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Abstract

Biological macromolecules have intricate structures that underpin their biological functions.
Understanding their structure—function relationships remains a challenge due to their structural
complexity and functional variability. Although de Rham—Hodge theory, a landmark of twentieth-
century mathematics, has had a tremendous impact on mathematics and physics, it has not been
devised for macromolecular modeling and analysis. In this work, we introduce de Rham—Hodge
theory as a unified paradigm for analyzing the geometry, topology, flexibility, and Hodge mode
analysis of biological macromolecules. Geometric characteristics and topological invariants are
obtained either from the Helmholtz—Hodge decomposition of the scalar, vector, and/or tensor
fields of a macromolecule or from the spectral analysis of various Laplace—de Rham operators
defined on the molecular manifolds. We propose Laplace—de Rham spectral-based models for
predicting macromolecular flexibility. We further construct a Laplace—de Rham—Helfrich operator
for revealing cryo-EM natural frequencies. Extensive experiments are carried out to demonstrate
that the proposed de Rham—Hodge paradigm is one of the most versatile tools for the multiscale
modeling and analysis of biological macromolecules and subcellular organelles. Accurate,
reliable, and topological structure-preserving algorithms for implementing discrete exterior
calculus (DEC) have been developed to facilitate the aforementioned modeling and analysis of
biological macromolecules. The proposed de Rham—Hodge paradigm has potential applications to
subcellular organelles and the structure construction from medium- or low-resolution cryo-EM
maps, and functional predictions from massive biomolecular datasets.
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1 Introduction

One of the most amazing aspects of biological science is the intrinsic structural complexity
of biological macromolecules and its associated functions. The understanding of how
changes in macromolecular structural complexity alter their function remains one of the
most challenging issues in biophysics, biochemistry, structural biology, and molecular
biology. This understanding depends crucially on our ability to model three-dimensional
(3D) macromolecular shapes from original experimental data and to extract geometric and
topological information from the architecture of molecular structures. Very often,
macromolecular functions depend not only on native structures but also on nascent,
denatured, or unfolded states. As a result, understanding the structural instability, flexibility,
and collective motion of macromolecules is of vital importance. Structural bioinformatics
searches for patterns among diverse geometric, topological, instability, and dynamic features
to deduce macromolecular function. Therefore, the development of efficient and versatile
computational tools for extracting macromolecular geometric characteristics, topological
invariants, instability spots, flexibility traits, and mode analysis is a key to infer their
functions, such as binding affinity, folding, folding stability change upon mutation,
reactivity, catalyst efficiency, and allosteric effects.

Geometric modeling and characterization of macromolecular 3D shapes have been an active
research topic for many decades. Surface models not only provide a visual basis for
understanding macromolecular 3D shapes, but also bridge the gap between experimental
data and theoretical modelings, such as generalized Born and Poisson—Boltzmann models
for biomolecular electrostatics (Natarajan et al. 2008; Yu et al. 2008). A space-filling model
with van der Waals spheres was introduced by Corey, Pauling, and Koltun (Corey and
Pauling 1953). Solvent-accessible surface (SAS) and solvent-excluded surface were
proposed (Lee and Richards 1971; Richards 1977) to provide a more elaborate 3D
description of biomolecular structures. However, these surface definitions admit geometric
singularities, which lead to computational instability. Smooth surfaces, including Gaussian
surfaces (Blinn 1982; Duncan and Olson 1993; Zheng et al. 2012; Chen et al. 2012; Li et al.
2013), skinning surfaces (Cheng and Shi 2009), minimal molecular surface (Bates et al.
2008), and flexibility—rigidity index (FRI) surfaces (Xia et al. 2013; Nguyen et al. 2016),
were constructed to mitigate the computational difficulty.

Another important property of macromolecules is their structural instability or flexibility.
Such property measures macromolecular intrinsic ability to respond to external stimuli.
Flexibility is known to be crucial for biomolecular binding, reactivity, allosteric signaling,
and order—disorder transition (Ma 2005). It is typically studied by standard techniques, such
as normal mode analysis (NMA) (Go et al. 1983; Tasumi et al. 1982; Brooks et al. 1983;
Levitt et al. 1985,) Gaussian network model (GNM) (Bahar et al. 1997), and anisotropic
network model (ANM) (Atilgan et al. 2001). These methods have the computational

complexity of @(N 3), with Nbeing the number of unknowns. As a geometric graph-based

method, FRI was introduced to reduce the computational complexity and improve the
accuracy of GNM (Xia et al. 2013; Opron et al. 2014). NMA and ANM offer the collective
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motions which are manifested in normal modes and may facilitate the functionally important
conformational variations of macromolecules.

The aforementioned Gaussian surface or FRI surface defines a manifold structure embedded
in 3D, which makes the analysis of geometry and topology accessible by differential
geometry and algebraic topology. Recently, differential geometry has been introduced to
understand macromolecular structure and function (Feng et al. 2012; Xia et al. 2014). In
general, the protein surface has many atomic scale concave and convex regions which can be
easily characterized by Gaussian curvature and/or mean curvature. In particular, the concave
regions of a protein surface at the scale of a few residues are potential ligand-binding
pockets. Differential geometry-based algorithms in both Lagrangian and Cartesian
formulations have been developed to generate multiscale representations of biomolecules.
Recently, a geometric flow-based algorithm has been proposed to detect protein-binding
pockets by Zhao et al. (2018). Morse functions and Reeb graphs are employed to
characterize the hierarchical pocket and sub-pocket structure (Zhao et al. 2018; Dey et al.
2013).

More recently, persistent homology (Carlsson et al. 2005; Edelsbrunner and Harer 2010), a
new branch of algebraic topology, has become a popular approach for the topological
simplification of macromolecular structural complexity (Yao et al. 2009; Xia and Wei 2014;
Xia et al. 2015). Topological invariants are macromolecular-connected components, rings,
and cavities. Topological analysis is able to unveil the topology—function relationship, such
as ion channel open/close, ligand binding/disassociation, and protein folding—unfolding.
However, persistent homology neglects chemical and biological information during its
geometric abstraction. Element-specific persistent homology has been introduced to retain
crucial chemical and biological information during the topological simplification (Cang and
Wei 2018). It has been integrated with deep learning to predict various biomolecular
properties, including protein—ligand-binding affinities and protein folding stability changes
upon mutation by Cang and Wei (2017).

It is interesting to note that most current theoretical models for macromolecules are built
from classical mechanics, namely computational electromagnetics, fluid mechanics,
elasticity theory, and molecular mechanics based on Newton’s law. These approaches lead to
multivalued scalar, vector, and tensor fields, such as macromolecular electrostatic potential,
ion channel flow, protein anisotropic motion, and molecular dynamics trajectories.
Biomolecular cryogenic electron microscopy (cryo-EM) maps are also scalar fields.
Mathematically, macromolecular multivalued scalar, vector, and tensor fields contain rich
geometric, topological, stability, flexibility, and Hodge mode information that can be
analyzed to reveal molecular function. Unfortunately, unified geometric and topological
analysis of macromolecular multivalued fields remains scarce. It is more challenging to
establish a unified mathematical framework to further analyze macromolecular flexibility
and Hodge modes. There is a pressing need to develop a unified theory for analyzing the
geometry, topology, flexibility, and collective motion of macromolecules so that many
existing methods can be calibrated to better uncover macromolecular function, dynamics,
and transport.
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The objective of the present work is to construct a unified theoretical paradigm for analyzing
the geometry, topology, flexibility, and Hodge mode of macromolecules in order to reveal
their function, dynamics, and transport. To this end, we introduce de Rham—Hodge theory
for the modeling and analysis of macromolecules. De Rham—Hodge theory is a cornerstone
of contemporary differential geometry, algebraic topology, geometric algebra, and spectral
geometry (Hodge 1989; Bott and Tu 2013; Mitchell 1998). It provides not only the
Helmholtz—Hodge decomposition to uncover the interplay between geometry and topology
and the conservation of certain physical observables, but also the spectral representation of
the underlying multivalued fields, which further unveils the geometry and topology.
Specifically, as a ubiquitous computational tool, the Helmholtz—Hodge decomposition of
various vector fields, such as electromagnetic fields by Hekstra et al. (2016), velocity fields
by De La Torre and Bloomfield (1977), and deformation fields by Atilgan et al. (2001), can
reveal their underlying geometric and topological features (see a survey by Bhatia et al.
(2013)). Additionally, de Rham—Hodge theory interconnects classic differential geometry,
algebraic topology, and partial differential equation (PDE) and provides a high-level
representation of vector calculus and the conservation law in physics. Finally, the spectra of
Laplace—de Rham operators in various differential forms also contain the underlying
geometric and topological information and provide a starting point for the theoretical
modeling of macromolecular flexibility and Hodge modes. The corresponding
computational tool is discrete exterior calculus (DEC) (Hirani 2003; Desbrun et al. 2005;
Arnold et al. 2006; Zhao et al. 2019). Lim discussed discrete Hodge Laplacians on graphs,
which might not recover all the properties of the Laplace—de Rham operator (Lim 2015). De
Rham—Hodge theory has had great success in theoretical physics, such as electrodynamics,
gauge theory, quantum field theory, and quantum gravity. However, this versatile
mathematical tool has not been applied to biological macromolecules, to the best of our
knowledge. The proposed de Rham—Hodge framework seamlessly unifies previously
developed differential geometry, algebraic topology, spectral graph theory, and PDE-based
approaches for biological macromolecules (Xia and Wei 2016). Our specific contributions
are summarized as follows:

. We provide a spectral analysis tool based on the de Rham—Hodge theory to
extract geometric and topological features of macromolecules. In addition to the
traditional spectra of scalar Hodge Laplacians, we enrich the spectra by using
vector Hodge Laplacians with various boundary conditions.

. We construct a de Rham—Hodge theory-based analysis tool for the orthogonal
decomposition of various vector fields, such as electric field, magnetic field,
velocity field from molecular dynamics and displacement field, associated with
macromolecular modeling, analysis, and computation.

. We propose a novel multiscale flexibility model based on the spectra of various
Laplace—de Rham operators. This new method is applied to the Debye—Waller
factor prediction of a set of 364 proteins (Opron et al. 2014). By comparison with
experimental data, we show that our new model outperforms GNM, the standard
bearer in the field (Bahar et al. 1997; Opron et al. 2014).
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. We introduce a multiscale Hodge mode model by constraining a vector Laplace—
de Rham operator with a Helfrich curvature potential. The resulting Laplace—de
Rham-Helfrich operator is applied to analysing the Hodge modes of cryo-EM
data. Unlike previous normal mode analysis which assumes harmonic potential
around the equilibrium, our approach allows unharmonic motions far from the
equilibrium. The multi-resolution nature of the present method makes it a
desirable tool for the multiscale analysis of macromolecules, protein complexes,
subcellular structures, and cellular motions.

. We demonstrate electrostatic field analysis based on Hodge decomposition and
eigenfield analysis. The eigenfield analysis is applied to the reaction potential
calculated by solving the Poisson—Boltzmann equation. We show that local
dominant Hodge eigenfields exist for electrostatic analysis.

2 Results

Our results are twofold: We first describe our contribution to computational tools for
Laplace—de Rham operators based on the simplicial tessellation of volumes bounded by
biomolecular surfaces and then we present the modeling and analysis of de Rham—Hodge
theory for biological macromolecules.

2.1 Theoretical Modeling and Analysis

This section introduces de Rham—Hodge theory for the analysis of biomolecules. To
establish notation, we provide a brief review of de Rham—Hodge theory. Then, we introduce
topological structure-preserving analysis tools, such as discrete exterior calculus (DEC)
(Desbrun et al. 2005), discretized differential forms, and Hodge—Laplacians, on the compact
manifolds enclosing biomolecular boundaries. We use simple finite-dimensional linear
algebra to computationally realize our structure-preserving analysis on various differential
forms. We construct appropriate physically relevant boundary conditions on biomolecular
manifolds to facilitate various scalar and vector Laplace—-de Rham operators such that the
resulting spectral bases are consistent with three basic singular value decompositions of the
gradient, curl and divergence operators through dualities.

211 De Rham-Hodge Theory for Macromolecules—While the spectral analysis
can be carried out using scalar, vector, and tensor calculus, differential forms and exterior
calculus are required in de Rham—Hodge theory to reveal the intrinsic relations between
differential geometry and algebraic topology on biomolecular manifolds. Since biomolecular
shapes can be described as 3-manifolds with a 2-manifold boundary in the 3D Euclidean
space, we represent scalar and vector fields on molecular manifolds as well as their
interconversion through differential forms. As a generalization of line integral and flux
calculation of vector fields, a differential &-form wX € QK(M) is a field that can be integrated
on a k~dimensional submanifold of M, which can be mathematically defined through a rank-
k antisymmetric tensor defined on a manifold M. By treating it as a multi-linear map from &
vectors spanning the tangent space to a scalar, it turns an infinitesimal &~dimensional cell
into a scalar, whose sum over all cells in a tessellation of a k&~-dimensional submanifold

produces the integral in the limit of infinitesimal cell size. In R®, 0-forms and 3-forms have
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one degree of freedom at each point and can be regarded as scalar fields, while 1-forms and
2-forms have three degrees of freedom and can be interpreted as vector fields.

The differential operator (also called exterior derivative) d can be seen as a unified operator
that corresponds to gradient (V), curl (Vx), and divergence (V) when applied to 0-, 1-, and 2-
forms, mapping them to 1-, 2-, and 3-forms, respectively. On a boundaryless manifold, a
codifferential operator & is the adjoint operator under L,-inner product of the fields (integral
of pointwise inner product over the whole manifold), which corresponds to —V-, Vx, and -V,
for 1-, 2-, and 3-forms, mapping them to 0-, 1-, and 2-forms, respectively.

One key property of d: k(M) — @F + (M) is that dd= 0, which allows the space of

differential forms QX to form a chain complex, which is called the de Rham complex

0 d 1 d 2 d 3 d
OAQ(M)W;Q(M(V—XSQ(M)(V—.;Q(M)—»O. )

It also matches the identities of second derivatives for vector calculus in IR3, ie., (VX)V=0
and (V-)Vx = 0. The topological property associated with differential forms is given by the
de Rham cohomology,

kerd"
H, sR(M )=—%-T" 2
imd

The de Rham theorem states that the de Rham cohomology is isomorphic to the singular
cohomology, which is derived purely from the topology of the biomolecular manifold.

The Hodge k-star +X (also called Hodge dual) is a linear map from a &-from to its dual form,
*K QK (M) — Q" ~¥(M). Given two k-forms a, B e QK(M), the (L,-)inner product between
them can be defined along with star operator as

<a,ﬂ>=/a/\ *ﬁ:/ﬂ/\ * a. 3)
M M

Under the inner products, the adjoint operators of d are the codifferential operators
6k:Qk(M) k- 1(M), sk = (- l)k * d % satisfies 66 = 0. Hodge further established the

isomorphism
Hjr(M) = H(M), @

where Hﬁ(M )= {a) | dw = 0} is the kernel of the Laplace—-de Rham operator A = d6+ &§d=

(d+ 8%, also known as the space of harmonic forms. A corollary of the result is the Hodge
decomposition,

w=da+of+h, ()
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which is an Z,-orthogonal decomposition of any form w into dand & of two potential fields
a € QK 1(M) and B € QF1(M) respectively, and a harmonic form h € H (M). This means

that harmonic forms are the non-integrable parts of differential forms, which form a finite-
dimensional space determined by the topology of the biomolecular domain due to de
Rham’s and Hodge’s theorems.

2.1.2 Macromolecular Spectral Analysis—The Laplace—de Rham operator A = d6 +
&d, when restricted to a 3D object embedded in the 3D Euclidean space, is simply —V2. As it
is a self-adjoint operator with a finite-dimensional kernel, it can be used to build spectral
bases for differential forms. For irregularly shaped objects, these bases can be very
complicated. However, for simple geometry, these bases are well-known functions. For
example, O-forms on a unit circle can be expressed as the linear combination of sine and
cosine functions, which are eigenfunctions of the Laplacian for 0-forms Ag. Similarly,
spherical harmonics are eigenfunctions of Aj on a sphere and it has also been extended to
manifold harmonics on Riemannian 2-manifolds.

We further extend the analysis to any rank & and to 3D shapes such as macromolecular
shapes where analysis can be carried out in two types of cases. In the first type, one may
treat the surface of the molecular shape as a boundaryless compact manifold and analyzes
any field defined on such a 2D surface. In fact, this approach is relevant to protein surface
electrostatic potentials or the behavior of cell membrane or mitochondrial ultrastructure. In
this work, we shall restrain from any further exploration in this direction. In the second type,
we consider the volumetric data enclosed by a macromolecular surface. As a result, the
molecular shape has a boundary. In this setting, the harmonic space becomes infinite-
dimensional unless certain boundary conditions are enforced. In particular, tangential or
normal boundary conditions (also called Dirichlet or Neumann boundary conditions,
respectively) are enforced to turn the harmonic space into a finite-dimensional space
corresponding to algebraic topology constructions that lead to absolute and relative
homologies.

We first discuss the natural separation of the eigenbasis functions into curl-free and div-free
fields in the continuous theory, assuming that the boundary condition is implicitly enforced,
before providing details on the discrete exterior calculus with the boundary taken into
consideration.

Given any eigenfield w of the Laplacian,
Aw = Aw, (6)

we can decompose it into w= da + §B+ h. For A # 0, based on dd= 0 and §6= 0, it is easy
to see that both da and 8B are eigenfunctions of A with eigenvalue A due to the uniqueness
of the decomposition, unless one of them is 0. It is typically the case that w is either a curl
field or a gradient field; otherwise, A has a multiplicity of at least 2, in which case both
eigenfields associated with A are the linear combinations of the same pair of the gradient
field and the curl field.
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2.1.3 Discrete Spectral Analysis of Differential Forms—In a simplicial
tessellation of a manifold mesh, & is implemented as a matrix Dy, which is a signed
incidence matrix between (k+1)-simplices and k-simplices. We provide the details in Sect. 3,
but the defining property in de Rham—Hodge theory is preserved through such a

discretization: Dy Dy = 0. The adjoint operator & is implemented as S;?l_ 1D,{_ 1Sk, where

Sk is a mapping from a discrete &~form to a discrete (2 — k)-form on the dual mesh, which
can be treated as a discretization of the L,-inner product of &~forms. As Sy is always a
symmetric positive matrix, the Lp-inner product between two discrete k-forms can be

T . . . .
expressed as (a){‘) Skcu]zC . The discrete Hodge Laplacian maps a discrete &~form to a discrete

n—k-form which is defined as
Y -1 T
Ly = Dy Sk + 1Dy + SiDy — 1Sk~ 1Dk — 1.5k, (7)

which is a symmetric matrix and S;:lLk corresponds to A The eigenbasis functions are

found through a generalized eigenvalue problem,

Lyo* = 2580k . ®)

Depending on whether the tangential or normal boundary condition is enforced, Dy includes
or excludes the boundary elements, respectively. Thus, the boundary condition is built into
discrete linear operators. When we need to distinguish these two cases, we use Ly and Ly ,
to denote the tangential and normal boundary conditions, respectively.

In general, it is not necessarily efficient to take the square root of the discrete Hodge star
1
operator, Si? or to compute its inverse,S;Zl. However, for analysis, we can always convert a

generalized eigenvalue problem in Eq. (8) into a regular eigenvalue problem,

1 1
L' =5 2L, 20 = 1, ©)

—_

where @ = SEa). We can further rewrite the symmetrically modified Hodge Laplacian as

Ek=5£5k+5k—15£—17 (10)

1 1
where Dy = Slf+ xS, 2 must satisfy Dy 4 1Dy = 0. Now the Z,-inner product between two

discrete differential forms in the modified space is simply (cElf) 5’2‘, and the adjoint operator

of Dy is simply Dj.
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Now the partitioning of the eigenbasis functions into harmonic fields, gradient fields, and
curl fields for 1-forms and 2-forms and their relationship can be understood from the
singular value decomposition of the differential operator

Dy =U 4 15VE, (11

where Uy and Vj are orthogonal matrices and X, is a rectangular matrix that only has

nonzero entries on the diagonal, which can be sorted in ascending order as \//le with trailing
zeros. As the Hodge decomposition is an orthogonal decomposition, each column of V} that
corresponds to a nonzero singular value \//17,1‘ is orthogonal to any column of Uy that
corresponds to a nonzero \//15‘7_1 . Here, Vi and Uy, together with the finite-dimensional set
of harmonic forms /4y (which satisfy both Dyh;= 0 and D;{_ 1hi = 0), span the entire space

of k-forms. Moreover, the spectrum (i.e., set of eigenvalues) of the symmetric modified

Hodge Laplacian in Eq. (10) consists of Os, the set of Alk ‘s, and the set of /1}‘ ~ 5. Note that

in the spectral basis, taking derivatives D (or ET) is simply performed through multiplying
the corresponding singular values, and integration is done through division by the
corresponding singular values, mimicking the situation in the traditional Fourier analysis for
scalar fields.

2.1.4 Boundary Conditions and Dualities in 3D Molecular Manifolds—Overall,
appropriate boundary conditions are prescribed to preserve the orthogonal property of the
Hodge decomposition. In 3D molecular manifolds, 0- and 3-forms can be seen as scalar
fields and 1- and 2-forms as vector fields. For the spectral analysis of scalar fields (0-forms
or 3-forms), two types of typical boundary conditions are used: Dirichlet boundary condition
floamr= 1y and Neumann boundary condition n-V fls5,= gy, where £ and gy are functions on
the boundary 6M and n is the unit normal on the boundary. For spectral analysis, harmonic
fields satisfying the arbitrary boundary conditions can be dealt with through spectral analysis
of £ or gy on the boundary, and the following boundary conditions are used for the
volumetric function £ The normal 0-forms (tangential 3-forms) satisfy

flom =0, (12)
and the tangential O-forms (normal 3-forms) satisfy

n-Vflou=0. (13)

For the spectral analysis of vector fields, boundary conditions are for the three components
of the field. Based on the de Rham—Hodge theory, it is more convenient to also use two
types of boundary conditions. For tangential vector field (representing tangential 1-forms or
normal 2-forms) v, we use the Dirichlet boundary condition for the normal component and
the Neumann condition for the tangential components:

v-n=0,n-V(v-t)=0,n-V(v-tp) =0, (14)
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where t| and t, are two local tangent directions forming a coordinate frame with the unit
normal n. The corresponding spectral fields are shown in Fig. 1. For normal vector field
(representing normal 1-forms or tangential 2-forms) v, we use the Neumann boundary
condition on the normal component and the Dirichlet boundary condition on the tangential
components:

vty =0,n-t,=0,n- V(v-n)=0. (15)

The corresponding spectral fields are shown in Fig. 2. Aside from the harmonic spectral
fields, there are two types of fields involved for the spectral fields of both boundary
conditions—the set of divergence-free fields (also called curl fields) and the set of curl-free
fields (also called gradient fields). In summary, the above four boundary conditions account
for both types of boundary conditions of all four differential forms, since the tangential
boundary conditions of &~forms are equivalent to the normal boundary conditions of n—4-
forms.

2.1.5 Reduction and Analysis—For the four types of k-forms (k € {0, 1, 2, 3} in R?)
in combinations with the two types of boundary conditions (tangential and normal), there are
eight different Laplace-de Rham operators (L ;and Ly ;) in total. However, based on Eq.
(10), the nonzero parts of the spectrum L can be assembled from the singular values of D,

and Dy _ . Thus, for each type of boundary conditions, there are only three spectra
associated with Dy, Dy, and D,, since D3 = 0 for 3D space. (One still has eight Laplace—de

Rham operators.) Moreover, according to the Hodge duality discussed in the above
paragraph, there is a one-to-one map between tangential &~forms and normal (3—k)-forms,
which further identifies Dy ; with 13; n» Do, With 13;, 1 and 5{ » with 5{ - As aresult, one
has four independent Laplace—de Rham operators. Finally, due to the self-adjointness, there
are only three intrinsically different spectra: (1) The first contains singular values of the
gradient operator D ;on tangential scalar potential fields (or equivalently, the singular
values of the divergence operator [, , on tangential gradient fields) as shown in Fig. 3b; (2)
the second contains singular values of the gradient operator [ , on normal scalar potential
fields (or equivalently, the singular values of the divergence operator [ ;on normal gradient
fields) as shown in Fig. 3¢c; and (3) the third contains singular values of the curl operator D ;
applied to tangential curl fields (or equivalently, the singular values of the curl operator D ,
applied to normal curl fields) as shown in Fig. 3d.

As discussed above, each of the eight Hodge Laplacians defined for smooth fields on a
smooth shape has a spectrum that is simply the combination of one or two of the three sets
of singular values along with possibly a 0. However, the numerical evaluation of the singular
values of the differential operators for tangential A&-forms Dy ; can differ from those of the

discrete operators for normal 3—-forms 133_ k,n» as shown in Fig. 3d. One immediate

reason is that the degrees of freedom (DoFs) associated with tangential/normal scalar/vector
fields represented as tangential forms are not the same as those represented by normal forms
on a given tessellation, leading to different sampling accuracies. For example, the
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tessellation of the shape in Fig. 3 consists of approximately 1000 vertices, 7000 edges,
10,000 triangles, and 5000 tetrahedra. Thus, each tangential 0-form only has 1000 DoFs, and
each normal 3-form has 5000. Hence, L3 ,is capable of handling higher-frequency signals in
any given smooth scalar field than Ly  when we approach the Nyquist frequencies of the
sampling. The convergence of both discretizations for the same continuous operator can be
observed with increasing DoF's for both differential forms under refinement of the tet meshes
(Fig. 3e, left). For low frequencies (smallest eigenvalues), there is a good agreement to begin
with (Fig. 3e, middle), while for any given high frequency, the convergence with increased
resolutions can be clearly observed (Fig. 3e, right).

On the other hand, Dy D\, and D\ D, will have strictly the same set of nonzero eigenvalues.
For instance, the spectrum of L ,and the partial spectrum of Z; ,that correspond to gradient

fields are identical, since Dy, tﬁ({, and 55 +Do, ; have the same nonzero eigenvalues.

For eigenfields vector Laplacians represented as 1-forms or 2-forms, i.e., the eigenfields of
Ly or L,, we can observe some typical traits in the distributions of eigenvalues under normal
and tangential boundary conditions. The normal boundary condition tends to allow more
gradient eigenfields associated with eigenvalues below a given threshold than those under
the tangential boundary condition for eigenvalues below the same threshold. We conjecture
that it is due to the more stringent Dirichlet boundary condition on the potential scalar fields
than the Neumann boundary condition. The relation between the tangential boundary
condition gradient-type eigenfields and curl-type eigenfields for low-frequency range seems
to be highly dependent on the shape (Fig. 3b, d). Figure 1 shows different vector eigenfields
for tangential boundary condition with EMD 7972 surface. The first row shows different
harmonic fields corresponding to the number of handles of the shape, the second row shows
different gradient fields, and the third row shows different curl fields. Figure 2 shows
different vector eigenfields for normal boundary condition with the protein and DNA
complex crystal structure 6D6V. Since there are no cavities for this shape, there are no
harmonic fields. The first row shows different gradient fields, and the second row shows
different curl fields. Note that the scalar potentials for gradient fields and the vector
potentials for curl fields are also themselves eigenfields associated with the same
eigenvalues, although for different Laplacians.

Summarizing the above discussion on the properties of Laplacian spectra for 3D shape, we
propose the following suggestions for practical spectral analysis:

. Only three independent spectra (e.g., singular values of Dy 5 D) , and D, ) are
necessary to avoid redundancy.

. Laplace—de Rham operators with higher DoFs can be used for more accurate
calculation (at a higher computational cost) given the same tessellation.

. When computing eigenvalues given the same high-frequency truncation
threshold, the differences in the numbers of eigenvalues in the three spectra vary
with the shape.
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2.2 Macromolecular Modeling and Analysis

Biological macromolecules and their complexes offer a rich variety of geometric and
topological features, which often exhibit close relations with their functionalities. For
instance, protein pockets can often be identified as a geometrically concave region on the
protein surface, or as a topological cavity of an offset surface. lon channels that regulate
important biological functions can be usually associated with a topological tunnel.
Mitochondrial ultrastructures admit various geometric and topological complexity which is
related to their functions (Wollenman et al. 2017). Hence, a unified approach for
quantitatively analyzing such geometric and topological features is in great need. Our de
Rham—-Hodge analysis and Laplace—de Rham operator modeling provide such a unified
approach for capturing both geometric and topological features simultaneously.

Our de Rham—Hodge analysis offers a powerful new tool for characterizing macromolecular
geometry, identifying macromolecular topology, and modeling macromolecular structural
flexibility and collective motion. We have carried out extensive computational experiments
using protein structural datasets and cryo-EM maps to demonstrate the utility and usefulness
of the proposed de Rham—Hodge tools and models.

2.2.1 Molecular Shape Generation—The geometric modelling of macromolecular 3D
shapes bridges the gap between experimental data and theoretical models for
macromolecular function, dynamics, and transport. To carry out our de Rham—Hodge
analysis on a macromolecule or a protein complex, we need a given domain containing the
3D macromolecular shape. Theoretically, such a domain for a macromolecule can be
generated by taking an isosurface of a cryo-EM map or constructed from the atomic
coordinates of the macromolecule. For a given set of atomic coordinates r, 7=1,2, ..., N,
van der Waals surface, solvent-accessible surface, and the solvent-excluded surface can be
constructed. However, these surfaces are typically singular, leading to computational
instability for de Rham—Hodge analysis. Alternatively, minimal molecular surface (MMS)
generated by differential geometry, Gaussian surface (Li et al. 2013), and flexibility rigidity
index (FRI) surface (Xia et al. 2013; Opron et al. 2014) are computationally preferred and
used widely in many studies. In fact, FRI surface is simpler than MMS and more stable than
Gaussian surface (Nguyen et al. 2016). To generate an FRI surface, we use a discrete-to-
continuum mapping to define an unnormalized molecular density (Xia et al. 2013; Nguyen
et al. 2016)

N
pr,n) = Y, (||r —r|[:n) (16)
i=1

where 771s a scale parameter and in this paper, it is set to twice of the atomic van der Waals
radius 7;. @ is density estimator that satisfies the following admissibility conditions

O(||r —xj|:m)|) = L, as |jr — ;| =0, (a7

O(||r —rj{[s]|) = 0, as |r— ;|| — oo. (1s)
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Monotonically decaying radial basis functions are all admissible. Commonly used
correlation kernels include generalized exponential functions
K
o(|r = rj|; ) = e~ UF=1)", x> 0, (19)
and generalized Lorentz functions
Ny 1
®(|[r = rjffs1) = —————, v>0. 20)

L+ (e = /n)°

The Gaussian kernel (x=2) is employed in this work.
A family of biomolecular domains can be defined by varying level set parameters ¢> 0

M = {r|p(r,n) 2 c}. @1

2.2.2 Topological Analysis—In this work, we discuss topology in the mathematical
sense. Therefore, topological features are those stable structural characteristics that do not
change with deformation, such as the number of connected components, the number of holes
on each connected component, and the number of cavities. They are captured in the null
spaces of the corresponding Laplace—de Rham operators. In other words, the invariant
spaces associated with the eigenvalue of 0, i.e., the lowest ends of the spectra. Specifically,
the dimension of the null space of Z; ;and L, ,is the same as the number of tunnels as
shown in Fig. 4a. The dimension of the null space of L; ,and L, ;provides the number of
cavities as shown in Fig. 4b. The dimension of the L ,is equal to the number of connected
components. In persistent homology, the geometric measurement for characterizing the
persistence of a topological feature has been proven crucial to the practical use of these
otherwise overly stable features. The eigenfields associated with the eigenvalue 0 in our
spectral analysis can also provide such information. For instance, the strength of the
eigenfield associated with the eigenvalue 0 for Z; ;can indicate how narrow the handle/
tunnel is in the region. In the tangential harmonic fields of Fig. 1, the colors show the
strength of eigenfields such that red colors stand for high strengths and indigo colors stand
for low strengths. One can see that strengths are higher in the middle narrow tunnels than the
top and bottom parts.

2.2.3 Geometric Analysis—Although the spectra of the Laplace—de Rham operators do
not uniquely determine the geometry (sometimes referred to as “you cannot hear the shape
of the drum”), they do provide key information when comparing shapes, which, sometimes,
is referred to as shape “DNA”. Thus, the traits of the nonzero parts of the spectra can be
regarded as geometrical features. These geometrical features are rigid transformation
invariant. The scalar Hodge Laplacian spectrum has already been used in computer graphics
and computer vision to distinguish various structures in shape analysis and shape retrieval. It
has also been extended to 1-form Hodge Laplacian on surfaces for shape analysis. However,
on surfaces, L spectrum is identical to L spectrum, except that the multiplicity is doubled
for nonzero eigenvalues. Note that the multiplicity for the zero eigenvalues is determined by
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the number of genus instead of the number of connected components for scalar Hodge
Laplacian. In our 3D extension, we have three unique spectra for each molecule. Figure 5
shows nonzero spectrum traits for three simple proteins (PDB IDs: 2Z5H (Murakami et al.
2008), 6HUS (Lanza et al. 2019), and SHY9 (Kuglstatter et al. 2017), where the clear
distinction among the spectra can be observed. We have tested on various biomolecules and
observed the same discriminating ability of the spectra on these shapes.

Geometric analysis and topological analysis based on the de Rham—Hodge theory can be
readily applied to characterizing biomolecules in machine learning and to biomolecular
modeling. To further demonstrate the capability of de Rham—Hodge spectral analysis for
macromolecular analysis, we propose a set of de Rham—Hodge models for protein flexibility
analysis and a vector de Rham model for biomolecular Hodge mode analysis.

2.2.4 Flexibility Analysis—Biomolecular flexibility analysis and B-factor prediction
have been commonly performed by normal mode analysis (Go et al. 1983; Tasumi et al.
1982; Brooks et al. 1983; Levitt et al.1985; Ma2005) and Gaussian network model (GNM)
by Bahar etal. (1997). The flexibility is strongly correlated with protein functions, such as
structural support, catalyzing chemical reactions, and allosteric regulation (Frauenfelder et
al. 1991). Recently, graph theory-based FRI has been shown to outperform other methods
(Opron et al. 2014). However, all of the aforementioned methods are based on the discrete
coordinate representation of biomolecules. As such, it is not very convenient to use these
methods for flexibility analysis at different scales. For example, for some large
macromolecules, such as an HIV viral capsid which involves millions of atoms, one may
wish to analyze their flexibility at atomic, residue, protein domain, protein, and protein
complex scales by using a unified approach so that the results from cross-scales can be
compared on an equal footing. However, current approaches cannot provide such a unified
cross-scale flexibility analysis. In this work, we introduce ade Rham—Hodge theory-based
model to quantitatively analyze macromolecular flexibility across many scales.

We assume that the de Rham—Hodge B-factor at the th atom estimated by Ly is given by

B = 0 3 b 0f ) ], o VA >0 o
J J

where ais a parameter to be determined by the least squares regression. Its value depends on
structural resolution, diffraction intensity, experimental method (i.e., x-ray scattering,
electron microscopy, etc.), number of diffraction angles, experimental temperature, sample

quality, and structure reconstruction method. In the computation, the value of a)}‘(r) is given

on a set of mesh points. The linear regression over a cutoff radius dis used to obtain the
required values in atomic centers r; where the B-factor values are reported. g ;is applied in
test cases.

We perform numerical experiments to confirm that our flexibility analysis on C-alpha atoms
is robust and reliable. In fact, our method can analyze the flexibility of all atoms or a subset
of atoms. The cutoff radius is set to 7 A. Our method involves several parameters including
level set value c and grid spacing rand cutoff radius d (Fig. 6). Figure 7 shows statistics of
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the average Pearson correlation coefficient with various parameters on the test set of 364
proteins.

Level Set: The level set parameter cin Eq. (21) controls the general distance from the
surface to C-alpha atoms (Fig. 6a). A larger level set value will result in a smaller domain
with richer topology structures, including many tunnels and cavities. A smaller level set
value will make the surface fatter so that it will lead to a ball-like shape.

Grid Spacing: The grid spacing rcontrols the density of tetrahedrons of the mesh. A finer
mesh will lead to a better prediction but is computationally more expensive (Fig. 6b).

Cutoff Radius: The parameter cutoff radius d controls the linear regression region around
the specific C-alpha atom (tets within the radius d'to the specific C-alpha atom which is
colored purple in Fig. 6d). Our approach will potentially introduce a denser mesh, which
will lead to small local vibrations (high frequencies introduced due to the increasing number
of matrix elements) that should be filtered out. This treatment is the same as throwing away
higher frequencies.

We consider a benchmark test set of 364 proteins studied in earlier work by Opron et al.
(2014) to systematically validate our method. Our test indicates that the best parameters are
c=04,r=1.6 A, d=4.0 A. Figure 8 shows several examples with the best parameters and
comparisons with GNM. Table 1 shows the average Pearson correlation coefficient of
predicting the benchmark set of 364 proteins Opron et al. (2014) at a cutoff radius 4.0 A,
which includes the overall best average Pearson correlation coefficient at grid spacing 1.6 A
and level set value 0.4. The contour level value should not be too large such that only those
C-alpha atoms that are close enough to each other will have interactions, as well as not be
too small such that enough geometric and topological features are preserved. The cutoff
radius should be a proper value such that higher frequencies are mitigated, while lower
frequencies are well kept. There is not much influence of resolution if the previous two
parameters are well set (see statistics at cutoff radius 5 A). This provides the foundation for
analyzing large protein complexes with coarse resolution.

The proposed flexibility analysis can be easily extended to analyze the flexibility of cryo-
EM data at given level sets. The computed (relative) B-factors are located at vertices but can
be interpolated to any desirable location if necessary. Due to the multi-resolution nature of
our approach, the computational cost is determined by the number of unknowns, i.e., the
mesh size. For a given computational domain, the mesh size depends on the grid spacing.
Therefore, for large macromolecules with millions of atoms, which is intractable for
coordinate-based methods, the proposed de Rham—Hodge approach can still be very
efficient.

The commonly used method that produces the B-factors that wind up in the PDB files is the
least squares fit. This method connects diffraction intensity profiles and structural model
predicted densities in the PDB with B-factors. In our model, we connect experimental
structures (the coordinates of structural model predicted densities) and B-factors in the PDB
files with our Hodge eigenvalue- and eigenvector-based model.
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2.2.5 Hodge Mode Analysis—Normal mode analysis is an important approach for
understanding biomolecular collective behavior, residue coupling, protein domain motion,
and protein—protein interaction, reaction pathway, allosteric signaling, and enzyme catalysis
(Go et al. 1983; Tasumi et al. 1982; Brooks et al. 1983; Levitt et al. 1985; Ma 2005).
However, normal model analysis becomes very expensive for large biomolecules. In
particular, it is difficult to carry out the anisotropic network model (ANM) analysis (Atilgan
et al. 2001) for cryo-EM maps which do not have atomic coordinates. Virtual particle-based
ANM methods were proposed to tackle this problem (Tama et al. 2002; Ming et al. 2002).
Being based on the harmonic potential assumption, these methods are restricted to relatively
small elastic motions. In this work, we propose an entirely different strategy for biological
macromolecular anisotropic motion analysis based on de Rham—Hodge theory.

Laplace—de Rham Operator: It is noted that a mass—spring system is underlying many

earlier successful elastic network models. This system describes the interconversion between
the kinetic energy and potential energy during the dynamic motion. In our construction, we
take advantage of de Rham—Hodge theory. In fact, de Rham—Hodge theory provides a
general framework to model the dynamic behavior of macromolecules. In the present work,
we just illustrate this approach with special construction.

In order for de Rham—Hodge theory to be able to describe anisotropic motions, we utilize
the 1-form Laplace—de Rham operator

A = dO *61 d() *1 + *1_1 dy x5 dy, (23)

where dj denote exterior derivatives on Q¥(M) and * ; denote Hodge star operators. Note that
the 2-form Laplace—de Rham operator works similarly well, but we will limit our discussion
with 1-form. The first term on the right hand side of Eq. (23) is the quadratic energy form
measuring the total divergence energy, while the second term measures the total curl energy.
Both terms are kinetic energy physically or Dirichlet energy mathematically.

Laplace—de Rham-Helfrich Operator: Physically, a potential energy term is required to
constrain the elastic motion of biological macromolecules. There are many options, such as
Willmore energy, which minimize the difference between two principle curvatures.
Additionally, Helfrich introduced a curvature energy for modeling cell membrane or closed
lipid vesicles (Helfrich 1973; Du et al. 2004). In our case, we assume the curvature energy of
the form

V=u f (H = Ho)” dA, (24)
oM

where g is the molecular bending rigidity, / is the mean curvature on the molecular surface,
and Hj is the spontaneous curvature of the molecule. The potential energy in Eq. (24) is
defined on the compact manifold enclosing a smooth molecular surface.

Conceptually, our curvature model deals with a dynamical system with a thin shell having a
thickness much smaller than other dimensions. Computationally, the 2D curvature model
serves as a boundary condition to complete the Laplace—de Rham operator on a
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macromolecule. The curvature energy increases as the mean curvature H deforms away from
its rest state. Therefore, His a function of surface displacement. The quadratic energy
generated from surface deformation is given by (see Tamstorf and Grinspun (2013) for
discretization details)

0= dV/Idx> (25)

where Xis a displacement vector field on the surface. Due to the isomorphism between
vector fields and 1-forms, we can evaluate the volumetric 1-form w as a displacement vector
field and restrict it to the boundary surface. We denote the restriction as a linear operator G,

X =G0w. (26)

Then, the quadratic form for the curvature energy in terms of the 1-form is G QG. Finally,
the total 1-form quadratic energy is given by the following one-parameter Laplace—de
Rham-Helfrich operator

E,=dy*g d) % + *7'dl xyd; +G'OG. 27)

We can solve the eigenvalue problem for the Laplace-de Rham—Helfrich operator £, to
extract the natural vibration modes of biomolecules. It is a standard procedure to assemble
required matrix G and Qtogether with our Laplace—de Rham matrix.

In fact, an advantage of the proposed anisotropic motion theory is that it allows to treat the
divergence energy and curl energy differently. For example, we can introduce a bulk
modulus type of parameter A to the divergence energy term, which leads to a
weightedLaplace—deRhamoperator.As a result, we have a two-parameter Laplace—de Rham—
Helfrich operator

Eju=A-dyxg' dy %1 + *7'd] *yd; +G'OG. (28)

We need to choose appropriate weight parameters A and g Generally, the two-parameter
Laplace—de Rham—Helfrich operator and boundary condition matrix can be tuned separately.
What we would like to achieve is letting the curvature energy drive the motion and let our
system penalize the compressibility (i.e., the divergence energy). Therefore, we select an
appropriate A at a different scale and choose > A > 1.

Modal analysis, compared to fluctuation analysis, provides more information. In addition to
the description of flexibility, modal analysis also provides the collective motion of a
molecule and its potential function. The dynamics of a macromolecule can be described by
the linear combination of its natural modes. Figure 9 shows several Hodge modes for core
spliceosomal components, EMD 1258 (Sander et al. 2006), which indicates the success of
our Laplace—de Rham—Helfrich operator.
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It is noted that the original Laplace—de Rham operator with appropriate boundary conditions
admits the orthogonal Hodge decomposition in terms of divergence-free, curl-free, and
harmonic eigenmodes. In contrast, the Laplace—de Rham—Helfrich operator does not
preserve these properties. Nonetheless, the eigenmodes generated by the Laplace—de Rham—
Helfrich operator are mutually orthogonal and subject to different physical interpretations.
For example, the first three eigenmodes are associated with 3D translational motions.
Therefore, the operator is translational invariant. The modes in Figure 9 have little to do with
the topological singularity of EMD 1258.

Additionally, the eigenmodes in Fig. 1 have a fixed boundary. In contrast, boundaries of
eigenmodes generated with the Laplace—de Rham—Helfrich operator as shown in Fig. 9 are
allowed to change. The Laplace—de Rham—Helfrich operator can predict significant
macromolecular deformations, which are controllable with two weight parameters, A and s
In contrast, existing normal mode analysis methods can only admit small deformations due
to the use of the harmonic potential.

Moreover, due to its continuous nature, the proposed Laplace—de Rham—Helfrich operator
can be easily employed for the Hodge mode analysis at any given scale. It can be directly
applied to the analysis of cryo-EM maps and other volumetric data at an arbitrary scale. One
specific example of potential applications is the analysis of subcellular organelles, such as
mitochondrial ultrastructure and endoplasmic reticulum.

Finally, the proposed Laplace—de Rham—Helfrich model is phenomenological in nature but
can describe physical observations. Like the Navier—Stokes equation for fluid mechanics and
the Ginzburg—Landau equation for superconductivity, Laplace—de Rham—Helfrich model is
not rigorously derived from the fundamental laws of physics or first principles.

2.2.6 Field Decomposition and Analysis—Our Laplace-de Rham operators
constructed from different boundary conditions can also perform vector field decomposition
tasks. Following the discussion of boundary conditions in Sect. 2.1, a Hodge decomposition
for a k~form bounded manifolds in 3D is constructed as ok = daf =1+ spf + 1 + n*, where

ok =1 is in the space of normal (k—1)-forms Q% =1, ¥+ 1 is in the space of tangential (k+1)-

forms, and AKis in H ]j. Moreover, H ]j is further decomposed based on boundary conditions

and a five-component orthogonal decomposition (Cantarella et al. 2002) is given as
o =dak =1+ 65T+ nF + nk + 4, (29)

where h{‘ is a tangential harmonic form, h,]; is a normal harmonic form, and 7 is central

harmonic form which is both exact and coexact. There are naturally various vector fields
existing in biomolecules, such as electric fields, magnetic fields, and elastic displacement
fields. De Rham—Hodge theory can help provide a mutually orthogonal decomposition to
investigate source, sink, and vortex features presented in those fields. An example of this
analysis is given in Fig. 10 for a synthetic vector field on a vacuolar ATPase motor, EMD
1590 (Muench et al. 2009). We expect this decomposition becomes more interesting for
biomolecular electric fields, dipolar fields, and magnetic fields. Various components from
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the decomposition can be naturally used as the components of machine learning feature
vectors. Moreover, each orthogonal component can be represented in the basis formed by
eigenfields of Laplace—de Rham operators, and the low-frequency coefficients can be used
as machine learning features as well. The following session illustrates an example of an
eigenfield representation, for the gradient of the reaction potential for molecular
electrostatics.

Electrostatics Analysis: Electrostatic interactions are of paramount importance in

biomolecular simulations due to their ubiquitous existence and vital contribution to force
fields. Two major types of electrostatic analyses are the qualitative analysis for general
electrostatic characteristics and the quantitative analysis for statistical, thermodynamic, and
kinetic observables. An important two-scale implicit solvent model for electrostatic analysis
is the Poisson—-Boltzmann (PB) model (Sharp and Honig 1990; Fogolari et al. 2002), in
which the explicit water molecules are treated as a dielectric continuum and the dissolved
electrolytes are modeled with the Boltzmann distribution. The PB model has been widely
applied in biomolecular simulations such as protein structures (Cherezov et al. 2007),
protein—protein interactions (Dong et al. 2003), pKa (Alexov et al. 2011; Antosiewicz et al.
1996; Nielsen and McCammon 2003), membranes (Zhou et al. 2010), binding energies
(Nguyen et al. 2017), and solvation-free energies (Wagoner and Baker 2006).

The Poisson—Boltzmann Model for a Solvated Molecule: The PB model is illustrated in
Fig. 11, in which the molecular surface I separates the solute domain Q; and the solvent

domain Q,. The molecule domain Q; consists of a set of atomic charges g located at atomic
centers x; for k=1, ..., N.. In domain Q,, a Boltzmann distribution describes the free ions.
For computational purposes, the Boltzmann term is often linearized.

Thus, the electrostatic potential ¢(x) here satisfies the linearized PB equation,

NC
—V ) VoX) + EXPX) = Y qd(x —x), (30)
k=1

where €(x) is the piecewise-constant dielectric function

ex) = @1

2

and & is the screening parameter with the relation - = e;x2, where x is the inverse Debye

length measuring the ionic length. The interface conditions on the molecular surface are

0 0
$100 = ). €200 _ 200 e @)

where ¢; and ¢, are the limit values when approaching the interface from the inside and the

outside domains, nis the outward unit normal vector on I', and the normal derivatives are
0g;

—, =1 Vi The PB model assumes the far-field boundary condition of lim|x|—00 ¢(x) =
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0. Taking interface I" as the solvent-excluded surface, the PB model is usually solved
numerically. Two types of methods have been developed: Grid-based finite-difference and
finite-element methods discretize the entire domain (Im et al. 1998; Honig and Nicholls
1995; Baker et al. 2001), such as MIBPB (Yu et al. 2007; Chen et al. 2011) and boundary-
element methods discretize only the molecular surface (Juffer et al. 1991; Liang and
Subranmaniam 1997; Vorobjev and Scheraga 1997; Lu et al. 2007; Geng and Krasny 2013).
We use boundary-element methods according to the same surface mesh used as the
molecular surface and the boundary for our volumetric manifold, for the simplicity of
calculating the reaction potential.

Solving PB Model and Reaction Potential: A well-conditioned boundary integral form of

PB implicit solvent model is derived by applying Green’s second identity and properties of
fundamental solutions to Eq. (30), which yields the electrostatic potential,

p(x) = /
r

0G (X,
P(x) = / l—GK(x, y)a(gi” + a;x Y ¢(y)]dSy, X € Qy, (33b)
r y

dp(y)  9Go(x.y) Ne
y oX,
on  ony ¢(Y)]d5y+ Z @Go(X, yi), X EQ,  (33a)

k=1

GO(X9 y)

where the Green’s function for Coulomb interaction is Gy(x,y) = m and the Green’s

e—KIxX—yl

e Then, applying the

function for the screened Coulomb interaction Gi(x,y) =

interface condition in Eq. (32) with the differentiation of electrostatic Potential in each domain
yields a set of boundary integral equations relating the surface potential ¢; and its normal
derivative, 0¢;/Onon T,

| ()
(L +e)di(x) = g Ki(x,y)—5,— + Ko, y)$1(y) [dSy + S1(x), x € I', (34a)
d 0
N5 = [|rmn™ SR+ kxpnmlos, + 0. xe T, o

where € = ey/€;. As given in Egs. (35a-35b) and (36), the kernels K] 5 3 4 and source terms
S}  arelinearcombinationsoftheCoulombandscreenedCoulombinteractions, and their first-
and second-order normal derivatives,

0G(x,y) 0Gy(x,y)

Ki(x.3) = Go(x.y) = Gr(x.Y), Kalx.y) = e—5 2 = =55, G50

2 2
Kixy) = L&Y 9 Gox.y) (35b)
B y) = ony ony onyony

0Gy(x.y)  10Gy(x.y)
dny € Ony

Ks(x,y) =

and the source terms S , are
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N¢

S1(x) = Z a%Go(X. Yi), Sa(x) =
L=

Ne 0Gy(x,
Z . 2G0x.y0 ol Yk) 36)

dny

Once the potential and normal derivaives of the potential on the boundary of Egs. (33a) and
(33b) are solved, the reaction potential @eac(X) = Hx) — S1(x) and for x € Q it is given as

Preac X) = /

Numerically solving boundary integral forms of the PB model requires speedup techniques,

Gofx. y/a¢f1y) aGo(X y)

oy )}dS (37

for which we directly apply the software package presented in Chen and Geng (2018). The
reaction potential describes the potential caused by the solvent and solute near their
interface. It is important to calculate the electrostatic solvation energy, given as

N .
AGgo) = %Z k < 1 9kPreac(Xk), Where N is the number of charges and gy are charges.

Eigenfield Decomposition: The 1-form electrostatic reaction field w is generated from the

gradient of the reaction potential V ¢, by taking line integral on each edge. Our goal is to

project w onto the eigenvectors of Hodge Laplacian by L,-inner products of Eq. (3). The
molecular surface I created by the solute and the solvent is considered as the boundary of
the volumetric manifold M. The space of &~forms Qi (M) is a Hilbert space equipped with
the aforementioned Z,-inner products. Therefore, the corresponding 1-form of the
electrostatic reaction field inside the molecule surface is in the space Q;(M). Moreover, as
shown in Eq. (29), aside from a harmonic component, the gradient of the reaction potential
is in the spaced of normal gradient fields, which is spanned by the eigenvectors
corresponding to the normal gradient fields. Represented in the basis formed by these
eigenvectors, the electrostatic reaction field (without the harmonic component) is a linear
combination of these eigenvectors. However, the coefficients are with only large absolute
values for certain modes, since dominant eigenmodes often exist due to the geometry
characteristics of the molecular domain. We illustrate the Hodge mode decomposition for
two examples. Table 2 shows the square of coefficients of sth eigenvector projected on the
electrostatic reaction field w as {w, ¢;)%, and their sums. The dominant eigenvectors for p—p
and n—p are the first and second eigenvectors, respectively, as shown in Fig. 12, in which the
eigenvectors are sorted in ascending order of their corresponding eigenvalues. As the
number of eigenvectors increases, the difference between the electrostatic reaction field and
the approximated electrostatic reaction field decreases. Table 3 shows another example with
four changes arranged in five ways as shown in Fig. 13. The first case has four positive
charges. The first Hodge eigenvector is the dominant mode among all the eigenvectors as
shown in Fig. 13. In the second and third cases, where two same type charges located in
either the top—bottom or right-left manner, the second and third Hodge eigenvectors
dominate their electrostatic reaction fields. The dominant Hodge eigenvector for the third
case is the forth Hodge mode. The last case illustrates a molecule that has three positive
charges and one negative charge, for which the first Hodge eigenvector is the dominant
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mode. In all cases, the accumulated contributions of the first 11 Hodge modes have a similar
magnitude. This method is readily applicable to the electrostatic reaction field analysis of
complex biomolecular systems and the general Hodge mode analysis of any biomolecular
vector fields.

3 Method Preliminaries

3.1

We provide the details for our design of computational tools, data structures, and parameters
in our implementation of the present de Rham—Hodge spectral analysis. Through efficient
implementation, our method is highly scalable and capable of handling molecular data
ranging from protein crystal structures to cryo-EM maps.

Simplicial Complex Generation

The domain of our Laplace—-de Rham operators is first tessellated into a simplicial complex,
which is a tetrahedral mesh in our 3D case. There are quite a few well-developed software
packages for tetrahedral mesh generation given a boundary with a surface triangle mesh as
input. We chose CGAL (computational geometry algorithm library) over others for its
superior control on element quality.

In theory, we can generate tetrahedral meshes with any highly accurate closed surface.
However, macromolecule complexes with atom-level resolution often make the output mesh
intractable with typical computing platforms. Moreover, a dense mesh is unnecessary for the
calculation of the low-frequency range of the spectrum. Thus, we produce a coarse
resolution with a spatial sampling density higher than twice the spatial frequencies
(wavenumbers, i.e., square root of eigenvalues of the Laplacians) of the geometrical and
topological features to be computed in the given biomolecule complexes.

For protein crystal structures, we tested the construction of the surface using only the C,
positions. First, a Gaussian kernel is assigned to each atomic position to approximate the
electron density. Then, a level set surface is generated to construct the contour of the protein
closely enclosing the high electron density regions.

For cryo-EM data, to produce a smooth contour surface, Gaussian kernels are associated
with data points. Other approaches, such as mean curvature flow (Bates et al. 2008; Zhao et
al. 2018), can be used as well. When dealing with noisy and densely sampled data, we can
carefully choose the level set that corresponds to a fairly smooth contour surface that
encloses the original cryo-EM data.

Given a volumetric data, we can either directly use CGAL to produce a tetrahedral mesh or
first convert it to a triangular surface mesh through the marching cubes algorithm, and use
that to generate a tetrahedral mesh. Different sampling densities are tested to meet typical
quality requirements while balancing computational cost and mesh quality.

3.2 Discrete Exterior Calculus

As a topological structure-preserving discretization of the exterior calculus on differential
forms, discrete exterior calculus (DEC) has been widely applied in recent years for various
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successful applications on geometrical problems and finite-element analysis, including
meshing and computational electromagnetics (Hekstra et al. 2016). It is an appropriate tool
for our de Rham—Hodge analysis of biomolecules, as all the related operations, including
exterior derivatives and the Hodge stars, are represented as matrices that preserve the
defining properties in the continuous setting. More precisely, the discrete exterior derivative
operators strictly satisfy Dy Dy =0, mimicking djydy= 0, and the discrete Hodge star
operators are realized by symmetric positive definite matrices. Hence, the discrete Laplace—
de Rham operators can be assembled using finite-dimensional linear algebra with the
aforementioned three distinct spectra.

To allow replication of our results, we recap our implementation of DEC (Zhao et al. 2019).
We start by a tetrahedral tessellation of the volumetric domain, i.e., a tetrahedral mesh,
which is the collection of a vertex set 7', an edge set &, a triangle set %, and a tetrahedron
set 7. The vertices are points in 3D Euclidean space; the edges/triangles/tetrahedra are
represented as 1-/2-/3-simplices, i.e., pairs/triples/quadruples of vertex indices, respectively,
and regarded as the convex hull of these vertices. We further choose an arbitrary orientation
for each k-simplex, which is an order set of &+1 vertices, up to an even permutation. We
denote an oriented k-simplex as

6 = [vg, U1, ---» Uk] - (38)

The boundary operator is defined as

k

do= Y (= D'[g. 01, es Dy .o 1], (39)
=0

where 0; means that the 7th vertex is omitted. Thus, the boundary operator will take all the 1-

degree lower faces of o with an induced orientation. We will take the following strategy to
handle orientation in the implementation. We usually assign each tet an orientation such that,
when applying the boundary operator, each facet has an outward pointing orientation. The
total boundary of the tet mesh conforms naturally with the surface with outward pointing
orientation. But for each edge and facet, we pre-assignan orientation by increasing indices of
incident vertices. In this case, we need to take care of the boundary operator when there is a
conflict between the pre-assigned orientation and the induced orientation. The algorithm for
calculating the cohomology basis of boundary operators is similar to the algorithm in
simplicial homology (Edelsbrunner et al. 2000). However, DEC needs further constructions.

Scalar fields are naturally encoded as 0-forms and 3-forms. A 0-form is the same with the
finite-element method such that the coefficients are sampled on vertices equipped with basis
functions. A 3-form is, different from a 0-form, stored per tet as volume integration of the
scalar field. Vector fields are naturally encoded as 1-form and 2-form. A 1-form is sampled
by the line integral on each oriented edge. A 2-form is sampled by surface flux on each
oriented facet. Whitney forms (Bossavit 1988) can help convert forms back to piecewise
linear vector fields on each tet, which can be used in, e.g., the construction of the operator G.
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We will store discrete k-forms as column vectors. Then, as mentioned before, all the discrete
operators can be formed as matrices applying on the column vectors. Then, we start to
construct discrete exterior derivative and discrete Hodge star matrices. Suppose we are
dealing with the discrete differential form dw on simplices o, according to Stokes’ theorem

/ w = f do, (40)
do c

dw is just an oriented summation of w on facets of o. So the discrete exterior derivative
operator Dy is just a matrix filled with —1, 0,1 (Fig. 14), depending on whether the pre-
assigned orientation is conforming with the induced orientation. The preservation of Stokes’
theorem is what guarantees the preservation of the de Rham cohomology, as the discrete de
Rham &-cohomology is isomorphic to the simplicial 7—khomology due to the boundary
operator, which is in turn isomorphic to singular &~cohomology and thus to the continuous
de Rham &-cohomology.

One can easily observe that the discrete exterior derivative operators for dual forms are
merely DZ. The discrete Hodge star operator .Sy is just converting primal form and dual form

back a forth by the following equation:
1 1
— | o=—— * . 41
o1 = e o “

Each primal element in the tet mesh has one corresponding dual element (Fig. 15). So the
discrete Hodge star operator is merely a diagonal matrix. Note that here we use a diagonal
matrix to approximate the Hodge star operator, where non-diagonal Hodge star with higher
accuracy can be applied as well. But a diagonal Hodge star is enough for our current
application. The diagonal Hodge star matrix just has diagonal entries as dual-element
volume over primal-element volume. For example, given a 1-form on each edge, applying
the Hodge star is turning the primal 1-form into dual 2-form stored on each dual facet. This
can be interpreted as we sample the vector field at the center of the edge. One way is to
compute the 1-form as the sampled vector integrated the primal edge as the line integral; the
other way is to compute the 2-form as the sampled vector integrated on the dual facet as
vector flux. So the transition can be encoded as a number of dual-element volume over
primal-element volume. See Fig. 16 for relations between differential forms and operators.

Once we have these related matrices for discrete operators, we are ready to construct the
Laplacian matrix Ly for k=0, ..., 3 as

Lo = D{S1Dy, Ly = D{ $,D; + 51DoS5 ' DG S,
(42)
Ly = D} S3D, + S,D, ST ' D 55, Ly = 83D,85 ' D s,

where Dy are pre-assembled discrete exterior derivatives, Si are discrete Hodge star matrices

and Ly correspond to *Ay. The assembly of Laplace—de Rham operators L are just starting
from primal &-forms, multiplying matrices along the circular direction as shown in Fig. 16.
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Note that the usual Hodge Laplacian matrix is not symmetric generally. In practice, we
usually left multiply by Hodge star to turn it into a symmetric one. After this, we need to
take care of the boundary conditions. Boundary condition treatment can be incorporated
when assembling d matrices. Recall that the d matrices are merely for creating an oriented
summation of discrete differential forms stored on simplices. We can just delete
corresponding columns and rows for boundary elements. We use Ly ;to denote Laplace—de
Rham operator with boundary elements and L , to denote those without boundary elements
(Demlow and Hirani 2014).

Finally, the spectral analysis can be done with a generalized eigenvalue problem in Eq. (8).
The smallest eigenvalues and their corresponding eigenvectors are associated with useful
low frequencies. In principle, large eigenvalues also contain useful information but are often
impaired by large computational errors. We use an eigensolver with parameter starting from
small magnitude eigenvalues.

4 Conclusion

The de Rham—Hodge theory is a landmark of twentieth-century mathematics that
interconnects differential geometry, algebraic topology, and partial differential equation. It
provides a solid mathematical foundation to electromagnetic theory, quantum field theory,
and many other important physics. However, this important mathematical tool has never
been applied to macromolecular modeling and analysis, to the best of our knowledge. This
work introduces the de Rham—Hodge theory as a unified paradigm to analyze biomolecular
geometry, topology, flexibility, and Hodge modes based on three-dimensional (3D)
coordinates or cryo-EM maps. Specifically, de Rham—Hodge spectral analysis has been
carried out to reveal macromolecular geometric characteristic and topological invariants with
normal and tangential boundary conditions. The Helmholtz—Hodge decomposition is
employed to analyze the divergence-free, curl-free, and harmonic components of
macromolecular vector fields. Based on the 0-form scalar Hodge—Laplacian, an accurate
multiscale model is constructed to predict protein fluctuations. By equipping a vector
Laplace—de Rham operator with a boundary constraint based on Helfrich-type curvature
energy, a 1-form Laplace—de Rham—Helfrich operator is proposed to predict the Hodge
modes of biomolecules, particularly cryo-EM maps. In addition to its versatile nature for a
wide variety of modelling and analysis, the proposed de Rham—Hodge paradigm also
provides a unified approach to handle biomolecular problems at various spatial scales and
with different data formats. A state-of-the-art 3D discrete exterior calculus algorithm is
developed to facilitate accurate, reliable, and topological structure preserving spectral
analysis and modeling of biomolecules. Extensive numerical experiments indicate that the
proposed de Rham—Hodge paradigm offers one of the most powerful tools for the modeling
and analysis of biological macromolecules.

The proposed de Rham—Hodge paradigm provides a solid foundation for a wide variety of
other biological and biophysical applications. For example, the present de Rham—Hodge
flexibility and Hodge mode analysis can be directly applied to subcellular organelles, such
as vesicle, endoplasmic reticulum, golgi apparatus, cytoskeleton, mitochondrion, vacuole,
cytosol, lysosome, and centrosome, for which the existing atomistic biophysical approaches
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have very limited accessibility. Additionally, features extracted from de Rham—Hodge
flexibility and Hodge mode analysis can be incorporated into deep neural networks for the
structure reconstruction from medium- and low-resolution cryo-EM maps (Haslam et al.
2018). Finally, due to its ability to characterize geometric traits and describe topological
invariants, the proposed de Rham—Hodge paradigm opens an entirely new direction for the
quantitative structure—function analysis of molecular and macromolecular datasets. The
integration of de Rham—Hodge features and machine learning algorithms for the predictions
of protein—ligand-binding affinity, protein—protein-binding affinity, protein-folding stability
change upon mutation, drug toxicity, solubility, partition coefficient, permeability, and
plasma protein binding is under our consideration.
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Illistration of tangential spectra of a cryo-EM map EMD 7972. Topologically, EMD 7972
(Baradaran et al. 2018) has six handles and two cavities. The left column is the original
shape and its anatomy showing the topological complexity. On the right-hand side of the
parenthesis, the first row shows tangential harmonic eigenfields, the second row shows
tangential gradient eigenfields, and the third row shows tangential curl eigenfields. The
credit for the leftmost picture belongs to Hayam Mohamed Abdelrahman
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Fig. 2.

Illistration of the normal spectra of protein and DNA complex 6D6V. Topologically, the
crystal structure of 6D6V (Jiang et al. 2018) has 1 handle. The left column shows the
secondary structure and the solvent-excluded surface (SES). On the right-hand side, the first
two rows show normal gradient eigenfields, and the last two rows show normal curl
eigenfields
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Fig. 3.

Illustration of Hodge Laplacian spectra. This figure shows the properties of three spectral

groups, namely tangential gradient eigenfields ( 7), normal gradient eigenfields (V), and curl
eigenfields (O), for EMD 8962 (Singh et al. 2018). a The original input surface and three
distinct spectral groups. b The cross-section of a typical tangential gradient eigenfield and

the distribution of eigenvalues for group 7. ¢ The cross-section of a typical normal gradient

eigenfield and the distribution of eigenvalues for group M. d A typical curl eigenfield and the

distribution of eigenvalues for group C. e The left chart shows the convergence of spectra in

the same spectral group due to the increase in the mesh size, i.e., the DoFs from 1000 (1K)

to 6000 (6K). Obviously, low-order eigenvalues converge fast (middle chart) and high-order

eigenvalues converge slowly (right chart)
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Fig. 4.

Ilustration of topological analysis. a Eigenfields by null space of tangential Laplace—de
Rham operators correspond to handles. b Eigenfields by null space of normal Laplace—de
Rham operators correspond to cavities

Bull Math Biol. Author manuscript; available in PMC 2021 May 20.



1duosnuely Joyiny 1duuosnuey Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Zhao et al.

Page 35

——2z5h T
6hus T
——5hy9 T
~= |-=-2z5hN

PO g 6hu5 N
- -5hy9 N
w2z8h C
6hu5 C
5hy9 C

0 20 40 60 80 100
Eigenvalue No.

Fig. 5.
[lustration of geometric analysis. The geometry of different molecules (PDB IDs: 2Z5H (a),

6HUS (b), and SHY9 (¢)) can be captured by three groups of different Hodge Laplacian
spectra with clear separations shown in d. Note that the color of the line plot corresponds to
the color of the molecules. The solid lines show the tangential gradient (T) spectrum, the
dashed lines show the normal gradient (N) spectrum, and the dot lines show the curl
spectrum (C). While there is a possibility that certain spectral sets may be close to each other
(see group T of proteins 6HUS and SHY?9), the other two groups of spectra (see groups N
and C of proteins 6HUS and SHY9) will show a clear difference. In addition, our topological
features will also provide a definite difference. For example, protein 6HUS has trivial
topology (ball), but protein SHY9 has a handle
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0 20 40 60 80 100 120 140 160

Fig. 6.
Ilustration of the procedure for flexibility analysis. We use protein 3VZ9 (Nishino et al.

2013) as an example to demonstrate our procedure from a to f. a The input protein crystal
structure. b That only C-alpha atoms (yellow spheres) are considered in this case. We assign
a Gaussian kernel to each C-alpha atom and extract the level set surface (transparent surface)
as our computation domain. ¢ That standard tetrahedral mesh is generated with the domain.
(Boundary faces are gray; inner faces are indigo.) We use a standard matrix diagonalization
procedure to obtain eigenvalues and eigenvectors. B-factor at each mesh vertex is computed
as shown in Eq. (22). d B-factor at the position of a C-alpha atom is obtained by the linear
regression using within the nearby region. (For the red C-alpha atom, the linear regression
region is colored as purple, which is within the cutoff radius.) e The predicted B-factors on
the surface. f The predicted B-factors at C-alpha atoms (orange), compared with the
experimental B-factors in the PDB file (blue). Our prediction for 3VA9 has the Pearson
correlation coefficient of 0.8081
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Fig. 7.

Statistics of the average Pearson correlation coefficient (PCC) with various parameters on
the test set of 364 proteins. Each plot has the same cutoff radius varying from 1.0 A to 6.0 A
with interval 1.0 A. In each plot, the level set value varies from 0.2 to 0.8 with interval 0.2
shown by different lines; the grid spacing varies from 1.6 A to 4.0 A with interval 0.4 A
shown in the horizontal axis
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Fig. 8.

Ill%lstration of B-factor prediction. We use proteins 1V70 (Hanawa-Suetsugu et al. 2004),
3F2Z, and 3VZ9 as examples to show our predictions compared with the experiments. The
red lines with triangles are the ground truth from experimental data. The blue lines with
circles are predictions with our method (EDH). The green lines with cubes are predictions
from Gaussian network method (GNM)
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Fig. 9.
Hodge modes of EMD 1258. The 0Oth, 4th, 8th, and 12th Hodge modes are shown
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Input Normal Gradient Tangential Curl Tangential Harmonic Central Harmonic

Fig. 10.
Biological flow decomposition. Illustration of a synthetic vector field in EMD 1590 that is

decomposed into several mutually orthogonal components based on different boundary
conditions
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Fig. 11.
The PB implicit solvent model. I is the molecular surface separating space into the solute

region Q and the solvent region Q,
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Fig. 12.
a The force field of two positive charges; b the first eigenvector; ¢ the force field of one

negative and one positive charge; ¢ the second eigenvector
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Fig. 13.
The first row shows the first five eigenmodes. The second row shows vector fields under

corresponding charge combinations
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| l
T
+1 -1

Fig. 14.
[lustration of orientation. The pre-assigned orientation is colored in red. Induced orientation

by 0 is colored in green. The vertices are assumed to have a positive pre-assigned
orientation. Therefore, the induced orientation from edge orientation is +1 at the head and
—1 at the tail. For a triangle facet, +1 is assigned whenever the pre-assigned orientation
conforms with the induced orientation, and —1 vice versa. A similar rule applies to tets
which obey a right-hand orientation with the normal pointing outward. Non-adjacent
vertices give 0
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Fig. 15.
[lustration of the primal and dual elements of the tetrahedral mesh. All the red vertices are

mesh primal vertices. All the indigo vertices are dual vertices at the circumcenter of each tet.
All the gray edges are primal edges. All the pink edges are dual edges connecting adjacent
dual vertices. The first chart shows the dual cell of a primal vertex. The second chart shows
the dual facet of the primal edge. The third chart shows the dual edge of the primal facet.
The last chart shows the dual vertex of the primal cell (tet)
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Fig. 16.
[lustration of cohomology. This figure illustrates the relation by exterior derivative and

Hodge star operators. The assembly of Laplacian operator Lk is just starting from primal &
forms, multiplying matrices along the circular direction
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The average Pearson correlation coefficient for predicting 364 proteins at cutoff radius 4.0 A. The overall best
average Pearson correlation coefficient is 0.580 (in bold), compared to that of 0.565 for GNM on the same

dataset (Opron et al. 2014)

Grid spacing (;\)
1.6 2.0 2.4 2.8 3.2 3.6 4.0
Level set 0.2 0574 0.572 0.569 0.564 0.536 0.508 0.498
04 0.580 0.579 0.578 0.573 0.561 0.547 0.534
0.6 0.574 0.574 0569 0.567 0.552 0.534 0.523
0.8 0.545 0.547 0535 0.513 0481 0417 0.389
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