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Abstract 

As key signatures of topological superconductors (TSCs), the chiral and helical 
Majorana edge states (MESs) have received increasing attention recently. One prudent 
mechanism for realizing the MESs is by magnetizing topological surface states (TSSs) 
associated with conventional superconductivity. Here we construct comprehensive 
phase diagrams in the parameter space of magnetization and superconductivity for 
TSSs, based on tight-binding model analyses. In addition to the chiral MESs hosted by 
the quantum anomalous Hall (QAH), the half plateau surface QAH and the zero plateau 
QAH states, we find that the axion insulator state can realize helical MES, where the 
opened Zeeman gaps in two TSSs with antiferromagnetic exchange fields eliminate the 
requirement of the opposite phases between the superconducting gaps in two TSSs. We 
also demonstrate that the TSC phase is robust against the increase of interaction 
between two TSSs when the square of the sum of two superconducting gaps is smaller 
than that of two Zeeman energies. Furthermore, using first-principles approach, we 
predict MnBi2Te4/Bi2Te3 film placed on a superconducting substrate to be an ideal 
experimental platform to realize the chiral MESs within a wide energy range (~80 meV), 
which persist even down to one quintuple layer of Bi2Te3. Our findings shed new light 
on fundamental understanding of TSC phase and paving another avenue to search for 
TSC materials. 
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I. Introduction 
Topological superconductors (TSCs) possess a non-trivial superconducting gap 

and localized in-gap states that include Majorana bound states (MBSs) at zero energy 
and one-dimensional (1D) chiral/helical Majorana edge states (MESs). The braiding of 
MBSs and the propagation of Majorana fermions on chiral MESs may be utilized in 
topological quantum computation [1-3]. In addition to the well-studied MBSs realized 
in various experimental platforms under external magnetic field [4-10], the studies of 
1D MESs have received increasing attention recently [11-16]. The hybrid system that 
combines superconductor (SC) with the quantum anomalous Hall (QAH) insulator 
showed the first realization of chiral MESs [11], which can be understood from the 
theoretical models of magnetized topological surface states (TSSs) of topological 
insulators (TIs) [17-20]. An alternative route to chiral MESs employs the 
superconductivity and the Rashba spin-orbit coupled states (RSOCSs) with time-
reversal symmetry breaking [21-23], which has been realized in nanoscale magnetic 
islands [12,13] and ferromagnet [14] in proximity with SCs. Moreover, signature of 
helical MESs has been observed in the domain walls of FeSe0.45Te0.55 with TSSs [15]. 
To further advance this emerging field, apparently more complete understanding and 
new experimental platforms for realizing 1D MESs are highly desirable. 

Compared to the RSOCS where the TSC phase exists under the condition of 
2 2 2Z     (Z is the Zeeman energy and μ is the chemical potential that determines 

position of superconducting gap  as shown in Fig. 1a.) [21-23], the phase diagram of 
TI thin film with two magnetized TSSs tends to be more complicated. It involves more 

parameters, including the superconducting gaps ( /t b ) and exchange fields (Zt/b) in the 

top/bottom TSS, μ, and the interaction (I) between two TSSs. The TSC phase diagrams 
of the two magnetized TSSs with the same Zeeman energy were constructed [19], 
which demonstrate that the 1D MESs can be realized by tuning the phase difference 
between the superconducting gaps of two TSSs. Another work showed the TSC phase 
remains when only one TSS experiencing the exchange field [20], which indicates that 
the phase difference in the Zeeman gaps affords an alternative route to tuning the TSC 
phase. This calls for a further theoretical study to construct TSC phase diagrams in the 
varying parameter space of Zeeman energy for a given parameter set of 
superconductivity. It may extend the discovery of TSCs in the diverse electronic phases 
formed by the magnetized TSSs, including the QAH state [24,25], the half plateau 
surface QAH (HPSQAH) state [26], the zero plateau QAH (ZPQAH) state [27,28] and 
even the axion insulators (AIs) [29]. 

Moreover, prediction of new TSC candidate materials including the film thickness 
dependence will be valuable for guiding experiments. We note that the direction and 
magnitude of exchange fields applied on each TSS can be controlled by changing 
external magnetic field [30], interfacing TIs with ferromagnetic insulators (FMIs) 
[31,32], as well as tuning the film thickness. Therefore, tuning the exchange fields on 
different TSSs, rather than the phase difference of the superconducting gaps, may 



 3 

provide another feasible experimental approach to realize the 1D MESs, especially 
considering the availability of fabricating various heterostructures consisting of TIs and 
FMIs [33], e.g. Bi2Te3/MnBi2Te4 [25,34], Bi2Se3/Bi2MnSe4 [35], Bi2Se3/MnSe [36], 
Bi2Se3/GdN [37], Bi2Se3/BaFe12O19 [38], Bi2Se3/NiFe [39], Bi2Se3/EuS [40], 
Bi2Se3/LaCoO3 [41], Bi2Te3/Cr2Ge2Te6 [42], (BixSb1-x)2Te3/Y3Fe5O12 [43], (BixSb1-

x)2Te3/Tm3Fe5O12 [44], and (Bi; Sb)2Te3/Cr2Ge2Te6 [45]. One prerequisite is that the 
magnetic proximity effects of FMIs only open exchange gaps near the Dirac cone of 
TSSs, but maintain the opposite spin polarization at k and –k points to ensure a spin-
singlet superconducting pairing. 

In this article, we construct the phase diagrams of the TI films with different 
magnetized and interacted TSSs by using a tight-binding (TB) model, within the same 
theoretical framework of the previous two-dimensional (2D) effective Hamiltonian 
[19,20]. In addition to the superconducting QAH, HPSQAH, and ZPQAH states with 
chiral MESs, we demonstrate the AI state, realized by the two TSSs without interaction 
but with antiferromagnetic exchange fields, can also host TSC phases characterized 
with a Chern number N=0 and 1 , where the N=0 TSC phase hosts the helical MES 
without needing the π phase difference in the superconducting gaps [17,19]. An 
intuitive understanding of TSC phase formation is given from the perspective of 
particle-hole symmetry that induces a sign change of Chern number, which enables one 
to find novel experimental platforms for realizing TSC with 1D MESs by directly 
analyzing band structures. The TSC phase diagrams in the parameter space of chemical 
potential (μ) and interacting strength (I) between two TSSs indicate that the 1N    

TSC phase is robust against inter-TSS interaction when    
2 2

b t b tZ Z      . 

Furthermore, we predict the MnBi2Te4/Bi2Te3 heterostructures coupled with 
conventional superconductivity to be an ideal experimental platform for realizing the 

1N     TSC phase within a wide energy range (~80 meV) but without needing 
external magnetic field, using first-principles calculations. The chiral MESs are found 
to persist even in the cases with just one quintuple layer (QL) of Bi2Te3, consistent with 
the TB model analyses. 

II. Methods and computational details 

A. 2D TB model 

It is well known that TSC phases can be induced in the TSSs [17-20] or the 
RSOCSs [21-23] coupled with s-wave superconductivity. The topological non-triviality 

stems from the spin-orbit coupling (SOC) term in the form of ( )x y y xk k    when 

/ 0x yk    for both cases. In addition to inducing the well-known Dirac cone with 

helical spin-polarization that enables the formation of intra-band spin-singlet 
superconducting pairing, SOC can be mapped onto the superconductivity part of 
Bogoliubov-de Gennes (BdG) Hamiltonian via a unitary transformation. The resulting 
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effective superconducting gap ( )x y y xk k     possesses the form of a p-wave 

superconductivity, which is topological non-trivial when there are an odd number of 
time-reversal-invariant (TRI) momenta enclosed by an odd number of Fermi surface 
contours in the Brillouin zone (BZ) [46-48]. 

Consequently, we employ a two-orbital spin-full TB model with Rashba SOC in 
two triangle lattices locating respectively at the top and bottom surface of a TI film (Fig. 
2a), to construct the phase diagrams of the two TSSs with different exchange fields. 
The electronic Hamiltonian is written as: 

0 R Z IH H H H H       (1) 
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Here †
mc 

  and nc    are creation and annihilation operators, respectively, for an 

electron with spin α on site m. tα is the intra-surface nearest-neighbor hopping term. εon 
represents the onsite energy that moves the Dirac point to zero energy. HR denotes the 
intra-surface nearest-neighbor Rashba SOC with the same strength λ for both surfaces, 

which can be deduced to the form of ( )x y y xk k    close to Γ point. The ez and dmn 

are respectively the unit vector along z direction pointing from site n to m. σ, σx, σy, and 
σz are the Pauli matrices for spin. Hz corresponds to the exchange fields with Zeeman 
energy Zt (Zb) being applied on top (bottom) surface by intrinsic magnetism [27,49-51] 
or magnetic proximity effect of ferromagnetic insulators (FMIs) [34-36]. HI represents 
inter-TSS interaction with inter-surface nearest-neighbor intra-spin hopping magnitude 
I. The above parameters are labeled in Fig. 2a for clarity. The tα is set to 1 and we 
assume λ equaling to 1 in both top and bottom surfaces, for simplicity, because the 
magnitude of λ or different λ in top and bottom surfaces does not affect the Γ point 
eigenvalues that determine the phase boundaries. 

Re-writing the Hamiltonian of Eq. (1) in the momentum space as 

 †H h  k k
k

k  with  , , ,
Tt t b bc c c c

   
k k k k k , the BdG Hamiltonian with the intra-
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orbital spin-singlet pairing    condensing at μ was constructed under the basis of 

 † † † †, , , , , , ,
Tt t b b t t b bc c c c c c c c

           
k k k k k k k k k : 
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0
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t y
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i
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  

 
   (8) 

Here the pairing gap opened on top/bottom TSS /t b   can be induced by bulk 

superconductivity [9,10] or proximity/interface effect [6,7,52,53]. Here we focus on 

tuning the exchange fields (both direction and magnitude) while assume /t b  to be 

both positive, since the dependence of phase diagram on phase difference of 
superconducting gaps were already discussed [19]. 

B. First-principles calculations 

The Vienna ab initio simulation pack [54,55] was utilized to calculate the 
electronic property of the TSC candidate materials, 1 septuple layer (SL) 
MnBi2Te4/nQL-Bi2Te3 film, based on density functional theory (DFT). The exchange-
correlation functional was treated within the generalized gradient approximation in the 
form of Perdew-Burke-Ernzerhof [56]. The energy cutoff was set to 500 eV for plane-
wave basis. A vacuum region of more than 15 Å was introduced to avoid the interactions 
between neighboring films subject to period boundary condition. Structural relaxation 
without SOC and self-consistent calculation with SOC were performed on a uniform 
6×6×1 k-point sampling of the first BZ, while a denser k-point sampling around Γ was 
employed to calculate the Zeeman gaps and spin expectation values. The van der Waals 
interaction, described by DFT-D3 functional with Becke-Jonson damping, was 
included, and the strong correlation effect of Mn 3d electrons was taken into account 
by using the local-spin-density approximations plus U method with U = 6.0 and J = 1.0 
eV. The direction of magnetic moments (5 μB) of Mn2+ was set to be perpendicular to 
the 1SL-MnBi2Te4/nQL-Bi2Te3-film, since the out-of-plane ferromagnetism of the 
MnBi2Te4 SL was characterized experimentally in the MnBi2Te4/Bi2Te3 superlattice at 
low temperature [25,34]. 

To study the topological superconductivity of 1SL-MnBi2Te4/ nQL-Bi2Te3-film, 
we employ the Wannier90 package [57] to construct an electronic Hamiltonian 
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 MLWFsH k   using the basis of Maximally localized Wannier functions (MLWFs) 

( )
2

( , )T
MLWFs i i

   
 

   by fitting the first-principles electronic states. Here  is the 

total number of MLWFs with the orbital index of i=1… and i+=… for up and down 
spin orbitals, respectively. The p orbitals of Bi and Te as well as d orbitals of Mn are 
used as the initial guess for the unitary transformations performed on a 12×12×1 k-

point mesh in the first BZ. The resulting first-principles BdG Hamiltonian  BdG
MLWFsH k  

is expressed as: 
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Details of this newly developed first-principles approach has been given previously 
[58]. The Chern number and 1D MESs are thus calculated from the solutions of Eqs. 
(9) and (10) to characterize the TSC phase. We also employ the Wannier90 package to 
calculate the density of states (DOS) using an extremely dense k-point sampling 
(500×500×1) in the first BZ to ensure good convergence. 

III. Results and discussions 

A. The phase diagrams without and with superconductivity 

We first construct the phase diagram without superconductivity in the parameter 
space of Zt and Zb by solving Eq. (1). The four eigenvalues at the Γ point are 

   
22

1
1 4
2 t b t bE Z Z I Z Z      
  

 ,    
22

2
1 4
2 t b t bE Z Z I Z Z      
  

 , 

   
22

3
1 4
2 t b t bE Z Z I Z Z     
  

 , and    
22

4
1 4
2 t b t bE Z Z I Z Z     
  

 

(Fig. 1b and 1c). Given the phase transition occurring at the gap closing point, the phase 
boundary is determined by setting E2=E3, leading to ZtZb=I2. We calculated the Chern 
number at zero energy to be C=1/2+1/2=1 for ZtZb>I2 and C=1/2-1/2=0 for ZtZb<I2 
under the basis of ???, corresponding to the QAH state (Fig. 1b) and ZPQAH state (Fig. 
1c) [27-29], respectively. If the TI film is thick enough to eliminate the inter-TSS 
interaction (I=0), the AI state with C=0 will emerge for ZtZb<0 [30-32], which is the 
special phase of ZPQAH state (Fig. 1c) that exhibits quantized topological 
magnetoelectric effect. 
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Moreover, when only one surface is under the exchange field, e.g. 0tZ   and 

0bZ  , the system is still gaped for 0I  , which fulfills the condition for the ZPQAH 

state, i.e. I2>ZtZb=0. For I=0, one surface state possesses an exchange gap of 2Zt, while 
the other is gapless (Fig. 1d). The gaped surface state has C=1/2 within the exchange 
gap, corresponding to the HPSQAH state [19,20,26]. The phase diagrams without 
superconductivity are shown in Fig. 2b and 2c for I=0 and 0I  , respectively, which 
clearly indicate the inter-TSSs interaction narrows the range of QAH state and converts 
the AI and HPSQAH states into ZPQAH state. Different phases may be induced by 
manipulating the thickness of TI film and the type of FMIs-TIs interfaces as well as the 
external magnetic field. 

 

Figure 1. The electronic band structures of (a) magnetized RSOCS, (b) QAH, (c) 
ZPQAH (or AI when I=0), and (d) HPSQAH state, formed by magnetized TSSs. The 
color represents the expectation value of Pauli matrice σz. The marked 1/2 or -1/2 are 
the Chern number calculated by integrating the Berry coverture around the 
corresponding gap edge. The superconducting quasi-particle dispersions of (e) 
magnetized RSOCS, (f) QAH, (g) ZPQAH, and (h) HPSQAH state with the intra-
orbital spin-singlet pairing condensing at the chemical potential μ that are marked in 
(a), (b), (c), and (d), respectively. The red (blue) stars indicate the states from which the 
Chern number N=1/2 (-1/2) mainly comes from. 

Next, the TSC phase diagrams of different magnetized and interacted TSSs with 
superconductivity were constructed by solving the TB BdG Hamiltonian HBdG of Eq. 
(6). The phase boundaries of SC are determined by the closing points of bulk 
superconducting gap. We first consider the ideal case with perfect surface Dirac cones 

(I=0) for thick TI films. The phase boundaries are given by 2 2
/ /t b t bZ   . Our 
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calculations show that the TSC phases with Chern number 1N    under the basis  k  

emerge at 
2 2

2 2

b b

t t

Z

Z





   


  

 or 
2 2

2 2

b b

t t

Z

Z





   


  

. For 
2 2

2 2

b b

t t

Z

Z





   


  

, the Chern 

number is calculated as t b t b

t b

Z Z Z Z
N

Z Z


  . Bulk-boundary correspondence renders 

the chiral TSC phase with 1N    ( 2N   ) to hold one (two) chiral MESs localizing 
at one edge, while 0N    represents the TRI TSC phase featured with the helical 

MESs. There is also a trivial 0N   superconductor phase when
2 2

2 2

b b

t t

Z

Z





   


  

. We 

plot one example of the phase diagram in Fig. 2d, which shows four critical points 
signifying the boundary of four phases. The non-zero chemical potential μ will not 
destroy these critical points but broaden the range of the 1N    TSC phases. 

 

Figure 2. (a) The schematic diagram of two-orbital TB model in a triangle lattice of 
orbitals locating respectively at top (front) and bottom (behind) surface of TI film. The 
phase diagrams of (b-c) electronic states and (d-f) superconducting quasi-particles in 
the parameter space of Zt and Zb. The values of parameters used in the TB model are 
given in the corresponding figures. The dashed lines are plotted by using the values in 
the brackets to substitute the original ones. 

When TI films are not thick enough to eliminate the inter-TSS interaction, non-
zero I and μ will remove the critical points, leading to a condition for phase boundaries 

as   
22 2 2 2 2 2 2

0 04t b t bI Z Z I Z Z             when 0t b      . The 

phase diagram (Fig. 2e) clearly shows that the TSC phase can be induced even if 
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t bZ Z  and t b   . The formula can be deduced to  2 2
0 0t b t bI Z Z Z Z       

for μ=0, similar to the previous report of assuming t b    but t bZ Z  [19]. This 

indicates that the superconducting and Zeeman gap play a similar role in forming the 
TSC phases. From Fig. 2e, one can see that the inter-TSS interactions narrow the range 

of chiral TSC phases by converting the TRI TSC phase into a trivial phase. For t b   , 

the phase boundaries become complicated (Fig. 2f). A general rule for 1N    TSC 

phase is that the range of /t bZ  increases with the increase (decrease) of /t b ( /b t ), 

and can be further increased by no-zero μ.  

Comparing the phase diagrams without (Fig. 2b-c) and with (Fig. 2d-f) 
superconductivity, one can conclude that all the electronic phases formed by 
magnetizing the TSSs, i.e. QAH, HPSQAH, ZPQAH, are able to host the TSC phase 
with chiral MESs, consistent with previous reports [19,20]. Notably, the phase diagrams 
also reveal new types of TRI TSC phase with helical MESs hosted by the AI state. The 
helical TSC phase stems from the opposite directions of exchange fields applied on two 
TSSs, similar to that realized in the two nanowires with opposite Zeeman splitting [59] 
and in the antiferromagnetic quantum spin Hall insulator [60]. Practically, this makes 
it possible to create TRI TSC phase without the need of unconventional 
superconductivity or two conventional superconductivity states with π phase difference 
[17,19,61]. 

Next, we offer an intuitive explanation for the formation of TSC phase. It is known 
that Zeeman gap opening will induce opposite spin expectation values around the gap 
edges (Fig. 1a-d), leading to non-zero Berry curvature. Integrating the Berry curvature 
of the gap-edge states will result in the Chern number of 1/ 2C   . With μ being set 
at the energy marked in Fig. 1a-d, the dispersions of superconducting quasi-particles 
are plotted in Fig. 1e-h. The particle-hole symmetry of SCs ensures the opposite sign 
of Chern number for the eigenvalues distributed symmetrically with respect to the 
superconducting gap, as marked by the red (C=1/2) and blue (C=-1/2) stars in Fig. 1e-
h, respectively. Consequently, one can easily see that the superconducting gaps are all 
topological non-trivial with Chern number N=1. The topological non-triviality is further 
confirmed by the existence of chiral MESs (Fig. 3a and 3b). Similarly, if μ is set at the 
Zeeman gap around the Fermi level of the QAH (Fig. 1b) and AI (Fig. 1c) state, 

2N    chiral and N=0 helical TSC phases will emerge, which are demonstrated by 
the presence of two chiral MESs (Fig. 3c) and helical MESs (Fig. 3d), respectively. 
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Figure 3. The chiral MESs of the Chern number N=1 TSC phase formed by the (a) 
RSOCSs and (b) the magnetized TSSs. (c) The double chiral MESs of Chern number 
N=2 TSC phase and (d) the helical MESs of Chern number N=0 TRI TSC phase. The 
red (blue) color represents the MESs locating at the right (left) edge. 

For specific TSC candidate experimental platforms, the exchange fields and 
superconducting gaps are usually fixed. A useful guidance for experiments would be to 
determine where the Fermi level should be so that the desired TSC phase can be induced, 
which also depends on the film thickness due to different strength (I) of inter-TSS 
interactions. We thus further construct the phase diagrams in the parameter space of μ 

and I, as shown in Fig. 4. Since the TSC phase boundary is set at 2 2 2
/ /t b t bZ    when 

I=0 (Fig. 2d), the condition for a solvable real μ is 2 2
/ /t b t bZ    . We consider two 

scenarios with either both TSSs or only one TSS fulfilling this condition, respectively. 

For the case of 
2 2

2 2
b b

t t

Z
Z
  


 
 (Fig. 4a and 4b), the 2N    (or 0, TRI TSC), 1 , 

and 0 phases emerge respectively at 2 2 2 2
/ / / /b t b t b t b tZ Z        , 

2 2 2 2
/ / / /b t b t t b t bZ Z       , and 2 2

/ /t b t bZ      for I = 0 (here assuming 

2 2 2 2
/ / / /t b t b b t b tZ Z   ). When the two TSSs experiencing either the same or different 

ferromagnetic exchange fields (Fig. 4a), the 2N    TSC phase will transform into 
1N    TSC and then to N = 0 trivial phases with the increasing I. The transition points 
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with μ=0 are   1 t t b bI Z Z      and   2 t t b bI Z Z     respectively. 

The 2N    TSC phase only emerges from the QAH state, and the 1N    phase 
can be hosted by both the QAH and ZPQAH state, consistent with the phase diagrams 
in Fig. 2. The N=0 trivial and 2N    TSC phases may transform into each other by 

changing μ when 2 2 2 2
/ / / /t b t b b t b tZ Z    or changing I when b t

b tZ Z
  



 (see dashed 

lines in Fig. 4a). For the ZPQAH and AI states formed by the two TSSs with 
antiferromagnetic exchange fields (Fig. 4b), the N=0 helical TSC phase is destroyed 
together with the disappearance of AI when 0I  , and the largest I for the 1N    

TSC phase is  
   

22 2 2 2

3 2 2
1
2

b t b t

b t b t

Z Z
I

Z Z

    


    
  with 

      
   

22 2 2

3 2 2

4

2

t b b t b t b t

b t b t

Z Z Z Z

Z Z


        
 

    

. 

For the case of 
2 2

2 2
b b

t t

Z
Z
  


 
 (Fig. 4c and 4d), there are only two real solutions for μ. 

The 1N    phase exists at 2 2 2 2
t t t tZ Z      for I=0, while the 2N    

chiral and N=0 helical TSC phases are absent for the ferromagnetic (Fig. 4c) and 
antiferromagnetic (Fig. 4d) exchange fields being applied on the TSSs, respectively. 
The phase translation point in Fig. 4c between the 1N     TSC and N = 0 trivial 
phases is I1 or I2 when μ=0, and the largest I for the 1N    TSC phase in Fig. 4d is I3 

with 3
 , same as the cases with four solvable μ. 

Notably, the phase diagrams indicate that the 1N    TSC phase is robust against 
the increasing I when the two TSSs are under ferromagnetic exchange fields (Fig. 4a 
and 4c). The robustness is manifested in two aspects. One is that the range of μ will be 
enlarged by a larger I due to the enhanced spin splitting of 

 
22

4/2 3/1 4 b tE E I Z Z     for QAH state (Fig. 1b). The other is that the range of 

μ remains nearly constant when further increasing the I. This is because the spin 

splitting of 3/1 4/2 b tE E Z Z    does not depend on the I for ZPQAH state (Fig. 1c). 

Actually, the condition of realizing such robust 1N    TSC is the absence of solvable 

real I3, which can be deduced to be    
2 2

b t b tZ Z     . 
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Figure 4. The TSC phase diagram of superconducting quasi-particles with (a, b) four 
or (c, d) two solvable μ values when the two TSSs experiencing (a, c) ferromagnetic or 
(b, d) antiferromagnetic exchange fields. Detailed parameters are labeled in 
corresponding figures. The dashed lines are plotted by using the values in brackets to 
substitute the original values. The blue line in (c) is the TSC phase boundary of 

HPSQAH state with 1.0tZ   , 0.0bZ   , 0.0t   , and 1.2b   . Noting that the 

TSSs interaction will transfer the QAH state to ZPQAH state at I2 = ZtZb, as indicated 
by the green line in (a) and (c). The AI state exists in (b) and (d) when I=0, and the rest 
parameter space corresponds to the ZPQAH state. 

B. TSC candidate materials 

From the experimental perspective, a large range of μ will ease the detection of 
the TSC phase. One can clearly see from Fig. 4 that the valid range of μ for the 1N    
phase can be extended to the Zeeman gap edge of the TSS with zero superconducting 
gap, and reaches the upper limit when the Zeeman gap in the other TSS is smaller than 
the superconducting gap. We suggest the optimal choice for realizing 1N    phase is 

/ 0t bZ   , / 0t b   , / /b t b tZ    , and / 0b t    (assuming / / 0t b b tZ Z   ). Previous 

theoretical work proposed a special case of this criterion using the parameter of 

/ 0t bZ   , / 0t b   , / 0b tZ   , and / 0b t    [20], which, however, is limited by the 

precondition that the decay length of the exchange field is smaller than the film 

thickness to ensure / 0b tZ   . Our calculations indicate that this precondition is not 
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necessary because the condition of / 0b tZ   can be beneficial for further enlarging the 

range of μ (see blue line in Fig. 4c), within which the TSC phase resides. Thus, our 
work opens up new opportunity to realize 1N    TSC phase in ultrathin TI films. 

In addition to a larger range of μ for detecting the TSC phase, a simpler material 
platform would benefit experiments. We suggest a better choice for realizing the 

1N     phases by constructing an FMI/TI-film/SC heterostructure. The thickness-
dependent decay length of exchange field and coherence length of superconductivity 
may lead to different superconducting and Zeeman gaps that open in the two TSSs of 
TI film. Specifically, we propose a heterostructure composing Bi2Te3 film and FMI 
MnBi2Te4 SL as a candidate platform for observing the chiral MESs, which have 
already been fabricated and show large magnetic gap at the Dirac point of TSSs [25,34]. 
The ingredient of superconductivity can be provided by interfacing MnBi2Te4/Bi2Te3 
with SC NbSe2 [6,7] and FeTe [52,53], or possibly even by applying external pressure 
using diamond anvil cell technique [62]. Below, we elaborate further on the case of the 
proximity effect with NbSe2. 

 

Figure 5. (a) The side view and (b) the electronic band structure of 1SL-
MnBi2Te4/1QL-Bi2Te3 grown on SC NbSe2. The black shadow in (b) represents the 

CVB  that can realize the 1N    TSC phase. (c) The constant energy contours at the 

energy μ labeled by solid black line in (b); the black arrows and colored dots represent 
the in-plane and out-of-plane components of electron spin expectation values, 
respectively. (d) The dispersion of superconducting quasi-particles in 1SL-
MnBi2Te4/1QL-Bi2Te3 calculated by using the first-principles BdG Hamiltonian with 
the superconducting gap of 1.0 meV condensing at the μ. (e) The dispersion of quasi-
particles in the 1SL-MnBi2Te4/1QL-Bi2Te3 nanoribbon with the width of 250 primitive 
cells. Here the superconducting gap was magnified by 10 times to show the chiral MESs 
(red and blue lines) more clearly. (f) The total Berry curvature distribution near the Γ 
point for the states below the superconducting gap. 
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We first consider the heterostructure of 1SL-MnBi2Te4/1QL-Bi2Te3-film (Fig. 5a). 
The magnetic proximity effect of FMI MnBi2Se4 SL breaks the time-reversal symmetry, 
leading to a band structure with spin degeneracy lifted (Fig. 5b). We focus on the 
potential TSC phase formed by the conduction valley bands (CVB), since the 
experimentally fabricated Bi2Te3-film tends to be n-doped and the CVB will finally 
transfer to TSSs when the Bi2Te3-film is thick enough [63]. For convenience, we define 
the exchange gap of the interested band as the energy difference between the two spin-

polarized states at Γ point, e.g. the exchange gap CVB  ( TSS ) of CVB (TSS) labeled 

in Fig. 5b (Fig. 6a). For the electronic states within the CBV  of 1SL-MnBi2Te4/1QL-

Bi2Te3-film (Fig. 5b), the out-of-plane components of spin expectation values are 
negligible because of a strong SOC strength. The dominant in-plane components have 
the so-called helical spin-texture with opposite spin expectation values at k and –k point 
(Fig. 5c), respectively, which ensures the pre-condition for a spin-singlet 
superconductivity pairing. Here we should emphasize that the magnetic proximity 
effect of FMIs does not hinder the superconducting proximity effect since the induced 
out-of-plane components have also opposite directions at k and –k point (Fig. 5c). 

To characterize the topological non-triviality of superconductivity, we employ the 

electronic Hamiltonian  MLWFsH k  of 1SL-MnBi2Te4/1QL-Bi2Te3 film to construct a 

first-principles BdG Hamiltonian  BdG
MLWFsH k   through Eq. (9) and (10), where the 

superconducting gap of Δ~1.0 meV [6] is assumed to open at the μ labeled in Fig. 5b. 
The dispersion of superconducting quasi-particles (Fig. 5d) calculated by diagonalizing 

the  BdG
MLWFsH k  clearly shows that a superconducting gap is opened, whose topological 

non-triviality is demonstrated by the existence of chiral MESs (Fig. 5e). To better 
understand the origin of TSC phase, we calculated the Berry curvature of all the quasi-

particle states below the superconducting gap using  BdG
MLWFsH k . The result shows that 

the Berry curvature is mainly located at those k points where the superconducting gap 
opens (Fig. 5f), which is different from the case of ideal TSSs and RSOCS when Berry 
curvature is mainly located at those points where the Zeeman gap opens [58]. This again 
demonstrates that the superconducting and Zeeman gap can act similarly to form the 
TSC phase. Integrating the Berry curvature over the first BZ leads to a Chern number 
of N= -1, indicating the 1SL-MnBi2Te4/1QL-Bi2Te3 film indeed hosts robust chiral 
MESs upon becoming superconducting, in absence of external magnetic field and with 
non-ideal (gapped) TSSs. The topological non-triviality remains robust as long as μ is 

located inside the exchange gap CVB  (Fig. 5b), providing a wide energy range (~80 

meV) for realizing TSC. 
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With the increase of Bi2Te3-film thickness, the CVB gradually transforms into a 
Dirac-cone like dispersion starting from 4QL-Bi2Te3 film (Fig. 6a), indicating the 
formation of TSSs, which is consistent with the previous experimental reports [64,65]. 
The Chern numbers N of 1SL-MnBi2Te4/4QL-Bi2Te3-film with conventional 

superconductivity are then calculated by constructing the first-principles  BdG
MLWFsH k , 

which domenstrate that the 1N     TSC phase can be induced when the 

superconducting gap opens inside the exchange gap TSS . One representative result is 

shown in Fig. 6b, where one can clearly see that a superconducting gap is fully opened, 
with the Chern number N being well-defined and calculated to be -1 by integrating the 
Berry curvature (Fig. 6c). The result also indicates that the bulk states, despite 
overlapping with the TSSs, do not affect the topological non-triviality of 
superconducting quasi-particles. 

 

Figure 6. (a) The electronic band structure of 1SL-MnBi2Te4/4QL-Bi2Te3. The colors 
represent the z-component of spin expectation values. The black shadow represents the 

range of TSS  within which the 1N    TSC phase can be realized. (b) The dispersion 

of superconducting quasi-particles with the superconducting gap of 1.0 meV opening 
at the μ labeled in (a). (c) The total Berry curvature distribution near the Γ point for the 
states below the superconducting gap. (d) The DOS curve of 1SL-MnBi2Te4/nQL-
Bi2Te3 film with n=1, 2, 3, 4, 5, and 6. The circles represent the electronic states that 
can relaize the 1N    TSC phase. 

To better guide the experimental detection of the predicted TSC phases, we further 
suggest a way to benchmark whether the Fermi level lies within the range of TSC phase, 
by inspecting the shape of DOS curve, instead of carrier concentration, as done for 
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Bi2Te3/NbSe2 heterostructure [7]. The DOS for 1SL-MnBi2Te4/nQL-Bi2Te3 film is 
plotted in Fig. 6d, with the electronic states that form the 1N    TSC phase being 
marked by the circles. One sees clearly that all the cases considered possess a wide 
energy range (~80 meV) of realizing the TSC phase. The upper bound of the energy 
range is determined by the inflection point in the DOS curve occurring at the edge of 
the exchange gap in TSS. On the other hand, close to the lower bound, the DOS 
increases gradually due to the overlap between TSSs and bulk states in thick Bi2Te3 
films. Therefore, by comparing the shape of the calculated and experimentally 
measured DOS curves, such as by scanning tunneling spectroscopy, one will able to 
judge if the Fermi level is located inside the energy window of the TSC phase or 
estimate how much carriers doping is needed to move it into the window. Then the TSC 
phase could be confirmed by performing electronic transport measurement, and the 
smoking-gun evidences of chiral MESs, e.g. half-integer conductance plateau (e2/2h) 
[11,19] and the oscillation of critical Josephson current [66], are expected to be detected 
in the 1SL-MnBi2Te4/nQL-Bi2Te3 film. 

Finally, since fabrication of TI/FMI heterostructures is well developed [25,33-45], 
magnetizing both TSSs simultaneously in a sandwich FMI/TI/FMI heterostructure 
provides a promising way to realize all the predicted TSC phases with different Chern 
numbers (Fig. 2). The electronic and magnetic properties of some candidate systems, 
including CrI3/Bi2Se3/CrI3 [24], MnBi2Se4/Bi2Se3/Mn2Bi2Se5 [31] and 
CrI3/Bi2Se3/MnBi2Se4 [32], have been studied already. Based on the intuitive 
understanding of TSC phase mentioned above, we propose that all these three 
heterostructures interfaced with a conventional superconductor can realize the 0N   
helical, 1N    and 2N    chiral TSC phase by properly adjusting the Fermi levels. 
To detect the desired TSC phases, experiments should synthesize high-quality material 
platforms and ensure an out-of-plane ferromagnetism in the FMIs, as done for 
MnBi2Te4/Bi2Te3 superlattice at low temperature [25,34]. Otherwise, e.g. the 
substitutional Mn resulted in-plane magnetization in Mn-doped Bi2Se3 [34] may make 
the TSC phases difficult to be induced. Meanwhile, in addition to the 1SL-
MnBi2Te4/Bi2Te3-film/1SL-Mn2Bi2Te5 heterostructure, we suggest growth of thick 
MnBi2Te4 film (not calculated) on NbSe2 substrate as a candidate material to realize the 

0N    helical and 2N     chiral TSC phases. The thick MnBi2Te4 film is an 
antiferromagnetic TI that exhibits the AI (QAH) state with even (odd) number SLs 
[27,49-51]. The combination of a large exchange gap (60~100 meV) of MnBi2Te4 [27] 
and a small superconducting gap (~1.0 meV) of NbSe2 [6] should make the MnBi2Te4-
film/NbSe2 suitable for observing the helical or the double chiral MESs, over a wide 
range of μ (the range of exchange gap), by changing the thickness of MnBi2Te4 film. 
Electronic transport measurement performed on this material platform should present 
an integer conductance plateau of e2/h when double chiral MESs are present, while the 
existence of helical MESs may be confirmed if the conductance gradually increases 
from e2/h to 2e2/h when the lead moves toward the superconductor [60]. 
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IV. Conclusion 

Motivated by the recently fabricated various heterostructures consisting of TIs and 
FMIs, we developed extended phase diagrams of magnetized TSSs together with 
conventional superconductivity, based on TB model analyses. In addition to 
reproducing previous reports, our calculations indicate that the helical MES can be 
realized by the AI state by exploiting different Zeeman gaps, instead of the previously 
proposed π-phase difference of the superconducting gaps in the TSSs. An intuitive 
understanding for the formation of TSC phases is given from the perspective of particle-
hole symmetry that induces a sign change of Chern number, which enables one to 
design novel experimental platforms for realizing TSC by directly analyzing band 
structures. We also demonstrate that the TSC phase is robust against the increase of 
interaction between two TSSs when the thickness of TI film is reduced. Using first-
principles approach, we predict 1SL-MnBi2Te4/nQL-Bi2Te3 film with superconducting 
proximity effect to be an ideal candidate TSC material platform with Chern number N 
= -1, where the chiral MESs persist even down to one QL Bi2Te3. 
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