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Abstract
Biological macromolecules have intricate structures that underpin their biological functions. 
Understanding their structure–function relationships remains a challenge due to their structural 
complexity and functional variability. Although de Rham–Hodge theory, a landmark of twentieth-
century mathematics, has had a tremendous impact on mathematics and physics, it has not been 
devised for macromolecular modeling and analysis. In this work, we introduce de Rham–Hodge 
theory as a unified paradigm for analyzing the geometry, topology, flexibility, and Hodge mode 
analysis of biological macromolecules. Geometric characteristics and topological invariants are 
obtained either from the Helmholtz–Hodge decomposition of the scalar, vector, and/or tensor 
fields of a macromolecule or from the spectral analysis of various Laplace–de Rham operators 
defined on the molecular manifolds. We propose Laplace–de Rham spectral-based models for 
predicting macromolecular flexibility. We further construct a Laplace–de Rham–Helfrich operator 
for revealing cryo-EM natural frequencies. Extensive experiments are carried out to demonstrate 
that the proposed de Rham–Hodge paradigm is one of the most versatile tools for the multiscale 
modeling and analysis of biological macromolecules and subcellular organelles. Accurate, 
reliable, and topological structure-preserving algorithms for implementing discrete exterior 
calculus (DEC) have been developed to facilitate the aforementioned modeling and analysis of 
biological macromolecules. The proposed de Rham–Hodge paradigm has potential applications to 
subcellular organelles and the structure construction from medium- or low-resolution cryo-EM 
maps, and functional predictions from massive biomolecular datasets.
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1 Introduction
One of the most amazing aspects of biological science is the intrinsic structural complexity 
of biological macromolecules and its associated functions. The understanding of how 
changes in macromolecular structural complexity alter their function remains one of the 
most challenging issues in biophysics, biochemistry, structural biology, and molecular 
biology. This understanding depends crucially on our ability to model three-dimensional 
(3D) macromolecular shapes from original experimental data and to extract geometric and 
topological information from the architecture of molecular structures. Very often, 
macromolecular functions depend not only on native structures but also on nascent, 
denatured, or unfolded states. As a result, understanding the structural instability, flexibility, 
and collective motion of macromolecules is of vital importance. Structural bioinformatics 
searches for patterns among diverse geometric, topological, instability, and dynamic features 
to deduce macromolecular function. Therefore, the development of efficient and versatile 
computational tools for extracting macromolecular geometric characteristics, topological 
invariants, instability spots, flexibility traits, and mode analysis is a key to infer their 
functions, such as binding affinity, folding, folding stability change upon mutation, 
reactivity, catalyst efficiency, and allosteric effects.

Geometric modeling and characterization of macromolecular 3D shapes have been an active 
research topic for many decades. Surface models not only provide a visual basis for 
understanding macromolecular 3D shapes, but also bridge the gap between experimental 
data and theoretical modelings, such as generalized Born and Poisson–Boltzmann models 
for biomolecular electrostatics (Natarajan et al. 2008; Yu et al. 2008). A space-filling model 
with van der Waals spheres was introduced by Corey, Pauling, and Koltun (Corey and 
Pauling 1953). Solvent-accessible surface (SAS) and solvent-excluded surface were 
proposed (Lee and Richards 1971; Richards 1977) to provide a more elaborate 3D 
description of biomolecular structures. However, these surface definitions admit geometric 
singularities, which lead to computational instability. Smooth surfaces, including Gaussian 
surfaces (Blinn 1982; Duncan and Olson 1993; Zheng et al. 2012; Chen et al. 2012; Li et al. 
2013), skinning surfaces (Cheng and Shi 2009), minimal molecular surface (Bates et al. 
2008), and flexibility–rigidity index (FRI) surfaces (Xia et al. 2013; Nguyen et al. 2016), 
were constructed to mitigate the computational difficulty.

Another important property of macromolecules is their structural instability or flexibility. 
Such property measures macromolecular intrinsic ability to respond to external stimuli. 
Flexibility is known to be crucial for biomolecular binding, reactivity, allosteric signaling, 
and order–disorder transition (Ma 2005). It is typically studied by standard techniques, such 
as normal mode analysis (NMA) (Go et al. 1983; Tasumi et al. 1982; Brooks et al. 1983; 
Levitt et al. 1985,) Gaussian network model (GNM) (Bahar et al. 1997), and anisotropic 
network model (ANM) (Atilgan et al. 2001). These methods have the computational 
complexity of O N3 , with N being the number of unknowns. As a geometric graph-based 

method, FRI was introduced to reduce the computational complexity and improve the 
accuracy of GNM (Xia et al. 2013; Opron et al. 2014). NMA and ANM offer the collective 
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motions which are manifested in normal modes and may facilitate the functionally important 
conformational variations of macromolecules.

The aforementioned Gaussian surface or FRI surface defines a manifold structure embedded 
in 3D, which makes the analysis of geometry and topology accessible by differential 
geometry and algebraic topology. Recently, differential geometry has been introduced to 
understand macromolecular structure and function (Feng et al. 2012; Xia et al. 2014). In 
general, the protein surface has many atomic scale concave and convex regions which can be 
easily characterized by Gaussian curvature and/or mean curvature. In particular, the concave 
regions of a protein surface at the scale of a few residues are potential ligand-binding 
pockets. Differential geometry-based algorithms in both Lagrangian and Cartesian 
formulations have been developed to generate multiscale representations of biomolecules. 
Recently, a geometric flow-based algorithm has been proposed to detect protein-binding 
pockets by Zhao et al. (2018). Morse functions and Reeb graphs are employed to 
characterize the hierarchical pocket and sub-pocket structure (Zhao et al. 2018; Dey et al. 
2013).

More recently, persistent homology (Carlsson et al. 2005; Edelsbrunner and Harer 2010), a 
new branch of algebraic topology, has become a popular approach for the topological 
simplification of macromolecular structural complexity (Yao et al. 2009; Xia and Wei 2014; 
Xia et al. 2015). Topological invariants are macromolecular-connected components, rings, 
and cavities. Topological analysis is able to unveil the topology–function relationship, such 
as ion channel open/close, ligand binding/disassociation, and protein folding–unfolding. 
However, persistent homology neglects chemical and biological information during its 
geometric abstraction. Element-specific persistent homology has been introduced to retain 
crucial chemical and biological information during the topological simplification (Cang and 
Wei 2018). It has been integrated with deep learning to predict various biomolecular 
properties, including protein–ligand-binding affinities and protein folding stability changes 
upon mutation by Cang and Wei (2017).

It is interesting to note that most current theoretical models for macromolecules are built 
from classical mechanics, namely computational electromagnetics, fluid mechanics, 
elasticity theory, and molecular mechanics based on Newton’s law. These approaches lead to 
multivalued scalar, vector, and tensor fields, such as macromolecular electrostatic potential, 
ion channel flow, protein anisotropic motion, and molecular dynamics trajectories. 
Biomolecular cryogenic electron microscopy (cryo-EM) maps are also scalar fields. 
Mathematically, macromolecular multivalued scalar, vector, and tensor fields contain rich 
geometric, topological, stability, flexibility, and Hodge mode information that can be 
analyzed to reveal molecular function. Unfortunately, unified geometric and topological 
analysis of macromolecular multivalued fields remains scarce. It is more challenging to 
establish a unified mathematical framework to further analyze macromolecular flexibility 
and Hodge modes. There is a pressing need to develop a unified theory for analyzing the 
geometry, topology, flexibility, and collective motion of macromolecules so that many 
existing methods can be calibrated to better uncover macromolecular function, dynamics, 
and transport.
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The objective of the present work is to construct a unified theoretical paradigm for analyzing 
the geometry, topology, flexibility, and Hodge mode of macromolecules in order to reveal 
their function, dynamics, and transport. To this end, we introduce de Rham–Hodge theory 
for the modeling and analysis of macromolecules. De Rham–Hodge theory is a cornerstone 
of contemporary differential geometry, algebraic topology, geometric algebra, and spectral 
geometry (Hodge 1989; Bott and Tu 2013; Mitchell 1998). It provides not only the 
Helmholtz–Hodge decomposition to uncover the interplay between geometry and topology 
and the conservation of certain physical observables, but also the spectral representation of 
the underlying multivalued fields, which further unveils the geometry and topology. 
Specifically, as a ubiquitous computational tool, the Helmholtz–Hodge decomposition of 
various vector fields, such as electromagnetic fields by Hekstra et al. (2016), velocity fields 
by De La Torre and Bloomfield (1977), and deformation fields by Atilgan et al. (2001), can 
reveal their underlying geometric and topological features (see a survey by Bhatia et al. 
(2013)). Additionally, de Rham–Hodge theory interconnects classic differential geometry, 
algebraic topology, and partial differential equation (PDE) and provides a high-level 
representation of vector calculus and the conservation law in physics. Finally, the spectra of 
Laplace–de Rham operators in various differential forms also contain the underlying 
geometric and topological information and provide a starting point for the theoretical 
modeling of macromolecular flexibility and Hodge modes. The corresponding 
computational tool is discrete exterior calculus (DEC) (Hirani 2003; Desbrun et al. 2005; 
Arnold et al. 2006; Zhao et al. 2019). Lim discussed discrete Hodge Laplacians on graphs, 
which might not recover all the properties of the Laplace–de Rham operator (Lim 2015). De 
Rham–Hodge theory has had great success in theoretical physics, such as electrodynamics, 
gauge theory, quantum field theory, and quantum gravity. However, this versatile 
mathematical tool has not been applied to biological macromolecules, to the best of our 
knowledge. The proposed de Rham–Hodge framework seamlessly unifies previously 
developed differential geometry, algebraic topology, spectral graph theory, and PDE-based 
approaches for biological macromolecules (Xia and Wei 2016). Our specific contributions 
are summarized as follows:

• We provide a spectral analysis tool based on the de Rham–Hodge theory to 
extract geometric and topological features of macromolecules. In addition to the 
traditional spectra of scalar Hodge Laplacians, we enrich the spectra by using 
vector Hodge Laplacians with various boundary conditions.

• We construct a de Rham–Hodge theory-based analysis tool for the orthogonal 
decomposition of various vector fields, such as electric field, magnetic field, 
velocity field from molecular dynamics and displacement field, associated with 
macromolecular modeling, analysis, and computation.

• We propose a novel multiscale flexibility model based on the spectra of various 
Laplace–de Rham operators. This new method is applied to the Debye–Waller 
factor prediction of a set of 364 proteins (Opron et al. 2014). By comparison with 
experimental data, we show that our new model outperforms GNM, the standard 
bearer in the field (Bahar et al. 1997; Opron et al. 2014).
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• We introduce a multiscale Hodge mode model by constraining a vector Laplace–
de Rham operator with a Helfrich curvature potential. The resulting Laplace–de 
Rham–Helfrich operator is applied to analysing the Hodge modes of cryo-EM 
data. Unlike previous normal mode analysis which assumes harmonic potential 
around the equilibrium, our approach allows unharmonic motions far from the 
equilibrium. The multi-resolution nature of the present method makes it a 
desirable tool for the multiscale analysis of macromolecules, protein complexes, 
subcellular structures, and cellular motions.

• We demonstrate electrostatic field analysis based on Hodge decomposition and 
eigenfield analysis. The eigenfield analysis is applied to the reaction potential 
calculated by solving the Poisson–Boltzmann equation. We show that local 
dominant Hodge eigenfields exist for electrostatic analysis.

2 Results
Our results are twofold: We first describe our contribution to computational tools for 
Laplace–de Rham operators based on the simplicial tessellation of volumes bounded by 
biomolecular surfaces and then we present the modeling and analysis of de Rham–Hodge 
theory for biological macromolecules.

2.1 Theoretical Modeling and Analysis

This section introduces de Rham–Hodge theory for the analysis of biomolecules. To 
establish notation, we provide a brief review of de Rham–Hodge theory. Then, we introduce 
topological structure-preserving analysis tools, such as discrete exterior calculus (DEC) 
(Desbrun et al. 2005), discretized differential forms, and Hodge–Laplacians, on the compact 
manifolds enclosing biomolecular boundaries. We use simple finite-dimensional linear 
algebra to computationally realize our structure-preserving analysis on various differential 
forms. We construct appropriate physically relevant boundary conditions on biomolecular 
manifolds to facilitate various scalar and vector Laplace–de Rham operators such that the 
resulting spectral bases are consistent with three basic singular value decompositions of the 
gradient, curl and divergence operators through dualities.

2.1.1 De Rham–Hodge Theory for Macromolecules—While the spectral analysis 
can be carried out using scalar, vector, and tensor calculus, differential forms and exterior 
calculus are required in de Rham–Hodge theory to reveal the intrinsic relations between 
differential geometry and algebraic topology on biomolecular manifolds. Since biomolecular 
shapes can be described as 3-manifolds with a 2-manifold boundary in the 3D Euclidean 
space, we represent scalar and vector fields on molecular manifolds as well as their 
interconversion through differential forms. As a generalization of line integral and flux 
calculation of vector fields, a differential k-form wk ϵ Ωk(M) is a field that can be integrated 
on a k-dimensional submanifold of M, which can be mathematically defined through a rank-
k antisymmetric tensor defined on a manifold M. By treating it as a multi-linear map from k 
vectors spanning the tangent space to a scalar, it turns an infinitesimal k-dimensional cell 
into a scalar, whose sum over all cells in a tessellation of a k-dimensional submanifold 
produces the integral in the limit of infinitesimal cell size. In ℝ3, 0-forms and 3-forms have 
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one degree of freedom at each point and can be regarded as scalar fields, while 1-forms and 
2-forms have three degrees of freedom and can be interpreted as vector fields.

The differential operator (also called exterior derivative) d can be seen as a unified operator 
that corresponds to gradient (∇), curl (∇×), and divergence (∇) when applied to 0-, 1-, and 2-
forms, mapping them to 1-, 2-, and 3-forms, respectively. On a boundaryless manifold, a 
codifferential operator δ is the adjoint operator under L2-inner product of the fields (integral 
of pointwise inner product over the whole manifold), which corresponds to −∇·, ∇×, and −∇, 
for 1-, 2-, and 3-forms, mapping them to 0-, 1-, and 2-forms, respectively.

One key property of d:Ωk(M) Ωk + 1(M) is that dd = 0, which allows the space of 
differential forms Ωk to form a chain complex, which is called the de Rham complex

0 Ω0(M) (∇)
d Ω1(M (∇ × )

d Ω2(M) (∇ ⋅ )
d Ω3(M) d 0. (1)

It also matches the identities of second derivatives for vector calculus in ℝ3, i.e., (∇×)∇ = 0 
and (∇·)∇× = 0. The topological property associated with differential forms is given by the 
de Rham cohomology,

HdR
k (M) = kerdk

imdk − 1 . (2)

The de Rham theorem states that the de Rham cohomology is isomorphic to the singular 
cohomology, which is derived purely from the topology of the biomolecular manifold.

The Hodge k-star ⋆k (also called Hodge dual) is a linear map from a k-from to its dual form, 
⋆k :Ωk(M) Ωn − k(M). Given two k-forms α, β ϵ Ωk(M), the (L2-)inner product between 
them can be defined along with star operator as

α, β = ∫
M
α ∧ ⋆ β = ∫

M
β ∧ ⋆ α . (3)

Under the inner products, the adjoint operators of d are the codifferential operators 
δk:Ωk(M) Ωk − 1(M), δk = ( − 1)k ⋆ d ⋆ satisfies δδ = 0. Hodge further established the 
isomorphism

HdR
k (M) ≅ HΔ

k(M), (4)

where HΔ
k(M) = ω ∣ Δω = 0  is the kernel of the Laplace–de Rham operator Δ ≡ dδ + δd = 

(d + δ)2, also known as the space of harmonic forms. A corollary of the result is the Hodge 
decomposition,

ω = dα + δβ + ℎ, (5)
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which is an L2-orthogonal decomposition of any form ω into d and δ of two potential fields 
α ∈ Ωk−1(M) and β ∈ Ωk+1(M) respectively, and a harmonic form ℎ ∈ HΔ

k(M). This means 

that harmonic forms are the non-integrable parts of differential forms, which form a finite-
dimensional space determined by the topology of the biomolecular domain due to de 
Rham’s and Hodge’s theorems.

2.1.2 Macromolecular Spectral Analysis—The Laplace–de Rham operator Δ = dδ + 
δd, when restricted to a 3D object embedded in the 3D Euclidean space, is simply −∇2. As it 
is a self-adjoint operator with a finite-dimensional kernel, it can be used to build spectral 
bases for differential forms. For irregularly shaped objects, these bases can be very 
complicated. However, for simple geometry, these bases are well-known functions. For 
example, 0-forms on a unit circle can be expressed as the linear combination of sine and 
cosine functions, which are eigenfunctions of the Laplacian for 0-forms Δ0. Similarly, 
spherical harmonics are eigenfunctions of Δ0 on a sphere and it has also been extended to 
manifold harmonics on Riemannian 2-manifolds.

We further extend the analysis to any rank k and to 3D shapes such as macromolecular 
shapes where analysis can be carried out in two types of cases. In the first type, one may 
treat the surface of the molecular shape as a boundaryless compact manifold and analyzes 
any field defined on such a 2D surface. In fact, this approach is relevant to protein surface 
electrostatic potentials or the behavior of cell membrane or mitochondrial ultrastructure. In 
this work, we shall restrain from any further exploration in this direction. In the second type, 
we consider the volumetric data enclosed by a macromolecular surface. As a result, the 
molecular shape has a boundary. In this setting, the harmonic space becomes infinite-
dimensional unless certain boundary conditions are enforced. In particular, tangential or 
normal boundary conditions (also called Dirichlet or Neumann boundary conditions, 
respectively) are enforced to turn the harmonic space into a finite-dimensional space 
corresponding to algebraic topology constructions that lead to absolute and relative 
homologies.

We first discuss the natural separation of the eigenbasis functions into curl-free and div-free 
fields in the continuous theory, assuming that the boundary condition is implicitly enforced, 
before providing details on the discrete exterior calculus with the boundary taken into 
consideration.

Given any eigenfield ω of the Laplacian,

Δω = λω, (6)

we can decompose it into ω = dα + δβ + h. For λ ≠ 0, based on dd = 0 and δδ = 0, it is easy 
to see that both dα and δβ are eigenfunctions of Δ with eigenvalue λ due to the uniqueness 
of the decomposition, unless one of them is 0. It is typically the case that ω is either a curl 
field or a gradient field; otherwise, λ has a multiplicity of at least 2, in which case both 
eigenfields associated with λ are the linear combinations of the same pair of the gradient 
field and the curl field.
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2.1.3 Discrete Spectral Analysis of Differential Forms—In a simplicial 
tessellation of a manifold mesh, dk is implemented as a matrix Dk, which is a signed 
incidence matrix between (k+1)-simplices and k-simplices. We provide the details in Sect. 3, 
but the defining property in de Rham–Hodge theory is preserved through such a 
discretization: Dk+1Dk = 0. The adjoint operator δk is implemented as Sk − 1

−1 Dk − 1
T Sk, where 

Sk is a mapping from a discrete k-form to a discrete (n − k)-form on the dual mesh, which 
can be treated as a discretization of the L2-inner product of k-forms. As Sk is always a 
symmetric positive matrix, the L2-inner product between two discrete k-forms can be 

expressed as ω1k
TSkω2k. The discrete Hodge Laplacian maps a discrete k-form to a discrete 

n−k-form which is defined as

Lk = Dk
TSk + 1Dk + SkDk − 1Sk − 1

−1 Dk − 1
T Sk, (7)

which is a symmetric matrix and Sk−1Lk corresponds to Δk. The eigenbasis functions are 

found through a generalized eigenvalue problem,

Lkωk = λkSkωk . (8)

Depending on whether the tangential or normal boundary condition is enforced, Dk includes 
or excludes the boundary elements, respectively. Thus, the boundary condition is built into 
discrete linear operators. When we need to distinguish these two cases, we use Lk,t and Lk,n 
to denote the tangential and normal boundary conditions, respectively.

In general, it is not necessarily efficient to take the square root of the discrete Hodge star 

operator, Sk

1
2  or to compute its inverse,Sk−1. However, for analysis, we can always convert a 

generalized eigenvalue problem in Eq. (8) into a regular eigenvalue problem,

Lkωk ≡ Sk
−1
2LkSk

−1
2ωk = λkωk, (9)

where ω ≡ Sk

1
2ω. We can further rewrite the symmetrically modified Hodge Laplacian as

Lk = Dk
TDk +Dk − 1Dk − 1

T , (10)

where Dk ≡ Sk + 1

1
2 DkSk

−1
2  must satisfy Dk + 1Dk = 0. Now the L2-inner product between two 

discrete differential forms in the modified space is simply ω1k
Tω2k, and the adjoint operator 

of Dk is simply Dk
T .

Zhao et al. Page 8

Bull Math Biol. Author manuscript; available in PMC 2021 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Now the partitioning of the eigenbasis functions into harmonic fields, gradient fields, and 
curl fields for 1-forms and 2-forms and their relationship can be understood from the 
singular value decomposition of the differential operator

Dk = Uk + 1ΣkV k
T , (11)

where Uk+1 and Vk are orthogonal matrices and Σk is a rectangular matrix that only has 

nonzero entries on the diagonal, which can be sorted in ascending order as λik with trailing 
zeros. As the Hodge decomposition is an orthogonal decomposition, each column of Vk that 

corresponds to a nonzero singular value λik is orthogonal to any column of Uk that 

corresponds to a nonzero λjk − 1. Here, Vk and Uk, together with the finite-dimensional set 

of harmonic forms hk (which satisfy both Dkhk = 0 and Dk − 1
T ℎk = 0), span the entire space 

of k-forms. Moreover, the spectrum (i.e., set of eigenvalues) of the symmetric modified 
Hodge Laplacian in Eq. (10) consists of 0s, the set of λik‘s, and the set of λjk − 1‘s. Note that 

in the spectral basis, taking derivatives D (or DT) is simply performed through multiplying 
the corresponding singular values, and integration is done through division by the 
corresponding singular values, mimicking the situation in the traditional Fourier analysis for 
scalar fields.

2.1.4 Boundary Conditions and Dualities in 3D Molecular Manifolds—Overall, 
appropriate boundary conditions are prescribed to preserve the orthogonal property of the 
Hodge decomposition. In 3D molecular manifolds, 0- and 3-forms can be seen as scalar 
fields and 1- and 2-forms as vector fields. For the spectral analysis of scalar fields (0-forms 
or 3-forms), two types of typical boundary conditions are used: Dirichlet boundary condition 
f |∂M = f0 and Neumann boundary condition n·∇ f |∂M = g0, where f0 and g0 are functions on 
the boundary ∂M and n is the unit normal on the boundary. For spectral analysis, harmonic 
fields satisfying the arbitrary boundary conditions can be dealt with through spectral analysis 
of f0 or g0 on the boundary, and the following boundary conditions are used for the 
volumetric function f. The normal 0-forms (tangential 3-forms) satisfy

f ∂M = 0, (12)

and the tangential 0-forms (normal 3-forms) satisfy

n ⋅ ∇f ∂M = 0. (13)

For the spectral analysis of vector fields, boundary conditions are for the three components 
of the field. Based on the de Rham–Hodge theory, it is more convenient to also use two 
types of boundary conditions. For tangential vector field (representing tangential 1-forms or 
normal 2-forms) v, we use the Dirichlet boundary condition for the normal component and 
the Neumann condition for the tangential components:

v ⋅ n = 0, n ⋅ ∇ v ⋅ t1 = 0, n ⋅ ∇ v ⋅ t2 = 0, (14)
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where t1 and t2 are two local tangent directions forming a coordinate frame with the unit 
normal n. The corresponding spectral fields are shown in Fig. 1. For normal vector field 
(representing normal 1-forms or tangential 2-forms) v, we use the Neumann boundary 
condition on the normal component and the Dirichlet boundary condition on the tangential 
components:

v ⋅ t1 = 0, n ⋅ t2 = 0, n ⋅ ∇ v ⋅ n = 0 . (15)

The corresponding spectral fields are shown in Fig. 2. Aside from the harmonic spectral 
fields, there are two types of fields involved for the spectral fields of both boundary 
conditions—the set of divergence-free fields (also called curl fields) and the set of curl-free 
fields (also called gradient fields). In summary, the above four boundary conditions account 
for both types of boundary conditions of all four differential forms, since the tangential 
boundary conditions of k-forms are equivalent to the normal boundary conditions of n−k-
forms.

2.1.5 Reduction and Analysis—For the four types of k-forms (k ∈ {0, 1, 2, 3} in ℝ3) 
in combinations with the two types of boundary conditions (tangential and normal), there are 
eight different Laplace–de Rham operators (Lk,t and Lk,n) in total. However, based on Eq. 
(10), the nonzero parts of the spectrum Lk can be assembled from the singular values of Dk
and Dk − 1. Thus, for each type of boundary conditions, there are only three spectra 
associated with D0, D1, and D2, since D3 = 0 for 3D space. (One still has eight Laplace–de 
Rham operators.) Moreover, according to the Hodge duality discussed in the above 
paragraph, there is a one-to-one map between tangential k-forms and normal (3−k)-forms, 

which further identifies D0, t with D2, n
T , D0, n with D2, t

T , and D1, n
T  with D1, n

T . As a result, one 
has four independent Laplace–de Rham operators. Finally, due to the self-adjointness, there 
are only three intrinsically different spectra: (1) The first contains singular values of the 
gradient operator D0,t on tangential scalar potential fields (or equivalently, the singular 
values of the divergence operator D2,n on tangential gradient fields) as shown in Fig. 3b; (2) 
the second contains singular values of the gradient operator D0,n on normal scalar potential 
fields (or equivalently, the singular values of the divergence operator D2,t on normal gradient 
fields) as shown in Fig. 3c; and (3) the third contains singular values of the curl operator D1,t 
applied to tangential curl fields (or equivalently, the singular values of the curl operator D1,n 
applied to normal curl fields) as shown in Fig. 3d.

As discussed above, each of the eight Hodge Laplacians defined for smooth fields on a 
smooth shape has a spectrum that is simply the combination of one or two of the three sets 
of singular values along with possibly a 0. However, the numerical evaluation of the singular 
values of the differential operators for tangential k-forms Dk, t can differ from those of the 

discrete operators for normal 3−k-forms D2 − k, n
T , as shown in Fig. 3d. One immediate 

reason is that the degrees of freedom (DoFs) associated with tangential/normal scalar/vector 
fields represented as tangential forms are not the same as those represented by normal forms 
on a given tessellation, leading to different sampling accuracies. For example, the 
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tessellation of the shape in Fig. 3 consists of approximately 1000 vertices, 7000 edges, 
10,000 triangles, and 5000 tetrahedra. Thus, each tangential 0-form only has 1000 DoFs, and 
each normal 3-form has 5000. Hence, L3,n is capable of handling higher-frequency signals in 
any given smooth scalar field than L0,t when we approach the Nyquist frequencies of the 
sampling. The convergence of both discretizations for the same continuous operator can be 
observed with increasing DoFs for both differential forms under refinement of the tet meshes 
(Fig. 3e, left). For low frequencies (smallest eigenvalues), there is a good agreement to begin 
with (Fig. 3e, middle), while for any given high frequency, the convergence with increased 
resolutions can be clearly observed (Fig. 3e, right).

On the other hand, DkDk
T  and Dk

TDk will have strictly the same set of nonzero eigenvalues. 
For instance, the spectrum of L0,t and the partial spectrum of L1,t that correspond to gradient 

fields are identical, since D0, tD0, t
T  and D0, t

T D0, t have the same nonzero eigenvalues.

For eigenfields vector Laplacians represented as 1-forms or 2-forms, i.e., the eigenfields of 
L1 or L2, we can observe some typical traits in the distributions of eigenvalues under normal 
and tangential boundary conditions. The normal boundary condition tends to allow more 
gradient eigenfields associated with eigenvalues below a given threshold than those under 
the tangential boundary condition for eigenvalues below the same threshold. We conjecture 
that it is due to the more stringent Dirichlet boundary condition on the potential scalar fields 
than the Neumann boundary condition. The relation between the tangential boundary 
condition gradient-type eigenfields and curl-type eigenfields for low-frequency range seems 
to be highly dependent on the shape (Fig. 3b, d). Figure 1 shows different vector eigenfields 
for tangential boundary condition with EMD 7972 surface. The first row shows different 
harmonic fields corresponding to the number of handles of the shape, the second row shows 
different gradient fields, and the third row shows different curl fields. Figure 2 shows 
different vector eigenfields for normal boundary condition with the protein and DNA 
complex crystal structure 6D6V. Since there are no cavities for this shape, there are no 
harmonic fields. The first row shows different gradient fields, and the second row shows 
different curl fields. Note that the scalar potentials for gradient fields and the vector 
potentials for curl fields are also themselves eigenfields associated with the same 
eigenvalues, although for different Laplacians.

Summarizing the above discussion on the properties of Laplacian spectra for 3D shape, we 
propose the following suggestions for practical spectral analysis:

• Only three independent spectra (e.g., singular values of D0,t, D1,t, and D2,t) are 
necessary to avoid redundancy.

• Laplace–de Rham operators with higher DoFs can be used for more accurate 
calculation (at a higher computational cost) given the same tessellation.

• When computing eigenvalues given the same high-frequency truncation 
threshold, the differences in the numbers of eigenvalues in the three spectra vary 
with the shape.
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2.2 Macromolecular Modeling and Analysis

Biological macromolecules and their complexes offer a rich variety of geometric and 
topological features, which often exhibit close relations with their functionalities. For 
instance, protein pockets can often be identified as a geometrically concave region on the 
protein surface, or as a topological cavity of an offset surface. Ion channels that regulate 
important biological functions can be usually associated with a topological tunnel. 
Mitochondrial ultrastructures admit various geometric and topological complexity which is 
related to their functions (Wollenman et al. 2017). Hence, a unified approach for 
quantitatively analyzing such geometric and topological features is in great need. Our de 
Rham–Hodge analysis and Laplace–de Rham operator modeling provide such a unified 
approach for capturing both geometric and topological features simultaneously.

Our de Rham–Hodge analysis offers a powerful new tool for characterizing macromolecular 
geometry, identifying macromolecular topology, and modeling macromolecular structural 
flexibility and collective motion. We have carried out extensive computational experiments 
using protein structural datasets and cryo-EM maps to demonstrate the utility and usefulness 
of the proposed de Rham–Hodge tools and models.

2.2.1 Molecular Shape Generation—The geometric modelling of macromolecular 3D 
shapes bridges the gap between experimental data and theoretical models for 
macromolecular function, dynamics, and transport. To carry out our de Rham–Hodge 
analysis on a macromolecule or a protein complex, we need a given domain containing the 
3D macromolecular shape. Theoretically, such a domain for a macromolecule can be 
generated by taking an isosurface of a cryo-EM map or constructed from the atomic 
coordinates of the macromolecule. For a given set of atomic coordinates ri, i = 1, 2, …, N, 
van der Waals surface, solvent-accessible surface, and the solvent-excluded surface can be 
constructed. However, these surfaces are typically singular, leading to computational 
instability for de Rham–Hodge analysis. Alternatively, minimal molecular surface (MMS) 
generated by differential geometry, Gaussian surface (Li et al. 2013), and flexibility rigidity 
index (FRI) surface (Xia et al. 2013; Opron et al. 2014) are computationally preferred and 
used widely in many studies. In fact, FRI surface is simpler than MMS and more stable than 
Gaussian surface (Nguyen et al. 2016). To generate an FRI surface, we use a discrete-to-
continuum mapping to define an unnormalized molecular density (Xia et al. 2013; Nguyen 
et al. 2016)

ρ(r, η) = ∑
j = 1

N
Φ r − rj ; η (16)

where η is a scale parameter and in this paper, it is set to twice of the atomic van der Waals 
radius rj. Φ is density estimator that satisfies the following admissibility conditions

Φ r − rj ; η = 1, as r − rj 0, (17)

Φ r − rj ; η = 0, as r − rj ∞. (18)
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Monotonically decaying radial basis functions are all admissible. Commonly used 
correlation kernels include generalized exponential functions

Φ r − rj ; η = e− r − rj /η κ
, κ > 0, (19)

and generalized Lorentz functions

Φ r − rj ; η = 1
1 + r − rj /η v , v > 0. (20)

The Gaussian kernel (κ = 2) is employed in this work.

A family of biomolecular domains can be defined by varying level set parameters c > 0

M = r ∣ ρ(r, η) ≥ c . (21)

2.2.2 Topological Analysis—In this work, we discuss topology in the mathematical 
sense. Therefore, topological features are those stable structural characteristics that do not 
change with deformation, such as the number of connected components, the number of holes 
on each connected component, and the number of cavities. They are captured in the null 
spaces of the corresponding Laplace–de Rham operators. In other words, the invariant 
spaces associated with the eigenvalue of 0, i.e., the lowest ends of the spectra. Specifically, 
the dimension of the null space of L1,t and L2,n is the same as the number of tunnels as 
shown in Fig. 4a. The dimension of the null space of L1,n and L2,t provides the number of 
cavities as shown in Fig. 4b. The dimension of the L0,t is equal to the number of connected 
components. In persistent homology, the geometric measurement for characterizing the 
persistence of a topological feature has been proven crucial to the practical use of these 
otherwise overly stable features. The eigenfields associated with the eigenvalue 0 in our 
spectral analysis can also provide such information. For instance, the strength of the 
eigenfield associated with the eigenvalue 0 for L1,t can indicate how narrow the handle/
tunnel is in the region. In the tangential harmonic fields of Fig. 1, the colors show the 
strength of eigenfields such that red colors stand for high strengths and indigo colors stand 
for low strengths. One can see that strengths are higher in the middle narrow tunnels than the 
top and bottom parts.

2.2.3 Geometric Analysis—Although the spectra of the Laplace–de Rham operators do 
not uniquely determine the geometry (sometimes referred to as “you cannot hear the shape 
of the drum”), they do provide key information when comparing shapes, which, sometimes, 
is referred to as shape “DNA”. Thus, the traits of the nonzero parts of the spectra can be 
regarded as geometrical features. These geometrical features are rigid transformation 
invariant. The scalar Hodge Laplacian spectrum has already been used in computer graphics 
and computer vision to distinguish various structures in shape analysis and shape retrieval. It 
has also been extended to 1-form Hodge Laplacian on surfaces for shape analysis. However, 
on surfaces, L1 spectrum is identical to L0 spectrum, except that the multiplicity is doubled 
for nonzero eigenvalues. Note that the multiplicity for the zero eigenvalues is determined by 

Zhao et al. Page 13

Bull Math Biol. Author manuscript; available in PMC 2021 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



the number of genus instead of the number of connected components for scalar Hodge 
Laplacian. In our 3D extension, we have three unique spectra for each molecule. Figure 5 
shows nonzero spectrum traits for three simple proteins (PDB IDs: 2Z5H (Murakami et al. 
2008), 6HU5 (Lanza et al. 2019), and 5HY9 (Kuglstatter et al. 2017), where the clear 
distinction among the spectra can be observed. We have tested on various biomolecules and 
observed the same discriminating ability of the spectra on these shapes.

Geometric analysis and topological analysis based on the de Rham–Hodge theory can be 
readily applied to characterizing biomolecules in machine learning and to biomolecular 
modeling. To further demonstrate the capability of de Rham–Hodge spectral analysis for 
macromolecular analysis, we propose a set of de Rham–Hodge models for protein flexibility 
analysis and a vector de Rham model for biomolecular Hodge mode analysis.

2.2.4 Flexibility Analysis—Biomolecular flexibility analysis and B-factor prediction 
have been commonly performed by normal mode analysis (Go et al. 1983; Tasumi et al. 
1982; Brooks et al. 1983; Levitt et al.1985; Ma2005) and Gaussian network model (GNM) 
by Bahar etal. (1997). The flexibility is strongly correlated with protein functions, such as 
structural support, catalyzing chemical reactions, and allosteric regulation (Frauenfelder et 
al. 1991). Recently, graph theory-based FRI has been shown to outperform other methods 
(Opron et al. 2014). However, all of the aforementioned methods are based on the discrete 
coordinate representation of biomolecules. As such, it is not very convenient to use these 
methods for flexibility analysis at different scales. For example, for some large 
macromolecules, such as an HIV viral capsid which involves millions of atoms, one may 
wish to analyze their flexibility at atomic, residue, protein domain, protein, and protein 
complex scales by using a unified approach so that the results from cross-scales can be 
compared on an equal footing. However, current approaches cannot provide such a unified 
cross-scale flexibility analysis. In this work, we introduce ade Rham–Hodge theory-based 
model to quantitatively analyze macromolecular flexibility across many scales.

We assume that the de Rham–Hodge B-factor at the ith atom estimated by Lk is given by

Bk, i
dRH = a∑

j

1
λjk

ωjk(r) ωjk r′ T
r = ri, r′ = ri, ∀λj

k > 0, (22)

where a is a parameter to be determined by the least squares regression. Its value depends on 
structural resolution, diffraction intensity, experimental method (i.e., x-ray scattering, 
electron microscopy, etc.), number of diffraction angles, experimental temperature, sample 
quality, and structure reconstruction method. In the computation, the value of ωjk(r) is given 

on a set of mesh points. The linear regression over a cutoff radius d is used to obtain the 
required values in atomic centers ri where the B-factor values are reported. L0,t is applied in 
test cases.

We perform numerical experiments to confirm that our flexibility analysis on C-alpha atoms 
is robust and reliable. In fact, our method can analyze the flexibility of all atoms or a subset 
of atoms. The cutoff radius is set to 7 Å. Our method involves several parameters including 
level set value c and grid spacing r and cutoff radius d (Fig. 6). Figure 7 shows statistics of 
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the average Pearson correlation coefficient with various parameters on the test set of 364 
proteins.

Level Set: The level set parameter c in Eq. (21) controls the general distance from the 
surface to C-alpha atoms (Fig. 6a). A larger level set value will result in a smaller domain 
with richer topology structures, including many tunnels and cavities. A smaller level set 
value will make the surface fatter so that it will lead to a ball-like shape.

Grid Spacing: The grid spacing r controls the density of tetrahedrons of the mesh. A finer 
mesh will lead to a better prediction but is computationally more expensive (Fig. 6b).

Cutoff Radius: The parameter cutoff radius d controls the linear regression region around 
the specific C-alpha atom (tets within the radius d to the specific C-alpha atom which is 
colored purple in Fig. 6d). Our approach will potentially introduce a denser mesh, which 
will lead to small local vibrations (high frequencies introduced due to the increasing number 
of matrix elements) that should be filtered out. This treatment is the same as throwing away 
higher frequencies.

We consider a benchmark test set of 364 proteins studied in earlier work by Opron et al. 
(2014) to systematically validate our method. Our test indicates that the best parameters are 
c = 0.4, r = 1.6 Å, d = 4.0 Å. Figure 8 shows several examples with the best parameters and 
comparisons with GNM. Table 1 shows the average Pearson correlation coefficient of 
predicting the benchmark set of 364 proteins Opron et al. (2014) at a cutoff radius 4.0 Å, 
which includes the overall best average Pearson correlation coefficient at grid spacing 1.6 Å 
and level set value 0.4. The contour level value should not be too large such that only those 
C-alpha atoms that are close enough to each other will have interactions, as well as not be 
too small such that enough geometric and topological features are preserved. The cutoff 
radius should be a proper value such that higher frequencies are mitigated, while lower 
frequencies are well kept. There is not much influence of resolution if the previous two 
parameters are well set (see statistics at cutoff radius 5 Å). This provides the foundation for 
analyzing large protein complexes with coarse resolution.

The proposed flexibility analysis can be easily extended to analyze the flexibility of cryo-
EM data at given level sets. The computed (relative) B-factors are located at vertices but can 
be interpolated to any desirable location if necessary. Due to the multi-resolution nature of 
our approach, the computational cost is determined by the number of unknowns, i.e., the 
mesh size. For a given computational domain, the mesh size depends on the grid spacing. 
Therefore, for large macromolecules with millions of atoms, which is intractable for 
coordinate-based methods, the proposed de Rham–Hodge approach can still be very 
efficient.

The commonly used method that produces the B-factors that wind up in the PDB files is the 
least squares fit. This method connects diffraction intensity profiles and structural model 
predicted densities in the PDB with B-factors. In our model, we connect experimental 
structures (the coordinates of structural model predicted densities) and B-factors in the PDB 
files with our Hodge eigenvalue- and eigenvector-based model.
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2.2.5 Hodge Mode Analysis—Normal mode analysis is an important approach for 
understanding biomolecular collective behavior, residue coupling, protein domain motion, 
and protein–protein interaction, reaction pathway, allosteric signaling, and enzyme catalysis 
(Go et al. 1983; Tasumi et al. 1982; Brooks et al. 1983; Levitt et al. 1985; Ma 2005). 
However, normal model analysis becomes very expensive for large biomolecules. In 
particular, it is difficult to carry out the anisotropic network model (ANM) analysis (Atilgan 
et al. 2001) for cryo-EM maps which do not have atomic coordinates. Virtual particle-based 
ANM methods were proposed to tackle this problem (Tama et al. 2002; Ming et al. 2002). 
Being based on the harmonic potential assumption, these methods are restricted to relatively 
small elastic motions. In this work, we propose an entirely different strategy for biological 
macromolecular anisotropic motion analysis based on de Rham–Hodge theory.

Laplace–de Rham Operator: It is noted that a mass–spring system is underlying many 
earlier successful elastic network models. This system describes the interconversion between 
the kinetic energy and potential energy during the dynamic motion. In our construction, we 
take advantage of de Rham–Hodge theory. In fact, de Rham–Hodge theory provides a 
general framework to model the dynamic behavior of macromolecules. In the present work, 
we just illustrate this approach with special construction.

In order for de Rham–Hodge theory to be able to describe anisotropic motions, we utilize 
the 1-form Laplace–de Rham operator

Δ1 = d0 ⋆0
−1 d0 ⋆1 + ⋆1

−1 d1 ⋆2 d1, (23)

where dk denote exterior derivatives on Ωk(M) and ⋆k denote Hodge star operators. Note that 
the 2-form Laplace–de Rham operator works similarly well, but we will limit our discussion 
with 1-form. The first term on the right hand side of Eq. (23) is the quadratic energy form 
measuring the total divergence energy, while the second term measures the total curl energy. 
Both terms are kinetic energy physically or Dirichlet energy mathematically.

Laplace–de Rham–Helfrich Operator: Physically, a potential energy term is required to 
constrain the elastic motion of biological macromolecules. There are many options, such as 
Willmore energy, which minimize the difference between two principle curvatures. 
Additionally, Helfrich introduced a curvature energy for modeling cell membrane or closed 
lipid vesicles (Helfrich 1973; Du et al. 2004). In our case, we assume the curvature energy of 
the form

V = μ∫
∂M

H −H0
2 dA, (24)

where μ is the molecular bending rigidity, H is the mean curvature on the molecular surface, 
and H0 is the spontaneous curvature of the molecule. The potential energy in Eq. (24) is 
defined on the compact manifold enclosing a smooth molecular surface.

Conceptually, our curvature model deals with a dynamical system with a thin shell having a 
thickness much smaller than other dimensions. Computationally, the 2D curvature model 
serves as a boundary condition to complete the Laplace–de Rham operator on a 
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macromolecule. The curvature energy increases as the mean curvature H deforms away from 
its rest state. Therefore, H is a function of surface displacement. The quadratic energy 
generated from surface deformation is given by (see Tamstorf and Grinspun (2013) for 
discretization details)

Q = ∂2V / ∂X2, (25)

where X is a displacement vector field on the surface. Due to the isomorphism between 
vector fields and 1-forms, we can evaluate the volumetric 1-form ω as a displacement vector 
field and restrict it to the boundary surface. We denote the restriction as a linear operator G,

X = Gω . (26)

Then, the quadratic form for the curvature energy in terms of the 1-form is GT QG. Finally, 
the total 1-form quadratic energy is given by the following one-parameter Laplace–de 
Rham–Helfrich operator

Eμ = d0 ⋆0
−1 d0T ⋆1 + ⋆1

−1 d1T ⋆2 d1 + GTQG . (27)

We can solve the eigenvalue problem for the Laplace–de Rham–Helfrich operator Eμ to 
extract the natural vibration modes of biomolecules. It is a standard procedure to assemble 
required matrix G and Q together with our Laplace–de Rham matrix.

In fact, an advantage of the proposed anisotropic motion theory is that it allows to treat the 
divergence energy and curl energy differently. For example, we can introduce a bulk 
modulus type of parameter λ to the divergence energy term, which leads to a 
weightedLaplace–deRhamoperator.As a result, we have a two-parameter Laplace–de Rham–
Helfrich operator

Eλμ = λ ⋅ d0 ⋆0
−1 d0T ⋆1 + ⋆1

−1 d1T ⋆2 d1 + GTQG . (28)

We need to choose appropriate weight parameters λ and μ. Generally, the two-parameter 
Laplace–de Rham–Helfrich operator and boundary condition matrix can be tuned separately. 
What we would like to achieve is letting the curvature energy drive the motion and let our 
system penalize the compressibility (i.e., the divergence energy). Therefore, we select an 
appropriate λ at a different scale and choose μ > λ > 1.

Modal analysis, compared to fluctuation analysis, provides more information. In addition to 
the description of flexibility, modal analysis also provides the collective motion of a 
molecule and its potential function. The dynamics of a macromolecule can be described by 
the linear combination of its natural modes. Figure 9 shows several Hodge modes for core 
spliceosomal components, EMD 1258 (Sander et al. 2006), which indicates the success of 
our Laplace–de Rham–Helfrich operator.
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It is noted that the original Laplace–de Rham operator with appropriate boundary conditions 
admits the orthogonal Hodge decomposition in terms of divergence-free, curl-free, and 
harmonic eigenmodes. In contrast, the Laplace–de Rham–Helfrich operator does not 
preserve these properties. Nonetheless, the eigenmodes generated by the Laplace–de Rham–
Helfrich operator are mutually orthogonal and subject to different physical interpretations. 
For example, the first three eigenmodes are associated with 3D translational motions. 
Therefore, the operator is translational invariant. The modes in Figure 9 have little to do with 
the topological singularity of EMD 1258.

Additionally, the eigenmodes in Fig. 1 have a fixed boundary. In contrast, boundaries of 
eigenmodes generated with the Laplace–de Rham–Helfrich operator as shown in Fig. 9 are 
allowed to change. The Laplace–de Rham–Helfrich operator can predict significant 
macromolecular deformations, which are controllable with two weight parameters, λ and μ. 
In contrast, existing normal mode analysis methods can only admit small deformations due 
to the use of the harmonic potential.

Moreover, due to its continuous nature, the proposed Laplace–de Rham–Helfrich operator 
can be easily employed for the Hodge mode analysis at any given scale. It can be directly 
applied to the analysis of cryo-EM maps and other volumetric data at an arbitrary scale. One 
specific example of potential applications is the analysis of subcellular organelles, such as 
mitochondrial ultrastructure and endoplasmic reticulum.

Finally, the proposed Laplace–de Rham–Helfrich model is phenomenological in nature but 
can describe physical observations. Like the Navier–Stokes equation for fluid mechanics and 
the Ginzburg–Landau equation for superconductivity, Laplace–de Rham–Helfrich model is 
not rigorously derived from the fundamental laws of physics or first principles.

2.2.6 Field Decomposition and Analysis—Our Laplace–de Rham operators 
constructed from different boundary conditions can also perform vector field decomposition 
tasks. Following the discussion of boundary conditions in Sect. 2.1, a Hodge decomposition 
for a k-form bounded manifolds in 3D is constructed as ωk = dαnk − 1 + δβtk + 1 + ℎk, where 

αnk − 1 is in the space of normal (k−1)-forms Ωn
k − 1, βtk + 1 is in the space of tangential (k+1)-

forms, and hk is in HΔ
k. Moreover, HΔ

k is further decomposed based on boundary conditions 

and a five-component orthogonal decomposition (Cantarella et al. 2002) is given as

ωk = dαnk − 1 + δβtk + 1 + ℎtk + ℎnk + ηk, (29)

where ℎtk is a tangential harmonic form, ℎnk is a normal harmonic form, and ηk is central 
harmonic form which is both exact and coexact. There are naturally various vector fields 
existing in biomolecules, such as electric fields, magnetic fields, and elastic displacement 
fields. De Rham–Hodge theory can help provide a mutually orthogonal decomposition to 
investigate source, sink, and vortex features presented in those fields. An example of this 
analysis is given in Fig. 10 for a synthetic vector field on a vacuolar ATPase motor, EMD 
1590 (Muench et al. 2009). We expect this decomposition becomes more interesting for 
biomolecular electric fields, dipolar fields, and magnetic fields. Various components from 
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the decomposition can be naturally used as the components of machine learning feature 
vectors. Moreover, each orthogonal component can be represented in the basis formed by 
eigenfields of Laplace–de Rham operators, and the low-frequency coefficients can be used 
as machine learning features as well. The following session illustrates an example of an 
eigenfield representation, for the gradient of the reaction potential for molecular 
electrostatics.

Electrostatics Analysis: Electrostatic interactions are of paramount importance in 
biomolecular simulations due to their ubiquitous existence and vital contribution to force 
fields. Two major types of electrostatic analyses are the qualitative analysis for general 
electrostatic characteristics and the quantitative analysis for statistical, thermodynamic, and 
kinetic observables. An important two-scale implicit solvent model for electrostatic analysis 
is the Poisson–Boltzmann (PB) model (Sharp and Honig 1990; Fogolari et al. 2002), in 
which the explicit water molecules are treated as a dielectric continuum and the dissolved 
electrolytes are modeled with the Boltzmann distribution. The PB model has been widely 
applied in biomolecular simulations such as protein structures (Cherezov et al. 2007), 
protein–protein interactions (Dong et al. 2003), pKa (Alexov et al. 2011; Antosiewicz et al. 
1996; Nielsen and McCammon 2003), membranes (Zhou et al. 2010), binding energies 
(Nguyen et al. 2017), and solvation-free energies (Wagoner and Baker 2006).

The Poisson–Boltzmann Model for a Solvated Molecule: The PB model is illustrated in 
Fig. 11, in which the molecular surface Γ separates the solute domain Ω1 and the solvent 
domain Ω2. The molecule domain Ω1 consists of a set of atomic charges qk located at atomic 
centers xk for k = 1, …, Nc. In domain Ω2, a Boltzmann distribution describes the free ions. 
For computational purposes, the Boltzmann term is often linearized.

Thus, the electrostatic potential ϕ(x) here satisfies the linearized PB equation,

−∇ ⋅ ϵ(x)∇ϕ(x) + κ2(x)ϕ(x) = ∑
k = 1

Nc
qkδ x − xk , (30)

where ϵ(x) is the piecewise-constant dielectric function

ϵ(x) =
ϵ1, x ∈ Ω1,
ϵ2, x ∈ Ω2,

(31)

and κ is the screening parameter with the relation κ2 = ϵ2κ2, where κ is the inverse Debye 
length measuring the ionic length. The interface conditions on the molecular surface are

ϕ1(x) = ϕ2(x), ϵ1
∂ϕ1(x)
∂n = ϵ2

∂ϕ2(x)
∂n , x ∈ Γ, (32)

where ϕ1 and ϕ2 are the limit values when approaching the interface from the inside and the 
outside domains, n is the outward unit normal vector on Γ, and the normal derivatives are 
∂ϕi
∂n = n ⋅ ∇ϕi. The PB model assumes the far-field boundary condition of lim|x|→∞ ϕ(x) = 

Zhao et al. Page 19

Bull Math Biol. Author manuscript; available in PMC 2021 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



0. Taking interface Γ as the solvent-excluded surface, the PB model is usually solved 
numerically. Two types of methods have been developed: Grid-based finite-difference and 
finite-element methods discretize the entire domain (Im et al. 1998; Honig and Nicholls 
1995; Baker et al. 2001), such as MIBPB (Yu et al. 2007; Chen et al. 2011) and boundary-
element methods discretize only the molecular surface (Juffer et al. 1991; Liang and 
Subranmaniam 1997; Vorobjev and Scheraga 1997; Lu et al. 2007; Geng and Krasny 2013). 
We use boundary-element methods according to the same surface mesh used as the 
molecular surface and the boundary for our volumetric manifold, for the simplicity of 
calculating the reaction potential.

Solving PB Model and Reaction Potential: A well-conditioned boundary integral form of 
PB implicit solvent model is derived by applying Green’s second identity and properties of 
fundamental solutions to Eq. (30), which yields the electrostatic potential,

ϕ(x) = ∫
Γ
G0(x, y)

∂ϕ(y)
∂n − ∂G0(x, y)

∂ny
ϕ(y) dSy + ∑

k = 1

Nc
qkG0 x, yk , x ∈ Ω1, (33a)

ϕ(x) = ∫
Γ
−Gκ(x, y)

∂ϕ(y)
∂n + ∂Gκ(x, y)

∂ny
ϕ(y) dSy, x ∈ Ω2, (33b)

where the Green’s function for Coulomb interaction is G0(x, y) =
1

4π |x − y|  and the Green’s 

function for the screened Coulomb interaction Gk(x, y) =
e−κ |x − y|
4π x − y . Then, applying the 

interface condition in Eq. (32) with the differentiation of electrostatic Potential in each domain 
yields a set of boundary integral equations relating the surface potential ϕ1 and its normal 
derivative, ∂ϕ1/∂n on Γ,

1
2(1 + ϵ)ϕ1(x) = ∫

Γ
K1(x, y)

∂ϕ1(y)
∂n +K2(x, y)ϕ1(y) dSy + S1(x), x ∈ Γ, (34a)

1
2 1 + 1

ϵ
∂ϕ1(x)
∂n = ∫

Γ
K3(x, y)

∂ϕ1(y)
∂n +K4(x, y)ϕ1(y) dSy + S2(x), x ∈ Γ, (34b)

where ϵ = ϵ2/ϵ1. As given in Eqs. (35a–35b) and (36), the kernels K1,2,3,4 and source terms 
S1,2 arelinearcombinationsoftheCoulombandscreenedCoulombinteractions, and their first- 
and second-order normal derivatives,

K1(x, y) = G0(x, y) − GK(x, y), K2(x, y) = ϵ∂Gκ(x, y)
∂ny

− ∂G0(x, y)
∂ny

, (35a)

K3(x, y) =
∂G0(x, y)

∂nx
− 1

ϵ
∂Gκ(x, y)

∂nx
, K4(x, y) =

∂2Gκ(x, y)
∂nx∂ny

− ∂2G0(x, y)
∂nx∂ny

, (35b)

and the source terms S1,2 are
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S1(x) =
1
ϵ1 ∑k = 1

Nc
qkG0 x, yk , S2(x) =

1
ϵ1 ∑k = 1

Nc
qk
∂G0 x, yk

∂nx
. (36)

Once the potential and normal derivaives of the potential on the boundary of Eqs. (33a) and 
(33b) are solved, the reaction potential ϕreac(x) = ϕ(x) − S1(x) and for x ϵ Ω1 it is given as

ϕreac (x) = ∫
Γ
G0(x, y)

∂ϕ(y)
∂n − ∂G0(x, y)

∂ny
ϕ(y) dSy . (37)

Numerically solving boundary integral forms of the PB model requires speedup techniques, 
for which we directly apply the software package presented in Chen and Geng (2018). The 
reaction potential describes the potential caused by the solvent and solute near their 
interface. It is important to calculate the electrostatic solvation energy, given as 

ΔGsol =
1
2∑k = 1

Nc qkϕreac xk , where Nc is the number of charges and qk are charges.

Eigenfield Decomposition: The 1-form electrostatic reaction field ω is generated from the 
gradient of the reaction potential ∇ϕreac by taking line integral on each edge. Our goal is to 
project ω onto the eigenvectors of Hodge Laplacian by L2-inner products of Eq. (3). The 
molecular surface Γ created by the solute and the solvent is considered as the boundary of 
the volumetric manifold M. The space of k-forms Ωk(M) is a Hilbert space equipped with 
the aforementioned L2-inner products. Therefore, the corresponding 1-form of the 
electrostatic reaction field inside the molecule surface is in the space Ω1(M). Moreover, as 
shown in Eq. (29), aside from a harmonic component, the gradient of the reaction potential 
is in the spaced of normal gradient fields, which is spanned by the eigenvectors 
corresponding to the normal gradient fields. Represented in the basis formed by these 
eigenvectors, the electrostatic reaction field (without the harmonic component) is a linear 
combination of these eigenvectors. However, the coefficients are with only large absolute 
values for certain modes, since dominant eigenmodes often exist due to the geometry 
characteristics of the molecular domain. We illustrate the Hodge mode decomposition for 
two examples. Table 2 shows the square of coefficients of ith eigenvector projected on the 
electrostatic reaction field ω as ⟨ω, ei⟩2, and their sums. The dominant eigenvectors for p–p 
and n–p are the first and second eigenvectors, respectively, as shown in Fig. 12, in which the 
eigenvectors are sorted in ascending order of their corresponding eigenvalues. As the 
number of eigenvectors increases, the difference between the electrostatic reaction field and 
the approximated electrostatic reaction field decreases. Table 3 shows another example with 
four changes arranged in five ways as shown in Fig. 13. The first case has four positive 
charges. The first Hodge eigenvector is the dominant mode among all the eigenvectors as 
shown in Fig. 13. In the second and third cases, where two same type charges located in 
either the top–bottom or right–left manner, the second and third Hodge eigenvectors 
dominate their electrostatic reaction fields. The dominant Hodge eigenvector for the third 
case is the forth Hodge mode. The last case illustrates a molecule that has three positive 
charges and one negative charge, for which the first Hodge eigenvector is the dominant 
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mode. In all cases, the accumulated contributions of the first 11 Hodge modes have a similar 
magnitude. This method is readily applicable to the electrostatic reaction field analysis of 
complex biomolecular systems and the general Hodge mode analysis of any biomolecular 
vector fields.

3 Method Preliminaries
We provide the details for our design of computational tools, data structures, and parameters 
in our implementation of the present de Rham–Hodge spectral analysis. Through efficient 
implementation, our method is highly scalable and capable of handling molecular data 
ranging from protein crystal structures to cryo-EM maps.

3.1 Simplicial Complex Generation

The domain of our Laplace–de Rham operators is first tessellated into a simplicial complex, 
which is a tetrahedral mesh in our 3D case. There are quite a few well-developed software 
packages for tetrahedral mesh generation given a boundary with a surface triangle mesh as 
input. We chose CGAL (computational geometry algorithm library) over others for its 
superior control on element quality.

In theory, we can generate tetrahedral meshes with any highly accurate closed surface. 
However, macromolecule complexes with atom-level resolution often make the output mesh 
intractable with typical computing platforms. Moreover, a dense mesh is unnecessary for the 
calculation of the low-frequency range of the spectrum. Thus, we produce a coarse 
resolution with a spatial sampling density higher than twice the spatial frequencies 
(wavenumbers, i.e., square root of eigenvalues of the Laplacians) of the geometrical and 
topological features to be computed in the given biomolecule complexes.

For protein crystal structures, we tested the construction of the surface using only the Cα 
positions. First, a Gaussian kernel is assigned to each atomic position to approximate the 
electron density. Then, a level set surface is generated to construct the contour of the protein 
closely enclosing the high electron density regions.

For cryo-EM data, to produce a smooth contour surface, Gaussian kernels are associated 
with data points. Other approaches, such as mean curvature flow (Bates et al. 2008; Zhao et 
al. 2018), can be used as well. When dealing with noisy and densely sampled data, we can 
carefully choose the level set that corresponds to a fairly smooth contour surface that 
encloses the original cryo-EM data.

Given a volumetric data, we can either directly use CGAL to produce a tetrahedral mesh or 
first convert it to a triangular surface mesh through the marching cubes algorithm, and use 
that to generate a tetrahedral mesh. Different sampling densities are tested to meet typical 
quality requirements while balancing computational cost and mesh quality.

3.2 Discrete Exterior Calculus

As a topological structure-preserving discretization of the exterior calculus on differential 
forms, discrete exterior calculus (DEC) has been widely applied in recent years for various 
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successful applications on geometrical problems and finite-element analysis, including 
meshing and computational electromagnetics (Hekstra et al. 2016). It is an appropriate tool 
for our de Rham–Hodge analysis of biomolecules, as all the related operations, including 
exterior derivatives and the Hodge stars, are represented as matrices that preserve the 
defining properties in the continuous setting. More precisely, the discrete exterior derivative 
operators strictly satisfy Dk+1Dk = 0, mimicking dk+1dk = 0, and the discrete Hodge star 
operators are realized by symmetric positive definite matrices. Hence, the discrete Laplace–
de Rham operators can be assembled using finite-dimensional linear algebra with the 
aforementioned three distinct spectra.

To allow replication of our results, we recap our implementation of DEC (Zhao et al. 2019). 
We start by a tetrahedral tessellation of the volumetric domain, i.e., a tetrahedral mesh, 
which is the collection of a vertex set V, an edge set ℰ, a triangle set ℱ, and a tetrahedron 
set T. The vertices are points in 3D Euclidean space; the edges/triangles/tetrahedra are 
represented as 1-/2-/3-simplices, i.e., pairs/triples/quadruples of vertex indices, respectively, 
and regarded as the convex hull of these vertices. We further choose an arbitrary orientation 
for each k-simplex, which is an order set of k+1 vertices, up to an even permutation. We 
denote an oriented k-simplex as

σ = v0, v1,…, vk . (38)

The boundary operator is defined as

∂σ = ∑
i = 0

k
( − 1)i v0, v1,…, vi,…, vk , (39)

where vi means that the ith vertex is omitted. Thus, the boundary operator will take all the 1-
degree lower faces of σ with an induced orientation. We will take the following strategy to 
handle orientation in the implementation. We usually assign each tet an orientation such that, 
when applying the boundary operator, each facet has an outward pointing orientation. The 
total boundary of the tet mesh conforms naturally with the surface with outward pointing 
orientation. But for each edge and facet, we pre-assignan orientation by increasing indices of 
incident vertices. In this case, we need to take care of the boundary operator when there is a 
conflict between the pre-assigned orientation and the induced orientation. The algorithm for 
calculating the cohomology basis of boundary operators is similar to the algorithm in 
simplicial homology (Edelsbrunner et al. 2000). However, DEC needs further constructions.

Scalar fields are naturally encoded as 0-forms and 3-forms. A 0-form is the same with the 
finite-element method such that the coefficients are sampled on vertices equipped with basis 
functions. A 3-form is, different from a 0-form, stored per tet as volume integration of the 
scalar field. Vector fields are naturally encoded as 1-form and 2-form. A 1-form is sampled 
by the line integral on each oriented edge. A 2-form is sampled by surface flux on each 
oriented facet. Whitney forms (Bossavit 1988) can help convert forms back to piecewise 
linear vector fields on each tet, which can be used in, e.g., the construction of the operator G.
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We will store discrete k-forms as column vectors. Then, as mentioned before, all the discrete 
operators can be formed as matrices applying on the column vectors. Then, we start to 
construct discrete exterior derivative and discrete Hodge star matrices. Suppose we are 
dealing with the discrete differential form dω on simplices σ, according to Stokes’ theorem

∫
∂σ
ω = ∫

σ
dω, (40)

dω is just an oriented summation of ω on facets of σ. So the discrete exterior derivative 
operator Dk is just a matrix filled with −1, 0,1 (Fig. 14), depending on whether the pre-
assigned orientation is conforming with the induced orientation. The preservation of Stokes’ 
theorem is what guarantees the preservation of the de Rham cohomology, as the discrete de 
Rham k-cohomology is isomorphic to the simplicial n−k-homology due to the boundary 
operator, which is in turn isomorphic to singular k-cohomology and thus to the continuous 
de Rham k-cohomology.

One can easily observe that the discrete exterior derivative operators for dual forms are 
merely Dk

T . The discrete Hodge star operator Sk is just converting primal form and dual form 

back a forth by the following equation:

1
σk ∫σkω = 1

* σk ∫* σk
⋆ ω . (41)

Each primal element in the tet mesh has one corresponding dual element (Fig. 15). So the 
discrete Hodge star operator is merely a diagonal matrix. Note that here we use a diagonal 
matrix to approximate the Hodge star operator, where non-diagonal Hodge star with higher 
accuracy can be applied as well. But a diagonal Hodge star is enough for our current 
application. The diagonal Hodge star matrix just has diagonal entries as dual-element 
volume over primal-element volume. For example, given a 1-form on each edge, applying 
the Hodge star is turning the primal 1-form into dual 2-form stored on each dual facet. This 
can be interpreted as we sample the vector field at the center of the edge. One way is to 
compute the 1-form as the sampled vector integrated the primal edge as the line integral; the 
other way is to compute the 2-form as the sampled vector integrated on the dual facet as 
vector flux. So the transition can be encoded as a number of dual-element volume over 
primal-element volume. See Fig. 16 for relations between differential forms and operators.

Once we have these related matrices for discrete operators, we are ready to construct the 
Laplacian matrix Lk for k = 0, …, 3 as

L0 = D0
TS1D0, L1 = D1

TS2D1 + S1D0S0
−1D0

TS1,

L2 = D2
TS3D2 + S2D1S1

−1D1
TS2, L3 = S3D2S2

−1D2
TS3,

(42)

where Dk are pre-assembled discrete exterior derivatives, Sk are discrete Hodge star matrices 
and Lk correspond to ⋆Δk. The assembly of Laplace–de Rham operators Lk are just starting 
from primal k-forms, multiplying matrices along the circular direction as shown in Fig. 16. 
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Note that the usual Hodge Laplacian matrix is not symmetric generally. In practice, we 
usually left multiply by Hodge star to turn it into a symmetric one. After this, we need to 
take care of the boundary conditions. Boundary condition treatment can be incorporated 
when assembling d matrices. Recall that the d matrices are merely for creating an oriented 
summation of discrete differential forms stored on simplices. We can just delete 
corresponding columns and rows for boundary elements. We use Lk,t to denote Laplace–de 
Rham operator with boundary elements and Lk,n to denote those without boundary elements 
(Demlow and Hirani 2014).

Finally, the spectral analysis can be done with a generalized eigenvalue problem in Eq. (8). 
The smallest eigenvalues and their corresponding eigenvectors are associated with useful 
low frequencies. In principle, large eigenvalues also contain useful information but are often 
impaired by large computational errors. We use an eigensolver with parameter starting from 
small magnitude eigenvalues.

4 Conclusion
The de Rham–Hodge theory is a landmark of twentieth-century mathematics that 
interconnects differential geometry, algebraic topology, and partial differential equation. It 
provides a solid mathematical foundation to electromagnetic theory, quantum field theory, 
and many other important physics. However, this important mathematical tool has never 
been applied to macromolecular modeling and analysis, to the best of our knowledge. This 
work introduces the de Rham–Hodge theory as a unified paradigm to analyze biomolecular 
geometry, topology, flexibility, and Hodge modes based on three-dimensional (3D) 
coordinates or cryo-EM maps. Specifically, de Rham–Hodge spectral analysis has been 
carried out to reveal macromolecular geometric characteristic and topological invariants with 
normal and tangential boundary conditions. The Helmholtz–Hodge decomposition is 
employed to analyze the divergence-free, curl-free, and harmonic components of 
macromolecular vector fields. Based on the 0-form scalar Hodge–Laplacian, an accurate 
multiscale model is constructed to predict protein fluctuations. By equipping a vector 
Laplace–de Rham operator with a boundary constraint based on Helfrich-type curvature 
energy, a 1-form Laplace–de Rham–Helfrich operator is proposed to predict the Hodge 
modes of biomolecules, particularly cryo-EM maps. In addition to its versatile nature for a 
wide variety of modelling and analysis, the proposed de Rham–Hodge paradigm also 
provides a unified approach to handle biomolecular problems at various spatial scales and 
with different data formats. A state-of-the-art 3D discrete exterior calculus algorithm is 
developed to facilitate accurate, reliable, and topological structure preserving spectral 
analysis and modeling of biomolecules. Extensive numerical experiments indicate that the 
proposed de Rham–Hodge paradigm offers one of the most powerful tools for the modeling 
and analysis of biological macromolecules.

The proposed de Rham–Hodge paradigm provides a solid foundation for a wide variety of 
other biological and biophysical applications. For example, the present de Rham–Hodge 
flexibility and Hodge mode analysis can be directly applied to subcellular organelles, such 
as vesicle, endoplasmic reticulum, golgi apparatus, cytoskeleton, mitochondrion, vacuole, 
cytosol, lysosome, and centrosome, for which the existing atomistic biophysical approaches 
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have very limited accessibility. Additionally, features extracted from de Rham–Hodge 
flexibility and Hodge mode analysis can be incorporated into deep neural networks for the 
structure reconstruction from medium- and low-resolution cryo-EM maps (Haslam et al. 
2018). Finally, due to its ability to characterize geometric traits and describe topological 
invariants, the proposed de Rham–Hodge paradigm opens an entirely new direction for the 
quantitative structure–function analysis of molecular and macromolecular datasets. The 
integration of de Rham–Hodge features and machine learning algorithms for the predictions 
of protein–ligand-binding affinity, protein–protein-binding affinity, protein-folding stability 
change upon mutation, drug toxicity, solubility, partition coefficient, permeability, and 
plasma protein binding is under our consideration.
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Fig. 1. 
Illustration of tangential spectra of a cryo-EM map EMD 7972. Topologically, EMD 7972 
(Baradaran et al. 2018) has six handles and two cavities. The left column is the original 
shape and its anatomy showing the topological complexity. On the right-hand side of the 
parenthesis, the first row shows tangential harmonic eigenfields, the second row shows 
tangential gradient eigenfields, and the third row shows tangential curl eigenfields. The 
credit for the leftmost picture belongs to Hayam Mohamed Abdelrahman
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Fig. 2. 
Illustration of the normal spectra of protein and DNA complex 6D6V. Topologically, the 
crystal structure of 6D6V (Jiang et al. 2018) has 1 handle. The left column shows the 
secondary structure and the solvent-excluded surface (SES). On the right-hand side, the first 
two rows show normal gradient eigenfields, and the last two rows show normal curl 
eigenfields
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Fig. 3. 
Illustration of Hodge Laplacian spectra. This figure shows the properties of three spectral 
groups, namely tangential gradient eigenfields (T), normal gradient eigenfields (N), and curl 
eigenfields (C), for EMD 8962 (Singh et al. 2018). a The original input surface and three 
distinct spectral groups. b The cross-section of a typical tangential gradient eigenfield and 
the distribution of eigenvalues for group T. c The cross-section of a typical normal gradient 
eigenfield and the distribution of eigenvalues for group N. d A typical curl eigenfield and the 
distribution of eigenvalues for group C. e The left chart shows the convergence of spectra in 
the same spectral group due to the increase in the mesh size, i.e., the DoFs from 1000 (1K) 
to 6000 (6K). Obviously, low-order eigenvalues converge fast (middle chart) and high-order 
eigenvalues converge slowly (right chart)
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Fig. 4. 
Illustration of topological analysis. a Eigenfields by null space of tangential Laplace–de 
Rham operators correspond to handles. b Eigenfields by null space of normal Laplace–de 
Rham operators correspond to cavities
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Fig. 5. 
Illustration of geometric analysis. The geometry of different molecules (PDB IDs: 2Z5H (a), 
6HU5 (b), and 5HY9 (c)) can be captured by three groups of different Hodge Laplacian 
spectra with clear separations shown in d. Note that the color of the line plot corresponds to 
the color of the molecules. The solid lines show the tangential gradient (T) spectrum, the 
dashed lines show the normal gradient (N) spectrum, and the dot lines show the curl 
spectrum (C). While there is a possibility that certain spectral sets may be close to each other 
(see group T of proteins 6HU5 and 5HY9), the other two groups of spectra (see groups N 
and C of proteins 6HU5 and 5HY9) will show a clear difference. In addition, our topological 
features will also provide a definite difference. For example, protein 6HU5 has trivial 
topology (ball), but protein 5HY9 has a handle
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Fig. 6. 
Illustration of the procedure for flexibility analysis. We use protein 3VZ9 (Nishino et al. 
2013) as an example to demonstrate our procedure from a to f. a The input protein crystal 
structure. b That only C-alpha atoms (yellow spheres) are considered in this case. We assign 
a Gaussian kernel to each C-alpha atom and extract the level set surface (transparent surface) 
as our computation domain. c That standard tetrahedral mesh is generated with the domain. 
(Boundary faces are gray; inner faces are indigo.) We use a standard matrix diagonalization 
procedure to obtain eigenvalues and eigenvectors. B-factor at each mesh vertex is computed 
as shown in Eq. (22). d B-factor at the position of a C-alpha atom is obtained by the linear 
regression using within the nearby region. (For the red C-alpha atom, the linear regression 
region is colored as purple, which is within the cutoff radius.) e The predicted B-factors on 
the surface. f The predicted B-factors at C-alpha atoms (orange), compared with the 
experimental B-factors in the PDB file (blue). Our prediction for 3VA9 has the Pearson 
correlation coefficient of 0.8081
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Fig. 7. 
Statistics of the average Pearson correlation coefficient (PCC) with various parameters on 
the test set of 364 proteins. Each plot has the same cutoff radius varying from 1.0 Å to 6.0 Å 
with interval 1.0 Å. In each plot, the level set value varies from 0.2 to 0.8 with interval 0.2 
shown by different lines; the grid spacing varies from 1.6 Å to 4.0 Å with interval 0.4 Å 
shown in the horizontal axis
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Fig. 8. 
Illustration of B-factor prediction. We use proteins 1V70 (Hanawa-Suetsugu et al. 2004), 
3F2Z, and 3VZ9 as examples to show our predictions compared with the experiments. The 
red lines with triangles are the ground truth from experimental data. The blue lines with 
circles are predictions with our method (EDH). The green lines with cubes are predictions 
from Gaussian network method (GNM)

Zhao et al. Page 38

Bull Math Biol. Author manuscript; available in PMC 2021 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig. 9. 
Hodge modes of EMD 1258. The 0th, 4th, 8th, and 12th Hodge modes are shown
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Fig. 10. 
Biological flow decomposition. Illustration of a synthetic vector field in EMD 1590 that is 
decomposed into several mutually orthogonal components based on different boundary 
conditions
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Fig. 11. 
The PB implicit solvent model. Γ is the molecular surface separating space into the solute 
region Ω1 and the solvent region Ω2
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Fig. 12. 
a The force field of two positive charges; b the first eigenvector; c the force field of one 
negative and one positive charge; c the second eigenvector

Zhao et al. Page 42

Bull Math Biol. Author manuscript; available in PMC 2021 May 20.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Fig. 13. 
The first row shows the first five eigenmodes. The second row shows vector fields under 
corresponding charge combinations
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Fig. 14. 
Illustration of orientation. The pre-assigned orientation is colored in red. Induced orientation 
by ∂ is colored in green. The vertices are assumed to have a positive pre-assigned 
orientation. Therefore, the induced orientation from edge orientation is +1 at the head and 
−1 at the tail. For a triangle facet, +1 is assigned whenever the pre-assigned orientation 
conforms with the induced orientation, and −1 vice versa. A similar rule applies to tets 
which obey a right-hand orientation with the normal pointing outward. Non-adjacent 
vertices give 0
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Fig. 15. 
Illustration of the primal and dual elements of the tetrahedral mesh. All the red vertices are 
mesh primal vertices. All the indigo vertices are dual vertices at the circumcenter of each tet. 
All the gray edges are primal edges. All the pink edges are dual edges connecting adjacent 
dual vertices. The first chart shows the dual cell of a primal vertex. The second chart shows 
the dual facet of the primal edge. The third chart shows the dual edge of the primal facet. 
The last chart shows the dual vertex of the primal cell (tet)
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Fig. 16. 
Illustration of cohomology. This figure illustrates the relation by exterior derivative and 
Hodge star operators. The assembly of Laplacian operator Lk is just starting from primal k-
forms, multiplying matrices along the circular direction
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Table 1

The average Pearson correlation coefficient for predicting 364 proteins at cutoff radius 4.0 Å. The overall best 
average Pearson correlation coefficient is 0.580 (in bold), compared to that of 0.565 for GNM on the same 
dataset (Opron et al. 2014)

Grid spacing (Å)

1.6 2.0 2.4 2.8 3.2 3.6 4.0

Level set 0.2 0.574 0.572 0.569 0.564 0.536 0.508 0.498

0.4 0.580 0.579 0.578 0.573 0.561 0.547 0.534

0.6 0.574 0.574 0.569 0.567 0.552 0.534 0.523

0.8 0.545 0.547 0.535 0.513 0.481 0.417 0.389
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