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LOCAL WELL-POSEDNESS IN SOBOLEV SPACES FOR FIRST-ORDER
BAROTROPIC CAUSAL RELATIVISTIC VISCOUS HYDRODYNAMICS

FABIO S. BEMFICA*®, MARCELO M. DISCONZI***# AND P. JAMESON GRABER****

ABSTRACT. We study the theory of relativistic viscous hydrodynamics introduced in [15,58],
which provided a causal and stable first-order theory of relativistic fluids with viscosity in
the case of barotropic fluids. The local well-posedness of its equations of motion has been
previously established in Gevrey spaces. Here, we improve this result by proving local

well-posedness in Sobolev spaces.
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2 Barotropic viscous relativistic hydrodynamics

1. INTRODUCTION

Relativistic fluid dynamics is widely used in many branches of physics, including high-
energy nuclear physics [11], astrophysics [84], and cosmology [97]. Its power stems from
conservation laws, such as the local conservation of energy and momentum, which allow
one to investigate the macroscopic dynamics of conserved quantities without knowing the
fate of the system’s microscopic degrees of freedom. In other words, although the complete
behavior of physical systems is ultimately determined by the dynamics of its microscopic
constituents, one can bypass the usually intractable problem of solving the full microscopic
dynamics and work instead within the scope of the the so-called fluid approximation. The
latter is understood as a regime determined by energy scales where the system’s microscopic
constituents behave collectively as a continuum, which is then identified as a fluid [24]. While
there remain questions about the details of how to fully derive relativistic fluid dynamics from
an underlying microscopic theory [11,17,25,27,50,85], and rigorous mathematical results in
this direction are few [37,90], the overwhelming success of the relativistic fluid dynamics
more than justifies the importance of studying its mathematical properties. Furthermore,
from a purely mathematical point of view, relativistic fluid dynamics has also been a fertile
source of mathematical problems (see, e.g., [10,20-22,34,84] and references therein).

The first works on relativistic fluids go back to the early days of relativity theory with
the works of Einstein [36] and Schwarzchild [87]. The first general' mathematical treatment
of relativistic fluids was done by Choquet-Bruhat [39] and Lichnerowicz [65]. Such works,
as well as most of the studies in relativistic fluid dynamics since then, focused on perfect
fluids, i.e., fluids where viscosity and heat dissipation are absent?. The equations describing
relativistic perfect fluids are the well-known relativistic Euler equations.

There are, however, important situations in physics where the relativistic Euler equations
are not appropriate, and a model of relativistic fluids with viscosity is needed. One such
situation is in the study of the quark-gluon plasma, which is an exotic type of fluid forming
in collisions of heavy ions performed at the Large Hadron Collider (LHC) at CERN and
at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Its
discovery was named by the American Physical Society one of the 10 most important findings
in physics in the last decade [1] and continues to be a source of scientific breakthroughs
[6,60]. For the quark-gluon plasma, it is well-attested that theoretical predictions do not
match experimental data if viscosity is not taken into account [49,85]. Another case, where
viscosity is likely to play an important role, is in the study of gravitational waves produced by
neutron star mergers, which have been detected by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [2-5,8]. Recent state-of-the-art numerical simulations [7,88, 89
convincingly show that the post-merger gravitational wave signal is likely to be affected
by viscous effects. Thus, one has two of the most cutting-edge experimental apparatuses
in modern science (LHC and LIGO) producing data that requires relativistic fluids with

1By “general” we mean outside symmetry classes or beyond one spatial dimension. With symmetry or in

1+ 1 dimensions, the equations of relativistic fluid dynamics studied by Choquet-Bruhat and Lichnerowicz
reduce to equations for which earlier techniques could have been applied, although it seems difficult to locate
in the literature specific applications of such known techniques to the equations of relativistic fluids under
symmetry assumptions or in one spatial dimension.

2The literature on this topic is quite large and an appropriate review is beyond the scope of this work. See
the literature cited in the first paragraph of this introduction and references therein for further information.
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viscosity for its explanation®. But despite the importance of relativistic viscous fluids, many
essential questions remain unanswered and very little is known about their mathematical
properties.

Unlike the case of perfect fluids, it remains open what the best model for the description
of relativistic viscous fluids is*. This is because it is challenging to construct theories of
relativistic viscous fluids that are (i) causal, (ii) stable, and (iii) locally well-posed [84].
Causality is a fundamental property of relativity stating that no information propagates
faster than the speed of light. Stability here means linear stability about constant equilibrium
states, i.e., mode stability, which on physical grounds is expected to hold when viscous
dissipation is present. Local well-posedness assures that the equations of motion admit a
unique solution, a crucial property for physical models®. One requires (i) and (iii) to hold
both in a fixed background and when the fluid equations are coupled to Einstein’s equations,
whereas (ii) is usually required only in Minkowski background (thus, all references to stability
in what follows refer to the equations in Minkowski space).

The first theory of relativistic viscous fluids was introduced by Eckart [35], followed by
a similar theory by Landau and Lifshitz [61]. While these theories can be viewed as the
simplest generalization of the classical Navier-Stokes equations to the relativistic setting,
they have been showed to be acausal and unstable [52,81]. The Miieller-Israel-Stweart theory
originally introduced in the references [54,55,72] is an attempt to overcome the acausality and
instability of the Eckart and Landau-Lifshitz theories and is based on extended irreversible
thermodynamics [57,73]. In this formalism, viscous and dissipative contributions to the
fluid’s energy-momentum tensor are not given in terms of standard hydrodynamic variables,
which are the fluid’s velocity, energy density, baryon density, and quantities derived from
these®. Rather, in extended thermodynamic theories, viscous and dissipative contributions
are modeled by new variables, commonly referred to as extended variables, which satisfy
further equations of motion. In the original works of Miiller, Israel, and Stewart, such
equations of motion were chosen in order to enforce the second-law of thermodynamics. In
modern versions of the Miller-Israel-Stewart theory”, the equations of motion are derived
from microscopic theory or are based on effective theory arguments (see below for further
remarks on the derivation of fluid equations from microscopit theory) [11,27,86]. Theories
where viscous or dissipative effects are modeled solely by the hydrodynamics variables are

3Although it is not claimed that all the data generated in these experiments can only be explained with
viscosity.

4t is interesting to notice that the generalization of the classical Navier-Stokes to a general Riemannian
manifold is also somewhat problematic, and there are different possible choices for the equations, see [18].

®Local well-posedness is also important in the study of convergence of numerical schemes. The relation
between local well-posedness and convergence is subtle and a discussion of this topic is outside the scope of
this work. Interested readers can consult [47] and references therein. This is an important topic since many
studies of realistic physical systems do rely on numerical computations.

6Given an equation of state, whose form depends on the nature of the fluid, all thermodynamic scalars
(such as energy density, entropy, temperature, pressure, etc.) are related via the laws of thermodynamics
and only two of them are independent. Absent phase transitions, all such relations are invertible and the
choice of which two thermodynamic scalars are independent is a matter of convenience.

"Strictly speaking, these modern derivations do not exactly reproduce the original Miiller-Israel-Stewart
equations, but are close enough so that it has become common practice to still call them Miiller-Israel-
Stewart, although sometimes they are also referred by another names (re-summed [11] BRSSS or DNMR
[27,86]). All such theories are based on extended variables and behave very similarly when it comes to issues
of stability and causality, so that it does not seem important to distinguish them here.
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4 Barotropic viscous relativistic hydrodynamics

known as first-order theories, whereas those where such effects are modeled by extended
variables are known as second-order theories [84].

The Miiller-Israel-Stewart theory has been proved to be stable and its linearization about
constant equilibrium states is causal [51,77]. Furthermore, it has been extensively applied to
the construction of successful phenomenological models of the quark-gluon plasma [49, 85].
Consequently, the Miiller-Israel-Stewart theory is currently the most used theory for the
description of relativistic viscous fluids. More recently, it has been proved that the Miiller-
Israel-Stewart theory with bulk viscosity® (but with no shear viscosity nor heat conduction)
is locally well-posed and causal in the full nonlinear? regime, both in a fixed background
and when the equations are coupled to Einstein’s equations [14] (see [26,38,82] for earlier
causality results also valid in the nonlinear regime but under strong symmetry assumptions
or in 1 + 1 dimensions). A similar causality and well-posedness result is valid in Gevrey
spaces when shear viscosity is present [12].

Its great success nonetheless, it is far from clear whether the Miiller-Israel-Stewart theory
provides the most accurate description of relativistic viscous fluids over all scales where the
fluid approximation is supposed to hold and viscous effects expected to be relevant. For
instance, it is not known whether the Miiller-Israel-Stewart equations can be applied to
the study of neutron star mergers [7,71]. Moreover, the mathematical foundations of the
Miiller-Israel-Stewart are for the most part lacking, with the aforementioned results [12, 14]
being the only ones available in the literature. Finally, the Miiller-Israel-Stewart equations
do not seem capable to describe the dynamics of shock waves or more general types of fluid
singularities [30,44,78]. In view of these limitations, there is a strong interest in searching
for alternative theories of relativistic viscous fluids [58].

The instability results that ruled out the Eckart and Landau theories are in fact applicable
to a large class of first-order theories [52]. Consequently, for a long time it was thought that
first-order theories were intrinsically unstable (see discussions in [58,84,92-96]). Neverthe-
less, in recent years this perception has been shown to be overstated, with several different
results showing the viability of first-order theories. In [28], causality and local well-posedness
(in Gevrey spaces) of the Lichnerowicz theory has been established in the case of irrotational
fluids with or without coupling to Einstein’s equations, a result that has been slightly im-
proved in [23]. The Lichnerowicz theory is a first-order theory introduced in [64] and which
has led to interesting applications in cosmology [32,33]. However, it remains open whether
Lichnerowicz’s theory is stable. In [13] a first-order theory of relativistic viscous conformal
fluids has been introduced based on kinetic theory. Its stability, causality, and local well-
posedness (in Gevrey spaces when the equations are coupled to Einstein’s equations and
in Sobolev spaces when the equations are considered in Minkowski background) has been
proven in the works [13,16,29] , and applications relevant to the study of the quark-gluon
plasma have also been developed [13]. In [41-43] (see also [40]) a first-order theory has been
introduced for which stability holds in the fluid’s rest frame. This leads to the possibility that

8As in the case of classical fluids, there are generally two types of viscosity in relativistic fluids, namely,

shear viscosity and bulk viscosity. Also as in classical fluids, heat conduction is present in relativistic theories
of non-perfect fluids. Since these are all phenomena associated with out-of-equilibrium physics, for simplicity
we will henceforth refer to all of them simply as “viscous,” making no distinction between viscosity and heat
conduction effects.

9Talking about causality in the “nonlinear regime” is redundant in that the equations of motion are
nonlinear. However, this language is sometimes used in the literature to make a contrast with earlier and
more common causality results that apply only to the linearization of the equations about constant solutions.
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such theory might be stable and causal, although it is known that stability in the rest frame
is not enough to ensure stability in general [52]. Earlier first-order theories for which stability
has also been established can be found in [95,96]. Aside from all these results concerning
first-order theories, further causality, stability, and local-wellposedness results have been es-
tablished in the context of the so-called divergence-type theories [44, 45, 62,66, 73,79, 80],
which constitute examples of second-order theories different than the Miiller-Israel-Stewart
theory (see also [59,74,83]). We also mention the so-called anisotropic hydrodynamics [9],
which is a stable second-order theory that has been very successful in studies of the quark-
gluon plasma, although to the best of our knowledge there has been no results showing
causality or local well-posedenss for anisotropic hydrodynamics.

The previous discussion highlights not only the importance of investigating relativistic
fluids with viscosity but also how its study is a very active field of research, with some of
the most basic questions, namely, causality, stability, and local well-posedness, remaining
largely open. This paper is concerned with the well-posedness of the Cauchy problem for the
first-order theory of relativistic fluids defined by the energy-momentum tensor (2.1) below.

This energy-momentum tensor was introduced simultaneously in [15] and [58] using effec-
tive field theory arguments. In [15] a kinetic theory derivation (at zero chemical potential)
was also given, while [53] discussed the necessary modifications that stem from the inclusion
of a conserved current. Under the assumption of a barotropic equation of state (i.e., when
the pressure is a function of the energy density only), the stability of the corresponding
equations of motion has been established in these works, whereas in [15] causality and local
well-posedness of the equations of motion has also been proven. Such local well-posedness has
been established in Gevrey spaces with and without coupling to Einstein’s equations'®. Our
goal in this manuscript is to improve this result by proving local well-posedness in Sobolev
spaces. However, contrary to [15], here we do not consider coupling to Einstein’s equations,
restricting ourselves to the case where the evolution takes place in Minkowski space.

We finish this introductions with two explanatory remarks. First, the question of the
correct theory of relativistic viscous fluids cannot be decided solely by considerations from
microscopic theory. This is because the same underlying microscopic theory can give rise to
different, inequivalent, fluid approximations depending on the chosen coarse-graining proce-
dure [24,27]. Second, above we referred to numerical simulations that show the importance
of viscous effects in neutron star mergers [7]. We remark that these simulations do not nu-
merically solve models relativistic fluids with viscosity, relying rather on estimates for the
relevant transport scales and the size of gradients of the hydrodynamic fields determined
in an inviscid evolution. Indeed, as hinted above, it is not yet known which, if any, of the
current models of relativistic viscous fluids is appropriate to describe neutron star mergers.

Acknowledgments: We are grateful to Magdalena Czubak for discussions.

2. EQUATIONS OF MOTION AND STATEMENT OF THE RESULTS

The energy-momentum tensor that defines the first-order theory of relativistic viscous
fluids studied here (introduced in [15, 58], see discussion in the introduction) is given by

Tap = (6 + A1) uqug + (P + A2)MNap — 2n0ap + ua@p + upQa, (2.1)

1011 fact, a slightly weaker statement has been proved in [15], but this does not change the overall theme

discussed here nor the goal of this manuscript. See Remark 7.1.
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where
u*V €
A = 2 Vau®,
1= X1 .y + X2Vl
u*V e
Ay = Va a,
2 = X3 -+ P + X4 Vall
2
Qo = ?\(8 n Pngvﬂa + u"'V, u,),

1 2
Oup = §(|_|Zv“ug + l—lgvuua — gl_lagvuu“).

Here, ¢ is the fluid’s energy density; P is the fluid’s pressure, where we assume a barotropic
equation of state, thus P = P(g); g is the spacetime metric''; u is the fluid’s four-velocity,
which is future-pointing and unit timelike with respect to g, so in particular u satisfies the

constraint
Gapuu’ = —1. (2.2)

Notice that we are assuming the spacetime to be time-oriented as u is taken as a future-
pointing vectorfield. In practice, we will work in Minkowski space with standard orientation;
Il is the projection onto the space orthogonal to u, given by

I_Ia,B = GJap + UaUg;

1, X1, X2, X3, X4, and A are transport coefficients, which are known functions of ¢ and model
the viscous effects in the fluid; and V is the covariant derivative associated with the metric
g. Indices are raised and lowered using the spacetime metric. We adopt the convention that
lowercase Greek indices vary from 0 to 3, Latin indices vary from 1 to 3, and repeated indices
are summed over their range. Expressions such as z,, wag, etc. represent the components of
a vector or tensor with respect to a system of coordinates {z*}?_, in spacetime, where the
coordinates are always chosen so that 2° = t represents a time coordinate. We will consider
the fluid dynamics in Minkowski background, so that the g is the Minkowski metric. We
note for future reference that equation (2.2) implies

u*Vgu, = 0. (2.3)
The equations of motion are given by
va%a =0 (24)

supplemented by the constraint (2.2).
We are now ready to state our main result, which is the following,.

Theorem 2.1. Let g be the Minkowski metric on R x T3, where T® is the three-dimensional
torus. Let P,m,X1,X2, X3, X4, A : (0,00) = (0,00) be analytic functions satisfying A, x1,n > 0,
P>0,c:=P >0, and

INIXaet + 6AC (X1 (40 — 3x4) (2A + X2) + 3X2Xs (A + X2))

+ (X1 (40— 3x4) +3xs A +X2)) 2 > 0,
A=,
3xa > 4m,

11By “metric” we always mean a “Lorentzian metric.”
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dn
2AX1 > AX2C: — X1 (X4 - ?) + AX3 + X3Xe,

4 4
Ax1 + A (X4 - ?ﬂ) > A2 + AX3 + X2X3 — X1 (X4 - gﬂ) > 0.
Let g € HT(T?’,R), g € Hr_l(Tg,R), Uy € HT(T?’,R?’), and Uy € Hr_l(T?’,]Rg) be
given, where H" is the Sobolev space and r > 9/2. Assume that gy > Cy > 0 for some
constant Cy.
Then, there exists a T > 0, a function

e € C%0,T), H"(T? R)) n C*([0,T], H (T3, R)) N C*([0, T], H"*(T* R)),
and a vector field
u € C°([0, T], H™(T?,R*)) n C*([0, T], H™ (T, R*)) N C*([0, T], H"*(T* R"))

such that equations (2.2) and (2.4) hold on [0,T] x T?, and satisfy €(0,-) = 0y, 9e(0,-) =
e@y, Pu(0,-) = wy, and Pou(0,-) = ugy, where 0y is the derivative with respect to the
first coordinate in [0,T] x T and P is the canonical projection from the tangent bundle of
[0, 7] x T3 onto the tangent bundle of T®. Moreover, (¢,u) is the unique solution with the
stated properties.

We proceed to make some comments about the assumptions and conclusions of Theorem
2.1.

We note that in view of (2.2), it suffices to provide the components of u tangent to {t = 0}
as initial data; this explains the statement involving the projector P in Theorem 2.1. On
the other hand, throughout the manuscript, we will consider systems of equations for the
full four-velocity v = (u®, u', u?, u?). In these cases, we will always take the initial condition
for u defined by (2.2) and (2.3) when (u', u? u?®) takes the values of the given initial data.

The quantity ¢? corresponds to the fluid’s sound speed in the case of a perfect fluid. In the
presence of viscosity, the fluid’s sound speed is no longer given by 2 (see section 7.2 for a
description of the characteristic speeds of the system), but it is still convenient to introduce
c2. We work on T? for simplicity, since using the domain of dependence property (proved
in [15]) one can adapt the proof to R®. On the other hand, the assumption g > Cy > 0 is
essential. The equations can otherwise degenerate, resulting in a free-boundary dynamics,
a problem that only quite recently was solved for the case of a perfect fluid [31,70,76] (see
[46,48,56,75,91] for earlier work focusing on particular cases or a priori estimates).

The assumptions on P, 1, X1, X2, X3, X4 and A in Theorem 2.1 are precisely the conditions
found in [15] that ensure the causality and stability of the equations of motion. Although
these conditions are a bit cumbersome to write, it is not difficult to see that they are not
empty. Moreover, given a specific choice of equation of state and transport coefficients, it is
generally not difficult to verify whether such conditions are satisfied.

The idea behind the proof of Theorem 2.1 can be summarized as follows. First, we use (2.2)
and (2.3) to decompose (2.4) in the directions parallel and orthogonal to u, as it is customary
in both the cases of perfect and non-perfect relativistic fluids. Next, we construct new
variables out of certain combinations of u, €, and its derivatives, and rewrite the equations
of motion in terms of these new variables. We then show that, under the hypotheses of
Theorem 2.1, the principal symbol of the new system of equations can be diagonalized.
This diagonalization procedure can be carried over to the equations of motion upon the
introduction of suitable pseudodifferential operators. The pseudifferential calculus is needed
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8 Barotropic viscous relativistic hydrodynamics

because the diagonalization of the principal symbol involves certain rational functions of the
eigenvalues and of the determinant of the principal symbol. Due to the quasilinear nature
of the problem, we have to deal with symbols of limited smoothness. Nevertheless, we are
still able to obtain good energy estimates for a linearized version of the problem that can
be used to set up a convergent iteration scheme, leading to existence and uniqueness of
solutions to the new equations of motion we introduced. At this point, we need to show
that this result gives rise to existence and uniqueness of solutions to the original equations of
motion, i.e., (2.2) and (2.4). To do so, we need to derive yet another system of equations that
ensures that the constraint (2.4) is satisfied. For this new system, solutions are obtained
in a more restrictive class of functions, namely, Gevrey functions. Since these are dense
in Sobolev spaces, we finally obtain existence and uniqueness for the original problem, in
Sobolev spaces, by an approximation argument.

Before providing a proof of the main result, it is instructive to compare the structure of
equations (2.4) with the energy-momentum tensor given by (2.1) with that of the equations
obtained in the case of a perfect fluid, i.e., with the relativistic Euler equations. For this, we
rewrite (2.1) as

2
7;5 = EULUB + Pﬂaﬁ — n(ﬂgvuuﬁ + I'Igvuua — gnaﬁvuuﬂ)
2 2

CS CS
+ Ma(g n Pngvue + u'V ug) + Auﬁ(g ~5

utV e utV e

P 5 p e XVt T
The first two terms on the RHS correspond to a perfect fluid, whereas all remaining terms
correspond to viscous contributions, i.e., the energy-momentum tensor for a relativistic per-
fect fluid is obtained upon setting 1 = A = x; = X2 = X3 = X4 = 0 in the above expression.
This highlights two important facts. First, the viscous dynamics is significantly more com-
plext than the non-viscous one. Second, and more importantly, the terms multiplied by n, A,
Xi, ¢ = 1,...,3, involve first derivatives of u and €, whereas the first two terms on the RHS,
which correspond to a perfect fluid, involve no derivatives of these variables. Therefore, the
equation of motion obtained from (2.4) are of second-order when viscous effects are present
but of first-order when they are absent. This means that the introduction of viscosity not
only increases the complexity of the equations of motion as compared to those of a perfect
fluid, but it also changes the order of the system. In particular, the principal part of the
viscous system vanishes identically upon settingn = A = x; = X2 = X3 = X4 = 0. Conse-
quently, one generally cannot obtain a solution to the perfect fluid equations by carrying out
a proof in the viscous case and then settingn = A =x1 = X2 = X3 = X4 = 0, as the time of
existence for the viscous solutions will typically depend on these coefficients.

NEY e + UV )

+ X1 g + X2V utugug + X3

3. A NEW SYSTEM OF EQUATIONS

In this section we derive a new system of equations that will allow us to establish Theorem
2.1. In order to do so, throughout this section, we assume to be given a sufficiently regular
solution to equations (2.2) and (2.4).

We begin using (2.2) to decompose V,T5" in the directions orthogonal and parallel to u,
so that equation (2.4) gives

UVaAl + VoQ¥ + (e + P+ Ay + A)Vou® + uVoe — 21100‘50&5
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+ Qau’Vgu® =0, (3.1a)

NV 34 + u’VQ* — 2V 0?4 (¢ + P + Ay + A)u’ Vgu® + 2NV 5e — 20°°V m

+ 2uno" o, + QBV5u“ — u“Qﬁu“VMw + Q“Vguﬁ =0. (3.1b)
Define

S.P =NtV P,

S* = u'V, u,

utV e
e+ P’
@ . naﬁVﬁE
e+ P’
so that
X1 VoV + AV V +AV,SY + xu*V, S, + 1 =0, (3.2a)
X3V oV 4+ AUV V4 MOV S* + B, "V 08,7 + 19 = 0, (3.2b)
—MHV YV +u*V o VF + 13 =0, (3.2¢)
u*VoS, " —MV,S" + 14 =0, (3.2d)
u*Vae +15 =0, (3.2¢)
u'V u* +reg =0, (3.2f)
where
Ao 2n a g a Asa
BI/M = (X4+?)n“ 51/ _T](n 65+I—|M 51/)
Above, 1;, ¢ = 1,...,6 are analytic functions of V, V¥, S”, S,\”, ¢, and u®; no derivative of

these quantities appears in the r;’s.

We now provide details on the derivation of (3.2). Equations (3.2a) and (3.2b) are equa-
tions (3.1a) and (3.1b), respectively; equations (3.2¢) and (3.2f) are simply the definition of
V and S¥; equations (3.2c) and (3.2d) follow from contracting the identities

V,V,e =V, V,e=0,
V.V,u* =V, V,u® = RW"‘Au’\ =0,

with v* and then with [15. We also used the identity
Vi’ = —u,S? + SQ'B.

We write equations (3.2) as a quasilinear first order system for the variable
\Il - (V, VV, SV, SO V, Sl V, SQ V, S3 V, 8, uy) as

AV, W+ R =0, (3.3)
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where R = (rq,...,7) and A% is given by

Aa

xluo‘ AC?@S 7\63 Xguaég Xguaéll/ Xguaéz Xguaéi 0 01><4-
e ACueT, Aul, B9 Bowa B oma pousa 0,
—neeuly O4xa O4x4 O4x4 O4xa4 Osxa  Osx1 Ogxa
O4x1 Osxa  —NGLy  u®ly O4x4 O4x4 Osxa  Osx1 Ogxa
Oax1 Oaxa  —NFLs Ogxa u*ly O4x4 Osxa  Osx1 Ogxes |,
04><1 O4><4 —|_|5‘—74 04><4 04><4 uaI4 04><4 04><1 04><4
04><1 O4><4 _H§I4 04><4 04><4 04><4 uaI4 04><1 04><4
0 O1x4 O1x4 O1x4 O1x4 O1x4 Oixa  u®  Oixs
04><1 O4><4 04><4 04><4 04><4 04><4 04><4 04><1 ua]4_

where 0,,x,, is the m x m zero matrix and I,,,x,, is the m X m identity matrix. Equation
(3.3) is the main equation we will use to derive estimates.

4. DIAGONALIZATION

For everything that follows, we work under the assumptions of Theorem 2.1.

Remark 4.1 (Silent use of (2.2) and (2.3)). Throughout our computations, we will make
successive use of equations (2.2) and (2.3) without explicitly mentioning them.

Proposition 4.2. Let & be a timelike vector and assume that A, x1,n > 0, and

Then:

Ap = IN*x3ct + 6AcE (X1 (4n — 3x4) (2A +X2) + 3x2xs (A +X2))

+ (x1 (40 = 3x4) +3x3 A +x2)) 2 > 0, (4.1)
AZ>m,
3x4 > 4m,
2 4n
2AX1 > AX2C: — X1 | X4 — EY + Axs + X3Xe2, (4.4)
9 4n 9 4
Axa + A [ xa — 3 )z CEAX2 + AX3 4+ XoXs — X1 | X4 — 3n) =0 (4.5)

(i) det(A“E,) # O,
(ii) For any spacelike vector C, the eigenvalue problem A*((, + A&L)V = 0 has only real
eigenvalues A and a complete set of eigenvectors V.

Proof. Let Z,, be any co-vector and a := u®Z,, b* := MN*’=4, and D, ** := B, #*=,. Also,
consider the superscript p labeling rows while the subscript v labels columns. Then

—b* aly Osxa  Osxa Osxa Osxa Osxa Ogxr Ogxs

04><1 04><4 _50[4 Cl]4 04><4 04><4 O4><4 O4><1 O4><4

det(24A%) =det | Ogx1 Osxa =01y Ogxy aly Osxa Osxa  Osx1 Ogxa
04><1 04><4 _bQI4 04><4 04><4 a]4 O4><4 O4><1 O4><4

Oax1 Oaxa  —bsly Osxa Osxa Osxs aly  Ogxr Osxa

0 O1x4 O1x4 O1x4 O1x4 O1x4 O1x4 a O1x4

[x1a ACE,  AZ,  x200% %208l x0a82 x2a83 0 01x4]
ng“ 7\0?&[4 )\Cl[4 DV‘MO Dyul l),/“2 DV”3 O4><1 O4><4

1 0as1 Oaxa Ouxa Ouxa Osxa Osxa Osxa Ouxq aly |
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Cx1a ACCE,  AZ,  x2a8% x0a8l x0ad? x2ad3]
ngﬂ 7\C§Cl14 ?\aI4 DVMO Dyﬂl DVMQ DVN3
—b* al, O4x4 O4x4 O4x4 O4x4 O4x4
=a’ det 0451 Osxa  —boly aly O4x4 O4x4 O4x4
Oax1 Ogna =01y Oges aly  Ogs Ogns
Osx1 Ogxa —boly Ogxq Oguq aly Ogug
[ O4x1 Ogxa —b3ly Ogss Ogxa Oguq aly |

xia  APE, A=, + X2b,
=a'det [xzab® Ac2a’ly Aa’ly+ D,"by
—b# Cl]4 O4><4
:a_14 det (A2 +x3)a?l;  Aa’l; + D, " by
X3 a?x1 Iy + AE, b4 (AZ, + x2b,)b"
Cl14
=—det((Ac2 + x3)a®(AZ, + X2b,)b" — (a°x16% + A2E,b")(Aa®67 + D, 7*by))
1
14

2
=3<—3 det(x10*(Aa® —nbba) Ly + (x4 + gn)(eﬂx1 + Ab%b,) — (A2 + X3)x20%)b"b,,
1
— (@®(xam + X3) + 2Anc26%b,, ) b1, )
=a*(Aa® — 160, ) (A(x10° — X3b“ba)a? — Xa(Xs + Ac?)a’bb,

4
+ (x10% 4 A2 (x4 — gbﬁbg)b“ba)

=Mxa [ (WEa)* = BNPEaEp)™, (4.6)

a=1,2,+

where n; =10, no =3, ny =1, f; =0, and

52 = %]7
32 +xa (4N — 3x4) +3x3 A+ x2) £ VAp
Be = : (4.7)

6AX1

The Ap in (4.7) is defined in (4.1) and S+ corresponds to two distinct real roots whenever
(4.1) is observed. We made successive use of the formula

M, M,
Ms M,

and also used the identity det(AIy + Bbtb, + Cb'E,) = A3(A + (B + C)b*b,), where
b#Z,, = brb, = M%5Z,Z,.

We now verify condition (i). Set ¢ = 0 in the above, so that =, = &,, where £*¢, =
—(u?&q)% + NPELE < 0, from (4.6) one obtains that det(A“E,) # 0 if A, x; # 0 and

0<B., <1l a=12+. (4.8)

det [ } = det(M,) det (M, — MsM; ' M),

Since 8; = 0, (4.8) is satisfied. As for [y, (4.8) is satisfied whenever (4.2) is obeyed and
A,m > 0. Condition (4.1) and x; > 0 guarantee that S are real and distinct with f_ < 3,
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while (4.3) sets 5_ > 0 and (4.4) together with (4.5) assure 5, < 1. Then, statement (i) in
the Theorem is proved.

The eigenvalues in (i) are the roots of (4.6) by setting = = ¢ + A&. Reality of the
eigenvalues A are obtained by studying the roots of the polynomials (u®Z,)? — BNYZ,Zp
that appears in (4.6). The roots of (u®Z,)? — BMN*Z,Z5 = 0 are, for each one of the s,

As = (—ulQuur &y + BIPELG, + VW) /((u'E,)* (1 — B) — BEE,), (4.9)
where

W = B(((w'€,)* = M E,E,) (NP Calp — (uCa)?) + (W Euu” ¢, + THELC,)?
+ (1= B)(MEENYCals — (MELE)%)).

We note that these roots are always real when 0 < < 1 because I'IaﬁEO‘E,ﬂ < (&auo‘)Q,
MNapl®CP > (Cou®)?, and (MME,C,)? < MMELE,N*PC,Cs. Then, the conditions expressed in
equations (4.1)—(4.5) give real eigenvalues A.

We now turn to the problem of the eigenvectors for each eigenvalue. We ended up with the
root A for f; = 0 with multiplicity 20, the roots As 4 for S =n/A with multiplicity 3 each,
and Ay 1 for By given in (4.7) with multiplicity 1 each. The complete set of eigenvectors
must contain 30 linearly independent eigenvectors.

The roots Ay 4 are obtained from (4.9) with § = [ and contains 4 linearly indepen-
dent eigenvectors since they are 4 distinct eigenvalues Ay . The remaining 26 eigenvectors
appears as follows:

(u*Z4)?° = 0 gives

u®Co

A= ——2
1 uﬁﬂg

There are 20 corresponding linearly independent eigenvectors given by

_09><1_
07 [owa] 1 i
wY 1 |: 26><1:| 1
K ) ) ,Ul]/ 7 f211 7
025><1 04><1 fz/
2
_05><1_

where vY, I = 1,2,3,4, are any 4 linearly independent vectors in R* w! = {u* wh, wh}
are the three linearly independent vectors of R* that are orthogonal to (, + A1&,, and f¥
totalizes 16 components that define the entries in the last vector. However, since these 16
components are constrained by the 4 equation D, **f¥ = 0, we end up with 12 independent
entries. Then, 4 + 1 4+ 3 + 12 = 20, which equals the multiplicity of the root A;.
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((u*Zq) — B2N*PE,E5)? = 0, where the roots Ay 1 are given by (4.9) with § = 8, = 1. Each
one of these 2 roots has multiplicity 3. The corresponding eigenvectors are

where ay = u*({o + Ao 2&a), (b)) =N (g + Ay 1&p) (so that at = Bo(by)”(bs),),

N(EL)a(EL)® = (X4 + F)(01)a(Er)®

Oy
€2 (by )

at
EY
(b+)oEY
a4
(b2 )1 EY
at
(b1)2EY
at
(b+)3EY
at
05x1

Cy =

()\C? + Xg) a4

where =4 = (4 Ag 1 &, and E; obeys the following constraint

n

(A(Ei)a + XQ(bi)a + }\2

(A +xm)(M(Ex)a — (

2
X4+?n

Y

)(b1)a)(E£)* = 0.

Thus, the eigenvectors are written in terms of 3 independent components of (E1)* for each
root, giving a total of 6 eigenvectors.

From the above Proposition, we immediately obtain:

O

Corollary 4.3. Assume that A,x1,m > 0 and that (4.1), (4.2), (4.3), and (4.5) hold. Then,

the system (3.3) can be written as

(4.10)

where A" = (A°) A" and R = —(A°)"'R, and the eigenvalue problem (A'¢; — AI)V = 0

possesses only real eigenvalues A and a set of complete eigenvectors V.

5. ENERGY ESTIMATES

5.1. Preliminaries. We begin introducing some notation. Let I = [0,T] for some T > 0.
We use . : Ry — R, to denote a continuous function which may vary from line to
line. Similarly, JZ7 : Ry — R, denotes a continuous function depending on I. Further,
the notation QR always denotes a pseudodifferential operator (henceforth abbreviated WYDO)
whose mapping properties may vary from line to line. We denote the L? based Sobolev space

of order r by H", with norm || - ||,..

The quasilinear nature of our equations leads us to consider a pseudodifferential calculus
for symbols with limited smoothness. Such a calculus can be found in [67-69], to which we
will refer frequently. For the reader’s convenience, we recall the definition of these symbols

and the corresponding ¥DO on R3.
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14 Barotropic viscous relativistic hydrodynamics

Definition 5.1 (DO with limited smoothness, [69]). Let k¥ € R and r > 3/2. Define
Sk(r,2)(R?) = SE(r,2)(R3,C) to be the space of all symbols a : R* x R? — C such that for

all spatial multi-indices & = (o, g, ag)
0%a(z, Q)] < Ca(1 + [g))F19,
|0Fa(z, Q)|lar < Ca(l + |g)Fe.

For a matrix-valued symbol a : R® x R® — C"! with h,l € N, we say a € S;(r,2)(R3?, C"*!)
if all the entries of a belong to SF(r,2)(R?). The YDO Op(a), associated with a symbol
a € S¥(r,2)(R3, C) is defined by

1

Op(a) () = oz [ eae. (@) az

for f € S(R3,C!), the space of Schwartz functions in R?, and i = y/—1.

Having defined symbols and DO operators of limited smoothness in R3 we can use
the coordinate invariance of the definition and standard arguments (see [69, Theorem 5.1,
Corollary 5.2]) to obtain a WDO calculus on any smooth closed manifold. In particular, we
obtain such a calculus on T?. We denote the class of symbols on T? of order k with Sobolev
regularity r by SE(r,2)(T3) or simply S¥(r,2). Given a € S¥(r,2)(T?), we denote the ¥DO
associated with a by Op(a) and the resulting space of kth order ¥DO’s by OPSk(r,2). We
will not typically specify if the symbol is scalar or matrix valued since this will be clear from
the context.

The (flat) Laplacian on T® is denoted by A, and we define

which is an element of OPS](r,2) for every r € R. Finally, we recall that
I [l 2= K97 Jlo-

Remark 5.2. In what follows, we will use Corollary 4.3. This Corollary follows from Propo-
sition 4.2, which involved computing the principal symbol of (3.3) with dx + (. For the
pseuddifferential calculus introduced above, one uses 0y — i(; instead. In view of the ho-
mogeneity of the symbols involved and multiplying and dividing by i when necessary, it is
not difficult to make the two procedures compatible.

5.2. Main estimates. We consider the linear system naturally associated with (4.10).
Given 1, we define the operator F (i) by

F)¥ = 0, + A'(¢)V, ¥,

where A?(1) corresponds to the matrix A = (A°)~1 A’ of Corollary 4.3, but with the entries
of the matrix computed using ¢. Similarly, letting R(¢)) = —(A°)~(r,...,r6)" correspond
to R in Corollary 4.3 with the entries computed using ¥, we see that the first system (3.3),
or, equivalently (4.10), can be written as

F(0)W =R(¥), ¥(0)=1T,, (5.1)

Remark 5.3. In what follows, we will often think of ¥ and ¢ as maps from a time interval
to a suitable function space.
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Proposition 5.4. Letr >9/2, I C R and
E((1):=C(;H)YNCHI; HY).
There exist increasing continuous functions M,w : [0,00) — (0,00) such that if ¥, €
C>(I x T?) satisfy
F()® = R(), on I x T3, (5.2)
then

1L (0|2 < M) oo 11y {H\I’on% / ||7é<¢<s>>||%d8} (5.3)

for allt € I, where ¥y = ¥(0).

Proof. For { = (da' € T*T?, let A = A(¢), ¢) = A (1)¢; and U = Op(A). From the results
of Section 4, we see that there exist a matrix S = S(¢, ¢) and a diagonal matrix D = D(v, )
such that

SA=DS.
Set G := Op(S) and D := Op(D). From the expression for A (), it is not difficult to see
that all its entries belong to Si(r,2). Denote by Ay = Ag(¢, ¢) all the distinct eigenvalues of
A. Noting that 02A(v, ¢) is homogeneous of degree 1 — |a| for || < 1 and 02A(v, C) = 0

for |@| > 1, we infer that Ax/|C| is homogeneous in (¢ of degree zero.
Because the map [(¢, C) — Ag(, Q)] € C°(H" x T*T?, H"), it follows that

for some constant C' = C(]|¢||) depending on ||¢||,. By the homogeneity of Ay/|C|, we can
conclude that

1A (¢, Ol < C(1+C)),

for all ¢ and some C' = C(||1)||,). Differentiating the characteristic polynomial of A with
respect to ¢ and using induction immediately yield

10F AL (0, Q) < Cx(1 + 1)), (5.4)

for all ¢ and some Cy = C5(||¢||,). This implies, by Sobolev embedding, that A, € S(r,2)
and therefore

D € OPSt(r,2).

The projection onto the eigenspace associated to the eigenvalue A, is given by

Py = Po(t), 0) = — / (2 — AW, 0) " dz, (5.5)

27 -

where 7, is a smooth contour enclosing only one pole A;. By properly choosing contours vy,
we can always make the eigenvalues A;(z,v, ¢) of (z — A(¢, €)™t satisfy

1Ai(z, 0, Oll- <C=C(¢l), G/ <1 zem

for all k. From the homogeneity of A and Ay, we infer that P, is homogeneous of degree 0
in ¢. Combining with (5.4) and (5.5), we obtain that

1P, Ollir < C = L), 18] = 1.
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In light of the homogeneity of Py (v, -), this implies that for all { we have
1Pe(e, Q)| < C = C([[¢]]r)-

For a given pair of (¢, (), we can always choose the contour 74 in (5.5) to be fixed in a
neighborhood of (¢, C). Applying a similar argument to the C-derivatives of Py, and using
the homogeneity of 8?.,4, direct computations lead to P, € SO(r,2). This implies that

S=38,0) €8(r2) (5.6)
and thus
GS=61) e OPSg(r, 2)

with norm depending on |||,
We can now invoke [69, Corollary 3.4] to conclude

GU =96 + R
with
MReL(H H?), 1—-r<s<r-—2
where £(X,Y) denotes the space of linear continuous maps between Banach spaces X and Y.

We write 8 = i2(V). Let A = A(() denote the symbol of A, i.e. A= —iA/(1+[(?)z.
Therefore, 2 € OPSY(r,2). Then there exists a DO D with symbol D € 8(r,2) such that

SA=DS
and thus
GA=D6+NR
with
Re L(HHHY, 1-r<s<r-—1. (5.7)

We can thus rewrite (5.2) as

O = IA() (V) + R(v),
or
O = U(v)® + R().
Denote by S* the conjugate transpose matrix of S. We further set & := Op(S*). Note that

S = é(w) € OPS)(r,2). Since S is homogeneous of degree 0 in ¢, invoking the discussion
in Section 4, we infer that

CTS* (1, )S (1, ()T > Co|P|?

for some Cy = Co(||¥)||z=) > 0. Let B = B(y, () = \/«5*(w, 0)S(¥, C) — 21 and B = Op(B),

where I is the identity matrix and, for a positive definite matrix 4, B = v/A denotes its
square-root matrix, i.e. B*B = A. It is not difficult to see via the Cholesky algorithm that
B € 83(r,2) . Putting B = Op(B*) € OPS)(r,2), it follows from [69, Corollaries 3.4 and
3.6] that

m—éos—%z—%*%
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(Gos— %1) ~ BB+ (BoB— BB) + (BB — BB) € L(H,HY) (5.8)
for all 1 —r < s < r. Define
C
N,(t) := <v>"(701 + BB (V).
It is an immediately conclusion from its definition that
C
(N () ¥, &) > 70||‘I’||3- (5.9)

We have
<V>”(%I 4 BB -G0SV + (V) (S 06— &G (V)
+ (V)6 — &)S(V) 4+ (V)'&*&(V)".

It follows from [69, Corollary 3.4] that

N,

GoB& -GG e LH L HY), 1-r<s<r, (5.10)
and from [69, Corollary 3.6] that
é—G*EE(Hs_l,H‘S), l—r<s<r, (5.11)

Next, we compute

d d d
(N, W, ) = (N,— ¥, &) + (N, ¥, ) + (N'T, ¥
o (N8, ) = (N, T, ) + )+ (V¥ )

= (NUW, ®) + (N, R, ¥) + (N, ¥, 4¥) + (N, ¥, R) + (N ¥, ¥)
= (N4 4+ L' N,)®, ¥) + (N,R, ¥) + (N, ¥, R) + (N ¥, ¥),
d

where ' = 2 We have

N8+ SN, =[<V)’"(%[ BB (V) AT

=i[(V)" (=1 + B"B)(V)"A(V)

— (Vv (L1 w)(9)')

Observe that (V)" € OPS[(k,2) for any k. We can infer from (5.8), (5.10) and (5.11)

that
N4 =iN,2(V)
=i(V)'&*"S(V)"A(V) + R,

where R = R(Y) € L(H",H™).

To estimate the first term in the second line, we first notice that [69, Corollary 3.4] implies

b = b() = [(V), A(e)] € LH, HO),

with its norm depending on ||¢||,. Therefore, we have that

(V)& & (V) U(V) = (V) & SAV)(V)" + R,



18 Barotropic viscous relativistic hydrodynamics

where R = R(¢) € L(H", H"). Next, observe that by (5.7)
SAV) = DS(V) + R
=9(V)SG + R,

where in the second equality we used [69, Corollary 3.4]. We recall our convention that the
operator SR may vary from line to line, both fR’s in the last two equalities satisfy

R=NR) e LH H®) forall —r+1<s<r-—1.
Therefore,
N8l = (V) & D(VIS (V) + R,

where R = R(¢Y) € L(H", H™") and its norm depends on |[?]],.
We can carry out a similar analysis for the term *N,.. More precisely, observe that
N, = - ((VYA(V)' &S (V)"
Co

—(V)AUV) (] + BB — G0 G)(V)’

+(V)"(606 —E6)(V)]
+ (V)" (6 - &")6(V)".

Using (5.8), (5.10), (5.11) and [69, Theorem 2.4], we infer that the last three terms on the
right-hand side belong to L(H", H™"). Since
—i(V)AHV) &G (V)" = [(V)" &S (V)"UV)],
we conclude that
N4+ N, =i[(V)' & D(V)& (V)"
— (V)"&(V)D"&(V)"] + Ry,
=i(V)"'&"[D(V) = (V)D'G(V)" + Ry,
where R = Ro(¢) € L(H", H") with norm depending on ||¢||,. The term in the parenthesis
is bounded in £(H°) due to [69, Corollary 3.6]. Therefore,
SN, W) Si(V) 6D (V)6 — & (V)D"E](V)', )
+ (P, ) + (N,R,¥) + (N, ¥, R) + (N ¥, ¥). (5.12)
We also have

(V)" [6"D(V)& — &"(V)D"S|(V)" ¥, ¥)| < C1[| ¥l
(R, ¥)| < Co| Ro® || [ @l < Cof ®II7,

N N N 1 -
(R, O)| + (N, O, R)| < Cs|| | IR, < Cull @7 + §|IRH?

Here the constants C; all depend on ||¢]|,.. To estimate the last term in (5.12), observe that
N'(t) = (V) OB () BV (V)"
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where here 0 stands for the Frechét derivative. From (5.5) and (5.6), it is not hard to see
that

OB € S§(r —1,2).

Hence [69, Theorem 2.3] implies that
OB (V)Y = Op(0B(Y)Y) € LIH).
As 0B* (Y)Y = [0B(¢)']*, we immediate conclude that
O[B* (V)B(Y)][Y' € LH).
Now it follows that
(N, ®)| < Cs||NJ® ||, || %], < Col| ][,

where Cg depends on ||[¢[|g, (5. In summary,

d ~
Z (N, W) < Cr| |7+ G5 || R (5.13)

with C7 = C7(||¥|lg,(1))- As a direct conclusion from (5.9) and Grénwall’s inequality, we
finally conclude

t
(o)1 <t )2+ [ IR ds]
0

1 where M is a constant argument depending on ||¢||z~, and thus, on [|¢|,—; by Sobolev
2 embedding.

3 6. LOCAL EXISTENCE AND UNIQUENESS

4 We will now use the energy estimate of Proposition 5.4 to establish local well-posedness
for the system (3.3).

6.1. Approximating sequence. We take a sequence of smooth initial data ¥,,, — ¥, in
H"™ with r > 9/2. We inductively consider the problem

FO, )W, =R(¥,_ ), ¥,(0) =5, (6.1)
Let | ®o]|? < K. We may assume
|Po,]2 < K +1. (6.2)
Further, we define continuous functions J%; : R, — R, with ¢ = 1,2 such that

IR ey < Aa(([]]r)

and
IRW)s < H([[0lls), s =r—1.r
We now make the following inductive assumption
H(n —1) : [|[¥|lewany < C and |0y ||cmr-1) < Co for k=1,2,--- ,n—1.
Note that it follows from H(n — 1) and (6.2) that by choosing 7" small enough, we have
1Pk ()1 <M, k=1,2,---,n—1andte€[0,T]

6 for some sufficiently large uniform constant M independent of C;. Consequently, we can take
7 the constant M in (5.3) to be uniform in the ensuing iteration argument.
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Furthermore, we choose C; in H(n — 1) sufficiently large so that

M@K +4) <G
and
M'1(C1)Cy + #5(Cr) < Co,

where M = |[(V)||z(ar zr-1). Now we will use (5.3) to estimate
¢
1. ()] SM@M”‘P"1E1(’))[||‘I’07n||72~+/ IR(®—1(5))I[7 ds]
0

<M CFONK + 1+ t#5(Ch)),
By choosing T" small enough, we can control
| @, (1)||> < M(2K +4) for all t € [0,T],
which gives
1 llcmry < Ci.
Plugging this estimate into (6.1) we obtain
10: %, (t)[|,—1 < M1 (C1)Cy + H5(Cr) < Co.
This completes the verification of H(n), and we conclude that
1€ |leyy <C (6.3)
for all n and some C > 0.
6.2. Energy estimate for the difference of two solutions. For ¢ = 1,2, we consider
F()d; = R(¢),  @:(0) = o,
Set ¢ = 1 — 1) and w = wy — w,. Take the difference of the above two systems to obtain
Ot = U(tho) b + [U(th1) — Wby + R(2) — R(¥1), @(0) = oz — oy  (6.4)
Let
T = [W(ehr) — U(W)]dr + R(tha) — R(h)
and
Eo(I) := C(I; H Y)Y NnCYI; H?).
By (5.3), we have

l@(@)II7-y < Me'[|[@op — Do 7y +/0 IF ()17 ds],
where M = M(||12]|,—2) and w = w(|[t)2||g,(r)). Estimate
1
118(¢h1) — U(w2) ] [l S/O [0 (st1 + (1 = 5)t2) (¥) 0 [|r-1ds

1
< / 10U (st6r + (1 — 8)462) () (V) o1l
< ([l + N2l ) B -
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Similarly,
IR(2) = R(W1)llr—1 < A (¢allrr + 12l [ [|1
This produces
lo@®)17-y <M [0z — woll?-,
+ (L + (@[3 (1 lr—1 + 12 ll—) 191171 (6.5)
Using (6.4), we further have
10 |r—2 < (|2l r—2) 0]}y -1 + [|F]]r—2- (6.6)

6.3. Convergence of the iterates. Now we chopse Py = wy = ¥, 1, Yy = ¥, 5 and
wy = W¥,,. Note that as in Section 6.1, the constant M in (6.5) can be taken to be independent
of n. Estimates (6.5) and (6.6) imply

@, — \IlanHEo(I)
<VM G%W(c) ||‘I’0n — W1+ VT +C)A(C)|| ¥y — W, ollEe(n)]

+ H(C)V Mez“O|| W, — Wo, 1 ]l,1 + VT(1+C) A (C)|[ ¥y — ¥, )]
+#1(C) sup W1 (t) = W)l 2.
te

In the last line, we can use (6.5) once more to obtain
sup [, 1 (t) = W (1)l

tel
<V Me%w(c)[u‘llo,n—l — Wy, o1 + \/T(l +C) X1 (C)|| ¥z — W _3|lEo(1))-

We can choose T" small and (\IIOn) in such a way that

1 + f%/l \ 62 H\Iln 1( ) ‘Iln—Q(t)Hr—l + H‘IIO,n—l - \IIO,n—2Hr—1) S 2—n’

VN OVT(1+C)#2(C) < 1/16,
and
Ve OVT(1 +C)(HA(C) + H1(C)) < 1/4.
Set a, = || ¥, — ¥,,_1||gy(r). We then have
an, <274+ a,1/4+ a,_2/16.
Using induction, it follows that

Sn F Fnl

an < 92n—3 + on—1 2 +

where F,, is the n—th term of Fibonacci sequence (starting from 0) and
Sp=2"" 4 5,1 + Sp_o.
Letting b = (1 — v/5)/2, we obtain the following identities
Sp—bsy_1 = 2" 4 (1 = b)(sp_1 — bsy_2)
b(Sp_1 —bsp_2) = 2" b+ b(1 —b)(5,_2 — bSp_3)
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bn_S(Sg — bSQ) = bn_g + bn—3(1 — b)(SQ — 581).

We sum these expressions to conclude
n—3

Sy — bV 28y = Z 2K 3R 1 (1= b) (8,1 — D" 251).
k=0

We carry out a similar computation and sum to obtain
n—3
Sn— (L= b)smy = _ 250" 57K 4 p" 25 — (1 — b)b" sy

k=0

(1 =) (8p_1 — (1 = b)sp_s) =(1 —b) nz 2R AR L (1= b)b" 35y — (1 — b))% 35y

(1 - b)n73(83 — (1 — 6)52) I(l — b)nig + (1 - b)ni:&bSQ — (1 — b)n72b81.
This yields

n—3 n—4
Sn— (L=b)"2sy =[> 2F0" 3k 4 (1) 2Fpm k4 p (1= 1)
k=0 k=0

n—2 n—2
+ So Z bk(l . b)n—2—k + 51 an—l—k(l o b)k
k=1 k=1

and thus
5 < (n—2)2"3 4 F59 < (n —2)2"73 42" 35y,
where we have used that (1 — b)* = Fj,o — Fj,11b. Plugging this expression into (6.7) gives

n—2 S as ay
< .
— n on 2n—4 + 2n—2

Therefore
[P = Woijllzgn < 1¥n — Ynialleon + - [Wnij1 — nrjllee )

can be made arbitrarily small by taking n large. We thus conclude that {®¥,} is Cauchy
in C(I; H') N C'(I; H~?) and therefore converges in this space. We denote the limit by
W e O HY)YNCYI; H?). We can let n — oo in (6.1) and thus ¥ satisfies

F(0)W =R(¥), ¥0)=1,.
Finally, it follows from (6.3) that
@)+ 100 ® (@)l <C, t€]0,T].

1 It remains to prove uniqueness. But this follows at once since we have an estimate for the
2 difference of two solutions.
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6.4. Continuity of solution. The proof of time-continuity of the solution with respect to
the top norm follows a standard procedure: first, we prove weak continuity; then, we obtain
strong continuity by showing continuity of the norm.

The weak continuity of the solution ¥ can be proved by a similar argument to that of
quasilinear wave equations, since in that proof the structure of the equation is not necessary
but only the convergence ¥, — W in C(I; H"') N C'(I; H"?) and an estimate of the
form (6.3) are used.

We put
(1) = 1/ S20 + (B((1) B ()
and
A1) = A (W (1)) = (V)
Hence

No(t) = N (1) = A, (B ()" A (T (1)),
Recall that B € OPS{(r,2). From [69, Theorems 2.2 and 2.4], it follows that
R(t) e L(H?), —-r<s<r—1, (6.8)

Fix to € [0,7]. We will show that A, (to)®(¢) is weakly continuous in H°. Given any € > 0
and ¢ € H, take a sequence of Schwartz’s functions ¢; — ¢ in H°. Then

(Ar<t0)ql<t) - Ar<t0)\11n(t)v (b)
=(Ar (L) ¥ (1) = A (t0) n(t), ¢ — 0;) + (Ar(to) ¥ (t) — A, (to) (1), ¢;)
In view of (6.3), the first term on the RHS is bounded by
|(Ar(to) ¥ (t) = Ar(to) Wn(t), ¢ — 0;)| < H(C)l|d = d5llo,

so that this term can be made less than €¢/2 upon choosing j large enough. Next, fixing j in
the second term, we have

|(Ar (o) ¥ (£) — Ar(to) Wn(t), ¢5)]
=|((V) (@ (1) — (1)), (V)R (1))
Because ¥,, — W in C'(I; H™'), invoking [69, Theorem 2.4] and (6.8), we obtain
|(Ar (o) ® (2) — A (to) (), ¢5)] < €/2
for all n > ny with some large enough ng. Hence,
|(A-(to)® (1) — A, (o)W, (1), 0)| < e forall n > ngand ¢ € [0, 7],

showing that A, (ty) ¥, (t) converges to A, (to)¥(t) uniformly in ¢ in the weak topology. Thus,
A, (to)®(t) is weakly continuous in ¢ with respect to the norm of H°.

We are now ready to show that ¥ € C(I; H"). In view of the weak continuity of W(¢), it
suffices to demonstrate that the map

[t — || ¥(t)||,] is continuous.
Applying (5.13) to (5.1) and using(6.3), we conclude that

d 2
AT = #(C).



© 0 N O

11

12
13
14
15
16
17
18

19
20
21
22

24 Barotropic viscous relativistic hydrodynamics

This implies that
|A.(t)®(t)]|2 =: Y () is Lipschitz continuous in ¢. (6.9)
Consider
1A (o) ® (1)1 — [IAx (t0) @ (t0) [
=([l A (to) T (D)5 — A &) L @)5) + (1A () B@)5 — 1A (o) T (t0)[5)-
The first term on the RHS can be estimated as follows.

(1A (t0) B ()15 — 1A () (1)][6)]
=[A- (o) () llo — [|A-() L (@) llo| (| A (t0) ¥ (£)[lo + [l A () ¥ (#)]lo)
<A (O)(R(2) = &(t0)) (V) ¥ (#)]lo
<A (C)IR(E) — &(to)ll cearo)-

As elements in £(H"), it is not hard to check that &(¥) depends continuously on |[¥|],_;.
Combining with (6.9), this observation shows that [t — ||.A,(t0)¥(¢)]|o] is continuous at to;
and thus

A, (to)®(t) is continuous in t at o w.r.t. H°.

Since tq is arbitrary, from
1 (t) — B(to)[l7 < CIlA(to)®(t) — A (to) ®(to) 5,
we obtain that ¥ € C'(I; H"). Using this fact and equation (6.1), we immediately conclude
W eC(;H)YNCYI,H™).

7. SOLUTION TO THE ORIGINAL SYSTEM

It remains to prove that the solution ¥ that we obtained for the system (3.3) yields a
solution to (2.2) and (2.4). The argument follows a known approximation argument by
analytic functions, so the main task is to show that the analytic Cauchy problem for (2.2)
and (2.4) can be solved. In fact, due to the compactness of T and some minor technical
points related to a localization procedure, we work in a slightly larger space than that of
analytic functions, namely, Gevrey spaces.

Remark 7.1. In the introduction, we alluded to a local well-posendess in Gevrey spaces for
equations (2.2) and (2.4). However, what was actually established in [15] was the local well-
posedness in Gevrey spaces for equations (3.1), i.e., the projection onto the spaces orthogonal
and parallel to u of equations (2.2) and (2.4). It was not showed in [15] that a Gevrey solution
to (3.1) implies a Gevrey solution to (2.2) and (2.4). Because we do need Gevrey solutions
to (2.2) and (2.4) to carry out the aforementioned approximation argument, we cannot rely
on [15] and, therefore, we establish the desired result here.

Remark 7.2. In practice (e.g., when implementing numerical simulations), physicists do
not use equations (2.2) and (2.4), adopting instead (3.1) as the starting point. Therefore,
for applications in physics, the result obtained in [15] (see previous Remark) is enough as
far as only Gevrey regularity is concerned.
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7.1. The original equations in explicit form. Equation (2.4) reads
(e + Ay + Ao + P)(u'V,u” + v’V ut') + ulu"V, (e + Ay) + TV, (P + As)
—20"V,n —2nV, 0" + Q"V, u" + u'V, Q" + Q"V u" +u'V,Q" = 0.
Applying u*V,, twice to (2.2) produces:
U’V GV gu” + uuP (Vo) (Vau”) = 0.
We may rewrite the above equations to obtain the complete set of equations given by
u,u U’V oV au” = B(Ou), (7.1a)
B**9,04e + B"*P0,05u” = B" (e, 0u, dg), (7.1b)
where
Jurutu® + (x3 + ?\cg)u(aﬂﬁ)“ + Aczu“ﬂaﬁ
(e+P)

B,’,‘O‘B = (X2 + K)u“u(a(f) + (X4 — g)”“(aff) - ﬂnaﬁéﬁ + Aua“ﬁdﬁﬂ

BraB — X

B(0u) and B*(0e,0u) are analytic functions of €, u, and their first order derivatives and
contain no term in second order derivatives of ¢ or u. By constructing the vector U =
(e,u*) € R®, we may write the above equations in matrix form as m*?92,U = B, where
B = (B,B,) € R® and

os | 0 uruPu,
m= = BraB  Ruaf |-

7.2. The characteristic determinant. We will here compute the characteristic determi-
nant of equations (7.1). Let & be an arbitrary co-vector in spacetime. To simplify the
notation, denote a := w*§, and b* :=[1"E,, and
xiuta? + (x3 + Ac)ab” + Accu’bb,,

(e+ P) ’

B! = BrPE s = (a(xe + Nuk + (X4 — g)b“)ay + (Aa® —nbb, )5~

B! := B'E &5 =

Also, let us define
(0% O 2 v
C = [Chloxs = m*PE by = {Bu ani } ;

where A, B = 1,u = 1,0,1,2,3, with 1 denoting the first line or column index. Then,
Cl =0, C} = d’u,, C¥ = B*, and Ck = B. Using the Levi-Civita symbol e*#“P¥ with

10128 — 1000 = 1, where eABPEepiy,, = 5!6{%656%6?6% with the bracket (..} being the
anti-symmetrization of the indexes F'GH I, we obtain that
€A1 A A5 A5 € 8BTS s s A A
det(m*7g,E5) = det(C) = =22 55| Chy O, O O, C?
iEVBngB4BS€1u ey | 1 eiwgmw’eiuu prafs
_ QU34S Y2 YIS YA YIS I 345
=C, m CpCp Cp, Oy, = —C,CF a0 ChaChiCrs

€

Tvvovsvg
Clppopaps pus pus pia
BV2 BV3 BV4

— _a?u. B"
a‘u, B i
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Tvpopsps -
3€ Elppapspa

3!
— a%u, B (a(x: + Nu + (x4 = 3)6") &, (Aa? =60, )’

= —a’u, B*(Aa® —nb“b,)

Tvvopsps -
€ Tppapspia
2!

a2

:€—|—P

4
+(x102 + A (x4 — E”b%ﬁ)b%a)

] ((we€a)” = BN*eas)™,

a=1,2,+

(7\512 - nbaba)QO‘(XlaQ - XSbaba)aQ - X2(X3 + 7\C§>a2[’aba

. A’xq
T e+ P

where mq = 1, my = 2, and my = 1, while the ,’s are the same as the one obtained in
(4.6).

We have already showed that conditions A,1n,x1 > 0 together with (4.1)—(4.5) (which
are the assumptions in Theorem 2.1) guarantee that 0 < [, < 1. Therefore, comparing
(u“&n)? — BN*PELE with the characteristics of an acoustical metric (see, e.g., [34]), we
conclude that det(m*?&,&g) is a product of hyperbolic polynomials.

Remark 7.3 (The system’s characteristics). Setting det(m®&,&5) equal to zero, we ob-
tain the characteristics of the system (7.1). Not surprisingly, these are the same as the
characteristics of equations (3.1) which have been computed in [15].

7.3. Proof of Theorem 2.1. . Let us group that unknowns e, u® in the 5-component
vector V = (g,u®). To each component V! we associate an index my, I = 1,...,5, and
to each one of the 5 equations (7.1a)-(7.1b) we associate an index ny, in such a way that
equations (7.1a)-(7.1b) can be written as

hi(@mer Tty R grimnay Tl (et R =, (7.2)

where I,J = 1,...,5, hi(mx—" -1y E gmi—ns) is a homogeneous differential operator of
order m; — ny (which could possibly be zero) whose coefficients depend on at most my —
ny — 1 derivatives of VX K = 1,... 5, and there is a sum over I in h7(-)V!. The terms
b7 (9mx " 1Y E) also depend on at most my —ny — 1 derivatives of VX, K =1,...,5. The
indices m; and n; are defined up to an overall additive constant, but the simplest choice to
have equations (7.1a), (7.1b) written as (7.2) ism; =2, n; =0, forall I,J =1,...,5.

Using the fact that the characteristic determinant of (7.2) computed above is a product
of hyperbolic polynomials, we conclude that (7.2) forms a Leray-Ohya system (see [29]). We
can then apply theorems A.18 and A.23 of [29] (whose proofs can be found in [19,63]) to
conclude that equations (7.1) are locally well-posed in suitable'® Gevrey spaces.

Remark 7.4. Theorems A.18 and A.23 are applicable to systems in [0,7] x R™, whereas
here we have [0,7] x T3. Thus, one needs to carry out a localization and gluing argument
before invoking these theorems. Such argument is possible due to the existence of a domain
of dependence for solutions guaranteed by Theorem A.19 of [29]. The procedure is exactly
the same as in [29] so we will not present it here.

2From the previously mentioned theorems, it is not difficult to see that one can be very precise about

the quantitative properties of solutions, including the exact Gevrey regularity. Such details, however, are
not important here for our argument.
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Equation (7.1a) can be written as
ur 'V, V, (ugu®) = 0.

Viewing this as an equation for u®u,, we see that it forms a Leray-Ohya equation, so it
admits unique solutions in Gevrey spaces. Therefore, we conclude that a solution to (7.2)
satisfies u“u, = —1 provided that this condition holds initially, which is the by construction
(see comment after the statement of Theorem 2.1).

The conclusion that ¥ yields a solution to (2.2) and (2.4) now follows from a known
approximation argument, so we will be brief.

Consider the initial data Z = (g(0),€(1), wo), u)) € H" for (2.2)-(2.4) and let Z; be a
sequence of Gevrey regular data converging to Z in H". For each k, let Vi = (eg,ux) be
the Gevrey regular solution to (2.2)-(2.4) with data Zj, whose existence is ensured by the
foregoing discussion. In view of the way (3.3) was derived from (2.2)-(2.4), for each k, we
obtain a Gevrey regular solution ¥y to (3.3), with ¥, defined in terms of Vj, according to
the definitions of Section 3.

Let ¥, be initial data for (3.3) constructed out of Z, i.e., we define ¥y in terms of Z using
the definitions of Section 3. This is possible since the entries of ¥y will be simple algebraic
expressions in terms of Z.

Let ¥ be the solution to (3.3) with data ¥y. Note that we do not assume that ¥ is given
in terms of the original fluid variables via the relations of Section 3 since at this point we
do not yet have a solution to (2.2)-(2.4) with data Z. In other words, the entries of ¥ are
treated as independent variables; at this point the only relation between ¥ and the original
system (2.2)-(2.4) is that Wy is constructed out of Z.

The estimates for solutions to (3.3) derived in Section 5 combined with the estimates for
the difference of solutions in Section 6.2, imply that as Z, — Z in H", ¥, converges to ¥,
and thus the solutions Vj to (2.2)-(2.4) converge to a limit V in H". Since r > 9/2, we
can pass to the limit in the equations (2.2)-(2.4) satisfied by V. to conclude that V' solves
(2.2)-(2.4) as well (and that ¥ is in fact given in terms of V' by the same expressions that
define Wy in terms of V}). By construction, V takes the data Z.
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