PHYSICAL REVIEW LETTERS 126, 113401 (2021)

Dynamical Generation of Spin Squeezing in Ultracold Dipolar Molecules

Thomas Bilitewski ,1’2 Luigi De Marco,1 Jun-Ru Li,1 Kyle Matsuda,1 William G. Tobias,1 Giacomo Valtolina ,1
Jun Ye®,' and Ana Maria Reyl’2
UJILA, National Institute of Standards and Technology and Department of Physics, University of Colorado,
Boulder, Colorado, 80309, USA
Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado, 80309, USA

® (Received 24 November 2020; revised 2 February 2021; accepted 5 February 2021; published 17 March 2021)

We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-
dimensional geometry. Using two rotational states of the molecules, we encode a spin 1/2 degree of
freedom. To describe the many-body spin dynamics of the molecules, we derive a long-range interacting
XXZ model valid in the regime where motional degrees of freedom are frozen. Because of the spatially
extended nature of the harmonic oscillator modes, the interactions in the spin model are very long ranged,
and the system behaves close to the collective limit, resulting in robust dynamics and generation of
entanglement in the form of spin squeezing even at finite temperature and in the presence of dephasing and
chemical reactions. We discuss how the internal state structure can be exploited to realize time reversal and

enhanced metrological sensing protocols.
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Introduction.—Systems of dipolar molecules [1,2] have
been shown to be versatile simulators of long-range
quantum spin models [3-8] with prospects ranging from
the study of fundamental physics [9] to applications in
quantum devices [10] and quantum metrology [11].

While the complex internal structure of molecules makes
these systems particularly attractive, it also results in
inelastic lossy collisions [12-15]. A lot of progress has
been made in 3D optical lattices [16—19], where these
losses are suppressed, from the demonstration of long-
range spin exchange [20] and control over the interactions
[8] to the study of Zeno suppression [21]. However, these
studies have been limited to nondegenerate gases which
suffer additional heating mechanisms when loaded into an
optical lattice. The recent realization of a quantum degen-
erate gas of fermionic molecules in a bulk system [22,23],
where chemical reactions inherent to dipolar molecules
[24-27] can be suppressed by confining the gas to two
dimensions [17,28-31], opens untapped opportunities.
These include the exploration of many-body physics with
tunable elastic long-range dipolar interactions in regimes
not accessible before.

Here, we study the dynamics of a dipolar molecular gas
prepared in the quantum degenerate regime and confined
in a two dimensional harmonic potential with two relevant
rotational levels tha form an effective spin 1/2 degree
of freedom. We derive a long-range interacting XXZ
spin model describing the many-body dynamics of this
system in the regime where molecules remain frozen in
the harmonic oscillator modes. We point out three major
advantages of these systems. First, the quasi-2D con-
finement enhances elastic interactions and protects the
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molecules against undesirable chemical reactions [31].
Second, the spatially extended nature of the motional states
results in a very long-range spin model which features
spin dynamics robust to thermal noise, dephasing, and
s-wave losses. In fact, the model is very close to the one-
axis twisting model [32], known to produce spin-squeezed
states useful for quantum metrology [11,33] as demon-
strated in a variety of different platforms [11,34-38].
Indeed, we predict up to 19 dB of spin squeezing with
1000 molecules. Finally, time reversal can be realized by
tuning an applied electric field or by state transfer between
rotational molecular levels, allowing for the implementa-
tion of robust metrological protocols for precise electro-
magnetic field sensing, that fully take advantage of
entanglement without the need of single photon detection
capabilities [39,40].

Model.—Now, we turn to deriving the spin model for
dipolar fermionic molecules in quasi-2D occupying har-
monic oscillator states and interacting via long-range
dipolar interactions as illustrated in Figs. 1(a)-1(c).

The effective spin 1/2 degree of freedom is encoded in
the internal rotational levels of the molecules. We assume
coupling to nuclear levels is suppressed, e.g., by a strong
magnetic field [5]. In this case, the level structure is
described by the molecular rotor Hamiltonian in the
presence of an electric field, H,, = BN? — cAz’OE [5], where
B is the rotational constant, N the angular momentum
operator of the molecule, E the strength of the electric field
oriented along the Z direction, and 210 =d-ey;the projec-
tion of the dipole operator along the field direction. The
eigenstates [N, N;) labeled by two rotational quantum
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FIG. 1. (a) Dipolar molecules confined in a 2D harmonic trap in
oscillator modes n = (ny, ny) are mapped to an XXZ spin model
in mode space. (b) Internal rotational levels [NV, ;) and the two
different spin bases used in this Letter. (c) Dipolar molecules
interact via long-range 1/R? dipole-dipole interactions. (d) Histo-
gram of all pairwise interactions normalized to the mean
interaction strength for N = 1000 molecules in a single plane
of a 3D optical lattice (“lattice”) or in harmonic oscillator (“ho”)
modes of a 2D harmonic trap.

numbers satisfy at vanishing field N*|A/, NV',) = V(N +
DIN,N) and N N, N,) = NN, N,) where N, =
N- ez. In this Letter, we will work with two distinct spin
1/2 bases either ||) = 10,0) and |[1) = |1, 1) (basis I) or
|}) =10,0) and |1) = |1,0) (basis II) as shown Fig. 1(b).
Note that quadrupolar interactions prevent coupling of
these states to other rotational levels allowing us to restrict
the dynamics to only two levels.

Projected into this internal state basis, the single particle
Hamiltonian reduces to H, = > Eal Ci 4Ciq» Where c’
creates a fermionic molecule in internal state « = 1, | and
harmonic oscillator mode i = (ni,n}, n},) with energy
Eui = EX + @y xnly + wgyn'y + w, znY). We assume
isotropic confinement within the plane, w, = w,x =
®,.y, and the confinement along Z to be the largest energy
scale, larger than the Fermi energy, ¢r, and the thermal
energy, kgT, such that molecules only occupy the corre-
sponding ground state, n}, = 0.

We express the dipolar interactions in this basis as

_____

ijkl aff

where we ignored the dependence of the spatial modes on
the internal molecular state. Here, V¥ = (ij|V |kl) with
(R|V44R) = 1/(4rmeoR?)[1 — 3cos? (9)], and 0 the angle
between the vector connecting the pair of interacting
molecules R and e, (see Fig. 1). We used the abbreviation

fg;, = CioCrp and defined the dipole moments, u, =
(aldyla), and py) = p 4 = (Mdo|) for basis II, u 4 =
(Ud_11)/V2, upy = (Md V)/V2 = —pyy for basis L,

with the spherical components cAz’O,i of d.

In the collisionless regime, in which the internal spin
dynamics is faster than collisional processes relaxing the
motional degrees of freedom [41,54], and assuming, at
most, one molecule per mode (achievable by initializing a
spin polarized gas), interaction induced mode changing
processes can be neglected [47,55], and only couplings
between states at the same single-particle energy, e.g.,
i=k j=lori=1I j=k, need to be kept in Eq. (1) to
leading order. In this limit, the Hamiltonian can be reduced
to a long-range interacting XXZ spin model [41]

_ 1/2ZJZ "Z"Z+JJ_ Ax'\x Ay y +Z§zzhzz’ 2

l/lj

where §¥ = 1/2 Zaﬂ cm wsCip are pseudo-spin-1/2 oper-
ators deﬁned via the Pauli matrices ¢*”*. The spin
couplings are given by J5; = nV], — (v C)Vﬁj, Jii=n-
VIV and by =0, (VIE=Vi)/2 + AE, with
n=(uy =) v="(, +muy)* & =2p 3y, and AE; =
EX = EP + h(wy — @ )(nk + ny).

Interactions in mode space.—Next, we discuss the
form of the interactions in the spin model for spatially
delocalized molecules in a harmonic trap compared to
spatially localized molecules in deep real space lattices.
First, we note that, in contrast to localized Wannier orbitals
for which the terms V ]’ are exponentially suppressed [5],
they are non-negligible for harmonic oscillator eigenmo-
des. In particular, the finite V” terms lead to a nonvani-
shing J, term even at zero- apphed electric field, where
u, = puyp =0, which is absent in the lattice system.

To study the interaction between modes i, j in more
detail, we consider V = VZ - V{]’ Explicit numerical
evaluation shows this to decay only very slowly, see
Fig. S3 [41], and a semiclassical calculation [41] predicts
significantly weaker scaling than for real space interactions
which decay as R~ with the distance R. To visualize all
resulting interactions in the spin model and show the
advantage of working with spatially delocalized molecules,
we consider two physically distinct scenarios: a unit filled
2D array of N dipoles, localized at lattice sites i = (iy, iy),
or a 2D harmonic trap, where dipoles occupy modes i =
(ni,n%) up to the Fermi level. We show the resulting
distribution of all pair-wise interactions in Fig. 1(d). We
observe a wide distribution of couplings spanning many
orders of magnitude for the real space lattice, compared to a
sharply peaked distribution for the harmonic trap. This
small variance of couplings is key to the collective nature of
the spin model facilitating robust spin dynamics.

Collective limit.—Given this weak mode dependence,
much of the physics of the spin model can be understood by
considering the fully collective limit. Defining collective
spin operators S‘a =>; S;l and the averaged couplings
Jo=(1/N*)>2,;J% and h, = (1/N) Y, hi we obtain a
one-axis twisting Hamiltonian [32]
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H, =T, 8%+ 48 +h,8,, (3)

with y=J, -J, = M(E)(VZ - V,’j') with p(E) =
[—(uy —M¢)2 +2py44p)]. We note that, through the
dipole moments, the interactions depend both on the
electric field and the chosen set of coupled rotational
states. In particular, by choosing either basis I or II we
obtain a factor of —2 in the effective interactions [5,56],
allowing us to reverse the dynamics.

Parameters and methods.—For specificity and to make
predictions of value to near-future experiment, we special-
ize our calculations to dipolar KRb molecules [22,31] and
parameters accessible to current experiments: w; =
20 kHz, @ = 50 Hz, and distinct trapping frequencies of
the internal states due to their ac polarizability set by
A, =20y —w))/(0r + @) #0.05-02, [31,57]. We
present results for N =100 up to 1000 molecules at
temperatures ranging from 7/T; =0 up to T/Tr = 1.0.
The spin dynamics is obtained by solving the full spin
model, Eq. (2), via the discrete truncated Wigner approxi-
mation [58,59] averaging over 10* initial states and
sampling the occupied modes from the Fermi-Dirac dis-
tribution. We also include s-wave losses from chemical
reactions that take place as the gas decoheres [41].

Robustness of dynamics to dephasing.—First, we discuss
the robustness of the dynamics to dephasing. In the J, = 0
limit, the timescale of dephasing is set by the standard
deviation of the inhomogeneous z fields proportional to A,,,.
In this limit, losses from chemical reactions due to s-wave
collisions between molecules in the @ = | and @ = 1 states
play an important role, too [41]. In contrast, when J
dominates the dynamics, the dephasing and s-wave losses
are strongly suppressed by the opening of a many-body gap
[60] proportional to NJ ;. The gap facilitates spin locking
along the collective spin direction, a mechanism referred to
as spin-self rephasing [54]. The competition between
dephasing and collective interactions has been shown to
result in a dynamical phase transition (DPT) with two
distinct dynamical behaviors as the system crosses a critical
value of interaction strength J ¢ [47]. The DPT is observed

by an abrupt change in the contrast C(r) = /S + 52 at

J¢ . Figure 2(a) shows the long-time average of the contrast
as a function of the dephasing term A, and applied electric
field E for an initial coherent spin state prepared in the xy
plane for an ideal system at zero temperature. Note that the
energy gap J, depends on E, and vanishes around E =
5.6B/d (B/d = 3.9 kV/cm for KRb) [41]. Consequently,
we observe robust interaction protected spin dynamics in
the region of |J | (E)| > JS (E, A,) and an abrupt change to
fast dephasing and subsequent chemical reaction losses for
|7 (E)| < JS(E, A,) separated by a critical region indi-
cated by the dashed line in Fig. 2(a). We illustrate the
qualitatively different dynamics in Fig. 2(b) via time slices
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FIG. 2. Dynamical phase transition. (a) Time-average contrast,
Coy = 1/ Ty [7* d1C(1)/C(0) (T4, = 15 ms), versus single-par-
ticle dephasing, A,, and electric field E in units of B/d. White
dashed lines indicate the transition. (b) Contrast C(¢) at fixed
E =45B/d, A, =0,0.05,0.02, 0.5, 1.0 (top to bottom). Mean
field dynamics starting from a coherent state of N = 1000
molecules along x at 7/T = 0.

at fixed electric field and dephasing A, below, at, and
above this transition.

Besides single-particle dephasing and losses, the so far
neglected mode changing collisions also disrupt the col-
lective spin. To account for both single particle and
interaction induced dephasing, we develop a kinetic model
[41]. We find a decay time of the collective spin due to
collisions of 7~ 11 ms at /T = 1.0, see Fig. S4 in [41],
which is rapidly increasing at lower temperatures (Fig. S5
in [41]) and, thus, largely negligible for the timescales of
interest in the quantum degenerate regime.

Spin squeezing.—Next, we consider the generation of
entangled many-body states during the time evolution and
their robustness to thermal fluctuations and dephasing. In
particular, we study the generated spin squeezing as
characterized by the Ramsey squeezing parameter [48,61]

min¢<Var[§$]>
(S)P

which measures the minimal variance of spin noise dis-
tribution taken over all axes parametrized by the angle ¢
perpendicular to the mean collective spin <S> We focus on
states initially prepared fully polarized along +x on the
Bloch sphere. The squeezing dynamics at zero temperature
without dephasing is shown in Fig. 3(a) and the optimal
spin squeezing in Fig. 3(b) for experimentally realistic
parameters of particle number, temperatures, and dephas-
ing, with a maximal squeezing of &2 ~ 19 dB for N = 1000
molecules at low temperatures. This shows the robustness
of the observed squeezing for molecules in the quantum
degenerate regime T /T < 0.5 for a broad range of single
particle inhomogeneities.

Time-Reversal and robust sensing.—While, in principle,
squeezed states are ideal for enhanced sensing, in practice,
taking full advantage of their enhanced sensitivity is
challenging due to measurement noise limitations.
However, it has been pointed out that by reverting the
time evolution and “untwisting” the state, it is possible to
realize robust Heisenberg limited phase sensitivity without
the need of single-particle-resolved state detection [39,40].

& = (4)
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FIG.3. Dynamics and robustness of spin squeezing. (a) Ramsey
squeezing parameter £2 versus time ¢ for N = 1000, 400, 200,
100 (solid, dashed, dotted, dash-dotted) molecules. (b) Optimal
Ramsey squeezing parameter fgpt versus temperature for different
dephasing strengths A, = 0.0, 0.05, 0.1, 0.2 (squares, circles,
diamonds, crosses). Both at zero electric field £ = 0.

Below we discuss how to implement the desired untwisting
protocol and robustly use polar molecules for precise
sensing of electromagnetic fields.

The basic protocol consists of the following steps,
illustrated in Fig. 4. After preparation of a coherent state
along x, evolution for a time ¢ by the dipolar Hamiltonian,

U, = e""*gg, generates a spin-squeezed state. This state is
highly sensitive to rotations along the squeezed direction
(which has a large projection along the y axis). To perform
precise measurements of a phase ¢ accumulated under free
evolution due to the energy difference of the internal states,
which depends on external electromagnetic fields (see
Fig. S1 [41]), one just needs to align the state along the

sensitive quadrature via RIPRIRY?. To exclude unde-
sirable dipolar interactions and many-body dephasing
during phase accumulation, one can first transfer the state
1,1) via a microwave 7 pulse to |2,0) (or, alternatively,

|0, 0) to |1, 0)). This compound sequence for realizing Rf is
illustrated in Fig. 4(b). The untwisting protocol is per-
formed by reversing the dynamics U, = e'% 52, followed by
a measurement of <S’)> Its final value is nonzero due to the
z-dependent spin precession induced by ¢. Time reversal at
zero electric field can be effectively accomplished in our
system by coherently transferring all molecules in the |2, 0)
state to |1,0) via another microwave z pulse. Since
Ky Hpp = =2 X g s, letting the system evolve for
t/2 reverses the dynamics. Additionally, we require 7
pulses, Rf, at the middle of the twisting and untwisting
steps to cancel inhomogeneous z fields.

The advantage of untwisting protocols is the amplifica-
tion of the spin rotation signal while keeping the quantum
noise at the coherent state level, AS, ~ VN /4. Therefore,
the sensitivity realized for a perfect noise-free measurement
Ay = [AS,(¢)/0y(Sy(#))] o is only reduced by a factor

\/1+ (AS,/AS,)? in presence of measurement noise AS,

[39]. In Fig. 4(c), we show the metrological gain enabled by
the realization of the protocol in our molecule system using
the full spin model, Eq. (2). There, we show the enhance-
ment of sensitivity over the standard quantum limit versus

@ o m=m1y S M = 11,0) S.
f’(_ S 14 =10,0) [4) = 10,0)
N, S, s,
e Ux(t) R, () U_ay (t/2) 7
Y twisting phase acc. |_untwistin Y
o) =
(b) )2 s 2 ()520_
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(U]
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10,0) [0,0) 0 1 10 100
AS,

FIG. 4. Robust measurement via time reversal. (a) Illustration
of the protocol: State preparation in a coherent state along x,
evolution for time ¢, U, (1) = e 52, resulting in a spin-squeezed
state in the |0,0) and |1, 1) basis, signal rotation Ry(¢) = ei¢§>',
state transfer from |1, 1) to |1, 0) realizing y — —2y, evolution for
t/2 “untwisting” the state, followed by measurement of (S,).
Color plots are Wigner functions for N = 10 spins for the ideal
protocol. (b) Realization of R (¢) via transfer to a noninteracting
state |2, 0), and accumulation of the phase due to free evolution

via a compound sequence R;{’ = R;”/ 272?72}’/ 2, (c) Metrological
gain 1/(NAg?) comparing the angular sensitivity A¢ to the
standard quantum limit 1/v/N versus measurement error AS,
computed from the full spin dynamics.

final measurement noise in S, and observe the same gain as
expected from an ideal implementation with a perfect
unitary one-axis twisting dynamics.

Summary.—We have studied the spin dynamics of
dipolar Fermi gases confined in a quasi-two-dimensional
geometry in regimes where losses can be effectively sup-
pressed. By using delocalized eigenstates, we obtain a
highly collective spin model resulting in dynamics robust to
single-particle dephasing, generated, e.g., by inhomo-
geneous local fields and chemical reactions in many cases
unavoidable in experiments. We predict the stabilization of
many-body coherence which allows for the generation of
large spin squeezing. By combining long-range dipolar
interactions [2,5-8,20], tunable via electric fields, and
mode space lattices [47,49,55], our proposal mitigates
major limitations, such as losses and decoherence, and
opens a path for the near term exploration of collective
many-body physics in dipolar molecules.

Finally, we discuss how coherent state transfer between
rotational levels allows for the implementation of time-
reversal protocols that facilitate the utilization of the
quantum advantage of spin-squeezed states, without the
need of single-photon detection capabilities. Under current
experimental conditions, the ideal implementation of our
protocol can lead to a metrological gain %19 dB beyond the
standard quantum limit for systems of 1000 mole-

cules, yielding an electric field sensitivity of AE =
188 (nV/cm)/+/Hz at E =1 kV/cm, assuming 10 ms
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phase accumulation time [50]. This is comparable to state-
of-the-art demonstrated electric field sensitivities in trapped
ion crystals [51], and Rydberg setups [52] and could be
improved with better electric field stability and rotational
state coherence. Beyond electric field sensing, the realiza-
tion of a spin-squeezed molecular gas could have a major
impact on precision measurements where the specific
advantages of molecules for fundamental physics tests
can be leveraged in addition to the quantum advantage
brought by spin squeezing.

The proposed protocol not only opens a path toward the
use of quantum degenerate molecular fermionic gases for
enhanced electromagnetic field sensing, but, in parallel, the
ability of time reversal opens up opportunities to study
many-body nonequilibrium dynamics and quantum chaos
via out-of-time ordered correlators.
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