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We propose to simulate dynamical phases of a BCS superconductor using an ensemble of cold atoms

trapped in an optical cavity. Effective Cooper pairs are encoded via the internal states of the atoms,

and attractive interactions are realized via the exchange of virtual photons between atoms coupled to a

common cavity mode. Control of the interaction strength combined with a tunable dispersion relation of the

effective Cooper pairs allows exploration of the full dynamical phase diagram of the BCS model as a

function of system parameters and the prepared initial state. Our proposal paves the way for the study of

the nonequilibrium features of quantum magnetism and superconductivity by harnessing atom-light

interactions in cold atomic gases.
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Introduction.—The development of a generic framework
to understand the properties of nonequilibrium quantum
states is a long-standing challenge in modern physics.
Theoretical work [1-6] combined with technical advances
in the control and characterization of many-body physics
in cold atom experiments [7—15] has led to new develop-
ments in this direction, such as extending the concept of
phase transitions to nonequilibrium situations. Specifically,
dynamical phase transitions [1,16-20] have been intro-
duced to classify distinct regimes of dynamical behavior
that arise after a sudden quench of a control parameter in a
closed system. Dynamical phase transitions are character-
ized by the existence of a time-averaged order parameter
that demonstrates nonanalytic behavior at the boundary
between dynamical phases.

A long-standing example of such dynamical phases
are those predicted to emerge from quenches of BCS
superconductors, which have been theoretically investi-
gated in both the condensed matter [21-30] and high
energy communities [31]. However, experimental progress
toward observing these phases has been limited so far to
transient dynamics on rapid timescales in terahertz pump-
probe experiments [32,33]. Recent proposals to enhance
pairing by coupling materials to cavities and adjustable
external laser driving might facilitate probing the predicted
BCS phases in solid state systems [34].

Here, motivated by developments studying dynamical
phase transitions in state-of-the-art quantum simulators, we
present a proposal to emulate the nonequilibrium dynamics
of the BCS model of superconductivity with cavity-QED
[9,13,35-38]. Our scheme leverages the tunability and
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control available in this platform to map out the dynamical
phase diagram over a broad range of system parameters
and initial states, demonstrating the power of cavity-QED
systems as quantum simulators of superconductivity and
quantum magnetism [39-42].

BCS model and dynamical phases.—The BCS model of
superconductivity for s-wave interacting fermions is char-
acterized by the Hamiltonian [43]

H==y> el bwgaoy + Y exll soxe (1)
k. k’ k.o

Here, 6;6 (Ck,) creates (annihilates) a fermion of
momentum Kk and spin ¢ = 7, |. The first term describes
attractive s-wave interactions y >0 that lead to the
formation of Cooper pairs. The single-particle dispersion
is & =k?/(2m) —u with u the chemical potential
and m the particle mass. Throughout the manuscript,
we set A = 1.

This “reduced” BCS model assumes that only Cooper
pairs are created and destroyed with zero center-of-mass
momentum and neglects pair-breaking processes, so the
low-energy physics can be described using only the
presence or absence of Cooper pairs at each momentum
mode. The physics of the model is further simplified by
introducing the Anderson pseudospin-1/2 operators

5]: = Emé_m, 8]Z( = E’LTak,T + 6ik,¢6‘—k,¢ - L (2)
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The two eigenstates of 6}, encode the presence or absence
of a Cooper pair with momentum k, which are created
(annihilated) by 8§ (6%). Equation (1) then becomes

H=- 660+ edi =188+ exdi.
k.k’ k k
(3)

where §* = 37, 6i are collective spin operators.
The ground state [y), of Eq. (3) within BCS theory is
characterized by the expectations [26]
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as shown schematically on the Bloch sphere in Fig. 1(b).
Here, the BCS pairing gap Ay = ;((S'_>gs is defined self-
consistently.

Prior studies in superconductors and fermionic super-
fluids [26,27,44] have used the BCS Hamiltonian, Eq. (3),
to describe the gap dynamics after a quench of the pairing
gap from the ground-state value Ay to a final value A,
[26,27]. Equation (3) is expected to provide a valid treat-
ment of the gap dynamics on timescales for which pair-
breaking processes can be neglected, provided the quench
is done faster than the inverse of the quasiparticle gap.

In the mean-field (classical) limit, the dynamics falls into
three distinct dynamical phases according to the behavior
of the magnitude of |A(7)| = y|S™(¢)|. Throughout, we
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FIG. 1. (a) BCS dynamical phases illustrated by the pairing

amplitude |A(7)|. Characteristic #~'/> decay of Phase II is
indicated by the faded line. (b) Example BCS ground state on
the Bloch sphere. The single-particle inversion (65) correlates
with the sign of the dispersion ¢, [Eq. (4)]. (c) BCS physics can
be simulated in a cavity by encoding a spin-1/2 into a pair of
internal atomic states with transition frequency w,, which are
coupled to a single common cavity mode. The spin-1/2 atoms are
divided into two ensembles (shown as blue and red) featuring
mean energy splittings with opposite sign, +€,/2.

adopt the notation O(r) = (O(r)) when making a mean-
field approximation, i.e., (O, (£)D,(1)) = (O, ())(O,(1)).
As t — oo, the dynamics are Phase I, |A(#)| — 0; Phase II,
|A(#)| — const with transient oscillations that decay as
o t71/2; or Phase III, |A(t)|, which features persistent
oscillations. Illustrations of |A(7)] in each phase are shown
in Fig. 1(a). We discuss below how these phases arise from
a competition between the interactions and the distribution
of single-particle splittings .

BCS physics in a cavity-QED simulator.—We propose to
explore the phase diagram of the BCS model by emulating
the Hamiltonian, Eq. (3), in a cavity. In our proposed
scheme, an ensemble of atoms is distributed in a standing
wave optical lattice supported by the cavity. Each atom,
which we index by the label j, encodes a spin-1/2 degree of
freedom in a pair of stable internal states, [1); and |{);,
which map to the presence or absence of a Cooper pair,
respectively. The use of the index j compared to the
momentum label k in a real BCS superconductor will
be shown to be irrelevant.

Spin-spin interactions $*§~ are mediated by the
exchange of virtual photons between atoms via a single
common cavity mode (at frequency w,) far-detuned from
the atomic resonance (at frequency w,) [9,35,45,46]. These
photon-mediated interactions are analogous to the phonon-
mediated interactions in a BCS superconductor. Tunable
(inhomogeneous) single-particle energy shifts & j&j can be
realized via external fields that generate time-varying AC
Stark or Zeeman shifts of the internal atomic states.

An important ingredient for the observation of the
dynamical Phases I-III is the ability to prepare initial
states correlated with the distribution of splittings ¢;. For
example, in the BCS ground state [Eq. (4)], the sign of the
inversion (6}.) of the Anderson pseudospins correlates with
the sign of the single-particle dispersion &. Motivated
by this case, we consider initial states where the atoms are
split into a pair of ensembles where the spin configuration
of the atoms in each ensemble is correlated with the sign of
the ensemble’s average splitting. Concretely, we consider
2N atoms divided into two equal ensembles and initialized
as a product of coherent spin states [47] lying on the
equatorial plane of the Bloch sphere separated by a relative
azimuthal opening angle A¢y: |wo) = |7/2, Ady/2). ®
|m/2,—A¢o/2)_ [see Fig. 1 and Fig. 2(a)] where the
subscript + denotes each ensemble. Here, |6, ¢) =

®l[cos(6/2)]]); + € sin(6/2)|1) ;] where the product runs
j

overj=1,...,Norj=N+1,...,2N atoms, respectively,
for the + ensembles. Lastly, following the BCS ground
state, we assume a uniform distribution of splittings
€; € [£eg/2 — W/4,£ey/2 + W/4], where the sign of ¢
differs for each ensemble and is matched to the sign of
+A¢y/2. It is the mean +¢;/2 and characteristic width
W /2 rather than the precise distribution of ¢; (e.g., uniform
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FIG. 2. (a) Typical initial state for opening angle A¢,. The

orientation of each ensemble (red and blue collective Bloch
vectors) is correlated with the sign of +e¢,. (b) Mean-field BCS
dynamical phase diagram as a function of A¢, and characteristic
width W of the single-particle noise distribution, with fixed
€o/(¥N) = 0.1. The phase diagram is evaluated numerically (see
Ref. [48]), and some small structures (e.g., regions of Phase II
within Phase III) are likely artifacts of the method’s precision.
(c) Time traces of the pairing amplitude |A(#)| for each phase
[parameters indicated by marker in (b)].

or normal) that are important to characterizing the physics
discussed below.

Preparation of the two ensembles and correlation with
+e€, can be achieved by spatially selective energy shifts of
atoms in the cavity [45] [Fig. I(c)] or by addressing
different internal levels [35,51] (see later discussion) [52].

Accessible dynamical phase diagram.—In Fig. 2, we
explore the accessible dynamical phases. Panel (b) shows
the dynamical phase diagram for mean splitting ¢,/ (yN) =
0.1. The phase diagram is computed via a Lax analysis
[24,26,27], which is a method for integrable models such as
Eq. (3) to determine the frequency spectrum that rules the
dynamics of the order parameter. The spectrum is extracted
from the roots of L (u), the squared norm of the Lax vector
L (u), a polynomial defined in terms of a complex variable
u that encodes the conserved quantities of the model.
A spectrum with all real roots defines Phase I, with one pair
of complex roots Phase II and with two pairs of complex
roots Phase III. The asymptotic behavior of |A(7)| follows
from the nature of the roots of L?(u), which we compute
numerically [48].

Physically, the dynamical phases depend on the competi-
tion between single-particle dephasing generated by W and
€y and the spin-locking effect generated by the interactions
with strength set by y N [53-60]. The spin locking is induced
by the existence of a many-body gap that suppresses local
spin flips and favors spin alignment [35,36,61]. Such
behavior also resembles the synchronization observed in
arrays of coupled oscillators with dissipation [62,63]. Other
consequences associated with the many-body gap include
the stabilization of localization effects in fully connected
models under specific initial conditions [64,65].

For the small inhomogeneity W < ¢, yN, we predict
Phase III dynamics independent of the opening angle Ag,.
Within each ensemble, a gap opens between the manifold
of collective states (this includes the initial fully polarized
states) and those that are spatially inhomogeneous, pre-
venting dephasing of the individual spins of each ensemble.
In addition, the interplay between the homogeneous single-
particle energy splitting =+e¢, (that generates precession
of the ensembles in opposing directions about the z axis of
the Bloch sphere), and the collective interaction (that also
drives a rotation of each ensemble along a common self-
generated axis set by the total transverse magnetization
[35,51]), leads to persistent nonlinear oscillations in the
effective pairing amplitude |A(7)| = |ST(z)| [see also
Fig. 3(a)].

Phase II emerges for 2¢, < W < yN and opening angles
away from A¢ =~ £z [48]. The transition from Phase III
to II is driven by the ensembles no longer having a well-
defined relative energy splitting correlated with their initial
orientation. Thus, in contrast to Phase III, spin locking of
the entire ensemble of 2N atoms determines the dynamics.
This means that, while the pairing amplitude |A(7)| remains
large, oscillations are transient and suppressed rather than
stabilized by the interactions.

Finally, Phase I emerges for W Z yN independent of ¢,.
Single-particle physics dominates for all initial conditions,
and the pairing amplitude vanishes due to rapid dephasing
of the individual spins, |A(7)| — 0.

Beyond these three known regimes, we also predict the
emergence of two previously unidentified subphases within
Phase III for W << yN, €,, which we label as IIla and IIIb.
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FIG. 3. (a) Typical trajectories of the collective Bloch vector of

each ensemble (red and blue) for W < yN, ¢, as ¢, is tuned
between Phases IIla and IIIb. (b) Phase diagram characterized by
amplitude A = max(|A(7)|) — min(]A(¢)|) of oscillations in
|A(#)]. The critical boundary € between Phases IIla and IIIb
is indicated by the red line. (c) Maximum of the total inversion
difference J, = (3_;e; 05 — > je-05)/2 and frequency @y of
oscillations of |A(#)| as a function of €.
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These subphases are delineated by a critical splitting ef =
(xN/2)[1 4 cos(Agy)] [48]. Phase Illa, €, < €, is domi-
nated by interactions and characterized by a strictly non-
zero pairing amplitude, |A(7)| > 0, that exhibits nonlinear
oscillations with an approximate frequency @gs. o yN.
Phase IIIb is characterized by the pairing amplitude
periodically vanishing, |A(f)] =0, and the physics is
dominated by the single-particle splitting ¢, such that
the frequency of oscillations scales as @,g. o €.

In Fig. 3(a), we illustrate typical trajectories of the
collective Bloch vector of each ensemble in subphases
[Ia and IIIb for an initial state with A¢y = 0, which are
representative of the dominant physics for |A¢y| < z. For
small ¢y < ¢ and A¢y < 7, the Bloch vectors remain
trapped close to their initial polarization due to the strong
interactions, leading to |A(7)| > 0. As ¢, increases nearer
to the transition €fj, the interactions still dominate and
their interplay with the single-particle term leads to a
deflection of the trajectories of the Bloch vectors close
to the north and south poles. Above €, the trajectories
abruptly snap to large orbits near the equator and quickly
approach the precession expected for two independent
ensembles (e.g., dominated by the 6, term of the
Hamiltonian). Even though Phase IIIb is technically absent
for Ay = +x by our definition (as |A(0)| = 0), we still
observe rich nontrivial oscillations for ¢y < yN with
frequency w,¢ x /€gyN [48].

Quantitatively, the Illa and IIIb subphases are delineated
by abrupt changes in different observables, including the
magnitude A = max(|A(7)|) — min(|A(7)]), the frequency
s Of oscillations of |A(#)| [Figs. 3(b) and 3(d)] and the
maximum excursion of the collective spins away from the
equator of the Bloch sphere, measured by the differential
inversion J. = (3. 05— > e 05)/2 [Fig. 3(c)].

Experimental realization and robustness of proposal.—
In a cavity-QED experiment, the dynamical phases can be
characterized by detection of intracavity light leaking out
through the cavity mirrors [35]. By operating in the limit
where the cavity mode is far off-resonance from the atomic
transition, the virtual photons that mediate the interactions
are adiabatically eliminated and slaved to the spins, such
that atomic information is imprinted onto the phase and
amplitude of the cavity field via the approximate relation
a(t) o< S7(1) o« A(r) [35,48]. The light intensity then serves
as a proxy for the BCS pairing amplitude, |a(t)|* o |A(1)|?,
while the frequency spectrum of a(7) can also be a useful
diagnostic to distinguish the dynamical phases. Moreover,
by continuously performing heterodyne detection of the
small amount of light leaking through the cavity mirrors,
we are able, in principle, to construct time traces of the
pairing amplitude within a single experimental trial.

To demonstrate that our proposal is robust to relevant
decoherence and technical factors, we model an experiment
where the spin-1/2 is encoded using the narrow linewidth
IS,-3P, optical transition of 37-83Sr. Here, subensembles can

be prepared via spatially dependent light shifts from the
side of the cavity, or in ¥’Sr by applying spatially dependent
magnetic fields and addressing the +9/2 nuclear spin
levels of the transition. We use parameters from Ref. [9]
and include single-particle decoherence due to the natural
linewidth of the transition y/(2z) = 7.5 kHz and spatially
inhomogeneous atom-light coupling arising due to the
incommensurate wavelengths of the standing wave optical
lattice confining the atoms and the relevant cavity mode
[9,35,48]. The latter leads to a spatial modulation of the
spin-spin interactions y — y; ;. Our predictions should also
be qualitatively relevant for other cavity-based systems that
can realize an effective )(S’Jrg_ interaction, e.g., Raman
transitions [45,46].

In Fig. 4(a), we model the transition between Phases I
and IIT as a function of the inhomogeneity strength W at
fixed €5/ (yN) = 0.1 and initial state A¢y = z. The phases
are distinguished in the frequency spectrum of the cavity

10t 10° 10t 10t 10° 10t
€0/ (xN) €0/ (XN)

FIG. 4. Dynamics of intracavity field a(z). (a) Frequency
spectrum of intracavity field F|a](w) as a function of W/(yN),
and typical time traces of |a|? in Phases (i) I and (ii) I. Initial state
is Agy = n/2. (b) Same but as a function of opening angle Ag,
and time traces are in Phases (i) II and (ii) III. Simulations are for
fixed W/(yN) = 0.1. Both (a) and (b) use fixed ¢y/(yN) = 0.1,
and color scales are normalized. (c) Signatures of Phase Illa and
Phase IIIb in differential inversion J, and oscillation frequency
Woye Of |a|? for W = 0 for different Agy. Critical €, for each Aghy is
indicated by a vertical line. The absence of plotted results for @
below the approximate transition e for each Ag, indicates the lack
of appreciable oscillations in the simulations. All relevant para-
meters (e.g., g, 7, and k) are taken from Refs. [9,35], and results are
rescaled for N = 10° (see also Ref. [48]).
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field F|a](w), with Phase III signaled by a pair of robust
peaks in the spectrum that disappear in Phase I. The peaks
are consistent with the entwined but distinguishable pre-
cession of the two ensembles that leads to beating of the
intensity |a(#)|?, as shown in the accompanying time trace.
The oscillations in the intracavity intensity |a(z)> are
robust to the inhomogeneous interactions and the expo-
nential decay induced by y. The transition between the
phases IIl and I occurs at W/(yN) ~ = /2. This is consistent
with the model Eq. (3) when the inhomogeneous atom-light
coupling is taken into account by a simple rescaling to the
corresponding mean value y — 7;; = x/2 [48].

Similarly, in Fig. 4(b) the Phase II-III transition can be
observed by varying the initial opening angle Ag¢, at
fixed W/(yN) = ¢eo/(yN) =0.1. The spectrum of the
intracavity field shows the signature dual peaks of Phase
I for z/2 < A¢y < m, while Phase II is signaled by a
single peak for 0 < A¢y < /2. The latter indicates dynam-
ics of a single collective ensemble, with finite but non-
oscillatory pairing amplitude.

Lastly, signatures of the Phase IIla—IIIb transition in the
differential inversion and oscillation frequency of |a(7)|?
are shown in Fig. 4(c). Decoherence blunts the expected
cusp in the inversion, although the peak value lines up
closely with the expected transition upon accounting for
inhomogeneous interactions. The oscillation frequency
clearly distinguishes the trivial and nontrivial regimes for
A¢y = 7. On the other hand, we find that, for A¢, = 0,
/2, the relatively small oscillations in |a()|? predicted for
Phase Illa are destroyed by decoherence, and instead the
transition between Illa and IIIb is marked by an abrupt
vanishing of any discernible peak in the spectrum (indi-
cated by the absence of data).

Conclusions.—We have reported a proposal to observe
the dynamical phases of a BCS superconductor in a
cavity-QED quantum simulator. Realizing these phases
via a spin degree of freedom instead of actual Cooper
pairs overcomes the need to reach the ultracold tempera-
tures at which pairing occurs. The versatility of this
platform allows us to probe the dependence of the
dynamical phases on the initial state and system param-
eters in a controllable, isolated setting. Our predictions
pave the way for future studies of more complex non-
equilibrium phenomena in models of quantum magnetism
and superconductivity so far not seen in real materials or
high energy systems.

We acknowledge helpful discussions with Anjun Chu,
Nathan Schine, Victor Gurarie. and Emil Yuzbashyan.
This work is supported by the AFOSR Grant No. FA9550-
18-1-0319, by the DARPA and ARO Grant No. W91 1NF-
16-1-0576, the ARO single investigator Grant W91 1NF-
19-1-0210, the NSF PHY1820885, NSF JILA-PFC
PHY-1734006 and NSF QLCI-2016244 grants, and by
NIST, the U.S. Department of Energy, Office of Science,

National Quantum Information Science Research Centers,
Quantum Systems Accelerator (QSA).

[1] B. Sciolla and G. Biroli, Dynamical transitions and quantum
quenches in mean-field models, J. Stat. Mech. (2011)
P11003.

[2] M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical
Quantum Phase Transitions in the Transverse-Field Ising
Model, Phys. Rev. Lett. 110, 135704 (2013).

[3] M. Heyl, Dynamical quantum phase transitions: A review,
Rep. Prog. Phys. 81, 054001 (2018).

[4] B. Zunkovi¢, M. Heyl, M. Knap, and A. Silva, Dynamical
Quantum Phase Transitions in Spin Chains with Long-
Range Interactions: Merging Different Concepts of Non-
equilibrium Ceriticality, Phys. Rev. Lett. 120, 130601 (2018).

[5] S.B. Jdager, J. Cooper, M.J. Holland, and G. Morigi,
Dynamical Phase Transitions to Optomechanical Super-
radiance, Phys. Rev. Lett. 123, 053601 (2019).

[6] C.-M. Halati, A. Sheikhan, H. Ritsch, and C. Kollath,
Numerically Exact Treatment of Many-Body Self-
Organization in a Cavity, Phys. Rev. Lett. 125, 093604
(2020).

[7] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C.F. Roos,
Direct Observation of Dynamical Quantum Phase Transi-
tions in an Interacting Many-Body System, Phys. Rev. Lett.
119, 080501 (2017).

[8] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe,
Observation of a many-body dynamical phase transition
with a 53-qubit quantum simulator, Nature (London) 551,
601 (2017).

[9] J. A. Muniz, D. Barberena, R.J. Lewis-Swan, D. J. Young,
J.R. K. Cline, A. M. Rey, and J. K. Thompson, Exploring
dynamical phase transitions with cold atoms in an optical
cavity, Nature (London) 580, 602 (2020).

[10] S. Smale, P. He, B. A. Olsen, K. G. Jackson, H. Sharum,
S. Trotzky, J. Marino, A.M. Rey, and J.H. Thywissen,
Observation of a transition between dynamical phases in a
quantum degenerate fermi gas, Sci. Adv. 5, eaax1568 (2019).

[11] T. Tian, H.-X. Yang, L.-Y. Qiu, H.-Y. Liang, Y.-B. Yang, Y.
Xu, and L.-M. Duan, Observation of Dynamical Quantum
Phase Transitions with Correspondence in an Excited State
Phase Diagram, Phys. Rev. Lett. 124, 043001 (2020).

[12] A. Chu,J. Will, J. Arlt, C. Klempt, and A. M. Rey, Simulation
of xxz Spin Models Using Sideband Transitions in Trapped
Bosonic Gases, Phys. Rev. Lett. 125, 240504 (2020).

[13] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger,
Dicke quantum phase transition with a superfluid gas in an
optical cavity, Nature (London) 464, 1301 (2010).

[14] J. Klinder, H. Keler, M. Wolke, L. Mathey, and A.
Hemmerich, Dynamical phase transition in the open dicke
model, Proc. Natl. Acad. Sci. U.S.A. 112, 3290 (2015).

[15] R. M. Kroeze, Y. Guo, V.D. Vaidya, J. Keeling, and B. L.
Lev, Spinor Self-Ordering of a Quantum Gas in a Cavity,
Phys. Rev. Lett. 121, 163601 (2018).

[16] M. Eckstein, M. Kollar, and P. Werner, Thermalization after
an Interaction Quench in the Hubbard Model, Phys. Rev.
Lett. 103, 056403 (2009).

173601-5



PHYSICAL REVIEW LETTERS 126, 173601 (2021)

[17] M. Schiré and M. Fabrizio, Time-Dependent Mean Field
Theory for Quench Dynamics in Correlated Electron
Systems, Phys. Rev. Lett. 105, 076401 (2010).

[18] A. Gambassi and P. Calabrese, Quantum quenches as
classical critical films, Europhys. Lett. 95, 66007 (2011).

[19] P. Smacchia, M. Knap, E. Demler, and A. Silva, Exploring
dynamical phase transitions and prethermalization with
quantum noise of excitations, Phys. Rev. B 91, 205136
(2015).

[20] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre,
Introduction to the dicke model: From equilibrium to
nonequilibrium, and vice versa, Adv. Quantum Technol.
2, 1970043 (2019).

[21] A.F. Volkov and S. M. Kogan, Collisionless relaxation of
the energy gap in superconductors, Sov. Phys. JETP 38,
1018 (1974), http://www.jetp.ac.ru/cgi-bin/e/index/e/38/5/
p1018?a=list.

[22] R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Collective
Rabi Oscillations and Solitons in a Time-Dependent bcs
Pairing Problem, Phys. Rev. Lett. 93, 160401 (2004).

[23] E. A. Yuzbashyan, V.B. Kuznetsov, and B.L. Altshuler,
Integrable dynamics of coupled Fermi-Bose condensates,
Phys. Rev. B 72, 144524 (2005).

[24] E. A. Yuzbashyan, B.L. Altshuler, V.B. Kuznetsov, and
V.Z. Enolskii, Nonequilibrium cooper pairing in the non-
adiabatic regime, Phys. Rev. B 72, 220503(R) (2005).

[25] E. A. Yuzbashyan, O. Tsyplyatyev, and B.L. Altshuler,
Relaxation and Persistent Oscillations of the Order Param-
eter in Fermionic Condensates, Phys. Rev. Lett. 96, 097005
(20006).

[26] R. A. Barankov and L. S. Levitov, Synchronization in the
bes Pairing Dynamics as a Critical Phenomenon, Phys. Rev.
Lett. 96, 230403 (2006).

[27] E. A. Yuzbashyan, M. Dzero, V. Gurarie, and M. S. Foster,
Quantum quench phase diagrams of an s-wave bcs-bec
condensate, Phys. Rev. A 91, 033628 (2015).

[28] H.P. Ojeda Collado, J. Lorenzana, G. Usaj, and C. A. Balseiro,
Population inversion and dynamical phase transitions in a
driven superconductor, Phys. Rev. B 98, 214519 (2018).

[29] H. P. Ojeda Collado, G. Usaj, J. Lorenzana, and C. A. Balseiro,
Fate of dynamical phases of a bcs superconductor beyond the
dissipationless regime, Phys. Rev. B 99, 174509 (2019).

[30] H.P. Ojeda Collado, G. Usaj, J. Lorenzana, and C.A.
Balseiro, Nonlinear dynamics of driven superconductors
with dissipation, Phys. Rev. B 101, 054502 (2020).

[31] Y. Pehlivan, A.B. Balantekin, T. Kajino, and T. Yoshida,
Invariants of collective neutrino oscillations, Phys. Rev. D
84, 065008 (2011).

[32] R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai,
Z. Wang, and R. Shimano, Higgs Amplitude Mode in the
bes Superconductors nb_,ti,N Induced by Terahertz Pulse
Excitation, Phys. Rev. Lett. 111, 057002 (2013).

[33] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise,
Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano,
Light-induced collective pseudospin precession resonating
with higgs mode in a superconductor, Science 345, 1145
(2014).

[34] H. Gao, F. Schlawin, M. Buzzi, A. Cavalleri, and D. Jaksch,
Photoinduced Electron Pairing in a Driven Cavity, Phys.
Rev. Lett. 125, 053602 (2020).

[35] M. A. Norcia, R.J. Lewis-Swan, J.R. K. Cline, B. Zhu,
A. M. Rey, and J. K. Thompson, Cavity-mediated collective
spin-exchange interactions in a strontium superradiant laser,
Science 361, 259 (2018).

[36] E.J. Davis, A. Periwal, E.S. Cooper, G. Bentsen, S.J.
Evered, K. Van Kirk, and M. H. Schleier-Smith, Protecting
Spin Coherence in a Tunable Heisenberg Model, Phys. Rev.
Lett. 125, 060402 (2020).

[37] V.D. Vaidya, Y. Guo, R. M. Kroeze, K. E. Ballantine, A.J.
Kollér, J. Keeling, and B. L. Lev, Tunable-Range, Photon-
Mediated Atomic Interactions in Multimode Cavity ged,
Phys. Rev. X 8, 011002 (2018).

[38] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold
atoms in cavity-generated dynamical optical potentials, Rev.
Mod. Phys. 85, 553 (2013).

[39] P. Strack and S. Sachdev, Dicke Quantum Spin Glass of
Atoms and Photons, Phys. Rev. Lett. 107, 277202 (2011).

[40] S. Gopalakrishnan, B.L. Lev, and P. M. Goldbart, Frus-
tration and Glassiness in Spin Models with Cavity-Mediated
Interactions, Phys. Rev. Lett. 107, 277201 (2011).

[41] S.P. Kelly, A.M. Rey, and J. Marino, Effect of Active
Photons on Dynamical Frustration in Cavity QED, Phys.
Rev. Lett. 126, 133603 (2021)..

[42] E. Colella, S. Ostermann, W. Niedenzu, F. Mivehvar, and H.
Ritsch, Antiferromagnetic self-ordering of a fermi gas in a
ring cavity, New J. Phys. 21, 043019 (2019).

[43] V. Gurarie and L. Radzihovsky, Resonantly paired fermionic
superfluids, Ann. Phys. (Amsterdam) 322, 2 (2007).

[44] M. S. Foster, M. Dzero, V. Gurarie, and E. A. Yuzbashyan,
Quantum quench in a p + ip superfluid: Winding numbers
and topological states far from equilibrium, Phys. Rev. B 88,
104511 (2013).

[45] E.J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H.
Schleier-Smith, Photon-Mediated Spin-Exchange Dynam-
ics of Spin-1 Atoms, Phys. Rev. Lett. 122, 010405
(2019).

[46] A. Shankar, L. Salvi, M. L. Chiofalo, N. Poli, and M. J.
Holland, Squeezed state metrology with bragg interferom-
eters operating in a cavity, Quantum Sci. Technol. 4, 045010
(2019).

[47] J. M. Radcliffe, Some properties of coherent spin states, J.
Phys. A 4, 313 (1971).

[48] See Supplemental Material, which contains Refs. [9,24,
26,27,35,47,49,50], at http://link.aps.org/supplemental/10
.1103/PhysRevLett.126.173601 for a summary of the Lax
method used in Figs. 2 and 3 and details of the physical
model used in Fig. 4.

[49] M. Foster and V. Gurarie (private communication).

[50] G.R. Dennis, J.J. Hope, and M. T. Johnsson, XMDS2: Fast,
scalable simulation of coupled stochastic partial differential
equations, Comput. Phys. Commun. 184, 201 (2013).

[51] R.J. Lewis-Swan, M. A. Norcia, J.R.K. Cline, J.K.
Thompson, and A.M. Rey, Robust Spin Squeezing via
Photon-Mediated Interactions on an Optical Clock Tran-
sition, Phys. Rev. Lett. 121, 070403 (2018).

[52] It should also be possible to prepare initial states that
are split by their projection along the z direction rather
than the projection along x (set by Ag,) that would follow
even more closely the BCS ground state. However,
varying the relative azimuthal opening angle gives similar

173601-6



PHYSICAL REVIEW LETTERS 126, 173601 (2021)

physics and is more robust to typical experimental con-
straints [48].

[53] C. Lhuillier and F. Laloe, Transport properties in a spin
polarized gas, I, J. Phys. France 43, 197 (1982).

[54] W.J. Gully and W. J. Mullin, Observation of Spin Rotation
Effects in Polarized 3He-*He Mixtures, Phys. Rev. Lett. 52,
1810 (1984).

[55] B.R. Johnson, J.S. Denker, N. Bigelow, L. P. Lévy, J. H.
Freed, and D. M. Lee, Observation of Nuclear Spin Waves
in Spin-Polarized Atomic Hydrogen Gas, Phys. Rev. Lett.
53, 302(E) (1984).

[56] E.P. Bashkin, Spin waves and quantum collective phenom-
ena in boltzmann gases, Sov. Phys. Usp. 29, 238 (1986).

[57] J.M. McGuirk, H.J. Lewandowski, D.M. Harber, T.
Nikuni, J. E. Williams, and E. A. Cornell, Spatial Resolution
of Spin Waves in an Ultracold Gas, Phys. Rev. Lett. 89,
090402 (2002).

[58] X. Du, L. Luo, B. Clancy, and J. E. Thomas, Observation of
Anomalous Spin Segregation in a Trapped Fermi Gas, Phys.
Rev. Lett. 101, 150401 (2008).

[59] C. Deutsch, F. Ramirez-Martinez, C. Lacrofte, F. Reinhard,
T. Schneider, J. N. Fuchs, F. Piéchon, F. Lalog, J. Reichel,
and P. Rosenbusch, Spin Self-Rephasing and Very Long

Coherence Times in a Trapped Atomic Ensemble, Phys.
Rev. Lett. 105, 020401 (2010).

[60] G. Kleine Biining, J. Will, W. Ertmer, E. Rasel, J. Arlt,
C. Klempt, F. Ramirez-Martinez, F. Piéchon, and P.
Rosenbusch, Extended Coherence Time on the Clock
Transition of Optically Trapped Rubidium, Phys. Rev. Lett.
106, 240801 (2011).

[61] A.M. Rey, L. Jiang, M. Fleischhauer, E. Demler, and
M. D. Lukin, Many-body protected entanglement genera-
tion in interacting spin systems, Phys. Rev. A 77, 052305
(2008).

[62] B. Zhu, J. Schachenmayer, M. Xu, F. Herrera, J.G.
Restrepo, M. J. Holland, and A. M. Rey, Synchronization
of interacting quantum dipoles, New J. Phys. 17, 083063
(2015).

[63] K. Y, Chemical Oscillations, Waves, and Turbulence
(Dover, New York, 2003).

[64] L. F. Santos, F. Borgonovi, and G. L. Celardo, Cooperative
Shielding in Many-Body Systems with Long-Range Inter-
action, Phys. Rev. Lett. 116, 250402 (2016).

[65] G.L. Celardo, R. Kaiser, and F. Borgonovi, Shielding and
localization in the presence of long-range hopping, Phys.
Rev. B 94, 144206 (2016).

173601-7



