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ABSTRACT 
 
Ensemble based data assimilation approaches, such as the 
Ensemble Kalman Filter (EnKF), have been widely and 
successfully implemented to combine observations with 
dynamic forecast models. In this study the EnKF is adapted 
to assimilate ground deformation observations from 
interferometric synthetic-aperture radar (InSAR) and GPS 
into thermomechanical finite element models (FEM) to 
evaluate volcanic unrest. Two eruption hindcasts are 
investigated: the 2008 eruption of Okmok volcano, Alaska 
and the 2018 eruption of Sierra Negra volcano, Galápagos, 
Ecuador. At Okmok, EnKF forecasts tensile failure and the 
lateral movement of the magma from a central pressure 
source in the lead up to its 2008 eruption indicating potential 
for diking. Alternatively, at Sierra Negra, the EnKF forecasts 
significant shear failure coincident with a Mw 5.4 earthquake 
that preceded the 2018 eruption. These successful hindcasts 
highlight the flexibility and potential of the volcano EnKF 
approach for near real time monitoring and hazard assessment 
at active volcanoes worldwide.  
 

Index Terms— InSAR, GPS, EnKF, FEM, volcano data 
assimilation 
 

1. INTRODUCTION 
 
Approximately 500 million people live on or near active 
volcanoes worldwide. The successful mitigation of volcanic 
disasters for these populations requires the detection of early 
unrest, an accurate assessment of the precursory signals 
through modeling, and the efficient and robust 
communication of potential hazards and risks. Monitoring 
observations from geophysical campaigns, satellites, and 
continuous on-the-ground stations can provide early warning, 
sometimes years in advance of volcanic eruption [1, 2]. 
However, synthesizing data into dynamic models of an 
evolving volcanic system poses a great challenge for the 
volcano hazards community.  

While fields such as climate change research, physical 
oceanography, and hydrologic modeling have made 
significant advancements in model-data fusion and 
forecasting techniques in the past decades [3], the field of 
volcano hazards is in the initial stages of embracing such 
advances [4-11]. Given the current state of volcano 
monitoring, significant advancements in multiphysics finite 
element modeling, and newly adapted approaches in 

statistical data assimilation, the field of volcanology is in an 
ideal position to make rapid advancement in data assimilation 
and forecasting.  

Utilizing the EnKF approach, geodetic ground 
deformation data are assimilated into multiphysics finite 
elements models (FEMs) to track the evolution of the 
magmatic system through time. By using an FEM approach 
to track stress and strain in the host rock surrounding the 
magma system, eruption precursors and critical stress states 
can be evaluated at each time step to assess magma system 
stability. In this study, we highlight recent EnKF hindcasts of 
the 2008 eruption of Okmok Volcano, Alaska [4] and the 
2018 eruption of Sierra Negra Volcano, Galápagos, Ecuador 
[11]. For each volcano target we find unique triggering 
mechanisms and eruption precursors indicating the potential 
of the EnKF approach for future volcano investigations. 
 

2. NUMERICAL APPROACH 
 
2.1. Thermomechanical Finite Element Method 
Our numerical experiments build upon previous finite 
element model (FEM) developments [12, 13]. We utilize 
COMSOL Multiphysics 5.3 to implement 2D and 3D, 
temperature dependent, elastic FEMs for an inflating magma 
reservoir. COMSOL solves for temperature, and stress and 
strain in response to applied loads. We are particularly 
interested in the impact of the thermal structure on the elastic 
properties of the host rock and the resultant model predictions 
[12, 14, 15]. As such, we have incorporated a temperature and 
depth-dependent Young’s modulus [15]. 

Constraining failure in the host rock surrounding a 
reservoir is critical for determining the stability of the system 
and the potential for eruption [12, 14-17]. We use a 
combination of three approaches to evaluate magma chamber 
stability. First, we investigate faulting in the brittle portions 
of the model space using a Mohr-Coulomb failure criterion. 
Second, we investigate the evolution of tensile stresses along 
the magma chamber boundary. Third, overpressurization of 
the magma chamber is tracked to determine whether a critical 
threshold has been reached [18].  
 
2.2. Volcano EnKF 
We have adapted the Ensemble Kalman Filter (EnKF), an 
ensemble-based Markov chain Monte Carlo (MCMC), 
sequential data assimilation approach, to assimilate large 
geospatial data into multiphysics FEMs [7]. The EnKF 
workflow has been adapted for High Performance Computing 



(HPC) utilizing a handshake between Python and COMSOL 
Multiphysics [10]. The HPC volcano EnKF approach, 
vEnKF, is highly scalable. Individual FEMs are distributed 
across compute nodes for swift, simultaneous calculation at 
each time step. A Monte Carlo suite produces the initial 
vEnKF ensemble with N models. The models are distributed 
across CPU’s and calculated to produce a forecast ensemble, 
A. In this investigation we use finite element models of a 
deforming magma chamber. Model outputs include stress 
and strain, which provide predictions of surface deformation 
and failure. Data, D, include any observations that inform the 
model (e.g., ground deformation, gravity or mass change,  
heat flux, seismicity). In this investigation, we have limited 
our assimilation approach to GPS and InSAR ground 
deformation data. Measurements and models are combined 
in the EnKF analysis step to provide the analysis ensemble, 
Aa: 

Aa = A + X HT (H X HT + Cd)-1 (D – H A), 
where X is the ensemble covariance matrix, Cd is the 
measurement covariance matrix, and H is the model operator 
matrix. 

 
3. OKMOK, ALASKA 2008 ERUPTION 

 
Located on the northern half of Umnak island Alaska, 
Okmok is a broad shield volcano with a central caldera filled 
containing several secondary cones that have hosted much of 
its recent activity. On July 12, 2008, Okmok began to 
explosively erupt in a prolonged event lasting 5 weeks [19-
22]. While the previous eruption in 1997 was predominantly 
effusive, the 2008 eruption was phreatomagmatic, powered 
by both the eruption of new lava as well as steam explosions. 
The eruption reached a VEI of 4 and the ash cloud is believed 
to have reached approximately 16 km into the atmosphere, 
disrupting air traffic across the northern Pacific. Given its 
relative size, this 2008 eruption was notable for the lack of a 
clear precursory signal. Although the island was well-
instrumented, ground inflation had been steady since the start 
of 2008 with very little precursory seismicity. 

The EnKF hindcast of Okmok’s 2008 eruption provides 
a unique view of the system’s evolution in the months 
preceding the event. In particular, while no Mohr-Coulomb 
failure is forecasted in the lead up to the eruption, an 
increased number of models experience tensile failure in the 
weeks prior to the eruption (Figure 1). At the beginning of 
2008 there is a marked shift in the trajectory of tensile failure 
along the reservoir (Figure 1B) and a higher percentage of 
models in tensile failure (Figure 1A). Additionally, the 
location of the forecasted tensile failure, along the edge of the 
pressure source, coincides with location of the eruptive vent 
near Cone D (Figure 1C). An important finding from this 
work is that the EnKF is able to capture the changing state of 
the Okmok system. Had a near real-time approach been 
implemented in 2008, monitors would have been alerted to 
the variations in the system state and an increase in eruption 
potential weeks prior to the explosive event. 

 
4. SIERRA NEGRA, GALÁPAGOS 2018 ERUPTION 

 
Sierra Negra is a 60x40 km basaltic shield volcano that 
occupies most of the southern portion of Isabela Island, 
Ecuador and is the most voluminous of the Galápagos 
volcanoes [23]. Prior to the previous, 2005 eruption of Sierra 
Negra, substantial deformation > 5 m was observed, 
culminating in a Mw 5.4 earthquake and an explosive eruption 
on 22 October 2005 with a 13-14 km high volcanic plume 
[24, 25]. Reinflation of Sierra Negra commenced almost 
immediately following the 2005 eruption, and by the end of 
2017, the magnitude of inflation had reached levels 

 
Figure 1. The evolution of predicted tensile failure in the lead up to 
the 2008 eruption of Okmok [4). (A) Maximum tensile stress 
calculated along the reservoir wall by EnKF assimilation at each 
time step. Solid line indicates ensemble mean with 2σ error bars. 
Horizontal lines indicate threshold tensile strengths. Each time step 
coincides with the assimilation of either GPS or InSAR data 
(denoted by vertical, gray dashed lines). (B) Percentage of ensemble 
members in tensile failure at each time step for four different tensile 
strengths. (C) Map view of Okmok Caldera showing the center (dot) 
and extent (dotted line) of the forecasted pressure source (black) 
relative to the primary vent of the 2008 eruption (red X). 



comparable to those recorded just prior to the 2005 eruption. 
The 26 June 2018 eruption (Figure 2A), which commenced 
at 1340 LT, was preceded by a rapid increase in seismicity 
including a Mw 5.4 event on the southern side of the caldera 
that struck at 0315 LT [26-28].  

A vEnKF hindcast for Sierra Negra was implemented 
utilizing Sentinel-1 ascending and descending tracks and a 
3D thermomechanical FEM. Calculations of overpressure 
remained modest throughout the precursory deformation 
period (< 10 MPa). However, the excessive uplift resulted in 

vEnKF predictions of increased brittle failure in the model 
space for indicating the increasing likelihood of seismicity. 
Model calculations assuming a cohesion, C = 20 MPa 
coincide well with an intensification in recorded seismicity 
in the summer of 2017 [28]. Additionally, calculations of 
Andersonian fault orientations [29] in regions of predicted 
Mohr-Coulomb failure, correspond well with the observed 
spatial extent of seismicity as well as derived focal 
mechanism solutions [30]. Although the vEnKF forecasts 
significant Mohr-Coulomb failure in the roof above the 
reservoir, little to no tensile failure is predicted along the 
reservoir boundary and no tensile failure is predicted along 
the northern boundary of the magma reservoir where fissure 
opened during the 2018 eruption (Figure 2A). In the hours 
prior to the eruption through-going failure of the host rock is 
forecasted with the potential for reverse faulting along the 
southern intracaldera trapdoor fault (Figure 2C). The 
forecasted failure correlates both spatially and temporally 
with the Mw 5.4 earthquake that struck the trapdoor fault 
system 10 hours prior to the 2018 eruption. Given the lack 
of tensile failure to the north prior to this event, it is thought 
that the preceding earthquake may have been the ultimate 
catalyst of the eruption. 
 

5. CONCLUSIONS 
 
The vEnKF has proven to be a powerful method for 
investigating the evolution of magma systems in their lead 
up to eruption. At Okmok, vEnKF forecasts tensile failure 
and the lateral expansion of the magma pressure source prior 
to its 2008 eruption. Alternatively, at Sierra Negra, EnKF 
forecasts significant shear failure coincident with a Mw 5.4 
earthquake that preceded the 2018 eruption. These 
successful hindcasts highlight the flexibility and potential of 
the volcano EnKF approach for near real time monitoring 
and hazard assessment at active volcanoes worldwide. 
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