured for our tests. In section
IIT J., we describe the automation steps we developed, and
section IV describes the results of our experiments. We end
with conclusions and future work.

II. RELATED WORK

A. Serverless and FAAS Architecture

Serverless computing is defined in [6] as one where the
developer has control over the code they deploy into the
Cloud, though that code has to be written in the form of
stateless functions. The developer does not worry about the
operational aspects of deployment and maintenance of that
code and expects it to be fault-tolerant and auto-scaling. In
particular, the code may be scaled to zero where no servers
are actually running when the user’s function code is not
used, and there is no cost to the user. This is in contrast to
PaaS solutions where the user is often charged even during
idle periods.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

Serverless architectures refer to application functions that
run in ephemeral containers (Function as a Service or
“FaaS”) [2], [3]. They allow developers to concentrate on
their granular code (called function or microservice). Those
functions can be deployed and tested independently. The
cloud provider will be scaling microservices automatically
as needed (up and down). The developers should not worry
about servers and their configuration. System owner should
not buy or provision any hardware (in house or in the
Cloud). Users save money because they are paying only for
compute time used. They do not pay for idle server time
saving up to ninety percent over a cloud VM.

Serverless is becoming a modern computing standard
despite of its young age (Lambda service was introduced by
Amazon in 2014). Currently, all the leading Cloud provides
offer FaaS.

Tab. 1. contains the details of the leading Function as a
Service (Faas) Cloud Providers, prices and supported
languages. We can see that all the leading providers
(Amazon, Microsoft, Google and IBM) support
microservices and invest into new features development and
popularization of event-based cloud functions. Modern
Cloud conferences and Serverless conferences present the
best practices and state of the art serverless solutions. More
and more software development companies (large and
small) are using cloud functions and benefit from them.

TABLE L SERVERLESS FUNCTIONS COST AND LANGUAGES
Cloud . Languages .
Provider Service Name Supf; ortge d Price $
Amazon Lambda Java .20 per
Node.js million calls
Python
C#
Go
Ruby
Microsoft Azure Node.js .20 per
Functions Python million calls
C#
Google Cloud Node.js .40 per
Functions Python million calls
Go
IBM Cloud Java 0.000017 per
Functions Node.js second, per
Python GB

Our blockchain transactions will be invoked from
Lambda functions, calling Hyperledger Composer restful
service. There is no need to install any additional server for
our processing. Moreover, we can limit a number of
simultaneously running Lambda functions to control
parallelism.

Serverless functions have limited execution time — they
can not run longer than fifteen minutes (depending on the
Cloud provider). Given such a limitation, we have to code
our function to be able to complete within the specified time
interval. A Lambda function can queue another event to
spawn another function to complete the work.

4215

For our benchmarking, we have deployed two Lambda
functions into the cloud — loadTypes and loadSeries. The
first one will be used to load dataset types; the second to
load time series data associated with datasets. Lambda
functions will be triggered by SQS messages (secion III E.).
We deploy and test our functions using API Getaway and
SAM (Serverless Application Model) [14]. It is important to
deploy them together as one serverless application utilizing
best practices, CloudFormation and the Cloud ecosystem
bundling. We can easily add more functions to the
serverless application if needed in the future.

As Peter Sbarski said in [12] “Serverless architectures are
the latest advance for developers and organizations to think
about, study, and adopt. This exciting new shift in
architecture will grow quickly as software developers
embrace compute services such as AWS Lambda. And, in
many cases, serverless applications will be cheaper to run
and faster to implement”.

B. Blockchain Software Benchmarking

There were numerous Hyperledger benchmarking studies
(see [8], [11], [13] and [15]). Those studies were not using
the Cloud ecosystem integration. Our work adds full
automation, Cloud ecosystem integration, and serverless
architectures methodology.

III. IMPLEMENTATION

Our approach provides full integration with the Cloud,
orchestration and automation. Hyperledger Fabric
installation and launch is done automatically as a part of
instance AMI and User Data scripts (see below).

Blockchain transactions are invoked by the SQS
messages triggering Lambda microservices. There is no need
to make any manual steps because the Cloud ecosystem
helps us to handle many issues — message retries, Lambda
functions and No-SQL database auto scaling, monitoring and
logging.

We have been using s time series dataset. If we decide to
perform our tests on another data, we will need just to
change the S3 bucket name in the launch python script. Our
implementation is so flexible, that if we decide to record
results to another database table, we just have to change the
table name parameter in the script.

Our approach allows us to complete our tests quickly on
a multitude of EC2 instances (with different types, number of
cores, and memory), save the performance results into the
database and analyze them.

A. Blockchain Software Installation

On top of Hyperledger Fabric and docker software, we
have been installing Hyperledger Composer [4] and
Hyperledger Composer REST Server [5].

Composer simplifies the configuration of your network,
provides a pseudo language to create a model, command line
interface, and a visual tool to edit our model and
configuration parameters. It takes much less time to maintain
a network using the Composer tools. Our model (defined in

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

section III B.) is an example of the pseudo language usage.
Otherwise, we would have to edit numerous text
configuration files of a plain Hyperldeger Fabric installation.
With a Composer web interface, we can view and configure
networks from a browser.

list=[]
url = "http://" +ip + ":3000/api/org.blockchain.series.SeriesRow’
data = {

"$class": "org.blockchain.series.SeriesRow”,

"rowld": type name + sep + type + sep + str(saveSize) +
sep + str(len),

"label": row[0].values[0].item(),

"timeSeries": serie,

"len": len(serie),

"dataType": type_,

"typeRef": "org.blockchain.series.SeriesTypett" +
type_name_,

"participantld": "lambda"

list.append(data)
response = requests.post(url, json=list, timeout=840)

Figure 1. Hyperledger Composer REST Server call example

Hyperledger Composer REST Server provides a set of

methods (called over HTTP protocol) that allow to
manipulate the network data — query, update, create, etc.
Those methods are closely connected to out network and can
be called from a client. The REST server communicates with
Blockchain for transaction processing. It is important to
mention that when a REST server is started it is associated
with an identity, and all transactions will be securely signed
with that identity.
For example, let us demonstrate the convenience of the
REST Server API. Fig. 1 shows how to add a list of time
series into our Blockchain using a simple POST HTTP
request. Please, note, that timeout is specified in seconds.

B. Network Model

asset SeriesType identified by typeName {
o String typeName
o String testFileName
o String trainFileName
o String description optional
o Integer trainSize optional
o Integer testSize optional
o Integer numCols optional

asset SeriesRow identified by rowld {
o String rowld
o String label
o Double[] timeSeries
o Integer len
o DataType dataType
--> SeriesType typeRef

o String participantld

/

common data types, enumerations, arrays and references to
other objects.

We have defined the following two objects — SeriesType
and SeriesRow. As the names suggest, SeriesType represents
one of our time series — name, description, file names and the
number of rows/columns.

Our second object — SeriesRow will store one row from a
dataset file, containing an array of Double numbers — our
time series, identification parameters and a reference to the
corresponding SeriesType object. Fig. 2 contains the model
definition used for our study.

C. Dataset

We have used the UCR Time Series Classification
Archive [1] dataset, which contains 128 different time series.
Each of the dataset contains test and train files, with series
length ranging from 15 to 2866 numbers per row. Overall,
the repository contains over 76,453,742 floating point
numbers. As the data is very different, we had to load it in
parallel chunks to test the Hyperledger Fabric capacity to
load data over a Composer restful web service.

Since the restful service allows to load data row by row
as well as loading multiple rows with one call, we were
loading data in the following chunks - 1, 2, 5, 10, 20, 50, and
100. In other words, for each dataset (out of 128), we were
loading each file (test and train files for each) multiple times
in the chunk sizes mentioned above. To accomplish that we
have created a network schema handling such a load pattern.

D. Server Configuration

Server configuration is an integral part of the Blockchain
frameworks usage. It should be as simple and flawless as
possible. Utilizing the Cloud tools can help us to create a
working Fabric instance within a couple of mouse clicks.

Originally, we installed Hyperldeger Fabric and
Composer with all the dependencies on a cloud server. Then
we created a network with the schema defined above. We
used Ubuntu (Unix) servers with 16 cores and 16GB of
memory.

After verifying that all the docker containers for the
Fabric work, we created an AMI (Amazon Machine Image)
from the instance. Image creation takes a couple of clicks,
we just have to name it with a human readable name
(“FinalBlockchainlmage”, for example). Once the image is
created, we can spawn instances from the image, and the
instances will have all the software and network image
installed. We will just have to start the Hyperledger Fabric,
Composer and Restful service during the instance startup.

The second automation we use is to specify a startup
script called User Data. The cloud infrastructure allows to
specify that script either through the web interface or over
CLI (command line interface). The following script Fig. 3
will start our Fabric so we can use it upon server start.

Figure 2. Hyperledger Fabric Composer Model

Blockchain Network model defines the objects stored in
the framework. Hyperledger Fabric allows creating object-
oriented model with members containing most of the

4216

#!/bin/bash

cd /home/ubuntu/fabric-dev-servers

JfabricUtil.sh start

composer-rest-server -c admin(@series -n always -w true &
composer-playground &

Figure 3. User Data starting the Hyperledger Fabric

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

After we configured User Data, we create a Launch
Template from AWS web application. It allows us to
specify all the parameters for our new instances, such as
number of processors, memory, key pair name, AMI and
User Data. Once we have created a Launch Template, we
can create our instance using just a couple of clicks. And the
instance will be running the blockchain (since we create it
from an image), it will also have the network and will be
ready for us to start saving data into our blockchain. To test
it, we can simply go to the web broser and type the server’s
url on port 808 — we should see the Hyperledger Composer
Playground home screen. Fig. 4 demonstrates a web
interface for Hyperledger Composer.

Web interface allows to view and modify your existing
networks as well as creating the new ones. Although all the
operations can be launched using command line interface
(CLI), it is much easier and faster to use a web application.

W Hypetadge Compoun x

€ ce oom - @ +mo

O bhost Vited) o o @ Smionimtoop-A_ (O tawcs et B Coumior- bopibta_ B

P A
L]

Peerhdminghityl

- & |

admingseries

Figure 4. Hyperledger Composer web interface

E. SQOS Messaging

SQS is a Cloud messaging service (Simple Queue
Service). It is a fully managed service, that is why we do not
need to install any additional software, procure any server.
We only need to create a messaging queue and use it to send
messages. For our benchmarking we have created two
queues — load types and load series. The names of the
queues are self-explanatory. The first one will be handled by
the loadTypes Lambda function, the second — by loadSeries.

SQS messages can be a source for Lambda functions. In
other words, we can configure the cloud infrastructure to
execute a certain code when a message arrives to the queue.
Such a configuration provides limitless flexibility,
scalability and convenience.

4217

F. Enqueing and Processing

The first thing we did — placed the input files into the
Cloud S3 bucket (Simple Storage Service). The whole
archive contains 383 objects and has 808.7 Megabytes of
data.

G. Launching script (launch.py)

We have developed a little python launch program that
will enqueue a loading message into the queue ‘load_types’.
Our program was made generic, the following parameters are
passed to the message

e tableName — the name of the DynamoDB table

storing the timing results
serverType — type of the instance used
server — [P address of the server running our

Hyperledger Fabric
e bucket — the name of S3 bucket storing the data
archive

e subfolderName — the name of the subfolder in the
bucket above
e queueName — the name of queue that will be loading
the series.
Using boto3 library we can easily access most of the
Cloud services. Fig. 5 contains most of the code for our
launching program.

queue =
sgs.get queue by name (QueueName='load types')

data = {'bucket': bucket, 'subfolderName':
subfolderName, 'queueName': gqueueName,
'server': server,

'serverType': serverType,
'tableName':table}
response = queue.send messages (Entries=[{
'I@': 1,
"MessageBody": json.dumps (data)
1)
print ('SQS response', response)
print (response.get ('Failed'), data)

Figure 5. Python program launching series load into Blockchain

Once our serverless Lambda function loadTypes is
configured to be triggered by an SQS message in the queue
load_types, we can create the code that will be processing
that message.

H. loadTypes Lambda function

The code for the lambda function loadTypes reads the
objects in the archive and populates the SeriesType objects
in our network model. We are parsing the series README
files to extract the number of rows, columns using regular
expressions. To decrease the amount of redundant
information, we save the name of the test and train files into
the same object SeriesType (see Fig. 2 for the schema
definition).

To save type objects, we are using composer restful
server, installed in previous steps. It allows to query or
update our blockchain data using HTTP requests. To save
the data we just need to issue a simple POST request and
pass the JSON object containing our type(s). We were saving

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

the types in the chunks of twenty records to accelerate the
process of loading the series types.

After loading the types, we enqueue messages into the
load_series SQS queue to load the actual time series data. To
make the load easier, we enqueue one message per file (one
for test file, another one for train file). This way we save a lot
of error processing logic if error occurred during a file
processing.

1. loadSeries Lambda function

To load a time series file, we enqueue a message
containing all the necessary information to load data from S#
to the Blockchain. Fig. 6 demonstrates the message
enqueueing code.

All the messages will be safely placed into load series
and processed by the corresponding lambda function in
parallel (since multiple functions can be spawned).
Moreover, we can control the number of loadSeries functions
executing at the same time to control the bandwidth of the
system. In order to assure that all the types are saved into the
Blockchain framework, we set the delivery delay to five
minutes to assure that the series would not start loading until
all the series types are loaded. As you can see in Fig. 7,
numerous SQS parameters can be specified, including
maximum message size, default visibility timeout and
message retention period.

response = queue.send messages (Entries=[{
lIdl: lll,
"MessageBody": json.dumps ({
'bucket': bucket,

'subfolderName': subfolderName,
'file': data['trainFileName'],
'type': "TRAIN",

'cols': data['numCols'] if 'numCols'

in data else "Vary",
'typeName': data['typeName'],
'server': server,
'serverType': serverType,
'saveSize': saveSize,
'queueName': gqueueName,
'tableName': tableName

3]
}

Figure 6. Message engueuing code to load data from file

As soon as loadType Lamda function starts processing
the SQS messages, the archive files will be loaded into the
Blockchain one by one. Given we were going to test
chunking of the records loaded at once (chunks of size 1, 2,
5, 10, 20, 50, and 100), we enqueue seven messages per file.
In other words, we will be loading data for each file seven
times, passing chunks of those sizes to the Hyperledger
Composer restful server. We are going to compare timing
results depending on chunk size.

The loadTypes Lambda function executes the following
logic:

1. Obtain a data (CSV) file from S3

2. Read a file by chunks of 10000 lines

3. For each chunk of the time series file

4218

4. If Lambda remaining execution time is less than one

minute — schedule a new SQS message with the file

name and chunk number parameters to complete the

file load in the future

For each row in the chunk

Populate the array of time series numbers for the row

Construct a JSON object SeriesRow and append it to

the list

8. Save the list to Blockchain if its size is equal to
saveSize (a parameter passed to the message, one of
(1,2,5, 10, 20, 50, or 100)

9. Save all the timing results into the DynameDB table
tableName (another parameter passed to the SQS
message)

Noaw

Fillter by Profix: O} Erter Text x

4]

¢ 1 2ot? hem
Contart-Based Decuplication - Messages Available - Messages in Flight - Created

NiA [} o 0181187 1037

WA [[BO18-11-05 1417

1505 Quews seloctod

Datails Parmissions Redeive Policy Manioring Tags Encryption Lambaa Triggers

Detault Visibility Timeout: 12
Meszage Retention Period: 4 ¢
Maximum Message Size: 25
Recaive Message Wait Ti
Mossages Available [Visibl

Messages in Flight (Not Visible): 0
Messages Delayed: 0

Content-Based Deduplication: N

Figure 7. SQS messaging queue configuration

As you can see, we are handling all the use cases,
including the situation when one file data cannot be saved
into Blockchain due to latency or file size. In such a case, we
are queueing another message with the file chunk number to
complete the load with another Lambda serverless function.

J. Automation

Our goal was to automate everything. From the server
creation to loading data into the Blockchain and saving
timing results. Since the machine AMI image contains all the
necessary software installed (including Hyperledger,
Composer, Python, boto3 and our launch.py files), we can
easily include all the startup commands into our User Data
script (see section III D.).

We can disown the running processes from the users to
be able to continue execution after user log in. The following
addition to the User Data (Fig. 3) will start the loading
process (as mentioned in section IIT L.).

disown %1 %2
python launch.py &

The last statement will start our experiments on the
launched server. All the benchmarking data will be saved
into DynamoDB database and will be analyzed later.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

K. Cost

Let us discuss the prices associated with our Cloud tests.
Hyperledger Fabric Blockchain software is free. We will be
paying just for the server time, serverless functions
execution, SQS messaging and DynamoDB.

Once we are using spot instances, we will be saving up to
90% of the on-demand instance price. Spot instance prices
fluctuate over time; however, we can always set the highest
price we are willing to pay for the instance. It is possible to
make maximum price to be the on-demand price — in such a
case your instance will never be terminated, but you might
be paying the full price without savings. Fig. 8 Demonstrates
the Spot instance dashboard. For example, a spot instance
with 16 CPUs and 30GB of memory (c3.4xlarge) will cost
23 cents per hour, while on-demand price for the same
instance will be 84 cents per hour.

ca

Spot usage and savings
1 1152 2160

Spot watances VCPLHhoun Mem{) o

=] I EEEY I EE

Figure 8. Spot instance savings dashboard, showing 72% savings

Other costs associated with our experiments are
negligible compared to the EC2 pricing.

Lambda microservices cost 20 cents per one million
function invocations (after first one million free calls).

SQS will cost us 40 cents per one million messages.
Given the nature of our data and messaging structure, we
will not exceed one million messages for our tests.

Moreover, DynamoDB pricing is based on WCU (Write
Capacity Unit) and RCU (Read Capacity Unit). During our
peak loads we set WCU to 200 during our testing, and reset
it to 2 afterwards. WCU costs $0.00065 per hour, and RCU
costs $0.00013 per hour.

Without the Cloud ecosystem, our system will require
manual steps and will cost much more. We are utilizing all
the Cloud advantages.

L. Architecture

The architecture diagram for our experiments is below.
The launch script enqueues a message into load types SQS
messaging queue. loadTypes Lambda function is
automatically triggered as a result of that message. It loads
time series types into our Blockchain and adds a bunch of
messages into load series queue (128 datasets * 2 files (train
and test) * 7 chunk sizes).

The messages in the load_series queue will automatically
trigger loadSeries Lambda functions, each of it will load the
corresponding file from the dataset. During the data load
executions, all the timing results will be saved in the

4219

DynamoDB table specified by the launch.py message
parameter.

Our architecture guarantees full automation and
efficiency. Fig. 9 shows the architectural diagram of our
system.

During our tests we have been using AWS monitoring
tools. They allow to set alarms and see the bottlenecks of the
system. Snapshot graphs helped us to determine what write
capacity we need to set for the DynamoDB, or how many
Lambda functions are executing simultaneously.

The beauty of the Cloud infrastructure ecosystem— we
can check all the services we use from a single web
application. We can check how many SQS messages are
waiting in the queue, how much money we save with the
EC2 spot instance, or how many Lambda functions had
errors during execution. That information was priceless
during tuning of our system to find the most appropriate
configuration for the best results. All the timing information
was saved in the serverless DynamoDB No-SQL database,
and will be used to analyze our results in the future sections
of the paper.

Hyperledger Fabric is using a CouchDB database to store
its transactions. It is a NoSQL document database developed
by Apache Software Foundation. Unfortunately, it is not a
part of the Cloud ecosystem and its rating is not better than
DynamoDB (see [9]). Although CouchDB provides a
querying mechanism (see [10]), its performance is not better

than DynamoDB.
I'_iﬁl W CouchDB |
| |

AWS Cloud
POST | -

SeriesType | Hyperledger posT

g Fabric SeriesRow @_

Launch.py i
mares M4 prererroy

load_series

load_types

Results

Figure 9. Our Blockchain benchmarking Architecture

M. Test Scenarios

We have been using several Amazon EC2 instance of
different types to compare performance and throughput of
our network. Tab. II contains a list of servers we have used.

TABLE II. AWS INSTANCES USED FOR OUR TESTS

Price $ per

Instance CPUs A/I(e(t;n ;)ry hour (on-

demand)

c3.4xlarge 16 30 0.84
c3.8xlarge 32 60 1.68
c4.4xlarge 16 30 0.796
c4.8xlarge 36 60 1.591

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

Instance CPUs Memory 1;’;2‘; iﬁf_"
(GB) o

c5.18xlarge 72 144 3.06
c5.9xlarge 36 72 1.53
g3.16xlarge 64 488 4.56
h1.16xlarge 64 256 3.744
m4.16xlarge 64 256 32

mS.4xlarge 16 64 0.768
r3.8xlarge 32 244 2.66
r4.16xlarge 64 488 4.256
r4.8xlarge 32 244 2.128

We have been spawning each of the above instances,
using Spot requests (to save over 70% of the price). Our
launch template contains the AMI image containing all the
necessary software, including Hyperledger Fabric, python
and the launch python script to start loading data.

Services «

Resource Groups ~

loadSeries Throttte | | Q
30 | 00k — —
|
| il
| A /1
| il A |
195 | 1 i I \a 451k
Al N W
\fh I i \
VATRVALEFYAV AN)
\f ARV, = \
YR ~
800 \ 195k = —
1530 1600 163 1700 1730 1800 1530 1600 1830 1700 1
@ Ievvocatior @ Duration Minmn @ Durabon Average
Throttles IteratorAge
100
162
1 A .'FI
| i\ A =4
| A A / |
\ A \ /
A MA J s md 0s
ws TS YT N e N ~
l
\
|
\
108 !]
1530 1600 1630 1700 1730 1800 1530 1600 1630 1700 1
B Thotes B tortorige

ConcurrentExecutions
Feedback @ English (US)

Figure 10. Lambda function monitoring

The data load was taking several hours, and all the timing
results were saved into the database. Those results will be
analyzed in the next sections of the paper.

We have been monitoring the health of our resources to
make sure we do not need to make changes to the
DynamoDB WCU, SQS parameters or Lambda concurrency
limits. Fig. 10 demonstrates the monitoring of lambda
function loadSeries.

IV. RESULTS

After running the tests, it was very easy to use the
collected data and query our DynamoDB database to analyze
the data. Our experiments have proven that it makes more
sense to load data in large chunks. Loading data series row
by row heavily depend on the server. Fig. 11 demonstrates

4220

that the average load time is from 1 to 12 seconds depending
when we load data record by record. However, for chunk
size of one hundred, the instance type does not matter much—
the average load time is from 71 to 334 milliseconds.

Blockchain framework and Composer rest server limit
the maximum size of the data for the transaction. We were
getting the “Request entity too large” error using
Hyperledger default parameters.

It turned out that the maximum entity size can be
configured in the rest server configuration (the standard file
server.js). Although entity size cannot be infinite (we have
not found the maximum size in the documentation), the
10000kb turned out to be sufficient for our datasets. The
following code snippet has fixed the problem:

app.middleware('parse’, bodyParser.json({
strict: false,
limit: "10000kb"
W)
We cannot have unlimited chunk sizes. However, for our
data set, setting the rest server’s limit to "10000kb" allowed
us to process the data load without size errors.

Row Load time per chunk size

——- c3.4xlarge
=== 3.8xlarge
—=—- c4.8xlarge
——=- ¢5.18xlarge
——- ¢5.9xlarge
——- hl.16xlarge
-—- mé.16xlarge
——- r3.8xlarge
rd.16xlarge

1 ——- r4.8xlarge

‘. ——- g3.16xlarge

40004 | ~—- m5.4xlarge
e ‘k ——- cd.4xlarge

12000 4

10000

8000 A

pr—————

6000

Load time per row (ms)

20001

Chunk size

Figure 11. Row load time for different chunk sizes

Average row load time depends on the instance. Fig. 12
demonstrates a different range of average times to load a row
into numerous instances. It takes from 54 to 1513
milliseconds to load a row into Hyperledger Fabric in
average.

We have discovered that the biggest problem with
Blockchain is scalability. During our experiments, up to five
hundred and twelve Lambda functions were accessing the
Composer rest service to save data into Blockchain (see Fig.
13). We have noticed that the more concurrent Lambda
functions are running, the more load errors we are getting. It
turned out that no instance can handle that many
simultaneous calls to save transactions data. As a result,
many HTTP post requests from Fig. 1 were either timing out
or failing with the “Failed to connect before the deadline”
error.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

Average Row load per instance
4

1400

1200

1000 A

800 4

600

Row Load time (ms)

400 A

200 4

c3.4xlarge
c3.8xlarge
c4.8xlarge
c5.18xlarge
c5.9xlarge
hl.16xlarge
m4.16xlarge
r3.8xlarge
r4.16xlarge
r4.8xlarge
g3.16xlarge
m5.4xlarge
c4.4xlarge

Instance

Figure 12. Average row load time per Instance

In order to fix that, we will need to configure additional
servers to handle heavy loads. Adding those servers
manually is a tedious work. Moreover, servers should be
added/removed as a response to a “heavy” or “low” load
events or triggers.

As many Cloud services nowadays, Blockchain auto
scaling will be a perfect solution.

3}'_!'5 Services - source Groups -
loadSeries Theottle | | Quat
Invocations Duration
Count A"
512 Q00K ==

W30 2000 2030 7o 2130 20
@ Invocabons. @ Dt

Throttles IlteratorAge

oo (]
100

05

0 — _ (]

Fesdback (@ English (US)

Figure 13. Lambda function monitoring, over 500 running functions

V. CONCLUSION AND FUTURE WORK

We were able to test the blockchain throughput on
numerous servers. It turned out that even the most powerful
cloud servers have scalability problem. Our architecture
allowed to control the concurrency of the simultaneous
requests (using SQS and Lambda synchronization). It turned
out that current Hyperledger Fabric Blockchain software
cannot handle many simultaneous requests without errors
and need auto-scaling to add more servers to process heavy
loads.

4221

Blockchain technologies are developing very rapidly. In
November 2018, Amazon has announced a Managed
Blockchain Service (available for preview only). Such a
service can solve installation and scalability problems. We
would like to extend our research to that service.

There is a need for auto-scaling Blockchain service that
will adapt to the load. Cloud providers already have such
services for databases (DynamoDB), map reduce (EMR) and
other services. User-friendly auto-scaling implementation for
Blockchain will boost the technology usage (as it has
boosted EMR in the past).

Another promising area of research — the storage of the
Hyperledger data (transactions). Amazon Quantum Ledger
Database (QLDB) can standardize and optimize the storage
of the Blockchain transactions; improve scalability,
reliability and maintenance of the data. It can be used instead
of CouchDB as a standard transaction repository.

We believe that blockchain transactions will be used to
store and retrieve most of the data in the near future.
Especially after scalability problem is solved and blockchain
storage is standardized.

ACKNOWLEDGMENT

This research was partially supported by a DoD
supplement to the NSF award #1439663: NSF I/UCRC

Center for Hybrid Multicore Productivity Research
(CHMPR).
REFERENCES
[1] UCR Time Series Classification Archive, Fall 2018,
https://www.cs.ucr.edu/~eamonn/time_series_data 2018/
[2] Martin Fowler web site.

https://martinfowler.com/articles/serverless.html (references)

[3] Maruti Techlabs, What is Serverless Architecture? What are its
criticisms and drawbacks?, May 2017,

[4] Hyperledger Composer documentation,

https://www.hyperledger.org/projects/composer

[5] Caroline Church “Developing multi-user application using the
Hyperledger Composer REST Server”, Medium.com, February 2018,
https://medium.com/(@CazChurchUk/developing-multi-user-
application-using-the-hyperledger-composer-rest-server-
b3b88e857ccc, last retrieved 1/19/2019

[6] Baldini 1. et al. (2017) Serverless Computing: Current Trends and
Open Problems. In: Chaudhary S., Somani G., Buyya R. (eds)
Research Advances in Cloud Computing. Springer, Singapore

[7]1 Peter Mell and Timothy Grance, NIST Special Publication 800-145
The NIST Definition of Cloud Computing, 2011

[8] Garrick Hileman, Michel Rauchs, "GLOBAL BLOCKCHAIN
BENCHMARKING STUDY", Cambridge Centre for Alternative
Finance, 2017

[9] Db-engines.com, "Amazon DynamoDB vs. CouchDB", https://db-
engines.com/en/system/Amazon+DynamoDB%3BCouchDB

[10] Jonas Snellinckx, "Hyperledger Fabric & couchdb, fantastic queries
and where to find them", September 2017,
https://medium.com/wearetheledger/hyperledger-fabric-couchdb-
fantastic-queries-and-where-to-find-them-f8a3aecef767

[11] Qassim Nasir et al, "Performance Analysis of Hyperledger Fabric
Platforms", Security and Communication Networks, Volume 2018

[12] Peter Sbarski, “Serverless Architectures on AWS”, 2017, Manning

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

[13] Christian Gorenflo,Stephen Lee,Lukasz Golab, S. Keshav, [15] Parth Thakkar,Senthil Nathan,Balaji Viswanathan, ‘“Performance
“FastFabric: Scaling Hyperledger Fabric to 20,000 Transactions per Benchmarking and Optimizing Hyperledger Fabric Blockchain
Second”, 2019, eprint arXiv:1901.00910 Platform”, 2018, eprint arXiv:1805.11390

[14] “What Is the AWS Serverless Application Model”, AWS
Documentation, https://docs.aws.amazon.com/serverless-application-
model/latest/developerguide/what-is-sam.html

4222

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on July 06,2021 at 16:00:30 UTC from IEEE Xplore. Restrictions apply.

