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CROSS-NOTATION KNOWLEDGE

Abstract

Understanding fractions and decimals requires not only understanding each notation
separately, or within-notation knowledge, but also understanding relations between notations, or
cross-notation knowledge. Multiple notations pose a challenge for learners but could also present
an opportunity, in that cross-notation knowledge could help learners to achieve a better
understanding of rational numbers than could easily be achieved from within-notation
knowledge alone. This hypothesis was tested by re-analyzing three published datasets involving
fourth to eighth grade children from the U.S. and Finland. All datasets included measures of
rational number arithmetic, within-notation magnitude knowledge (e.g., accuracy comparing
fractions versus fractions and decimals versus decimals), and cross-notation magnitude
knowledge (e.g., accuracy comparing fractions versus decimals). Consistent with the hypothesis,
cross-notation magnitude knowledge predicted fraction and decimal arithmetic while controlling
for within-notation magnitude knowledge. Further, relations between within-notation magnitude
knowledge and arithmetic were not notation specific; fraction magnitude knowledge did not
predict fraction arithmetic more than decimal arithmetic, and decimal magnitude knowledge did
not predict decimal arithmetic more than fraction arithmetic. Implications of the findings for
assessing rational number knowledge and learning and teaching about rational numbers are

discussed.

Keywords: numerical development, fractions, decimals, magnitude knowledge, arithmetic, cross-
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Introduction

Rational numbers are among the most important and difficult topics children encounter in
early math education. Over two-thirds of a nationally-representative sample of U.S. adults
reported using rational numbers in their jobs (Handel, 2016). Further, rational number
knowledge predicts success in algebra (Booth, Newton, & Twiss-Garrity, 2014) and general
math achievement in high school when controlling for whole number arithmetic skill, non-verbal
IQ, working memory, and family socio-economic status (Siegler et al., 2012). However, many
individuals struggle with rational numbers even after years of instruction (Siegler, Thompson, &
Schneider, 2011).

Unlike whole numbers, rational numbers are regularly represented using several different
notations—fractions, decimals, and percentages. This fact poses a challenge for learners, in that
understanding rational numbers requires not only understanding each notation on its own, or
within-notation knowledge, but also understanding the relations between notations, or cross-
notation knowledge. Even many high school students have trouble understanding that fractions
and decimals can represent the same numbers (Vamvakoussi & Vosniadou, 2010). However,
multiple rational number notations may also present an opportunity: making connections
between fractions and decimals could enable learners to achieve better understanding of, and
proficiency with, each notation than could easily be achieved otherwise.

The present study tested a specific version of the above hypothesis—that cross-notation
knowledge of fraction and decimal magnitudes contributes to fraction and decimal arithmetic
skill. To do so, we investigated relations between cross-notation magnitude understanding and
fraction and decimal arithmetic skill, controlling for within-notation magnitude understanding.

Within- and cross-notation magnitude understanding were measured using magnitude
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comparison and ordering tasks involving either one notation (e.g., comparing fractions to
fractions) or multiple notations (e.g., comparing fractions to decimals).

Below, we briefly review previous research on children’s knowledge of fractions and
decimals, including knowledge of magnitudes and knowledge of arithmetic. Next, we elaborate
the concept of cross-notation knowledge, discuss how such knowledge might facilitate learning
about rational numbers, and review previous research relating to cross-notation knowledge.
Then, we describe the goals and approach of the present study in more detail.

Children’s Knowledge of Fractions and Decimals

Understanding fractions and decimals requires understanding that they have magnitudes
that can be compared, ordered, and placed on number lines (Siegler et al., 2011). Unfortunately,
this understanding proves elusive for many children with respect to both fractions (Braithwaite &
Siegler, 2018; Bright, Behr, Post, & Wachsmuth, 1988; Jordan, Resnick, Rodrigues, Hansen, &
Dyson, 2017; Mazzocco & Devlin, 2008) and decimals (Desmet, Grégoire, & Mussolin, 2010;
DeWolf, Bassok, & Holyoak, 2015; Malone, Loehr, & Fuchs, 2017; Resnick, Rinne, Barbieri, &
Jordan, 2019; Rittle-Johnson, Siegler, & Alibali, 2001). For example, on the U.S. National
Assessment of Educational Progress (NAEP), only 50% of eighth graders in 2007 correctly
ordered 2/7, 5/9, and 1/12 from smallest to largest, and only 42% of eighth graders in 2005
correctly identified a point midway between .005 and .006 on a number line as .0055 (US
Department of Education, Institute of Education Sciences, 2005, 2007).

Many children also display poor proficiency with rational number arithmetic, again with
both fractions (Byrnes & Wasik, 1991; Gabriel, Coché, et al., 2013; Hansen et al., 2015; Hecht &
Vagi, 2012; Mack, 1995; Newton, Willard, & Teufel, 2014; Siegler et al., 2011) and decimals

(Author, 2018; Hiebert & Wearne, 1985; Kouba et al., 1988; Rittle-Johnson & Koedinger, 2009).
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For example, sixth graders correctly answered only 46% of fraction arithmetic problems in one
study (Siegler & Pyke, 2013) and only 57% of decimal arithmetic problems in another study
(Tian, Braithwaite, & Siegler, 2020a). Common arithmetic errors include adding fractions by
separately adding their numerators and denominators (e.g., 3/5+1/4 = 4/9), passing through a
common denominator when multiplying fractions (e.g., 3/5%1/5 = 3/5), adding digits with
different place values when adding decimals (e.g., 4+.3 = .7), and placing the decimal point
incorrectly when multiplying decimals (e.g., .4%.2 = .8).

According to the Integrated Theory of Numerical Development (Siegler & Braithwaite,
2017; Siegler et al., 2011), understanding numerical magnitudes is critical for learning
arithmetic. The theory therefore implies that difficulties understanding the magnitudes of
fractions and decimals contribute to difficulties with fraction and decimal arithmetic. Consistent
with the theory, individual differences in magnitude understanding predict differences in
arithmetic skill for both fractions (Bailey, Hansen, & Jordan, 2017; Siegler & Pyke, 2013;
Siegler et al., 2011; Torbeyns, Schneider, Xin, & Siegler, 2015) and decimals (Rittle-Johnson &
Koedinger, 2009). Further, interventions designed to improve fraction magnitude understanding
have been shown to improve fraction arithmetic skill (Dyson, Jordan, Rodrigues, Barbieri, &
Rinne, 2018; Fuchs et al., 2013). A possible mechanism underlying these phenomena is that
understanding the magnitudes of individual numbers enables students to evaluate whether
candidate answers to arithmetic problems are plausible, and thereby to reject incorrect
procedures that generate implausible answers (Braithwaite & Siegler, 2020; Siegler et al., 2011).
Cross-Notation Knowledge of Rational Numbers

Much prior research has treated fractions and decimals as separate topics. Similarly,

many math curricula devote separate chapters to fractions and decimals, and devote relatively
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little space to relations between them (e.g., Charles et al., 2012; Dixon, Adams, Larson, & Leiva,
2012). Knowledge of such relations, or cross-notation knowledge, is the focus of the present
study. We argue that cross-notation knowledge merits greater attention than it has previously
received, in part because it may confer benefits that are difficult to achieve through within-
notation knowledge alone.
Potential Benefits of Cross-Notation Knowledge

First, cross-notation knowledge could enable learners to use knowledge about each
notation to help solve problems involving the other notation. For example, to understand
why .4x.2 = .08 rather than .8, a child might reason that 4/10%2/10 = 8/100, or more generally
that multiplying tenths by tenths yields hundredths. As another example, a child who has not
learned or does not remember how to solve 3/5+1/4 but knows how to solve 0.6+0.25 might
translate the former problem into the latter to solve it. Children could use such strategies once
they have been taught to translate between fractions and decimals, which typically occurs in
fourth grade in the U.S., and once they have been taught—though not necessarily mastered—at
least some fraction or decimal arithmetic procedures, which occurs mainly in fifth and sixth
grade (CCSSI, 2010). The above approach to understanding decimal multiplication is provided in
some math textbooks (e.g., Eureka Math; Great Minds, 2015), and both of the above strategies
were observed in a recent study of adults’ fraction and decimal arithmetic among adults (Author,
submitted). Individuals with stronger cross-notation knowledge may be more likely to benefit
from such strategies.

Second, cross-notation knowledge could focus learners’ attention on similarities between
fractions and decimals, leading to a deeper understanding of rational numbers. Fractions and

decimals are superficially different; for example, adding fractions with unlike denominators
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requires conversion to a common denominator, whereas adding decimals requires adding digits
with the same place value. Yet, fractions and decimals have many similarities relating to general
properties of rational numbers, such as the principle that a sum of positive numbers is larger than
either addend. Making connections between fractions and decimals could reinforce learners’
understanding of these general properties, which could in turn facilitate acquisition of within-
notation knowledge. For instance, understanding the above principle could help learners avoid
errors that violate it, such as 3/5+1/4 =4/9 and 4+.3 = .7.

Previous Research on Cross-Notation Knowledge

Several previous studies have employed tasks that assess cross-notation knowledge
(though without using that term), such as conversion between fractions and decimals and cross-
notation comparison or ordering (Binzak & Hubbard, 2020; Ganor-Stern, 2013; Hurst & Cordes,
2016, 2018; Mazzocco & Devlin, 2008; McMullen, Laakkonen, Hannula-Sormunen, & Lehtinen,
2015; Van Hoof, Janssen, Verschaffel, & Van Dooren, 2014; Zhang, Fang, Gabriel, & Sziics,
2016). However, these studies did not analyze relations between cross-notation knowledge and
other aspects of rational number knowledge.

Other studies did not assess cross-notation knowledge but hint at influences of decimal
knowledge on fraction knowledge and vice versa that could be mediated by cross-notation
knowledge. For example, a longitudinal study found that decimal magnitude knowledge in
winter of fourth grade predicted fraction magnitude knowledge in spring of fourth grade when
controlling for initial fraction magnitude knowledge (I. Resnick et al., 2019; see also McMullen
& Van Hoof, 2020). Similarly, using a priming paradigm, Ren and Gunderson (2019) found that
activating children’s and adults’ fraction knowledge affected subsequent performance on a

decimal magnitude comparison task. However, an intervention study found no benefit of
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integrated fraction/decimal instruction over fractions-only instruction for improving fraction
outcomes among at-risk fourth graders (Malone, Fuchs, Sterba, Fuchs, & Foreman-Murray,
2019). In summary, the role of cross-notation knowledge in children’s numerical development (if
any) is not yet clear.

The Present Study

The main goal of the present study was to test the prediction that individual differences in
cross-notation knowledge would explain unique variance in rational number arithmetic skill
when controlling for within-notation fraction and decimal magnitude knowledge. This prediction
is consistent with the more general hypothesis that cross-notation knowledge confers benefits
beyond those of within-notation knowledge alone. The prediction builds on previous research
that has found positive relations between individual differences in magnitude knowledge with
fractions or decimals and arithmetic skill with the same notation (Bailey et al., 2017; Rittle-
Johnson & Koedinger, 2009; Siegler & Pyke, 2013; Torbeyns et al., 2015), consistent with the
Integrated Theory of Numerical Development (Siegler et al., 2011).

Another goal was to investigate whether effects of fraction and decimal magnitude
knowledge on arithmetic skill are notation specific. If children’s knowledge of different
notations is highly compartmentalized, magnitude knowledge with each notation should predict
arithmetic with the same notation more than arithmetic with the other notation, and should not
predict arithmetic with the other notation at all when controlling for magnitude knowledge with
that other notation. However, our hypothesis regarding cross-notation knowledge suggests that
knowledge of each notation could help acquire proficiency with the other notation as well. To the

extent that this is the case, within-notation magnitude knowledge of each notation could predict
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arithmetic with both notations about equally, and could predict arithmetic with the other notation
even when controlling for magnitude knowledge with that other notation.
Research Approach and Analyses

To test these predictions, we re-analyzed data from studies of children that included
assessments of rational number arithmetic as well as assessments of fraction magnitude
knowledge (e.g., “1/2 > 3/4?”), decimal magnitude knowledge (e.g., “0.50 > 0.75?”), and cross-
notation magnitude knowledge (e.g., “4/5 > 0.89?”) using comparison or ordering tasks. A
literature search by the first author identified three published studies that met these criteria, two
conducted by the second author (Author, 2016, 2020) and one conducted by the third author
(Author, 2018). All of these studies were included in our analyses.

We fit a “within-notation-only” model and a ““cross-and-within-notation” model to each
dataset, then compared the models. Both models were linear mixed models with rational number
arithmetic accuracy as the dependent variable; grade level, fraction magnitude knowledge, and
decimal magnitude knowledge as fixed effects; and participant as a random effect. The cross-
and-within-notation model, but not the within-notation-only model, also included cross-notation
magnitude knowledge as a fixed effect. We expected that model comparisons would favor the
cross-and-within-notation model and that in this model, cross-notation magnitude knowledge
would have a positive effect on arithmetic accuracy.

To investigate notation-specificity of effects of magnitude knowledge on arithmetic skill,
in the studies that included both fraction and decimal arithmetic (Studies 2 and 3), all models
included arithmetic notation and interactions of arithmetic notation with each magnitude
knowledge measure as fixed effects. We also considered that magnitude knowledge might

differentially predict skill with different arithmetic operations. For example, magnitude
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knowledge might be more related to skill with addition and subtraction than with multiplication
and division because sums and differences of rational numbers can be estimated by composing or
decomposing magnitudes, whereas estimation of products and quotients of rational numbers
requires more advanced transformations such as scaling (CCSSI, 2010, 5.NF.5; Devlin, 2008).
Therefore, in the studies whose arithmetic tasks involved multiple operations (Studies 1 and 3),
all models included operation and interactions of operation with each magnitude knowledge
measure as fixed effects. In the one study that included both fraction and decimal arithmetic with
multiple operations (Study 3), the models also included the three-way interactions of arithmetic
notation and operation with each magnitude knowledge measure as fixed effects.

Models were fit using both frequentist and Bayesian approaches in R (version 3.6.1; R
Core Team, 2018). Frequentist analyses employed /mer from the /me4 package (Bates, Maechler,
Bolker, & Walker, 2015) and /merTest (Kuznetsova, Brockhoff, & Christensen, 2016). Models
were fit using maximum likelihood (ML) and were compared using the Akaike Information
Criterion (AIC) and Chi-square tests. Bayesian analyses employed brm from the brms package in
R (Biirkner, 2017), which is a front end for Stan (Carpenter et al., 2017), a probabilistic
programming language. Default priors from brm were used (an improper flat prior over the reals
for fixed effects and a half student-¢ prior for the standard deviation of random effects); sampling
employed the no-U-turn sampler (NUTS; Hoffman & Gelman, 2014) with 8 chains of 10,000
iterations, including 2,000 warmup iterations, for each model. Bayesian model comparisons
employed the leave-one-out information criterion (LOOIC), an estimate of predictive accuracy
(Gelman, Hwang, & Vehtari, 2014), and Bayes Factors (BFs), obtained from LOO and

bayes_factor in brms. Andraszewicz and colleagues (2015) recommend interpreting BFs

10
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exceeding 1, 3, 10, 30, and 100 as indicating anecdotal, moderate, strong, very strong, and
extremely strong evidence, respectively.

Bayesian analyses were included because they could, in principle, provide evidence
favoring the null hypothesis—that is, the within-notation-only model. However, to preview the
results, all model comparisons favored the cross-and-within-notation model. Therefore, we
report details regarding the cross-and-within-notation models in the main text, and details
regarding the within-notation-only models in the Supplementary Materials. For each effect in the
cross-and-with-notation models, we report a point estimate (point estimates from Bayesian and
frequentist analyses were identical except in one case, noted below), a 95% credible interval
(95% CI) from the Bayesian analysis, and significance test results from the frequentist analysis.

Study 1

Our first dataset came from a single time point of a longitudinal study of Finnish primary
school students’ rational number development (Author, 2016, 2020). Participants were fourth
through sixth graders from two schools in southwest Finland. In Finland, fraction and decimal
magnitudes and addition and subtraction of fractions with like denominators is typically covered
by the end of fourth grade, decimal arithmetic and more advanced fraction arithmetic is covered
in fifth and sixth grades. Within-notation magnitude knowledge was assessed using magnitude
comparison and ordering tasks, and cross-notation magnitude knowledge was assessed using a
magnitude comparison task. The measure of arithmetic skill was a fraction arithmetic task, which

included all four arithmetic operations.
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Method
Participants

Our analysis included 277 fourth (n = 94; Meanage = 10 years, 11 months), fifth (n = 83;
Meanage = 11 years, 11 months), and sixth (n = 100; Meanage = 12 years, 10 months) graders
(138 male; 139 female). The sample represented a Finnish urban population, including students
from lower-middle class to middle class backgrounds and from diverse ethnic backgrounds. The
ethics board of XXX (project name: XXX), the district, and school administrations approved the
study.

Tasks, Stimuli, and Procedure

Participants completed a paper-and-pencil test of their rational number knowledge in a
whole-class setting in their regular math classrooms. The test included assessments of magnitude
knowledge, understanding of rational number density, and fraction arithmetic, administered in
that order. The density assessment does not relate to the predictions tested in the present study
and so will not be discussed further (see Author, 2020 for details on this task). Students had 45
minutes to complete the test.

Magnitude Knowledge. The magnitude knowledge assessment included three tasks:
within-notation comparison, within-notation ordering, and cross-notation comparison. The
within-notation comparison task required participants to circle the larger of two fractions (e.g.,
5/8, 4/3) or two decimals (e.g., 0.36, 0.5), or to circle both numbers if they were equal. The
within-notation ordering task required participants to put three fractions (e.g., 6/8, 2/2, 1/3) or
three decimals (e.g., 6.79, 6.786, 6.4) in order from smallest to largest. The cross-notation
comparison task was identical to the within-notation comparison task except that each trial

involved comparing one fraction and one decimal (e.g., 1/7, 0.7).

12
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Each within-notation task included three fraction items and three decimal items, and the
cross-notation comparison task included four items. Each correct answer was given one point.
Measures of within-notation magnitude knowledge were calculated separately for fractions and
decimals by adding scores from the comparison and ordering tasks (maximum = 6 for each
notation). Scores on the cross-notation comparison task (maximum = 4) served as our measure of
cross-notation magnitude knowledge. Cronbach’s alpha was .86 for fraction magnitude
knowledge, .81 for decimal magnitude knowledge, and .78 for cross-notation magnitude
knowledge. All measures of magnitude knowledge were converted to proportions correct and
mean-centered for analysis.

Fraction Arithmetic. Participants completed 12 fraction arithmetic problems, including
7 fraction addition and subtraction items (3/5+1/5; 2/9+5/9; 2/5+3/10; 2 3/5+1/5; 4-1/2; 5 4/5-2
2/5; 3 3/4+4) and 5 fraction multiplication and division items (1/2x1/2; 2/3%4/5; 1 3/8%x1/8;
6/7%3/2; 1/4+1/2) with like and unlike denominators. Each correct answer was given one point,
with a maximum score of 7 for the addition and subtraction (Cronbach’s alpha =.75) and 5 for
multiplication and division (Cronbach’s alpha =.71). These scores were converted to proportions
correct separately for addition/subtraction and multiplication/division.

Analysis

The within-notation-only model was a linear mixed model with accuracy on the fraction
arithmetic tasks as the dependent variable; grade, within-notation fraction magnitude knowledge,
within-notation decimal magnitude knowledge, arithmetic operation, and the interactions of
fraction and decimal magnitude knowledge with arithmetic operation as fixed effects; and
participant as a random effect. The cross-and-within-notation model included all effects that

were included in the within-notation-only model, and also included cross-notation magnitude
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knowledge and its interaction with arithmetic operation as fixed effects. Arithmetic operations
were classified as either addition/subtraction or multiplication/division, which were dummy
coded as -0.5 and 0.5 respectively.

Results and Discussion

Descriptive statistics and zero-order correlations for the measures of magnitude
knowledge and arithmetic are shown in the Appendix (Table A1). As predicted, model
comparisons favored the cross-and-within-notation model over the within-notation-only model,
as indicated by lower AIC (-6.6 vs. -0.3), a significant Chi-square test (y2(2) = 10.3, p = .006),
lower LOOIC (-21.5 vs. -17.3), and BF of 2.9.

Details regarding the cross-and-within-notation model are shown in Table 1. As
predicted, higher cross-notation knowledge predicted higher arithmetic accuracy. This result is
consistent with the hypothesis that cross-notation knowledge benefits arithmetic learning, at least
for fraction arithmetic. The absence of a cross-notation knowledge by arithmetic operation
interaction indicates that effects of cross-notation knowledge did not differ between

addition/subtraction and multiplication/division.

Table 1

A significant main effect was also found for decimal magnitude knowledge, but not for
fraction magnitude knowledge. Both fraction and decimal magnitude knowledge interacted with
arithmetic operation. To investigate these interactions, we used the samples generated in the

Bayesian analysis to calculate 95% Cls for effects of fraction and decimal magnitude knowledge

! Assigning numeric codes with a difference of 1.0 for arithmetic operation ensures that the estimated effect of
arithmetic operation equals the difference in accuracies between arithmetic operations. Assigning numeric codes
centered around 0.0 ensures that the estimated effect of each other predictor in the model equals the average of the
predictor’s estimated effects for all arithmetic operations, as would be the case in ANOVA.

14
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on addition/subtraction and multiplication/division accuracy?. Effects of fraction magnitude
knowledge were larger for addition/subtraction than multiplication/division, but the 95% ClIs of
both effects included zero (addition/subtraction: estimate = 0.10, 95% CI = [-0.01, 0.21];
multiplication/division: estimate = -0.08, 95% CI =[-0.19, 0.03]). Effects of decimal magnitude
knowledge were also larger for addition/subtraction than multiplication/division, and 95% ClIs of
the effects excluded zero for addition/subtraction (estimate = 0.19, 95% CI =[0.07, 0.30]) but
not multiplication/division (estimate = 0.01, 95% CI =[-0.11, 0.13]).

Effects of grade and arithmetic operation were also found. Children in higher grades were
more accurate (fourth grade = 28%, fifth grade = 39%, sixth grade = 51%), and accuracy was
higher on addition/subtraction than multiplication/division problems (60% vs. 20%).

Study 2

Study 2 analyzed data from a study of children’s rational number magnitude knowledge,
rational number arithmetic, and pre-algebra skills previously reported in Author (2018).
Participants were fourth to seventh graders in the USA. According to the Common Core State
Standards for mathematics, comparison of fractions and decimals, as well as addition of fractions
with like denominators and multiplication of fraction by a whole number, should be covered by
the end of fourth grade, whereas decimal arithmetic and more advanced fraction arithmetic are to
be covered in fifth and sixth grade (CCSSI, 2010). The study included both within-notation and
cross-notation magnitude comparison tasks. The measure of arithmetic skill included fraction

and decimal addition problems, but no other arithmetic operations.

2 Effect on addition/subtraction = (main effect of magnitude knowledge) — 0.5 * (interaction with operation).
Effect on multiplication/division = (main effect of magnitude knowledge) + 0.5 * (interaction with operation).

15
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Method
Participants

Our analysis included 39 children (Mug.= 11.8 years, range: 9.8 to 14.4 years; 10 fourth
graders, 10 fifth graders, 3 sixth graders, and 16 seventh graders; 24 boys and 15 girls), recruited
from the Boston, MA, USA area through a variety of recruitment methods and testing locations,
including schools, child care programs, and on-campus research lab. We do not have additional
demographic information about the sample. Two children who were included in Author (2018)
were excluded from the current analysis because they had missing arithmetic data, which is the
primary purpose of the current analysis. The institutional review board of XXX approved the
study (IRB# XXX, project name XXX).

Tasks, Stimuli, and Procedure

Children completed assessments of magnitude knowledge, pre-algebra, and rational
number arithmetic in that order. The pre-algebra assessment does not relate to the predictions
tested in the present study and so will not be discussed further (see Author (2018) for details
about this task). The entire session occurred one-on-one between a researcher and the child,
using a computer for the magnitude knowledge assessment and paper-and-pencil for all other
tasks.

Magnitude Knowledge. Magnitude knowledge was measured using a magnitude
comparison task in which children were shown two numbers presented on a computer screen and
asked to decide which was larger as accurately and quickly as they could by pressing the
corresponding key on the keyboard. The task included six types of comparisons: fraction versus
fraction, decimal versus decimal, whole number versus whole number, fraction versus decimal,

fraction versus whole number, and decimal versus whole number.
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Each block consisted of 16 trials, made from four unique comparisons from two ratio
bins, each shown twice (4x2x2 = 16). The ratio bins (larger magnitude/smaller magnitude) were
approximately 1.5 (range: 1.35 to 1.67) and 2.5 (range: 2.20 to 2.92). The pairs of numbers
compared in the fraction vs. fraction, decimal vs. decimal, and decimal vs. fraction blocks had
the same magnitudes, up to rounding error. For example, the fraction vs. fraction trials included
the comparison 3/5 vs. 2/9; the corresponding comparisons in the decimal vs. decimal and
fraction vs. decimal blocks were 0.60 vs. 0.22 and 3/5 vs. 0.22. In the fraction vs. decimal block,
the larger value was presented as a fraction on half the trials and as a decimal on the other half.
Magnitude values ranged from 1/5 (0.2) to 7/2 (3.5), to include values above and below one. For
fraction stimuli, the numerators and denominators were all between 1 and 10; for fraction vs.
fraction comparisons, each component of each fraction differed from both components of the
other fraction. Decimals were always presented to the hundredth digit (potentially with a 0 in the
hundredth digit, e.g., 0.20) with an integer before the decimal point (sometimes 0).

Each type of comparison was presented in a separate block. The six blocks were
presented in a random order for each participant. Although participants were encouraged to
answer as quickly as they could, they had unlimited time and all trials were included, regardless
of their reaction time.

Within-notation magnitude knowledge was calculated as the proportion of trials correct
(out of 16) on the fraction vs. fraction (Cronbach’s alpha =.77) and decimal vs. decimal
(Cronbach’s alpha = .62) blocks, separately. Proportion correct on the fraction vs. decimal block
(Cronbach’s alpha = .72) served as our measure of cross-notation magnitude knowledge. Data
from blocks involving whole numbers were not included in the current analyses. As in Study 1,

all measures of magnitude knowledge were mean-centered.
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Rational Number Arithmetic. The rational arithmetic assessment included a fraction
addition task and a decimal addition task. Order of these two tasks was counterbalanced between
participants.

The fraction addition task included five fraction addition problems (2/3+5/6; 2/5+3/4;
12+4/7; 5/8+2/4; 3/9+2/3) presented in a booklet with enough space between problems to
workout solutions and provide an answer. Problems were presented horizontally, with fractions
presented in their formal upright notation. All problems involved fractions with different
denominators. Children were able to take as long as they needed. Performance was scored as the
proportion of problems correct (out of 5; Cronbach’s alpha = .95) and any correct answer was
accepted (it did not need to be in any particular format or specific simplified fraction).

The decimal addition task included five decimal addition problems (0.5+0.38; 0.21+0.63;
0.78+0.19; 0.45+0.8; 0.53+0.49) presented in a booklet with enough space between problems to
workout solutions and provide an answer. Problems were presented horizontally. Three problems
involved addends that both had two decimal digits, and two problems involved one addend with
two decimal digits and one addend with one decimal digit. Children were able to take as long as
they needed. Performance was scored as the proportion of problems correct (out of 5;
Cronbach’s alpha = .64) and any correct answer was accepted.

Analysis

The within-notation-only model was a linear mixed model with accuracy on the
arithmetic assessment as the dependent variable; grade, within-notation fraction magnitude
knowledge, within-notation decimal magnitude knowledge, arithmetic notation, and the
interactions of fraction and decimal magnitude knowledge with arithmetic notation as fixed

effects; and participant as a random effect. The cross-and-within-notation model included all
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effects that were included in the within-notation-only model as well as cross-notation magnitude
knowledge and its interaction with arithmetic notation as fixed effects. In all analyses, fraction
and decimal arithmetic were dummy coded as -0.5 and 0.5 respectively”.

Results and Discussion

Descriptive statistics and zero-order correlations for the measures of magnitude
knowledge and arithmetic are shown in the Appendix (Table A2). As in Study 1, model
comparisons favored the cross-and-within-notation model, as indicated by lower AIC (30.5 vs.
33.4), a significant Chi-square test (y%(2) = 6.8, p = .033), lower LOOIC (30.4 vs. 31.6), and BF
of 22.0.

Details regarding the cross-and-within-notation model are shown in Table 2. As
predicted, higher cross-notation magnitude knowledge predicted higher arithmetic accuracy,
replicating the main finding of Study 1. Effects of fraction and decimal magnitude knowledge
were not significant, and no interactions reached significance. Thus, there was not statistically
significant evidence that fraction magnitude knowledge relates more strongly to fraction than
decimal arithmetic or that decimal magnitude knowledge relates more strongly to decimal than

fraction arithmetic.

Table 2

Finally, significant effects of grade and arithmetic notation were also found. Children in
higher grades were more accurate (fourth grade = 48%, fifth grade = 82%, sixth grade = 80%,

seventh grade = 85%). Accuracy was higher on decimal than fraction arithmetic (84% vs. 65%).

3 Assigning numeric codes with a difference of 1.0 for arithmetic notation implies that the estimated effect of
arithmetic operation equals the difference in accuracies between arithmetic notations. Assigning numeric codes
centered around 0.0 implies that the estimated effect of each other predictor in the model equals the average of the
predictor’s estimated effects for both arithmetic notations, as would be the case in ANOVA.
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Study 3

The third dataset came from a single time point of a longitudinal study of middle school
students’ rational number development (Author, 2019, 2020). Participants were seventh and
eighth graders in the USA, where formal instruction in fractions and decimals is typically
completed prior to seventh grade (CCSSI, 2010). The magnitude knowledge assessment
employed within-notation ordering tasks with fractions and decimals, and a cross-notation
ordering task. The arithmetic assessment in this study included all four operations with both
fractions and decimals.
Methods
Participants

Our analysis included 394 children (232 seventh graders and 162 eighth graders; 209
females and 185 males). All participants were from a single school in Gainesville, FL, USA,
which was made up of students who were identified as 51% white, 28% African American, 11%
Hispanic, and 5% Asian in district records; 43% of students at the school were eligible for free or
reduced lunch. All participants had parental consent to participate in the study and gave their
own assent before participating. The ethics board of XXX (project name: XXX), the district, and
school administrations approved the study.
Tasks, Stimuli, and Procedure

Participants completed a series of assessments of various aspects of rational number
knowledge (detailed in Author, 2020). Only the magnitude knowledge assessment and rational
number arithmetic assessment will be examined in the present study. The arithmetic assessment

was completed immediately prior to the magnitude knowledge assessment. Students had 50
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minutes to complete all assessments. The assessments were administered in whole class format
during students’ regular science class by the second author.

Magnitude Knowledge. The magnitude knowledge assessment included fraction
ordering and decimal ordering tasks, which served as our measures of within-notation magnitude
knowledge, and a cross-notation ordering task, which served as our measure of cross-notation
magnitude knowledge. Each task included two items. Each item required participants to put
either three or four numbers in order from smallest to largest. The fraction items were {5/8,
11/37, 3/4} and {6/12, 5/7, 2/6, 2/3}, the decimal items were {7.351, 7.8, 7.09, 7.71} and {0.68,
0.29, 0.351, 0.5}, and the mixed items were {0.5, 1/4, 5/100, 0.356} and {13/52, 0.111, 2/3, 0.8}.

Because each task included only two items, but each item required multiple pairwise
comparisons, to increase the captured variance across participants, participants received one
point for each pair of numbers that they ordered correctly. For example, for the item {5/8, 11/37,
3/4}, participants received 1 point for correctly ordering each of the following pairs of numbers:
5/8 vs. 11/37, 5/8 vs. 3/4, and 11/37 vs. 3/4. The maximum possible scores were 9 for fractions
(Cronbach’s alpha = .93) and 12 for decimals (Cronbach’s alpha = .95). For the cross-notation
magnitude knowledge task, only cross-notation pairs (e.g. 0.5 vs. 1/4 but not 1/4 vs. 5/100) were
scored, for a maximum of 8 points for cross-notation magnitude knowledge (Cronbach’s alpha
=.80). As in Studies 1 and 2, magnitude knowledge scores were converted to proportions correct
and mean-centered.

Rational Number Arithmetic. Participants completed 24 rational number arithmetic
problems. Items included 12 fraction arithmetic items (2/3—1/3; 4/7+1/2; 3/4x1/5; 8 1/2+4 1/8;
5/7-1/2; 1/5+2/3; 7/8+2/8; 2 3/4+4 1/8; 2 6/7+5 1/2; 5/8+3/8; 3 2/3—3/4; 3/5%1/5) and 12

decimal arithmetic items (1.05x0.2; 0.71—-0.4; 0.11+0.7; 5.29—4.2; 3.4+1.02; 0.38-0.14;0.4+0.2;
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0.9+0.3; 0.4x0.52; 0.111x0.097; 3.06x5.3; 0.84+0.4). Each correct answer was given one point.
Scores on each combination of notation (fraction, decimal) and arithmetic operation
(addition/subtraction, multiplication/division) were converted to proportions correct for analysis.
Cronbach’s alpha was .86 for fraction addition/subtraction, .67 for fraction
multiplication/division, .73 for decimal addition/subtraction, and .78 for decimal
multiplication/division.
Analysis

The within-notation-only model was a linear mixed model with accuracy on the
arithmetic assessment as the dependent variable; grade, within-notation fraction magnitude
knowledge, within-notation decimal magnitude knowledge, arithmetic operation, arithmetic
notation, the interaction of operation and notation, the interactions of fraction and decimal
magnitude knowledge with arithmetic operation and arithmetic notation, and the three-way
interactions of fraction and decimal magnitude knowledge with both operation and notation as
fixed effects; and participant as a random effect. The cross-and-within-notation model included
all effects that were included in the within-notation-only model as well as cross-notation
magnitude knowledge, its interactions with operation and notation, and the three-way interaction
of cross-notation magnitude knowledge with both operation and notation. As in Study 1,
arithmetic operation was dummy-coded as -0.5 for addition or subtraction and 0.5 for
multiplication or division, and as in Study 2, arithmetic notation was dummy-coded as -0.5 for
fraction arithmetic and 0.5 for decimal arithmetic.
Results and Discussion

Descriptive statistics and zero-order correlations for the measures of magnitude

knowledge and arithmetic are shown in the Appendix (Table A3). As in Studies 1 and 2, all
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model comparisons favored the cross-and-within-notation model, as indicated by lower AIC
(185.5 vs. 201.2), a significant Chi-square test (y2(4) = 23.7, p <.001), lower LOOIC (46.7 vs.
50.4), and BF of 63.9.

Details regarding the cross-and-within-notation model are shown in Table 3. As
predicted, cross-notation magnitude knowledge positively predicted arithmetic accuracy. No
interactions involving cross-notation magnitude knowledge were found. Thus, cross-notation
magnitude knowledge had about equally strong relations to fraction and decimal arithmetic and

to accuracy with different arithmetic operations.

Table 3

The main effect of fraction magnitude knowledge did not reach significance, but a three-
way interaction of fraction magnitude knowledge, arithmetic operation, and arithmetic notation
was found. To investigate this interaction, we used the samples generated in the Bayesian
analysis to calculate estimated effects of fraction magnitude knowledge, and 95% Cls thereof,
for each combination of arithmetic operation and notation*. The 95% CI of the effect on fraction
addition/subtraction excluded zero (estimate = 0.16, 95% CI =[0.03, 0.29]), whereas the 95%
CIs of the effects on other problem types included zero (fraction multiplication/division: estimate
=-0.05, 95% CI =[-0.18, 0.08]; decimal addition/subtraction: estimate = 0.02, 95% CI =[-0.11,

0.15]; decimal multiplication/division: estimate = 0.09, 95% CI = [-0.04, 0.22]).

4 Effect on fraction addition/subtraction = (main effect of magnitude knowledge) — 0.5 * (interaction with operation)
— 0.5 * (interaction with notation) + 0.25 * (three-way interaction).

Effect on fraction multiplication/division = (main effect of magnitude knowledge) + 0.5 * (interaction with
operation) — 0.5 * (interaction with notation) — 0.25 * (three-way interaction).

Effect on decimal addition/subtraction = (main effect of magnitude knowledge) — 0.5 * (interaction with operation)
+ 0.5 * (interaction with notation) — 0.25 * (three-way interaction).

Effect on decimal multiplication/division = (main effect of magnitude knowledge) + 0.5 * (interaction with
operation) + 0.5 * (interaction with notation) + 0.25 * (three-way interaction).
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An effect of decimal magnitude knowledge was also found, qualified by an interaction
with arithmetic operation. We investigated the interaction by calculating means and 95% Cls of
effects of decimal magnitude knowledge on addition/subtraction accuracy and
multiplication/division accuracy, as in Study 1. Effects of decimal magnitude knowledge were
larger for addition/subtraction (estimate = 0.34, 95% CI = [0.24, 0.44]) than
multiplication/division (estimate = 0.18, 95% CI = [0.09, 0.29]), but in contrast to Study 1, 95%
CIs for both effects excluded zero. Effects of decimal magnitude knowledge on fraction
arithmetic did not differ from effects of decimal magnitude knowledge on decimal arithmetic.

Finally, effects of arithmetic operation and arithmetic notation were found, indicating that
accuracy was higher on addition/subtraction than multiplication/division as in Study 1, and was
higher on decimal than fraction arithmetic as in Study 2. These effects were qualified by an
operation by notation interaction, indicating that for addition/subtraction, accuracy was higher
with decimals than fractions (fractions: 41%, decimals: 66%), whereas the opposite was true for
multiplication/division (fractions: 36%, decimals: 24%).

In contrast to Studies 1 and 2, there was no effect of grade. This null result may reflect
the fact that participants in Study 3 were in seventh or eighth grade, during which rational
number arithmetic is not a focus of instruction. Studies 1 and 2 included children in fourth, fifth,
and sixth grades, during which rational number arithmetic is a major focus of instruction.

Combined Analyses

Results of Studies 1, 2, and 3 were broadly consistent but differed in some details. For
example, not all model comparisons favored the cross-and-within-notation model equally
strongly (BFs = 2.9, 22.0, and 63.9 in Studies 1, 2, and 3 respectively), and some effects were

found in only some studies. To address these issues, pooled data from all three studies were
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submitted to a within-notation-only model and a cross-and-within-notation model. Predictors
were as in Study 3 except that experiment was included as a random effect, with participants
nested within experiments. Model comparisons favored the cross-and-within-notation model, as
indicated by lower AIC (426.8 vs. 456.0), a significant Chi-square test (y%(4) =37.2, p <.001),
lower LOOIC (293.9 vs. 310.0), and BF of 34,376.7. This BF indicates extremely strong
evidence for the cross-and-within-notation model (Andraszewicz et al., 2015).

Details regarding the cross-and-within-notation model are shown in Table 4. Significant
effects were the same as in Study 3, with the exception that an effect of grade appeared in this
analysis but not in Study 3. Cross-notation magnitude knowledge predicted arithmetic accuracy
and did not interact with any other predictor. Interactions involving within-notation magnitude
knowledge did appear, and were investigated as in Study 3, yielding very similar results. The
effect of fraction magnitude knowledge was credibly greater than zero for fraction
addition/subtraction (estimate = 0.13, 95% CI =[0.04, 0.22]) but not for any other problem
category (fraction multiplication/division: estimate = -0.07, 95% CI = [-0.16, 0.02]; decimal
addition/subtraction: estimate = 0.02, 95% CI = [-0.11, 0.14]; decimal multiplication/division:
estimate = 0.08, 95% CI = [-0.04, 0.21]). The effect of decimal magnitude knowledge was larger
for addition/subtraction (estimate = 0.27, 95% CI =[0.19, 0.35]) than for multiplication/division

(estimate = 0.13, 95% CI =[0.05, 0.21]) but was credibly greater than zero in both cases.

Table 4
General Discussion
The present study investigated relations between individual differences in magnitude
knowledge and individual differences in rational number arithmetic skill. In contrast to previous

studies, which investigated such relations primarily using within-notation measures of magnitude
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knowledge, the present study estimated unique effects of both cross-notation and within-notation
magnitude knowledge. Below, we review the key findings and discuss their implications for the
role of cross-notation knowledge and within-notation knowledge in learning about rational
numbers, instruction in rational numbers, and math learning in general.
The Role of Cross-Notation Knowledge in Learning About Rational Numbers

Individual differences in cross-notation magnitude knowledge predicted arithmetic skill
with rational numbers while controlling for within-notation magnitude knowledge. To our
knowledge, the present study is the first to show this effect. Attesting to the robustness of the
effect, it appeared in three datasets that involved children of different ages and nationalities,
different measures of magnitude knowledge, and different measures of rational number
arithmetic. The effect did not vary as a function of arithmetic notation or arithmetic operation.

Many measures of children’s knowledge of rational number magnitudes have relied
exclusively on within-notation tasks, such as fraction magnitude comparison (Fazio, DeWolf, &
Siegler, 2016; Gabriel, Szucs, & Content, 2013; Meert, Grégoire, & Noél, 2010), fraction
number line estimation (Booth et al., 2014; Resnick et al., 2016), decimal magnitude comparison
(DeWolf, Grounds, Bassok, & Holyoak, 2014; Roell, Viarouge, Houd¢, & Borst, 2017), or
decimal number line estimation (Durkin & Rittle-Johnson, 2015; Rittle-Johnson et al., 2001).
The present findings demonstrate that purely within-notation magnitude tasks may fail to capture
important aspects of individual differences, and therefore suggest that it could be useful to
include cross-notation tasks in assessments of rational number magnitude knowledge. Related, it
could also be useful to investigate children’s uses of cross-notation knowledge, such as

translating between notations, when performing within-notation tasks (e.g., Siegler et al., 2011).

26



CROSS-NOTATION KNOWLEDGE

Which aspects of individual differences are captured by cross-notation magnitude tasks
but are not captured, or are captured less well, by differences in accuracy on within-notation
magnitude tasks? One possibility is that cross-notation tasks tap into children’s conceptual
understanding of fraction-decimal equivalence and their procedural skill at converting fractions
into decimals and decimals into fractions. For example, when asked to compare 0.5 and 1/4, a
child might reason that 0.5 = 1/2 and 1/2 > 1/4 so 0.5 > 1/4. Alternatively, the child might reason
that 1/4 = 0.25 and 0.25 < 0.5 so 1/4 <0.5.

Another possibility is that cross-notation tasks tap into analog magnitude representations
that ground children’s understanding of both fraction and decimal magnitudes (Matthews, Lewis,
& Hubbard, 2016; Zhang et al., 2016). Binzak and Hubbard (2020) found that adults perform
cross-notation comparisons faster and more accurately as the distance between the to-be-
compared numbers increases, consistent with reliance on analog magnitude representations
during such comparisons. However, distance effects also appeared for within-notation
comparisons, and were generally as large for fraction versus fraction comparisons as for cross-
notation comparisons. Thus, within-notation and cross-notation comparisons likely both elicit
similar levels of reliance on analog magnitude representations. It remains to be seen whether
such representations are involved in the aspects of individual differences that are uniquely
captured by cross-notation tasks.

Both accounts of cross-notation magnitude knowledge are consistent with the possibility
that this knowledge has a causal effect on rational number arithmetic. First, conversion between
fractions and decimals could enable children to use knowledge of each notation to reason about
arithmetic problems involving the other notation. For example, a child who has this ability, when

presented .4x.2, could reason that .4x.2 =4/10%2/10 = 8/100 = .08, thus avoiding the common
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error .4%.2 = .8. Second, analog magnitude representations could enable children to evaluate
answers to arithmetic problems based on plausibility. For example, a child who can form an
analog magnitude representation of 3/5+1/4 might recognize that the common incorrect response
4/9 is implausibly small. As these examples illustrate, magnitude knowledge could help children
avoid common errors in rational arithmetic, thus increasing the likelihood of learning correct
procedures and concepts.

In principle, variables not included in our analyses could account for some or all of the
variance shared by cross-notation magnitude knowledge and rational number arithmetic.
However, many variables that might play such a role are also correlated with fraction and
decimal magnitude knowledge, for example general math achievement, nonverbal reasoning,
working memory, and vocabulary (Bailey et al., 2017; Malone et al., 2017; Resnick et al., 2019;
Siegler et al., 2012). The fact that our analyses controlled for fraction and decimal magnitude
knowledge reduces the likelihood that such variables completely explain the relations that were
found between cross-notation magnitude knowledge and arithmetic skill. Future research should
further assess this possibility by controlling for a more extensive set of covariates than were
included in the present study and directly testing the possibility of a causal relation.

The Role of Within-Notation Knowledge in Learning About Rational Numbers

In principle, relations between within-notation magnitude knowledge and arithmetic
could be notation-specific, with fraction magnitude knowledge related specifically to fraction
arithmetic and decimal magnitude knowledge related specifically to decimal arithmetic. This
intuitively plausible pattern of relations is what would be expected if children’s knowledge of
rational numbers is compartmentalized by notation, with knowledge of magnitudes and

knowledge of arithmetic being connected within each compartment. However, the present
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findings did not display such a pattern. Fraction magnitude knowledge did not predict fraction
arithmetic more strongly than decimal arithmetic, and decimal magnitude knowledge did not
predict decimal arithmetic more strongly than fraction arithmetic.

A possible explanation for these results is that within-notation measures of magnitude
knowledge tap into a general understanding of rational number magnitudes that is not specific to
either notation and that is related to arithmetic proficiency with both notations. This general
understanding could include analog representations of numerical magnitudes, as mentioned
above (Binzak & Hubbard, 2020; Matthews et al., 2016; Zhang et al., 2016), as well as concepts
and principles that apply to both fractions and decimals, such as the concept of representing
numerical magnitudes as positions on a number line or the principle that a sum of positive
numbers is greater than either addend. The fact that, in the present study, performance on
decimal magnitude tasks predicted arithmetic skill more consistently than performance on
fraction magnitude tasks predicted arithmetic skill could be because decimal magnitude tasks are
more sensitive measures of general magnitude understanding than fraction magnitude tasks are, a
possibility worth exploring in the future.

In our combined analysis, fraction magnitude knowledge uniquely predicted accuracy
with fraction addition and subtraction, but not with fraction multiplication and division.
Similarly, decimal magnitude knowledge predicted addition and subtraction accuracy more
strongly than multiplication and division accuracy. These results may reflect students being more
likely to think about numerical magnitudes in the context of addition and subtraction than
multiplication and division, perhaps because addition and subtraction transparently involve
composition and decomposition of magnitudes. Consistent with this explanation, most middle-

school children know that adding positive fractions or decimals “makes bigger” and subtracting
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them “makes smaller,” whereas far fewer correctly understand how multiplication or division by
fractions or decimals affects numerical magnitudes (Lortie-Forgues & Siegler, 2017; Siegler &
Lortie-Forgues, 2015).

Relations Between Within- and Cross-Notation Knowledge

Distinguishing between within- and cross-notation knowledge of rational numbers
naturally leads to the question of how these types of knowledge relate to each other. We propose
an iterative model in which each form of knowledge contributes to development of the other.
Initially, children likely primarily acquire within-notation knowledge, including notation-specific
concepts such as numerator and denominator (for fractions) and place value (for decimals). Such
knowledge may create a foundation for subsequent development of cross-notation knowledge;
for example, understanding the concepts of numerator and denominator provides a basis for
converting fractions into decimals via division of numerator by denominator. Cross-notation
knowledge may lead to further improvements in within-notation knowledge by one or both of the
mechanisms proposed in the Introduction: (1) learners using one notation to help understand the
other and (2) similarities between fractions and decimals drawing attention to general properties
of rational numbers. Our iterative model implies that individual differences in each type of
knowledge should predict improvements in the other type of knowledge both over time and after
intervention. Future research should test these predictions.

The above proposal is compatible with and extends the Integrated Theory of Numerical
Development (Siegler & Braithwaite, 2017). According to the theory, numerical development
during middle childhood involves children integrating their knowledge of different types of
numbers into a unified framework, represented by the number line. Previous formulations of the

theory have emphasized one aspect of this process of integration, namely integrating rational
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number knowledge with whole number knowledge. The iterative model described above draws
attention to a complementary aspect of the process, namely integrating knowledge of fractions
and knowledge of decimals, and implies that this aspect of integration may lead to refinements in
knowledge of fractions, decimals, and rational numbers in general. Thus, consideration of cross-
notation knowledge permits more detailed description of the developmental processes proposed
by the Integrated Theory.

Implications for Instruction in Rational Numbers

If, as proposed, connections between fractions and decimals can facilitate learning
rational arithmetic, then students might benefit from instruction that explicitly relies on such
connections during instruction. For example, a student who incorrectly claims that 3/5+1/4 = 4/9
might benefit from a teacher pointing out that 3/5+1/4 = 0.6+0.25 = 0.85, and that 4/9 is much
smaller than 0.85. Similarly, a student who incorrectly claims that .4x.2 = .8 might benefit from
a teacher showing that .4x.2 =4/10x2/10 = 8/100, and that 8/100 = 0.08, not 0.8. As these
examples illustrate, making connections between fractions and decimals could help remediate
misconceptions and encourage integration of previously encountered information.

The examples also illustrate how instruction that relies on connections between fractions
and decimals may require prior knowledge on the part of students to be effective. For example,
explaining .4x.2 by referring to 4/10x2/10 assumes that students know how to multiply a fraction
by a fraction, a fifth grade topic in US schools (CCSSI, 2010). Thus, this explanation is most
likely to be useful in fifth grade after fraction multiplication has been covered, or in sixth grade.
Similarly, explaining 3/5+1/4 by referring to 0.6+0.25 is most likely to be useful in fifth grade
after covering how to add decimals with unequal numbers of decimal digits (CCSSI, 2010), or in

sixth grade. Educators who use such approaches should ensure that children have sufficient prior
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knowledge to benefit from the instruction, and studies testing interventions that use such
approaches should also test whether prior knowledge moderates the effects of the interventions.

This perspective may help to interpret results of a recent study that investigated effects of
emphasizing cross-notation knowledge when teaching about fractions and decimals (Malone et
al., 2019). At-risk fourth graders were randomly assigned to a business-as-usual control
condition; a fractions-only intervention; or an integrated intervention that covered fractions,
decimals, and connections between them. Fraction magnitude knowledge and fraction arithmetic
improved more in both experimental conditions than in the control condition, but the integrated
intervention did not lead to greater improvement on these measures than the fractions-only
intervention. A possible explanation is that participants’ knowledge of decimal magnitudes was
insufficient to help them benefit from the cross-notation instruction. Consistent with this
possibility, accuracy on a decimal magnitude task was rather low at pretest (11%) and still low at
posttest (36%), though higher than at pretest. Students with greater decimal magnitude
knowledge might be more able to leverage that knowledge to help understand fractions in the
context of an integrated intervention.
Implications for Math Learning in General

The present study’s emphasis on cross-notation knowledge aligns well with research that
emphasizes the importance of understanding and flexibly using multiple external representations
(MERs) when learning and doing math (Ainsworth, 2006). Previous research on MERs has
largely emphasized connections between symbolic and graphical representations or between
multiple graphical representations (e.g., Acevedo Nistal, Van Dooren, & Verschaftel, 2013;
Ainsworth, 2006; Braithwaite & Goldstone, 2013), such as between fractions and number lines,

fractions and pie charts, or number lines and pie charts (Rau & Matthews, 2017). The present
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findings suggest that connections between multiple symbolic representations may also play an
important role in math education.

Although the present study focused on cross-notation knowledge involving fractions and
decimals, cross-notation knowledge is a more general concept. It also includes, to name a few,
knowledge of relations of fractions and decimals to percentages and ratios; relations between
different units of measure; relations among different notations for large whole numbers, such as
4,100,000, 4.1E6, and 4.1x10°; and relations between degree and radian notations for the sizes of
angles. In each example, understanding and flexibly using different notations requires relatively
deep understanding of the concepts that the notations represent, but the effort to achieve cross-
notation knowledge may also help learners to achieve such deep understanding and improve
performance in related tasks. Future research should test this possibility in a wider range of
mathematical domains.

Limitations

One limitation of the present study is that our literature search was not exhaustive. Other
studies may exist that met our criteria for inclusion but were not included in the present study.
Related, we did not include data on within-notation magnitude knowledge obtained using
number line estimation tasks. This exclusion may have negatively biased our estimates of effects
of within-notation magnitude knowledge on arithmetic, because arithmetic accuracy is more
strongly correlated with number line estimation than with comparison (Schneider et al., 2018).
Our analyses may also have underestimated effects of cross-notation knowledge because we did
not include measures of cross-notation knowledge involving percentages. Percentages offer
distinct affordances from both fractions and decimals (Tian, Braithwaite, & Siegler, 2020b), so

knowledge of relations between fractions and percentages, and between decimals and
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percentages, may make unique contributions to arithmetic development (Moss & Case, 1999).
Future research should investigate the unique contributions of within- and cross-notation
magnitude knowledge to rational number arithmetic using a wider range of datasets with more
varied measures of both types of magnitude knowledge.
Conclusion
Cross-notation knowledge is an important aspect of mathematical knowledge in general
and rational number knowledge in particular. The present study shows that cross-notation
knowledge of rational number magnitudes captures variation among individuals that is not fully
captured by within-notation measures of magnitude knowledge and that predicts individual
differences in rational arithmetic proficiency. Thus, it could be useful to include cross-notation
tasks in assessments of rational number knowledge. Further, future research should explore the
possibility of using connections between fractions and decimals to improve children’s
understanding of both notations individually and rational number knowledge more generally.
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Tables

Table 1. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model

(Study 1, N =277).

Bayesian analysis Frequentist analysis
Effect B 95% CI t p
Grade 0.07 [0.03,0.10] 4.1 <.001
Arithmetic operation -0.40 [-0.43, -0.36] -22.4 <.001
Fraction magnitude knowledge 0.01 [-0.08, 0.10] 0.2 .87
Fraction magnitude knowledge * -0.18 [-0.32, -0.05] -2.7 .008
arithmetic operation
Decimal magnitude knowledge 0.10 [0.01, 0.19] 2.2 .03
Decimal magnitude knowledge * -0.18 [-0.32, -0.04] -2.5 .01
arithmetic operation
Cross-notation magnitude knowledge 0.14 [0.05, 0.23] 3.2 .001
Cross-notation magnitude knowledge * -0.01 [-0.15,0.12] -0.2 .86

arithmetic operation

Note. Here and throughout, B indicates estimated effects, which were identical in the frequentist
and Bayesian analyses unless stated otherwise; 95% CI indicates 95% credible intervals of

effects from the Bayesian analyses; and ¢ and p indicate test results from the frequentist analyses.
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Table 2. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model

(Study 2, N =39).

Bayesian analysis Frequentist analysis
Effect B 95% CI t p
Grade 0.07 [0.01, 0.13] 2.5 .02
Arithmetic notation 0.18 [0.08, 0.29] 3.8 <.001
Fraction magnitude knowledge 0.14 [-0.44, 0.71] 0.5 .62
Fraction magnitude knowledge * -0.31° [-1.16, 0.53] -0.8 41
arithmetic notation
Decimal magnitude knowledge 0.01 [-0.91, 0.93] 0.02 98
Decimal magnitude knowledge * -0.86 [-2.21, 0.51] -1.4 17
arithmetic notation
Cross-notation magnitude knowledge 0.68 [0.004, 1.35] 2.2 .04
Cross-notation magnitude knowledge * -0.70 [-1.70, 0.29] -1.6 A3

arithmetic notation

5-0.31 denotes the estimated interaction of fraction magnitude knowledge with arithmetic notation in the Bayesian
analysis; the corresponding estimate from the frequentist analysis was -0.32.
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Table 3. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model

(Study 3, N = 394).

Bayesian analysis

Frequentist analysis

Effect B 95% CI t p
Grade 0.03 [-0.01, 0.06] 1.3 19
Arithmetic operation -0.24 [-0.26, -0.22] -21.3 <.001
Arithmetic notation 0.07 [0.04, 0.09] 6.0 <.001
Arithmetic operation * arithmetic notation -0.37 [-0.41, -0.33] -16.6 <.001
Fraction magnitude knowledge 0.06 [-0.03, 0.15] 1.2 21
Fraction magnitude knowledge * -0.07 [-0.18, 0.04] -1.3 .19
arithmetic operation

Fraction magnitude knowledge * 0.00 [-0.10, 0.11] 0.0 .97
arithmetic notation

Fraction magnitude knowledge * 0.28 [0.07, 0.50] 2.6 .01
arithmetic operation * arithmetic notation

Decimal magnitude knowledge 0.26 [0.18, 0.35] 6.1 <.001
Decimal magnitude knowledge * -0.15 [-0.25, -0.05] -3.0 .002
arithmetic operation

Decimal magnitude knowledge * -0.02 [-0.12, 0.08] -0.4 .66
arithmetic notation

Decimal magnitude knowledge * 0.08 [-0.12, 0.28] 0.8 42
arithmetic operation * arithmetic notation

Cross-notation magnitude knowledge 0.20 [0.11, 0.29] 4.5 .001
Cross-notation magnitude knowledge * -0.04 [-0.14, 0.06] -0.7 47
arithmetic operation

Cross-notation magnitude knowledge * 0.00 [-0.10, 0.10] 0.0 .99
arithmetic notation

Cross-notation magnitude knowledge * 0.18 [-0.02, 0.39] 1.8 .08

arithmetic operation * arithmetic notation
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Table 4. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model

(Combined Data From Studies 1-3).

Bayesian analysis

Frequentist analysis

Effect B 95% CI t p
Grade 0.04 [0.02, 0.06] 3.4 <.001
Arithmetic operation -0.31 [-0.33, -0.29] -29.6 <.001
Arithmetic notation 0.07 [0.04, 0.09] 5.8 <.001
Arithmetic operation * arithmetic notation -0.23 [-0.27, -0.19] -11.1 <.001
Fraction magnitude knowledge 0.04 [-0.03, 0.11] 1.2 24
Fraction magnitude knowledge * -0.07 [-0.16, 0.03] -1.3 18
arithmetic operation

Fraction magnitude knowledge * 0.02 [-0.08, 0.12] 0.3 74
arithmetic notation

Fraction magnitude knowledge * 0.27 [0.08, 0.46] 2.7 .006
arithmetic operation * arithmetic notation

Decimal magnitude knowledge 0.20 [0.13, 0.27] 5.9 <.001
Decimal magnitude knowledge * -0.14 [-0.23, -0.05] -3.1 .002
arithmetic operation

Decimal magnitude knowledge * 0.02 [-0.07, 0.12] 0.5 .63
arithmetic notation

Decimal magnitude knowledge * 0.07 [-0.11, 0.25] 0.8 45
arithmetic operation * arithmetic notation

Cross-notation magnitude knowledge 0.19 [0.12, 0.26] 5.6 <.001
Cross-notation magnitude knowledge * -0.01 [-0.10, 0.08] -0.3 79
arithmetic operation

Cross-notation magnitude knowledge * 0.00 [-0.10, 0.10] 0.1 .96
arithmetic notation

Cross-notation magnitude knowledge * 0.14 [-0.04, 0.33] 1.5 A2

arithmetic operation * arithmetic notation
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Appendix

Table A1. Descriptive Statistics and Zero-Order Correlations Between Measures (Study 1)

Correlations
Mean SD Within- Within- Cross- Fraction Fraction Fraction
Notation Notation Notation Arithmetic Addition and  Multiplication
Fraction Decimal Magnitude Subtraction and Division
Magnitude Magnitude
Within-Notation .55 37 -
Fraction Magnitude
Within-Notation 67 33 60" -
Decimal Magnitude
Cross-Notation .55 38 677 59" -
Magnitude
Fraction Arithmetic 43 23 41 44 48" -
Fraction Addition and .60 26 48" 507 507 .89** -
Subtraction
Fraction Multiplication .20 .26 A1 5% 22 2Rk 2%k -

and Division

Note. Mean denotes mean proportion correct. T 0.05 <p <0.10; * 0.01 <p <0.05, ** 0.001 <p < 0.01, *** p <0.001
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Table A2. Descriptive Statistics and Zero-Order Correlations Between Measures (Study 2)

Mean SD Correlations
Within- Within- Cross- Fraction and Fraction Decimal
Notation Notation Notation Decimal Addition Addition
Fraction Decimal Magnitude Addition

Magnitude Magnitude

Within-Notation 75 .19 -

Fraction Magnitude

Within-Notation .94 .09 17 -

Decimal Magnitude

Cross-Notation 78 18 NPl A46** -

Magnitude

Fraction and Decimal 74 .29 AQHkE 24 S8FF* -

Addition

Fraction Addition .65 43 S kk 33* N Yiulalo 94k k* -

Decimal Addition .84 22 277 -.03 287 JISHEE 48%* -

Note. Mean denotes mean proportion correct. ¥ 0.05 <p <0.10, * 0.01 <p <0.05, ** 0.001 <p <0.01, *** p <0.001
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Table A3. Descriptive Statistics and Zero-Order Correlations Between Measures (Study 3)

Mean SD Correlations
Within- Within- Cross- Rational Fraction  Fraction Decimal Decimal
Notation Notation Notation Number  Addition  Multip-  Addition = Multip-
Fraction Decimal  Magnitude Arithmetic and lication and lication
Magnitude Magnitude Subtrac- and Subtrac- and
tion Division tion Division
Within-Notation .66 28
Fraction Magnitude
Within-Notation .80 27 Sk
Decimal Magnitude
Cross-Notation .65 31 L66F** S6***
Magnitude
Rational Number 42 23 Riviulol STEx* SQFkE
Arithmetic
Fraction Addition and 41 .34 A4k SOk S0x** BOF**
Subtraction
Fraction Multiplication .36 28 14%* R A Raloi O6%** RS Mool
and Division
Decimal Addition and .66 .30 20 *k Ak 3o*EE 68F** 45F** Q3 HHE
Subtraction
Decimal Multiplication 24 22 34k 36%** A0QF** B2 H** O2H** S0%** 37HEE

and Division

Note. Mean denotes mean proportion correct. ¥ 0.05 <p <0.10, * 0.01 <p <0.05, ** 0.001 <p <0.01, *** p <0.001
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