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Nonlinear dynamics and quantum chaos of a family of kicked p-spin models
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We introduce kicked p-spin models describing a family of transverse Ising-like models for an ensemble of
spin-1/2 particles with all-to-all p-body interaction terms occurring periodically in time as delta-kicks. This is
the natural generalization of the well-studied quantum kicked top (p = 2) [Haake, Kuś, and Scharf, Z. Phys. B
65, 381 (1987)]. We fully characterize the classical nonlinear dynamics of these models, including the transition
to global Hamiltonian chaos. The classical analysis allows us to build a classification for this family of models,
distinguishing between p = 2 and p > 2, and between models with odd and even p’s. Quantum chaos in these
models is characterized in both kinematic and dynamic signatures. For the latter, we show numerically that the
growth rate of the out-of-time-order correlator is dictated by the classical Lyapunov exponent. Finally, we argue
that the classification of these models constructed in the classical system applies to the quantum system as well.
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I. INTRODUCTION

Ising-like models play a central role in quantum infor-
mation science at the interface of statistical physics and
computation [1]. Fundamental areas of research include
Hamiltonian complexity [2], optimization [3], machine learn-
ing [4], spin glasses [5], and critical phenomena in many-body
systems such as quantum ground-state phase transitions [6–8]
and dynamical phase transitions [9–12]. Understanding the
dynamics in such systems is essential for studies of nonequi-
librium physics, such as many-body quantum chaos [13,14]
and thermalization [15,16].

Today, quantum simulation offers the prospect of studying
Ising-like models by encoding spins in qubits and engineering
the desired interactions in a controlled way [17–22]. One
approach to quantum simulation is to employ a gate-based
model in order to implement a desired unitary evolution of the
many-body system. The seminal work of Lloyd [23] showed
that through a Trotter-Suzuki expansion, one can approximate
any desired unitary map on N qubits with k-local interactions
through an appropriate sequence of gates acting on no more
than k qubits at a time. While such a gate-based protocol is
often called “digital quantum simulation,” when implemented
in a non-fault-tolerant manner, the operation is fundamen-
tally “analog,” with gates chosen for a continuum of possible
duration. As such, the resulting map can exhibit dynamical
instabilities and quantum chaos, which can lead to a prolifer-
ation of errors [24,25].

Of particular importance in this context is the fact that
Trotterization introduces a hidden time-dependent driving
force. Explicitly, given a generic time-independent Hamil-
tonian H = Hy + Hz, where [Hy,Hz] �= 0, the unitary map
up to time t can be simulated as U (t ) = e−iHt ≈ Unτ

Trot (τ ),

*mhmunoz@unm.edu

where nτ = t/τ is the number of Trotter steps, and the single-
step Trotter approximated map is UTrot (τ ) = e−iHzτ e−iHyτ =
T (exp{−i

∫ τ

0 Hkicked(t )dt}). The effective single-step sim-
ulated Hamiltonian Hkicked(t ) = Hy + τHz

∑
n δ(t − nτ ) de-

scribes a periodically “delta-kicked” system, and UTrot (τ ) is
its respective Floquet map.

For example, given a transverse Ising model, H =
−h

∑
i σ

(i)
y − ∑

i, j �i jσ
(i)
z σ (i)

z , Heyl et al. studied the Trot-
terized approximation arising from a gate-based simulation,
and they showed that above a critical Trotter step size, τ , the
resulting Floquet operator is characterized by a many-body
quantum chaotic regime, where Trotter errors proliferate and
become uncontrollable [24]. This is true even for integrable
systems described by a single degree of freedom encoded in
the collective spin of Ns spin-1/2 particles, J = ∑Ns

i=1 �σ (i)/2.
For the Lipkin-Meshkov-Glick (LMG) model [26], HLMG =
−BJy − �

2J J
2
z , the Trotterized map is the famous quantum

kicked-top model, UQKT = exp{i k
2J J

2
z } exp{iαJy}, with α =

Bτ and k = �τ [27]. Haake et al. introduced this model as a
paradigm for quantum chaos, and in their seminal work [27],
they systematically studied the classical chaos (in the thermo-
dynamic limit, Ns → ∞) and quantum signatures of chaos for
finite Ns. Since that pioneering work, a plethora of theoretical
and experimental developments in quantum chaos [28–37]
have been facilitated by direct or indirect usage of the kicked
top. Recently, Sieberer and co-workers showed that the quan-
tum chaos in the kicked top can lead to a proliferation of errors
in the Trotterized simulation of the LMG model [24,25].

In the present work, we study the quantum and classical
chaos of a family of delta-kicked transverse Ising models
with all-to-all connectivity for Ns spin-1/2 particles, gener-
alizing Haake’s pioneering work [27] to models with arbitrary
p-body interactions. Following from our discussion above,
these delta-kicked systems correspond to the effective time-
dependent Hamiltonian description of the Trotterization of
a family of completely connected transverse Ising models,
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usually called “p-spin” models,

Ĥp = −B
Ns∑
i=1

σ̂ (i)
y

2
− �

p

Ns∑
i1,i2,...,ip=1

σ̂ (i1 )
z σ̂ (i2 )

z · · · σ̂ (ip)
z

2Np−1
s

= −J

[
B

(
Ĵy
J

)
+ �

p

(
Ĵz
J

)p]
. (1)

The dependences on Ns and p are chosen to ensure that the
model is extensive and of a universal form in the (mean-field)
thermodynamic limit.

The two-body case (p = 2) is the LMG model men-
tioned above, featuring a continuous quantum phase transition
between paramagnetic and ferromagnetic phases. The gen-
eralization for p > 2 gained prominence in the context of
quantum information in the work of Jörg et al., who showed
that for p > 2 this system undergoes a first-order (discontin-
uous) quantum phase transition, and is accompanied by an
exponentially closing gap to the ground state, which renders
quantum annealing intractable [38]. Subsequent work has an-
alyzed this model from the point of view of mean-field theory
[39], entanglement in quantum phase transitions [8], and a
variety of approaches to tame the exponential complexity for
efficient quantum annealing and optimization [40,41]. In pre-
vious work, we studied quantum simulations of p-spin models
using tools of measurement-based feedback control [42].

Our characterization of the nonlinear dynamics and
classical/quantum chaos of the kicked p-spin family is struc-
tured in a similar fashion to the original kicked top paper [27]
in order to emphasize the similarities/differences between the
kicked top and its generalizations. For the classical system,
in the limit Ns → ∞, borrowing from foundational results in
the theory of area-preserving maps [43–46], we characterize
and classify the structural changes and instabilities, appearing
far from the emergence of chaos, induced by bifurcations.
Explicit computation of the largest Lyapunov exponent pro-
vides a characterization of the transition to global chaos, and
the local structural aspects of the emergence of chaotic re-
gions are assessed by estimating their surface areas. Quantum
chaos is studied via kinematic and dynamic signatures. In
the former case, we focus on the statistics and localization
properties of eigenphases and eigenvectors of the Floquet op-
erator, respectively. In the latter case, we study the growth of
the out-of-time-order correlator. Our analysis generalizes the

work of Haake on the quantum kicked top in light of modern
developments in quantum chaos.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the Hamiltonian for the kicked p-spin
model, and we derive the stroboscopic map that describes
the evolution in the classical limit. In Sec. III, we analyze
the classical nonlinear dynamics by means of studying fixed
points and their stability and the largest Lyapunov exponent
during the transition to global chaos. In Sec. IV, we char-
acterize the quantum chaotic properties of the stroboscopic
Floquet dynamics via kinematic signatures (including level
spacing statistics and localization of the Floquet eigenstates)
and dynamical indicators such as the growth rate of the out-
of-time-order correlator. Finally in Sec. V, we summarize,
conclude, and give an overview of future research directions.

II. THE KICKED p-SPIN MODEL

We study the δ-kicked version of the p-spin model, Eq. (1),
governed by the Hamiltonian [47]

Ĥδ−p(t ) = α

τ
Ĵy + k

pJ p−1
Ĵ p
z

∞∑
n=−∞

δ(t − nτ ), (2)

where α is the precession angle, τ is the time interval of free
precession, and k is the strength of the nonlinear kick. The
time evolution operator under this Hamiltonian is the Floquet
map

Ûp = T {e−i
∫ t

0 dt ′Ĥδ−p(t ′ )} = e
−i k

pJ p−1 Ĵ
p
z e−iαĴy (3)

(here and throughout, h̄ = 1). Choosing α = Bτ and k = �τ ,
this Floquet map is the Trotterized version of the unitary
evolution generated by Eq. (1). As the magnitude of the spin
J = Ns/2 is conserved, the quantum dynamics take place in
the (Ns + 1)-dimensional symmetric irreducible subspace. In
the classical limit Ns → ∞, the mean spin executes motion
on the surface of a sphere, described by a rotation of the spin
about the y-axis by angle α followed by a nonlinear “twist”
about the z-axis. This twist can be understood as a rotation
around the z-axis by an angle proportional to the p− 1 power
of the z-projection of the spin, inducing nonlinear dynamics
with strength k.

The Heisenberg evolution of the collective spin is defined
by the map Ĵ′ = Û †

p ĴÛp, with components

Ĵ ′
x = 1

2
[(cos(α)Ĵx + sin(α)Ĵz + iĴy)eiQ+(k,α,p) + (cos(α)Ĵx + sin(α)Ĵz − iĴy)eiQ−(k,α,p)], (4a)

Ĵ ′
y = 1

2i
[(cos(α)Ĵx + sin(α)Ĵz + iĴy)eiQ+(k,α,p) − (cos(α)Ĵx + sin(α)Ĵz − iĴy)eiQ−(k,α,p)], (4b)

Ĵ ′
z = − sin(α)Ĵx + cos(α)Ĵz, (4c)

where the arguments of the exponentials are given by

Q±(k, α, p) = k

pJ p−1

p∑
a=1

(±1)aJa(Ĵx, Ĵz; p, α), (5)

with

Ja(Ĵx, Ĵz; p, α) =
(
p
a

)
(cos(α)Ĵz − sin(α)Ĵx )p−a. (6)

Notice that for general p, a single evolution step couples the
components of collective spin operators to a polynomial in
these components of degree p− 1. As a consequence, evo-
lution under Ûp leads to high complexity and rapidly takes
an initially localized state, e.g., a spin-coherent state, into a
highly nonclassical spin state. Further details on the derivation
of these equations of motion are presented in Appendix A.
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Taking the proper limit allows us to define classical vari-
ables and obtain the classical nonlinear dynamical map when
J → ∞. In the standard way, we take the expectation value of
the evolved operators in Eq. (4) and neglect all correlations,
i.e., 〈ÂB̂〉 = 〈Â〉〈B̂〉, with Â and B̂ two Hermitian operators.

Then, we introduce the classical unit vector X = 〈Ĵ〉/J , and
we take the limit J → ∞. The resulting stroboscopic map of
the classical coordinates of X = (X,Y,Z ) on the unit sphere
is given by

Xm+1 = cos(k[cos(α)Zm − sin(α)Xm]p−1)[cos(α)Xm + sin(α)Zm] − sin(k[cos(α)Zm − sin(α)Xm]p−1)Ym, (7a)

Ym+1 = sin(k[cos(α)Zm − sin(α)Xm]p−1)[cos(α)Xm + sin(α)Zm] + cos(k[cos(α)Zm − sin(α)Xm]p−1)Ym, (7b)

Zm+1 = − sin(α)Xm + cos(α)Zm, (7c)

with the respective inverse map given by

Xm = cos(α) cos
(
kZ p−1

m+1

)
Xm+1 + cos(α) sin

(
kZ p−1

m+1

)
Ym+1 − sin(α)Zm+1, (8a)

Ym = − sin
(
kZ p−1

m+1

)
Xm+1 + cos

(
kZ p−1

m+1

)
Ym+1, (8b)

Zm = sin(α) cos
(
kZ p−1

m+1

)
Xm+1 + sin(α) sin

(
kZ p−1

m+1

)
Ym+1 + cos(α)Zm+1. (8c)

We will refer to a single application of the stroboscopic classi-
cal Floquet map in Eq. (7) as F [Xm] and the respective inverse
map in Eq. (8) as F−1[Xm].

The classical nonlinear dynamics arise from the mean-
field approximation in the thermodynamic limit [48]. This
is achieved by replacing the interaction term in Eq. (2) with
its mean-field approximation, Ĵ p

z → p〈Ĵz〉p−1Ĵz. The resulting
effective Hamiltonian yields an evolution operator composed
of two components: a linear rotation by α and rotation depend-
ing on the current state. The latter is “nonlinear” in that the
angle is proportional to the average of the p− 1 power of the
z-component. Note, given our choice of coordinates in Eq. (2),
for any choice of α, trajectories undergo Larmor precession
around the y-axis. We thus refer to the points (0,±1, 0) as
“poles” and the great circle in the x-z plane as the “equator.”

III. NONLINEAR DYNAMICS OF A CLASSICAL
KICKED p-SPIN

To better identify and understand the general properties of
the kicked p-spin models, we first summarize Haake’s analy-
sis of the nonlinear dynamics of the classical kicked top (p =
2) [27]. The classical kicked top has doubly reversible dynam-
ics under the appropriate choice of time-reversal symmetry
(given below), parity symmetry, and an additional symmetry
of the iterated map F 2 when α = π/2. The two fixed points
on the poles of the sphere (0,±1, 0) bifurcate from elliptic
(stable) to hyperbolic (unstable) at k = 2, leading to the onset
of a cascade of period-doubling bifurcations and a transition
from regular to mixed phased space, before leading to global
chaos. Additionally, when α = π/2 the period-4 orbit on the
equator (defined below) changes from stable to unstable at
k = π .

In the remainder of this section, we extend this analysis
to the whole family of p-spin models. To illustrate the dif-
ferences as well as similarities between models with p = 2
and p > 2, we will often compare the three models with
p = 2, 3, 4. We stress that this choice does not restrict the
generality of our findings, as those three test cases exhaust the
kicked p-spin phenomenology (see [39] for a similar discus-
sion with the p-spin family). In fact, all the models with odd

p > 2 exhibit the same phenomenology as p = 3, and all the
models with even p > 2 exhibit that of p = 4. We pay close
attention to the value of α = π/2 as it allows us to directly
contrast models with p > 2 with Haake’s kicked top results.
However, as we will see, models with p > 2 exhibit a rich
and intricate behavior in the range α ∈ [0, π ], which we fully
characterize as well.

A. Symmetries

Symmetries of the map F [X] can be found with the help of
the following two transformations:

T [X] = ( − cos(α)X − sin(α)Z,Y,− sin(α)X + cos(α)Z )
(9)

and

T̃ [X] = ( cos(α)X + sin(α)Z,Y, sin(α)X − cos(α)Z ), (10)

which are both involutions, i.e., T 2 = T̃ 2 = 1, and have deter-
minants det(T ) = det(T̃ ) = −1. These transformations allow
us to introduce time-reversal operations of the stroboscopic
evolution. One can easily check that F and F−1 satisfy

TFT ≡ T [F [T [X]]] = F−1[X] (11)

and

T̃ F T̃ ≡ T̃ [F [T̃ [X]]] = F−1[X] (12)

when p is even, indicating the map has double reversible dy-
namics. However, for odd values of p only Eq. (11) is satisfied,
hence only the T transformation yields a proper time-reversal
operation. The major consequence of this time reversal is that
the images of n-periodic orbits of F under T (and T̃ for even
p’s) are also n-periodic orbits, where it may happen that the
orbit is its own image [27].

Using Eqs. (11) and (12), we define a family of symmetry
curves on the unit sphere composed of orbits invariant under
the application of any of the involutions I[Xm], where I =
T, T̃ ,TF,FT, . . . . The T and T̃ invariant curves are given
by the great circles satisfying

sin(α)X − [cos(α) − 1]Z = 0, (13)

sin(α)X − [cos(α) + 1]Z = 0, (14)
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FIG. 1. Phase-space portraits for different values of the parameter p. (a) Case p = 2 (kicked top) with k = 1.6 (top) and k = 2.3 (bottom).
(b) Case p = 3 with k = 0.8 (top) and k = 1.2 (bottom). (c) Case p = 4 with k = 1.5 (top) and k = 2.2 (bottom). In each of the panels, we
oriented the sphere on the left such that we look straight at the positive z (along the equator), and the sphere on the right such that we look at
the positive y (north pole). In this way, one of the regular islands on the poles and one of the resonant islands on the period-4 orbit along the
equator are visible. A schematic of the Cartesian directions is also included to guide the eye. All cases correspond to α = π/2.

respectively. In general, the invariant curves for the higher
involutions, I, have fairly complicated shapes.

If an orbit is invariant under an involution I , the structural
changes it might undergo are constrained, since the resulting
orbit must still respect this invariance. For instance, if the
periodic orbit is of even/odd period, then it must have an
even/odd number of points on the corresponding symmetry
line of I. Other consequences of time reversal by T and T̃ ,
and invariance under I , are explored in [27].

For the case k = 0, the phase space is filled by regular
orbits describing Larmor precession around the y-axis, which
deform as k increases. Rotations around the precession axis
then provide information about the symmetries of our map. In
particular, for even values of p, the map F is invariant under
π -rotations around the y-axis,

Ry(π )F = FRy(π ), (15)

where Ry(π )[Xm] = (−X,Y,−Z ). To understand this fact, we
notice that the rotation Ry(π ) can be constructed as Ry(π ) =
T T̃ = T̃ T . Thus, invariance under Ry(π ) immediately implies
time reversal under both T and T̃ . Conversely, the absence of
time reversal under either T or T̃ implies no invariance under
Ry(π ). Thus, the maps for even p have the feature that the
image under Ry(π ) of every n-periodic orbit of F is also an
n-periodic orbit.

Finally, when specializing for α = π/2 and even p’s, the
map F has an additional symmetry. To see this, we use the
following identity:

FRx(π ) = Rx(π )FRy(π ), (16)

where RX (π )[Xm] = (X,−Y,−Z ) is a rotation around the x-
axis by an angle of π . Using Eq. (16), it is easy to show that
the iterated map F 2 is invariant under Rx(π ).

With these symmetries in mind, we can give an informed
description of the phase portraits of the kicked p-spin models.
In Figs. 1(a)–1(c) we display characteristic phase portraits for
the cases of p = 2, 3, 4 and α = π/2. In each of the three pan-
els, the spheres on the right show the regular island on the pole
(0,1,0) and the spheres on the left show one of the islands in

a period-4 orbit along the equator (see the description below).
For p = 3, Fig. 1(b), the starry shape of the regular island
on the pole is a consequence of the absence of the additional
symmetry under rotations around the y-axis.

B. Fixed points

The precession axis determines two fixed points of F , i.e.,
the poles (0,±1, 0). Additional ones can be found by solving
the equation F [Xm] = Xm. Writing all the components in
terms of the Z coordinate, we find that new fixed points appear
when

Xm = − cot(α/2)Zm,

Ym = cot

(
kZ p−1

m

2

)
tan (α/2)Zm,

F (Zm; k, α, p) = 0, (17)

where F (Zm; k, α, p) is given by

F (Zm; k, α, p) = Z2
m − 1

cot2
( kZ p−1

m
2

)
tan2(α/2) + csc2(α/2)

.

(18)
When we specialize to the case α = π/2, writing the expres-
sions in terms of the X coordinate, new fixed points appear
if

Zm = −Xm, Ym = (−1)p cot

(
kX p−1

m

2

)
, (19)

F (Xm; k, p) = 0,

where F (Xm; k, p) is given by

F (Xm; k, p) = sin2
( kX p−1

m
2

)
1 + sin2

( kX p−1
m
2

) − X 2
m, (20)

which recovers the kicked top result when p = 2 [27]. The so-
lutions of F (Zm; k, α, p) = 0 are invariant under Zm → −Zm,
and thus any nontrivial solution gives two new fixed points.
We can then focus on solutions for positive values of Z ,
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where −Z provides a valid solution as well. Let us study
the solutions of Eq. (19), i.e., fixing α = π/2. For p = 2,
the first nontrivial fixed point appears at k = 2. For p � 3,
solutions for positive X come in pairs, which means every
solution gives four new fixed points. In particular, for p = 3
the first nontrivial solutions appear at k ∼ 4.7, while for p = 4
they appear at k ∼ 7.5. We observe then that new fixed points
for the models with p > 2 appear at fairly large values of k,
for which a chaotic region of considerable size has already
developed, as we will see in Sec. III D. This indicates that,
for these cases, the emergence of new fixed points does not
influence the transition to chaos. This point will be further
explored next via the stability analysis of various fixed points
of the map F .

C. Stability

The stability of a fixed point or orbit is investigated using
the eigenvalues of the tangent map (Jacobi matrix), M(Xm) =
∂Xm+1

∂Xm
of F , evaluated at the fixed point or along the orbit

[49,50].
For the family of models under study, the condition

|Xm|2 = 1 guarantees that one of the eigenvalues of M(Xm)
is always 1. Therefore, stability analysis reduces to that of a
two-dimensional area-preserving map [51]. Area preservation
implies det (M(Xm)) = 1, thus one has that the other two
eigenvalues, M = (M1,M2), of M behave in one of three
ways:

(i) If the eigenvalues M of M form a complex conjugated
pair and live on the unit circle, satisfying |Tr(M)| < 2, the
fixed point is elliptic and known to be stable as a consequence
of Moser’s twist theorem [52] (excluding the situation when
M is the lth root of unity).

(ii) If the eigenvalues M of M form a reciprocal real pair
and live on the real line, satisfying |Tr(M)| > 2, the fixed
point is hyperbolic and unstable.

(iii) If the eigenvalues of M are real and degenerate, both
equal to either 1 or −1, satisfying |Tr(M)| = 2, the fixed point
is parabolic. Determining its stability, i.e., whether or not the
fixed point is surrounded by closed invariant curves, requires
a case-by-case study (see [46,53] for some early works).

A negative value of the trace indicates an inversion
hyperbolic/parabolic point [44,49]. The above classification
characterize the shape of trajectories in the vicinity of a fixed
point or orbit. The effective eccentricity, eeff = 1

2 |Tr(M)|,
connects the stability classification and the different conic
sections.

In this context, a parabolic point is the hallmark of a bi-
furcation process [43]. One eigenvalue equal to 1 implies that
isolation and persistence of the fixed point are not guaranteed
[54]. In particular, if M = 1 one observes a tangent bifurca-
tion, i.e., a change in stability, and if M = −1 one observes a
period-doubling bifurcation [43,44].

The above stability classification covers period-l orbits of
F as well, i.e., fixed points of the map Fl [Xm]. A parabolic
point of Fl [Xm] with M = 1 corresponds with an elliptic
fixed point of F with Mi equal to the lth root of 1, indi-
cating a 1-to-l bifurcation [43]. The aforementioned types of
bifurcations constitute a classification of these processes in
area-preserving maps [43,51], and they are dubbed generic.

Nongeneric bifurcations might exist (see Sec. 1.2.4.7 of [51]),
for instance when additional symmetry constraints are im-
posed on the orbits of F , as is the case in doubly reversible
maps (see Sec. III A).

Parabolic points in conjunction with the symmetries of
the map provide a large amount of information regarding the
structures that one might observe in phase space (see the
example in [55]). For the current study, they will play a crucial
role in the behavior of the models with p > 2, as we will see
below.

We split the stability analysis of the p-spin models in two
cases: (i) α = π/2, where the main structures in phase space
are the regular regions around the poles and a period-4 orbit on
the equator; and (ii) α �= π/2, where phase space is dominated
by the regular regions around the poles.

1. Stability of models with α = π/2

Using the eigenvalues of the tangent map when α = π/2,
a fixed point of F is stable when the following inequality is
satisfied:

|(−1)p(p− 1)kX p−2Y + cos(kX p−1) − 1| < 2. (21)

The cases of M equal to the lth root of 1 should be treated
separately, as they indicate bifurcation processes. In the case
of p = 2, Eq. (21) reduces to |kY + cos(kX ) − 1| < 2 as ob-
tained by Haake [27].

Consider now the fixed points on the poles. For p = 2, by
virtue of Eq. (21) these points are stable only if k < 2. At k =
2 the appearance of new fixed points, as dictated by Eq. (19),
together with the change in stability, indicate a bifurcation
process [see the left spheres in Fig. 1(a)]. At larger values of
k, additional period-doubling bifurcations occur, leading to a
cascade of these bifurcations, as investigated by Haake [27].

For the models with p > 2, the left-hand side of Eq. (21)
evaluated on the poles yields zero regardless of the value of
k. We observe closed invariant curves surrounding the poles
[see the right spheres in Figs. 1(b) and 1(c)], hinting at the
poles being stable. However, at α = π/2, the eigenvalues are
M = ±i, which is the fourth root of unity. Therefore, the
poles undergo a 1-to-4 bifurcation as a function of α (details
of which will be given in the next subsection). The local
stability of the poles at this particular value of α is stud-
ied by constructing the two-dimensional (2D) area-preserving
map describing the dynamics in the vicinity of the poles (see
Appendix B for details). This map satisfies the conditions of
the theorem in [53], therefore the parabolic point at the origin
is guaranteed to be surrounded by closed invariant curves.
More specifically, the local area-preserving map coincides
with those in examples 1 and 2 in [53] for even and odd p’s,
respectively. This confirms our initial observations and allows
us to conclude that the regular islands around the poles are
stable for all values of k.

The stability features of the poles outlined above represent
a major distinction between the models with p = 2 and p > 2
for the special case of α = π/2. In contrast with the cascade
of period doubling in the model with p = 2, in the models
with p > 2 we expect to find regular islands around the poles
that survive even at large values of the kicking strength k,
gradually reducing their size. This has defining consequences
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for the crossover mechanism to global chaos, as we will see in
Sec. III D.

Let us now study the period-4 orbit on the equator.
This orbit is given by X 1 → X 2 → X 3 → X 4 → X 1, where
X 1 = (1, 0, 0), X 2 = (0, 0, 1), X 3 = (−1, 0, 0), and X 4 =

(0, 0,−1). The tangent map of this orbit has the form M4p =
M(X 4)M(X 3)M(X 2)M(X 1). In the case p = 2, the orbit is
stable if [2 cos(k) + k sin(k)]2 < 4, which is not satisfied for
the first time when k = π . For the case p > 2, the relevant
2 × 2 subblock of M4p takes the form

M(2×2)
4p =

(
cos2(k) − (−1)p sin2(k) cos(k) sin(k)[1 + (−1)p]

− cos(k) sin(k)[1 + (−1)p] cos2(k) − (−1)p sin2(k)

)
, (22)

with eigenvalues

M(±)
4p = [cos(k) ∓ i sin(k)][cos(k) ∓ i(−1)p sin(k)]. (23)

If p is odd, then M(±)
4p = 1 and thus F 4 has a parabolic point.

Local stability analysis indicates that the points on the orbit
are not stable, meaning that the neighborhood of points on the
orbit is not composed of closed curves (see Appendix B). The
vicinity of the orbit is populated by trajectories that belong
to either the north or south hemispheres, orbiting around the
corresponding pole. Thus, trajectories shear along the equator,
which divides the counterrotating flow between the two hemi-
spheres [see Fig. 1(b) for a view of the phase space around the
parabolic fixed point].

For this period-4 orbit, if p is even, the two eigenvalues are
given by

M(±)
4p = e∓i2k . (24)

Thus, the period-4 orbit is composed of elliptic (stable)
fixed points, except at the discrete values k = s π

2 with s =
1, 2, 3, . . . , for which it becomes parabolic, and bifurcation
processes take place. When s is odd, M(±)

4p = −1, indicat-
ing that the period-8 orbit constructed as two cycles of the
period-4 orbit bifurcates, and each of the points on the original
period-4 orbit undergoes a 1-to-4 bifurcation. When s is even,
M(±)

4p = 1, and each of the points on the original period-4
orbit undergoes a 1-to-2 bifurcation.

The stability of the period-4 orbit on the equator allows
us to make a distinction between models with odd and even
values of p. For the former, the orbit is parabolic and always
unstable. For the latter it is stable (elliptic), except for a
discrete set of values at which it bifurcates. Both cases stand
in contrast with the model with p = 2, where the bifurcation
processes change the stability of the orbit. The long-lived
regularity of trajectories in the vicinity of the poles and the
stability of trajectories near the equator have important conse-
quences for the way in which models for p > 2 cross over to
global chaos, in contrast to that of the model with p = 2. We
will see this in detail in Sec. III D.

2. Stability of models with α �= π/2

For the models with p > 2, the eigenvalues at the poles are
M j = e±iα . Therefore, the poles undergo a 1-to-l bifurcation
as α is varied in [0, π ], with bifurcation points at α = αb =
2πq/l , with q, l relative primes, q < l , and l > 2.

For our kicked p-spin models, all of these bifurcations are
generic, meaning that they correspond to the classification in

[43,51]. There is, however, one exception. Models with even
p are double reversible, therefore the involutionC = T T̃ (and
C̃ = T̃ T ) commutes with the map F , that is, CF = FC [56].
For these models, the poles are a fixed point of C as well;
they are strongly symmetric orbits (see Sec. 1.2.4.7 of [51]).
Therefore, any orbit emerging as a result of the bifurcation
process must satisfy the symmetry imposed by C, i.e., orbit
points lie on the symmetry lines of C. This implies that when
l is even the bifurcation is generic, but when l is odd the
bifurcation is double, since the orbit should have an even
number of points in order to satisfy the symmetry imposed
by C. Thus we observe the emergence of two period-l orbits,
which look essentially identical to a single period-2l orbit
emerging from a 1-to-2l bifurcation.

Bifurcation processes provide additional insights into the
distinction between models with odd and even p for p > 2.
When p is odd, the dynamics in the vicinity of north and south
poles is described by the same 2D area-preserving map, and
bifurcations on both poles take place for α > αb. On the other
hand, when p is even, the dynamics in the vicinity of the poles
is described by the same 2D area-preserving map only under
the trivial change k → −k. This indicates that north/south
poles bifurcate on opposite sides of αb (an example of this
is given in Appendix B).

As an example, we consider the two lower-order bifur-
cations, taking place at values of q = 1, l = 3, 4, i.e., αb =
π/2, 2π/3, corresponding to a 1-to-4 and 1-to-3 bifurcation,
respectively. When αb = π/2, for odd values of p the bifurca-
tion takes place at both north and south poles in the direction
of α > π/2. For even values of p we see the bifurcation in the
north pole in the direction of α > π/2, and in the south pole
in the direction of α < π/2. Furthermore, the period-4 orbit
appearing as a result of the bifurcation process is composed
of unstable points, and it ceases to exist at α ∼ 2 for p odd,
and α ∼ 2, α ∼ 1 for the north and south poles, respectively,
in the case of even p’s.

Consider now αb = 2π/3. For models with odd values of
p, the new orbit emerges, in both north and south poles, when
α > 2π/3. For models with even values of p, the new orbit
emerges, in the north pole, when α > 2π/3, and in the south
pole when α < 2π/3. In the latter case, the bifurcation is
double; we observe two period-3 orbits emerging from the
pole, looking structurally the same as a period-6 orbit. Im-
portantly, phase space is structurally the same in the vicinity
of α = 2π/3 and in the vicinity of α = 2π/6, where a generic
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FIG. 2. Averaged phase-space similarity S as a function of α.
The panels display the cases (a) p = 3 and (b) p = 4; in both
cases we included the curve for p = 2 for comparison purposes.
The vertical lines indicate the values of α = 2π/4 (dashed) and
α = 2π/3 (dashed-dotted), respectively, which mark the position of
the two most prominent bifurcations. The other parameters are k = 1,
δα = 5 × 10−4, ntot = 1500 initial conditions, and N = 200 kicks.

1-to-6 bifurcation takes place. Therefore, any consequence of
the stability of dynamics around the poles will display a sym-
metric character between these two points [see, for instance,
Figs. 3(c) and 4(c)]. Additionally, at this bifurcation point, for
models with odd p, the poles have an unstable character, as
was described by Simó in Ref. [46]. This will have a defining
consequence on the early emergence of large chaotic seas, as
we will study in Sec. III D.

3. Identification of the most prominent bifurcations
for models with p > 2

In the previous subsection, we focused on the bifurcations
taking place at α = 2π/3 and 2π/4. For the models with p >

2, p = 3, 4 as studied here, these two bifurcations are the most
prominent and important ones. We define the importance of a
bifurcation by the magnitude of the global structural changes
that it generates in phase space. The degree of global structural
changes can be quantified by the similarity/dissimilarity of
two phase-space portraits constructed starting with the same
set of initial conditions and with parameters that are only
infinitesimally different. Thus, if one phase-space portrait cor-
responds to parameters (α, k), the second one corresponds to
parameters (α′, k′) = (α + δα, k + δk) with δα, δk � 1.

We consider a similarity/dissimilarity quantifier S based
on the Pearson correlation coefficient [57], first intro-
duced in Ref. [42]. We review its explicit construction in
Appendix C. As we are interested purely in global structural
changes induced by bifurcation processes, we will fix k = 1,
a value for which the chaotic instability is not present yet, and
we will study S as a function of α. In Figs. 2(a) and 2(b), we
present the results of averaging S over the generated phase-
space portraits, i.e., a fixed set of initial conditions chosen

uniformly over the unit sphere, for the systems with p = 3, 4,
and we include the p = 2 curve for comparison purposes.

In this setting, S = 1 indicates two phase-space por-
traits that are identical, and S = 0 indicates two phase-space
portraits that are completely different. Intermediate values
indicate phase-space portraits having a subset of trajectories
that undergo a structural change and hence are dissimilar.
In both Figs. 2(a) and 2(b), the vertical lines indicate α =
2π/3, 2π/4, respectively. Notice that the most prominent dips
of S appear around these two positions, leading us to the con-
clusion that the two more prominent bifurcations in systems
with p > 2 take place at α = 2π/3, 2π/4. We will see that
these strong structural changes will have an influence on the
early emergence of chaotic trajectories.

D. The transition to Hamiltonian chaos

The transition to chaos in perturbed Hamiltonian systems
with few degrees of freedom is well understood [49,58,59].
For a small enough perturbation, almost all invariant tori
remain unchanged, as dictated by the KAM theorem
[49,50,59], with the exception of small chaotic regions ap-
pearing in the vicinity of unstable manifolds [60]. At larger
perturbation strengths, some invariant tori are destroyed, giv-
ing birth to chains of regular regions and new unstable
manifolds, providing new ground for the chaotic region to
expand. Area-preserving mappings of the Poincaré surface of
section display this same behavior [51], with the emergence
of chains of regular regions dictated by the Poincaré-Birkhoff
theorem [61–63].

In the case of a two-dimensional phase space, the chaotic
region is clamped in between the regular regions, and gen-
erally the emergence and growth of chaotic regions adheres
strictly to the mechanism described above. However, some
Hamiltonian systems exhibit period-doubling cascades [64]
in conjunction with the destruction of KAM tori, and there-
fore the transition from regular to global chaotic motion is
enhanced (see [49], Appendix G of [50], and [65,66]). In
fact, a period-doubling bifurcation is the last instability to
occur before the neighborhood of the fixed point becomes
completely chaotic [44].

In his pioneering work [27], Haake showed the existence
of a period-doubling cascade in the kicked top (p = 2), which
is interwoven with the destruction of KAM tori. From our
stability analysis, it follows that none of the models with
p > 2 exhibits period-doubling bifurcations, and in fact the
bifurcations present in these models correspond to l-cycle
bifurcations with l > 2. Therefore, for the special case of α =
π/2, where the period-doubling cascade occurs for p = 2, we
expect the kicked top to transition faster than any other model
to the global chaos regime. On the other hand, for values of
α �= π/2 we expect to encounter a different situation, as the
presence of the l-cycle bifurcations influences the emergence
of chaotic regions in the models with p > 2. In the following,
we study this transition in detail by characterizing the behav-
ior of the largest Lyapunov exponent and the surface area of
the chaotic sea.
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1. Largest Lyapunov exponent

Chaotic behavior is identified with a positive value of the
largest Lyapunov exponent, indicating that nearby initial con-
ditions diverge exponentially fast, i.e., knowledge of the initial
state is lost exponentially fast [67–69]

When considering a map like the one in Eq. (7), using
the Oseledets ergodic theorem [70,71], one can compute the
largest Lyapunov exponent, �+, via

�+(α, k, p) = lim
N→∞

[λ+(α, k, p)]1/2N , (25)

where N is the number of time steps, λ+ is the largest eigen-
value of the matrix

∏N
m=1 M

T (Xm)M(Xm), and M(Xm) is the
tangent map introduced before. We can gain some insight
into the chaotic behavior of the kicked p-spin models by
computing an estimate of �+ in the limit of strongly chaotic
trajectories, k � 1. This estimate for the model with p = 2
was first obtained in [72]. For models with a general value of
p, we show in Appendix D that the largest Lyapunov exponent
can be approximated by

�+(α, k, p) = ln [(p− 1) sin(α)k] − (p− 1). (26)

Several observations follow from the form of Eq. (26). First,
strong global chaos behaves similarly in all the models, re-
gardless of the value of p, since �+ ∼ ln(k). Second, the
value of k at which the limit of strong chaotic trajectories is
reached is exponential in the size of p. Third, the periodicity
of �+(α, k, p) with α implies that chaotic dynamics cannot
develop when α is an integer multiple of π , since �+ = 0.
At these values of α, the precession will map the system to
itself or to its y-image. Finally, in the limit of large kicking
strengths, Eq. (26) has a maximum at α = π/2, indicating that
the system will exhibit the strongest chaotic limit at this value
of α.

Here we completely characterize �+, including the case
of weak chaos, by numerically calculating Eq. (25). We use
a method based on QR decomposition [73–75] and compute
�+ for values of k ∈ [0, 100] and α = π/2. Results for the
models with p = 2, 3, 4, with N up to 106 steps, are shown
as dots in Fig. 3(a). Note that the models with p > 2 already
have a nonzero Lyapunov exponent at values of k ∼ 1. In the
case of the model with p = 3 [red dots in Fig. 3(a)], we know
that the instability of the parabolic points on the period-4 orbit
along the equator guarantees the existence of small regions
of chaotic trajectories in the vicinity of the orbit whose size
grows continuously as the kicking strength increases. For
the model with p = 4 [blue dots in Fig. 3(a)], the exponent
becomes positive for the first time around k ∼ π/2 when the
period-4 orbit on the equator bifurcates for the first time [see
the inset in Fig. 3(a)].

In contrast, the exponent for the model with p = 2 remains
zero up to k > 2 when the first period-doubling bifurcation
takes place. Once the period-doubling bifurcations begin, the
model with p = 2 approaches the limit of strong chaotic tra-
jectories [dashed black line in Fig. 3(a)] faster than the models
with p > 2. In fact, for p = 2, already for small values of k,
the estimate in Eq. (26) is a good approximation to �+. After
the onset of chaos, the system rapidly approaches the limit of
strongly chaotic trajectories. However, it does not capture the
small oscillations appearing at intermediate values of k, which

FIG. 3. (a) Largest Lyapunov exponent of the kicked p-spin map
in Eq. (7) as a function of k and for the special case of α = π/2.
We show the cases of p = 2 (black), p = 3 (red), and p = 4 (green).
Chaos emerges first for models with p > 2 due to either the instabil-
ity or bifurcations of the period-4 orbit along the equator. For p = 2
it takes the first period-doubling bifurcation, k = 2, before chaos can
appear, then the transition to strong chaotic trajectories (dashed black
line) happens faster than for any other p. The inset shows a zoom
into the parameter range k ∈ [1.0, 4.5]. (b)–(d) Largest Lyapunov
exponent as a function of α and k, for the models with p = 2, 3, 4,
respectively. For the model with p = 2 the dominant behavior of �+
occurs at α ∼ π/2. For the models with p > 2 and odd values [p = 3
in (c)], dominant behavior of �+ takes place around α ∼ 2π/3. For
the models with p > 2 and even values [p = 4 in (d)], dominant
behavior of �+ appears at α ∼ π/2 ± π/6. Values correspond to the
1-to-3 bifurcation processes of the poles (see Sec. III).

where studied and characterized in [72]. On the other hand,
for larger values of p, larger kicking strengths are required to
push the system into the strong chaotic trajectories regime, as
noted from Eq. (26).

In summary, for the case of α = π/2, two important
features stand out. On the one hand, chaos is an early phe-
nomenon in models with p > 2, either due to the instability
of the period-4 orbit on the equator or its bifurcations. How-
ever, at larger values of k this process slows down due to
the everlasting stability of the fixed points at the poles. On
the other hand, the model with p = 2 exhibits a cascade of
period-doubling bifurcations that brings phase space to global
chaos faster than any other model. This is due to the fact that a
period-doubling bifurcation is the last one to take place before
the vicinity of the fixed point becomes completely chaotic
[44,49].

We conclude the study of the largest Lyapunov exponent
�+ with a numerical exploration of its behavior as a function
of both model parameters (k, α) in the ranges α ∈ [0, π ] and
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k ∈ [0, 10]. Numerical results are shown in Figs. 3(b)–3(d).
For the model with p = 2, the behavior of �+ is dominated
by the case of α = π/2 [see Fig. 3(b)], as we described
above. However, for models with p > 2 this is not the case.
If p is odd, the transition to chaos occurs first in the region
π/2 < α < 2π/3, where both poles undergo 1-to-4 and 1-to-
3 bifurcations. In particular, chaos appears fairly early when
α ∼ 2π/3 [see Fig. 3(c)] since at this bifurcation point the
poles have an unstable character, and a small value of k ∼ 1 is
enough to generate a chaotic sea of considerable size; we will
expand on this in the next subsection. For the models with
even values of p, the main features of �+ appear symmetri-
cally around α = π/2 ± π/6 [see Fig. 3(d)], values for which
bifurcations similar to those taking place in the models with
odd p’s appear. However, as we saw in Sec. III, here the north
(south) pole undergoes the bifurcations to the right (left) of
α = π/2, respectively.

2. Behavior of the chaotic sea surface area

The study of the largest Lyapunov exponent provided a
distinction between the models with p = 2 and p > 2, which
we connected to the stability/instability of the main regular
regions of their corresponding phase space. However, �+ is
a global measure and does not provide explicit information
on the shapes and sizes of the regular and chaotic regions. To
complement our previous observations, we study the behavior
of the size of the chaotic region as a function of the model
parameters.

The surface area of the chaotic sea, denoted here as Ach,
can be estimated following a METROPOLIS sampling-like algo-
rithm, as presented in the Appendix of Ref. [76]. The key idea
behind this method is the concept of recurrence times [77].
In short, given some set of ntot initial conditions uniformly
distributed on the manifold of interest, we count how many
have not returned sufficiently close to the initial neighborhood
after some finite time tmax. Given the surface area of the phase-
space manifold, this number gives a good approximation to
the portion that is occupied by a chaotic region. Further details
on the method and our choice of parameters are given in
Appendix E.

Using this METROPOLIS-like method, we numerically study
the behavior of the surface area of the chaotic region as a
function of k and α, and we pay special attention to the case
α = π/2. Results for Ach(k) in this latter case are shown in
Fig. 4(a). For values of k < 2, the area of the chaotic region
for p = 3, 4 is always larger than that of p = 2. In particular,
for the model with p = 3 we know that a chaotic sea develops
in the vicinity of the period-4 orbit along the equator, as it is
composed of unstable points.

For the model with p = 2 (black line in Fig. 4), after
k = 2, Ach grows exponentially fast as a consequence of the
period-doubling cascade, already covering the whole sphere
at k ≈ 3.5, in agreement with our observations steaming from
the study of the largest Lyapunov exponent. Notice that the
models with p > 2 cannot follow this exponential growth of
Ach for this large range of values of k, since the chaotic sea is
constrained between stable regions, either the poles (odd p) or
the poles and the equator (even p), and they remain stable for
all values of k, only gradually reducing its size.

FIG. 4. (a) Surface of the chaotic sea Ach as a function of the
nonlinear parameter k for the special case of α = π/2. In the models
with p > 2 (red and green), instability and/or bifurcations of the
orbit on the equator lead to a small chaotic region at fairly small
values of k. For p = 2, Ach grows exponentially after the first period-
doubling bifurcation at k = 2. The inset shows a zoom into the region
with k ∈ [0, 2.5]. (b)–(d) Surface area of the chaotic region as a
function of both k and α for the models with p = 2, 3, 4, respectively.
The fastest growth of Ach for p = 2 occurs at α = π/2, for p = 3 it
occurs at α = 2π/3 as the poles are unstable, and for p = 4 it occurs
at α = π/2 ± π/6 as the bifurcation processes on the poles occur for
the north/south poles symmetrically with respect to α = π/2. All
the curves and points on the heat maps were obtained by averaging
the result of the calculation explained in Appendix E over values of
tmax = 120, 121, . . . , 140 and using dmin = 6−2.

The behavior of Ach(k, α) for the models with p = 2, 3, 4,
in the ranges k ∈ [0, 12], α ∈ [0, π ], is shown in Figs. 4(b)–
4(d), respectively. In agreement with our observations for the
largest Lyapunov exponent, the behavior of Ach for the model
with p = 2 is dominated by the bifurcation processes taking
place as a function of k when α = π/2. In fact, as a function
of k, Ach(k, α) reaches the saturation value when α = π/2,
faster than for any other value of α [see Fig. 4(b)].

In the case of models with p > 2 and odd, the dominant
behavior of Ach(k, α) takes place around α = 2π/3, a value at
which a 1-to-3 bifurcation occurs. Furthermore, the unstable
character of the poles leads to the early emergence of a chaotic
region of considerable size, Ach ≈ 30% around the point
(k, α) ∼ (1, 2π/3) in Fig. 4(c). For models with p > 2 and
even, we do not observe a chaotic sea for values of k < 2.5,
except when α = π/2, where the bifurcations of the period-4
orbit along the equator create a narrow chaotic region.

Finally, we note that the behavior of Ach as a function of
both k and α is in direct correspondence with that of �+, as
can be seen by comparing Figs. 3(b)–4(d) with Figs. 4(b)–
4(d). With these two quantities, we have complete information
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regarding the sizes of the chaotic regions in phase space and
the strength of the local instability of trajectories inside these
chaotic seas.

IV. QUANTUM CHAOS OF A KICKED p-SPIN

In this section, we characterize the quantum chaotic fea-
tures of the kicked p-spin model, informed by the previous
analysis of the classical nonlinear dynamics.

Signatures of quantum chaos arise from two different
points of view. On the one hand, signatures of chaos are
found in the properties of the eigenvalues and eigenvectors
of the Hamiltonian or Floquet operator driving the dynamics
[78]. We refer to these as kinematic signatures. In studying
these signatures, the system symmetries play a central role.
On the other hand, quantum chaos can be characterized via
dynamical signatures appearing in the time evolution of the
states or observables [79–83]. These include the dynamical
generation of entanglement [31,34,84–86], “hypersensitivity”
to perturbations [87], tripartite mutual information [88], the
easiness/hardness of reconstructing an initial state via tomo-
graphic protocols [89,90], to name few. More recently, the use
of high-order correlation functions, in particular the out-of-
time-order correlator (OTOC) [91,92], a four-point correlation
between two observables with a vanishing commutator at
the initial time, has received attention given the relationship
between chaos and information scrambling [93–97].

As a first step, we study the symmetries of the Floquet map
Ûp in Eq. (3). The map F in Eq. (7) is the classical limit
of this quantum map, and therefore we expect that each of
the symmetries of F should be manifested as a symmetry of
Ûp. First we investigate how symmetry under Ry(π ) (or the
lack thereof) is manifested in the quantum system. It follows
from Eq. (15) that Ûp is invariant under Ry(π ) = e−iπ Ĵy for
even values of p. Thus, the Floquet eigenvectors come with
two different parities according to how they transform under
Ry(π ), and thus a block-diagonal representation for Ûp can
be constructed. Time reversal is obtained from the two appro-
priate antiunitary operators T̂ and ˆ̃T , which yield the doubly
reversible character of the quantum evolution for even values
of p, with the composition rules for T, T̃ and Ry(π ) described
in Sec. III A. Similar to the classical case, the broken rota-
tional symmetry around y for odd values of p implies that
only T̂ is a proper time-reversal operator for the dynamics
of those models. Additionally, for α = π/2, Û 2

p is invariant
under π rotations around the x-axis when p is even, as this
symmetry requires invariance under Ry(π ). In correspondence
with the family of involutions I introduced in Sec. III A, one
can construct operators Î , which provide a way of identifying
additional symmetries.

A. Diagnosing quantum chaos: The kinematic view

Different kinematic signatures have been proposed to
quantify the chaoticity of quantum systems [78,98]. Among
these, the statistics of the level spacing of eigenphases
{μ j} j=1,...,Ns+1 of Ûp is widely accepted as an indicator of the
transition from regularity to chaos, in particular for systems
with a chaotic classical counterpart [99,100]. We consider
the statistics of ratios of level spacings between two adjacent

eigenphases, as introduced in [101], to quantify the degree of
repulsion between eigenphases. A simple test of the degree of
regularity of the spectrum is provided by computation of the
average adjacent spacing ratio [102], defined as

r = 1

Ns + 1

Ns+1∑
j=1

r j, r j = min(d j, d j+1)

max(d j, d j+1)
, (27)

where dj = μ j+1 − μ j is the eigenphase spacing and Ns =
2J . The regular regime is characterized by the absence of cor-
relations between the eigenphases, in which case the statistics
of the spacings {dj} follows that of a Poisson distribution,
with an average adjacent eigenphase spacing ratio given by
rPOS ≈ 0.39 [102]. On the other hand, chaos is associated with
the presence of strong correlations between the eigenphases
(after removing additional symmetries in Ûp, for instance par-
ity symmetry for even p values). In this case, the eigenphase
spacing follows the statistics of the circular orthogonal ensem-
ble (COE) of random matrices, where time-reversal symmetry
is the only remaining symmetry. The average adjacent spacing
ratio rCOE for this ensemble has a value of rCOE ≈ 0.530(1)
[102]. Given these two limiting values for the mean adjacent
ratio, we define the following normalized indicator:

� = r − rPOS

rCOE − rPOS
, (28)

where now a value of � ∼ 0 indicates a regular regime of the
quantum kicked p-spin Floquet operator, and a value of � ∼ 1
signals the chaotic regime.

We numerically study the behavior of � as a function of k
and α. For a fixed value of α = π/2 and for the models with
p = 2, 3, 4, results are shown in Fig. 5(a) corresponding to
the black, red, and green lines, respectively. The model with
p = 3 presents a value of � that deviates from the Poisson
value when k ∼ 1, in agreement with our observations for
the classical model where the instability of some regions of
phase space gave birth to small chaotic seas at similar values
of k. We then see that the eigenphase repulsion encodes in-
formation about the instability present in this model. For the
model with p = 2, we see a nonzero value of � only for k > 2,
in agreement with the existence of a classical mixed phase
space due to the emergence of chaotic regions after the period-
doubling bifurcation of the corresponding classical model.
For large enough kicking strength, all models saturate to the
random matrix prediction (regardless of the value of p), giving
evidence of the fully chaotic character of the spectral statistics.

As we observed in our analysis of the classical nonlinear
dynamics, when α �= π/2 there are rich and intricate phase-
space structures for the models with p > 2. To explore their
manifestations in the quantum map, we numerically compute
the normalized averaged adjacent ratio, �(k, α) in the ranges
k ∈ [0, 12] and α ∈ [0, π ]. Results are shown in Figs. 5(c)–
5(e). We observe similar behavior to that of the classical
indicators �+(k, α) and Ach(k, α) presented in Figs. 3 and 4,
respectively.

For the model with p = 2, the behavior of �(k, α) is dom-
inated by the case of α = π/2, and values of α �= π/2 lead
to a wider ranges of k for which the eigenphases do not
display strong repulsion [see the blue regions in Fig. 5(a)].
For models with p > 2 and odd, as p = 3 in Fig. 5(d), the
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FIG. 5. (a) Normalized averaged adjacent ratios, �(k), of the
eigenphases of Ûp for the special case of α = π/2. Eigenphases
show a nontrivial degree of correlation for the model with p = 3
at small values of k ∼ 1.5. The model with p = 2 only shows a
nontrivial value after k > 2. Both behaviors in concordance with the
observations for Ach in Fig. 4(a). To acquire good statistics, we use
Ns = 2048. (b) Averaged PR, δ, as a function of k for the special case
of α = π/2. The models with p > 2 show some degree of Floquet
vector delocalization at small k’s; Floquet vectors retain some degree
of the instability of classical trajectories. We use N = 1024. (c)–(e)
Normalized average adjacent ratio of eigenphases as a function of
k and α in the ranges k ∈ [0, 12], α ∈ [0, π ], for the models with
p = 2, 3, 4, respectively. �(k, α) exhibits the same behavior as the
classical measures �(k, α), Ach(k, α), indicating that the eigenphases
carry information of the stability/instability and different bifurcation
processes taking place in the classical model. (c)–(e) Numerical
results with N = 1024 for the models with an even value of p were
obtained by combining the statistics of the parity-symmetric and the
parity-antisymmetric subblocks of Ûp.

spectrum exhibits strong eigenphase repulsion, almost sat-
urating the random matrix prediction, at small values of k
when α ∼ 2π/3, values at which the classical model has an
unstable bifurcation point. For models with p > 2 and even,
as p = 4 in Fig. 5(e), �(k, α) is symmetric with respect to
α = π/2, and it displays the strongest eigenphase repulsion
around α ∼ π/2 ± π/6. Around those two values, it saturates
the random matrix prediction only for k � 4, thus approaching
the chaotic regime slower than the other models. This is a
direct consequence of the high regularity and stability of the
corresponding classical model.

Another useful kinematic signature of quantum chaos is
the participation ratio (PR) associated with the Floquet eigen-
states. Generally the PR is defined as the inverse of the second
moment of the distribution elements,

PR(|ψ〉) =
(
Ns+1∑
l=1

|〈ψ |φl〉|4

)−1

, (29)

where |ψ〉 is an arbitrary state and {|φl〉}l=1,...,Ns+1 is a refer-
ence basis set. In our case, it corresponds to the eigenbasis of

Ĵy, which defines the precession axis and thus the canonical
direction for our p-spin. The PR measures how localized or
delocalized the state |ψ〉 is in the reference basis. Thus, we
can use the PR to construct a measure of localization of the
Floquet eigenbasis {|μl〉}l=1,...,Ns+1 by taking the average PR
of the Floquet states in the reference basis. We then define

δ = 1

δCOE(Ns + 1)

Ns+1∑
l ′=1

PR(|μl ′ 〉), (30)

where δCOE ∼ Ns+1
3 is the value of the PR averaged over the

COE ensemble (see methods in [13,25]), and {|μl〉}l=1,...,Ns+1

are the eigenvectors of the Floquet operator Ûp. Under this
definition, δ ∼ 1

δCOE
indicates strong localization of the Flo-

quet eigenvectors, which are associated with the regular
regime, and δ ∼ 1 indicates highly delocalized Floquet eigen-
vectors, which are generically associated with the chaotic
regime.

Numerical results for δ(k) in the case of α = π/2 are
shown in Fig. 5(b), with p = 2, 3, 4 corresponding to the
black, red, and green lines, respectively. From the average lo-
calization of the Floquet states in the basis of Ĵy, we recognize
a similar behavior to that of the surface area of the chaotic
sea, Ach in Sec. III D. For small values of k, Floquet states
for p = 3, 4 show nonzero average delocalization, indicating
that the Floquet states retain some of the unstable character
of trajectories in the corresponding classical model. As we
increase k, δ increases for all values of p, eventually saturating
the random matrix prediction. However, in the case of p = 2,
δ(k) grows faster than any other models, saturating the ran-
dom matrix prediction first. We highlight how the kinematic
signatures studied here are in excellent correspondence with
our observations on stability and transition to chaos in the
family of classical models [103].

B. Early-time Lyapunov growth of the OTOC

The OTOC is a temporal correlation function measuring
the growth in time of the overlap between two observables
that initially commute. It was initially introduced as a probe
of nonlinear behavior in the mean-field theory of supercon-
ductivity [91], and it was later rediscovered and popularized
due to its importance in the study of information scrambling
[92,95–97] in nonequilibrium many-body quantum systems
and its relation with the classical Lyapunov exponent. In this
context, the OTOC is given by

f (t ) = tr(ρ0V̂
†Ŵ †(t )V̂Ŵ (t )), (31)

with ρ0 a reference initial state, V̂ ,Ŵ two operators of interest
that commute at the initial time, i.e., [V̂ ,Ŵ (0)] = 0, and Ŵ (t )
denotes the Heisenberg evolution of Ŵ (0) = Ŵ up to some
finite time t .

A related quantity of interest is the operator growth of the
commutator between V̂ and Ŵ (t ), since it provides informa-
tion on the speed at which the available degrees of freedom
are occupied in time. The growth of the square commutator is
quantified by

C(t ) = tr(ρ0[Ŵ (t ), V̂ ]†[Ŵ (t ), V̂ ]), (32)

where V̂ ,Ŵ are as in Eq. (31). The exact form of f (t ) andC(t )
will depend on the choice of operators and reference state. For
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the latter, if one considers a thermal state, the growth rate and
saturation value of C(t ) depend strongly on the temperature
[104,105]. Here our interest is to study the growth of the
commutator purely due to operator growth, and so we choose
ρ0 = 1

D I, the infinite temperature state, where expectation
values are given by 〈B̂〉 = 1

D tr(B̂). Furthermore, we take the
operators V̂ and Ŵ to be Hermitian. Under these conditions,
Eq. (32) takes the form

C(t ) = 2

D (tr[V̂ 2Ŵ 2(t )] − Re[ f (t )]), (33)

where D is the dimension of the Hilbert space. The square
commutator as defined in Eq. (32) typically exhibits two
different behaviors, at short and long times. The short-
time behavior is characterized by a monotonic growth,
which has been reported to follow different functional forms
[76,95,106,107], especially in generic many-body systems.
Furthermore, it has been conjectured that the initial growth
rate saturates and is always bounded [92]. For quantum sys-
tems with chaotic classical counterparts, it has been shown
in several models that the growth rate of C(t ) at early times
is exponential and characterized by the classical Lyapunov
exponent or by a factor proportional to it [108–110]. A dis-
cussion of the origin of this phenomena in the semiclassical
regime for systems of collective spin variables was recently
given in [111], and for a generic bosonic mode in [112].

We point out that in some cases, quantum systems with
integrable classical counterparts can also lead to “scrambling”
in the sense of an exponentially increasingC(t ) at short times.
This behavior is typically attributed to the presence of sad-
dle points in the classical dynamics [113,114]. Due to this
fact, the long-time behavior of C(t ) has been proposed as a
complementary probe for quantum chaos [76,114], since for
chaotic systems C(t ) is expected to present oscillations of
exponentially vanishing amplitude. For the case of the kicked
p-spin models, the exponential growth of C(t ) can be safely
attributed to chaos, for p > 2, and we see in the classical
analysis that there are no saddle points. This conclusion holds
for the case of p = 2 and α = π/2, studied in Fig. 6, as
the first saddle point appears at k = 2, a value at which a
non-negligible chaotic sea is already present in phase space.

We now turn our attention to the short-time regime of C(t )
for the dynamics of the kicked p-spin models. In particular, we
look at the square commutator with the choice of operators
V̂ = Ŵ = Ĵz and thus Ŵ (t ) = Ŵ (nT ) = Û †n

p ĴzÛ n
p , operators

that are accessible in state-of-the-art proposals for measuring
OTOCs [115]. In Figs. 6(a), 6(c) and 6(e) we present the early-
time evolution of C(nT )/CCOE for p = 2, 3, 4, respectively.
The normalization factor CCOE is obtained by replacing Ûp in
Eq. (32) by a random unitary from the COE ensemble (see
methods in [25] for further details). Notice how the expo-
nential growth is already visible at k ∼ 1.5 for p > 2 [green
and orange lines in Figs. 6(c) and 6(e)]. On the other hand,
once C(nT )/CCOE grows exponentially, the rate of growth is
larger for p = 2 [see the red and purple lines in Figs. 6(a), 6(c)
and 6(e)]. These two aspects are in direct agreement with the
behavior of �+ in Fig. 3(a).

Finally, by a linear fit of the section that grows expo-
nentially, we extracted the quantum Lyapunov exponent �Q,
shown as light dots in Figs. 6(b), 6(d) and 6(f). From this fit

FIG. 6. (a), (c), (e) Short-time evolution of the OTOC for dif-
ferent values of k with N = 512. (b) Lyapunov exponent as obtained
from the short-time growth rate of the OTOC (triangles), numerically
from the classical map (dots), and analytically from Eq. (26) (dashed
line). (d) Lyapunov exponent as obtained from the short-time growth
rate of the OTOC (triangles), numerically from the classical map
(dots), and analytically from Eq. (26) (dashed line). (f) Lyapunov
exponent as obtained from the short-time growth rate of the OTOC
(triangles), numerically from the classical map (dots), and analyti-
cally from Eq. (26) (dashed line). From top to bottom we show p = 2
(a), (b), p = 3 (c), (d), and p = 4 (e), (f).

and a direct comparison with the largest Lyapunov exponent,
�+ in Fig. 3, we found �Q ≈ 2�+. This result expands those
in [108,109], providing evidence of the early-time Lyapunov
growth of the OTOC for a system whose dynamics is con-
strained to a compact phase space, here the unit sphere. This is
in agreement with the recent result of Lerose and Pappalardi,
who, using a quantum generalization of the Oseledets ergodic
theorem in the semiclassical limit [111], provided an explicit
construction that connected the OTOC and other dynamical
signatures such as entanglement entropy with the classical
Lyapunov exponent and Kolmogorov-Sinai entropy.

V. SUMMARY AND OUTLOOK

We studied the Floquet dynamics of a family of Ising
p-spin models subject to time-periodic delta-kicks. These
models can be regarded as the generalization of the paradig-
matic quantum kicked top, which is recovered for p = 2.
We fully characterized the classical nonlinear dynamics of
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these models by studying its symmetries, fixed points, stabil-
ity, bifurcations, and the emergence of chaos. This analysis
allowed us to draw several distinctions between the models
with different p’s. With this foundation, we characterized the
quantum chaotic features of the kicked p-spin models via both
kinematic (eigenvalues and eigenvectors) and dynamical indi-
cators (OTOCs). We saw how the classical dynamics informed
the emergence of quantum chaos in the limit of large spins.

The generalization of the kicked top for p > 2 showed new
phenomena arising from the decoupling of the effects of the
two different dynamical processes: precession and nonlinear
kicking, characterized by the parameters α and k, respectively.
In other words, in the case of p = 2, structural changes of
phase space as well as the transition to global chaos are de-
pendent on both α and k. Here, the most prominent parameter
regime takes place at α = π/2, a value at which a cascade
of period-doubling bifurcations accelerates the transition to
global chaos. On the other hand, for p > 2, structural changes
of phase space are strictly dictated by α, and the transition
to global chaos is dictated only by k. A further distinction
within the models with p > 2 is given by the nature of the
structural changes, in particular bifurcations. When p > 2 and
even, some bifurcations are double as it is required to satisfy
the symmetries imposed by the double reversibility of the
models, whereas for p > 2 and odd, all bifurcation processes
are generic [43].

We illustrate many of the studied phenomena with the mod-
els with p = 3, 4. The observed phenomena are exhaustive
and cover the whole family of models, where one might need
larger values of k with increasing p in order to observe chaotic
regions of considerable size. This is in agreement with the
instability of the ferromagnetic phase of the p-spin models
with increasing p [39].

To characterize quantum chaos, we studied the normalized
mean adjacent ratio of level spacings of the eigenphases of the
Floquet operator Ûp, and the averaged inverse participation
ratio of its eigenvectors. The behavior of these two quan-
tities was seen to be in direct correspondence with that of
the classical Lyapunov exponent and the area of the chaotic
region in phase space, respectively. Finally, we studied the
short-time growth of the OTOC. We showed numerically that
the growth rate is dictated by twice the classical Lyapunov
exponent, 2�+, providing further evidence of the connection
of the OTOC with the classical Lyapunov exponent [92] for a
system whose evolution lies on the unit sphere.

In the present work, we studied the kicked p-spin models
as Hamiltonian dynamical systems. As mentioned in the In-
troduction, p-spin models are of importance in some areas of
quantum information processing. In the context of quantum
simulation, it is now known that such a kicked system will
naturally arise in an analog quantum simulator where you
have restrictions on the allowed “native gates,” which can be
implemented. The effects of chaos in such a simulator were
studied in [25] for the case p = 2. We have shown that the
p-spin models with p > 2 display a richer behavior beyond
the case of p = 2, and that chaotic instability is not the only
instability playing an important role in these models. Given
the complete characterization of this family of models pro-
vided in this work, we will extend its application to analog
simulation in future research.

Furthermore, p-spin models are important toy models in
adiabatic quantum computing. Given the recently studied con-
nection between discretized adiabatic evolution and certain
variational optimization schemes such as the quantum approx-
imate optimization algorithm (QAOA) [116,117], the relation,
if any, between the instabilities of the kicked dynamics and
the performance and efficiency of QAOA in p-spin models is
an interesting future direction. The phenomenology of p-spin
models can also be investigated with other types of ana-
log quantum simulators, for instance programmable quantum
processors [118]. In that situation, the relation between ob-
served simulation errors, native imperfections, and nonlinear
dynamical effects of the simulator model is a research avenue
currently under investigation.
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APPENDIX A: COMPUTATION OF THE HEISENBERG
EQUATIONS OF MOTION

In this Appendix, we present the main steps behind the
derivation of the stroboscopic Heisenberg equations of motion
for the collective operators in Eq. (4).

Consider first the evolution of Ĵz. Given our choice axis
in the p-spin Hamiltonian, the only nontrivial evolution is
generated by the precession unitary. The Heisenberg evolution
of Ĵz is then a rotation around the y-axis by an angle α. The
equations for Ĵx and Ĵy can be constructed from the evolution
equations of Ĵ±. The Heisenberg evolution of the latter is
computed exploiting the commutation relations between spin
ladder operators and Ĵz. A single step of the stroboscopic
evolution of the Ladder operators is given by

Ĵ ′
± = eiαĴy e

ik
pJ p−1 Ĵ

p
z Ĵ±e

−ik
pJ p−1 Ĵ

p
z e−iαĴy . (A1)

To deal with the unitary involving Ĵ p
z , we apply the Baker-

Campbell-Hausdorff formula and get

e
ik

pJ p−1 Ĵ
p
z Ĵ±e

−ik
pJ p−1 Ĵ

p
z = Ĵ± +

∞∑
n=1

1

n!

(
ik

pJ p−1

)n[
Ĵ p
z , Ĵ±

]n
, (A2)

where the notation [ , ]n indicates nested applications of the
commutator. The commutator [Ĵ p

z , Ĵ±] can be written as

[
Ĵ p
z , Ĵ±

] = ±
p∑

a=1

Ĵ p−a
z Ĵ±Ĵa−1

z (A3)

= ±Ĵ±

(
p∑

a=1

(±1)a+1

(
p

a

)
Ĵ p−a
z

)
, (A4)
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where to go from the first line to the second line, we in-
troduced the commutation relation [Ĵz, Ĵ±] = ±Ĵ± a total of
(p− a) times and moved Ĵ± all the way to the left. After
substituting Eq. (A4) into Eq. (A2), one easily recognizes
that the Baker-Campbell-Hausdorff series is merely the series
expansion of the exponential of the operator sum in Eq. (A4),
and we write

e
ik

pJ p−1 Ĵ
p
z Ĵ±e

−ik
pJ p−1 Ĵ

p
z = Ĵ±e

ik
pJ p−1

∑p
a=1(±1)a(p

a)Ĵ
p−a
z

. (A5)

Now we can easily apply the rotation part of the Floquet
operator, and a single step of the stroboscopic evolution of

the ladder operators takes the form

Ĵ ′
± = (cos(α)Ĵx + sin(α)Ĵz ± iĴy)eQ±(k,α,p), (A6)

where the function Q±(k, α, p) was defined in Eq. (5) of the
main text. From this last expression, the equations of motion
for Ĵ ′

x,y in Eq. (4) follow.

APPENDIX B: DETAILS OF SOME STABILITY RESULTS

1. Explicit form of the tangent map

For all the results presented in the main text and this
Appendix, we have used the tangent map of the inverse clas-
sical stroboscopic evolution in Eq. (7). Explicitly, it has the
matrix form

M(p)(Xm)=

⎛
⎜⎜⎝

cos(α) cos
(
kZ p−1

m
)

cos(α) sin
(
kZ p−1

m
)

C(Zm; k, α, p) cos(α)
[−sin

(
kZ p−1

m
)
Xm+cos

(
kZ p−1

m
)
Ym

]−sin(α)

− sin
(
kZ p−1

m
)

cos
(
kZ p−1

m
) −C(Zm; k, α, p)

[
cos

(
kZ p−1

m
)
Xm + sin

(
kZ p−1

m
)
Ym

]
sin(α) cos

(
kZ p−1

m
)

sin(α) sin
(
KZp−1

m
)

C(Zm; k, α, p) sin(α)
[−sin

(
kZ p−1

m
)
Xm + cos

(
kZ p−1

)
Ym

]+cos(α)

⎞
⎟⎟⎠,

(B1)

where C(Zm; k, α, p) = (p− 1)kZ p−2
m .

2. Stability of fixed points for arbitrary α and k

In the case of the map in Eq. (7) for arbitrary values of k and α, a general expression for the stability of a fixed point, i.e., Xm

such that F [Xm] = Xm, is written by noticing that the tangent map, evaluated at Xm, has a characteristic polynomial of the form

M3 − G1(Xm; k, α, p)M2 + G2(Xm; k, α, p)M + G3(Xm; k, α, p) = 0, (B2)

where M are the eigenvalues of the tangent map, and the coefficients Gi(Xm; k, α, p) with i = 1, 2, 3 are given by

G1(Xm; k, α, p) = C(Zm; k, α, p) sin(α)Ym + cos(α) + cos
(
kZ p−1

m

)
cos(α) + cos

(
kZ p−1

m

)
, (B3a)

G2(Xm; k, α, p) = −C(Zm; k, α, p) sin(α) cos(α) cos
(
kZ p−1

m

)
Ym − G1(Xm; k, α, p), (B3b)

G3(Xm; k, α, p) = −C(Zm; k, α, p)
(

cos
(
kZ p−1

m

) − sin
(
kZ p−1

m

))
cos(α) sin

(
kZ p−1

m

)
[1 − cos(α)]Zm − 1. (B3c)

The dynamics is constrained to the unit sphere, |Xm|2 = 1,
thus one of the eigenvalues of M(Xm) is always 1. We can
then write a factorization for the characteristic polynomial in
Eq. (B2) as

(M − 1)(B1M2 + B2M + B3) = 0, (B4)

where the coefficients Bi with i = 1, 2, 3 are functions of Xm

with parameters k, α, and p. From this last expression and
Eq. (B2), we identify B1 = 1, B3 = −G3(Xm; k, α, p), and
B2 = 1 − G1(Xm; k, α, p). Given these coefficients, the other
two eigenvalues of M have the forms −B2

2 ± 1
2

√
B2

2 − 4B3,
thus the fixed point under study is stable if

B2
2 − 4B3 < 0. (B5)

As a sanity check, consider the case of α = π/2 studied in the
main text. For this value of α, the coefficients B2 → 1 − (p−
1)kZ p−2

m Ym − cos(kZ p−1
m ) and B3 → 1, after which Eq. (B5)

takes the form(
1 − (p− 1)kZ p−2

m Ym − cos
(
kZ p−1

m

))2 − 4 < 0, (B6)

which recovers the expression given in the main text since,
given a fixed point, Xm = −Zm when α = π/2.

3. Stability of the fixed points at the poles

We study now the stability for a general value of α, and
the bifurcation processes highlighted in Sec. III for the fixed
points on the poles.

Consider first the model with p = 2. For the fixed points
on the poles, we have C(Zm; k, α, p) → k, cos(kZm) → 1 and
the coefficients B2 → ∓k sin(α) − 2 cos(α), B3 → 1, giving
the stability condition

[2 cos(α) ± k sin(α)]2 < 4, (B7)

which reduces to the inequality k2 < 4 when α = π/2, as
expected.

In the case of models with p > 2, for the fixed points at
the poles we have C(Zm; k, α, p) → 0, cos(kZ p−1

m ) → 1 and
the coefficients B2 → −2 cos(α), B3 → 1, giving the stability
condition cos2(α) < 1, which is satisfied for all α except at
the discrete set of values α = rπ with r an integer. At these
particular values, the two nontrivial eigenvalues of M are
equal to M = −B2

2 = cos(rα) = ±1 depending on the parity
of r, thus poles are parabolic points. These values of α lead
to trivial dynamics. Every point gets mapped to itself after
either one or two applications of F . We can conclude then on
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the stability of the fixed points at the poles for the models
with p > 2 for all values of k and almost all values of α,
with the only exceptions being given by elliptic points with
eigenvalues equal to the lth root of 1, as they signal bifurcation
points.

The eigenvalues of M at the poles as a function of α are

M = e±iα. (B8)

They are roots of 1 when α = αb = 2πq/l with q and l rela-
tive primes, q < l and l > 2. We investigate these bifurcations
by restricting the dynamics to the local neighborhood around
the poles.

Consider, for instance, the north pole (0,1,0) and con-
struct an area-preserving map for points in its vicinity. This
is achieved by taking Ym = 1, Xm = δX , and Zm = δZ , with
δX, δZ � 1. Expanding Eq. (8) to leading order, and notic-
ing that by placing the origin at (0,1,0), the x-direction
requires a reflection to be oriented in the appropriate fashion,
we apply the additional transformation δX → −δX . After
these steps, we obtain

δX ′ = sin(α)δZ + cos(α)(δX − kδZp−1), (B9a)

δZ ′ = cos(α)δZ − sin(α)(δX − kδZp−1), (B9b)

which is a generalization of the paradigmatic quadratic map
initially studied by Henon in [45].

In the particular case of p = 3, we recover the general
form of the quadratic map [45]. Importantly for us, Henon
studied the periodic orbits of this map up to period-4. He
found that there are no period-2 orbits. There are two period-3
orbits that appear at α = cos−1(1 − √

2), one composed of
unstable points and the other composed of stable points up
to α = 2π/3, a value at which it changes stability. There are
two period-4 orbits that appear at α = π/2. One of them is
composed of unstable points, while the other is composed
of stable points up to α = cos−1(−0.103 360 15), a value at
which it changes stability. The existence of the period-3 orbits
is not the result of a 1-to-3 bifurcation, as this one is expected
to occur at α = 2π/3, a value at which both orbits already
exist. On the other hand, the period-4 orbits are indeed the
result of a bifurcation process and they emerge from the origin
at α = π/2.

The positions of all the points in the period-3 and period-4
orbits move away from the origin as a function of α, therefore
these periodic orbits only exist during a range of α’s that
is sometimes more restricted than the one presented in [45].
The identification with the Henon quadratic map is only exact
when p = 3, however the observed phenomenology is similar
for all odd values of p, where larger values of k are required
in order to observe the emergence of these orbits.

The models with even p’s display a different, yet qual-
itatively similar, phenomenology. In the case of p = 4, the
local area-preserving map is cubic. To illustrate these points,
and some of the remarks made in Sec. III C, we study the
bifurcation at α = π/2.

First we address the question of whether the fixed point is
surrounded by closed invariant curves. Evaluating Eq. (B9) at

α = π/2 and taking the second iteration of the resulting map,
we obtain

δX ′ = −(δX − kδZp−1), (B10a)

δZ ′ = −δZ − (−1)p−1k(δX − kδZp−1)p−1. (B10b)

For models with even p, Eq. (B10) satisfies the conditions
of the main theorem in [53]. In fact, it is equivalent to the
area-preserving map considered in example 1 in [53]. Hence,
the fixed point at the origin is surrounded by close invariant
curves. Similarly, when p is odd, the map in Eq. (B10) is
equivalent to the one investigated in example 2 of [53], thus
we are guaranteed to have close invariant curves surrounding
the fixed point.

The bifurcation process can be studied by considering the
area-preserving map in Eq. (B9) with α = π/2 + γ and γ �
1. Then taking the fourth iterate of the resulting map, one finds

δX ′ = δX + (6γ 2 − 1)kδZp−1 + 4γ δZ − 6γ 2δX, (B11a)

δZ ′ = δZ − 4γ δX + 4γ kδZp−1 − 6γ 2δZ, (B11b)

where we have kept terms up to order O(δZp−1) and O(γ 2).
New fixed points of this map are

δZ =
(

4γ + 9γ 3

k

) 1
p−2

, δX = γ kδZp−1 − 3

2
γ 2δZ. (B12)

We obtain Eq. (B9) as the local dynamical description around
the north pole; however, for odd p’s it also describes the local
dynamics around the south pole. Therefore, Eq. (B12) gives
the bifurcation of the south pole as well.

For even p’s, the local dynamics around the south pole
is given by Eq. (B9) only after taking k → −k, thus the
bifurcation takes place only when γ < 0, and only then does
Eq. (B12) yield real values. Notice that this asymmetry in the
direction of the bifurcation is allowed since the invariance
of F 2[Xm] under Rx(π ) only exists at α = π/2. We display
projections of both hemispheres of phase spaces showing the
1-to-4 bifurcation for the exemplary models with p = 3, 4 in
Fig. 7.

Regardless of the parity of p, the emergent fixed points are
unstable. We see this when evaluating the trace of the tangent
map of Eq. (B11) at the new fixed points,

Tr(M) = 2[1 + 2γ 2((p− 1)(4 − 15γ 2) − 4)], (B13)

where we have kept terms up to order O(γ 2), and we
computed the trace by writing its square in terms of the deter-
minant. In the worst case, given by p = 3, the trace is always
larger than 2 provided γ 2 < 2

15 . However, we observe that at
those values of α, the period-4 orbits do not exist anymore, as
their positions do not comply with either the locality condition
or with X 2

m = 1. We conclude, therefore, that the period-4
orbit emerging as a consequence of the 1-to-4 bifurcation of
the poles is composed of unstable points.

4. Stability of the period-4 orbit on the equator at α = π/2

We saw that the period-4 orbit along the equator is com-
posed of parabolic points for all the models with an odd value
of p. To investigate the stability of this orbit, we construct the
area-preserving map describing the motion of points in the
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FIG. 7. Snapshots of phase space right before and after the 1-to-4
bifurcation studied in this Appendix. Left (right) columns show the
north (south) pole projected onto the x-z. (a), (b) Bifurcation in the
model with p = 3; the bifurcation takes place at α > π/2 in both
north and south poles. (c), (d) Bifurcation in the model with p = 4.
The north pole bifurcates for α > π/2, and the south pole for α <

π/2. The parameters of the displayed phase portraits are α = π/2 ±
0.025, k = 1.0.

vicinity of the orbit. This is achieved by considering small
increments on the two directions perpendicular to each of the
points on the orbit, and then concatenating the resulting four
area-preserving maps. Additionally, we consider α = π/2 +
γ with γ � 1, and we write cos(α) ∼ −γ , sin(α) ∼ 1 − γ 2.
Going over these steps, and writing the orbit as in Sec. III,
beginning and ending at (1,0,0), we find

δX ′ ≈ 1, (B14a)

δY ′ = (−1)p sin(k)γ (2 − γ 2)

+ [1 + (−1)p] sin(k) cos(k)[γ + (1 − γ 2)δZ]

+ (cos2(k) − (−1)p sin2(k))(δY − kδZp−1)

+ k cos(k)W, (B14b)

δZ ′ = γ + γ (2 − γ 2)(1 − γ 2) cos(k)

+(cos2(k)+(−1)p−1 sin2(k))(1−γ 2)[γ +(1 − γ 2)δZ]

+(1 − 2γ 2) cos2(k)[γ + (1 − γ 2)δZ]

−[1 − (−1)p−1](1 − γ 2) cos(k) sin(k)(δY − kδZp−1)

−(1 − 2γ 2) cos(k) sin(k)(δY − kδZp−1)

+(−1)p−1(1 − γ 2)k sin(k)W, (B14c)

where W = (δY − kδZp−1 − γ )p−1. When considering odd
values of p, Eq. (B14) reduces to

δY ′ = δY − kδZp−1 + k cos(k)W − sin(k)γ (2 − γ 2),

(B15a)

δZ ′ = γ + γ (2 − γ 2)(1 − γ 2) cos(k)

+(1 − γ 2)[γ + (1 − γ 2)δZ]

+(1 − 2γ 2) cos2(k)[γ + (1 − γ 2)δZ]

−(1 − 2γ 2) cos(k) sin(k)(δY − kδZp−1)

−(1 − γ 2)k sin(k)W . (B15b)

With this last expression we can compute the tangent map,
keeping up to terms of order O(δZp−1) and O(γ 2) at (1,0,0).
Its trace is given by

Tr(M) ≈ 2
[
1 + 1

8

(
2γ 2 − (1 − 2γ 2)(1 − γ 2) cos2(k)

)2]
,

(B16)

which is always larger than 2. Furthermore, the periodic orbit
is only well-defined at α = π/2, thus (1,0,0) is a fixed point
of the map in Eq. (B14) when γ → 0. In this limit, Eq. (B16)
gives 2[1 + cos4(k)

8 ], which is always larger than 2, confirming
the observations made in Sec. III that trajectories in the vicin-
ity of the periodic orbit do not form closed curves. In fact, the
equator is a region where trajectories belonging to opposite
hemispheres shear, leading to the instability of the parabolic
points forming the period-4 orbit.

Finally, for models with an even value of p, the orbit is
composed of elliptic fixed points, except when k is a multiple
of π/2. These values of k signal bifurcations of either the
period-8 orbit, formed by two cycles of the period-4 orbit
(for instance at k = π/2), or the period-4 orbit (for instance
at k = π ). We present two snapshots of these bifurcation
processes for the model with p = 4 in Fig. 8, where we show
projections of phase space on the y-z plane, with the origin
at (1,0,0). Figures 8(a) and 8(b) show the 4-to-16 bifurcation
taking place at k = π/2, and Figs. 8(c) and 8(d) show the
4-to-8 bifurcation taking place at k = π .

APPENDIX C: CONSTRUCTION OF THE
SIMILARITY/DISSIMILARITY QUANTIFIER

Let {X l}l=1,...,ntot and {X ′
l}l=1,...,ntot be two sets with ntot

trajectories defining the phase-space portraits of the two
parameter sets (α, k) and (α′, k′) = (α + δα, k + δk). Each
phase-space portrait is obtained from the same set of ntot

initial conditions chosen uniformly on the unit sphere. Each
trajectory is generated up to the same final time N .

Consider a trajectory on each set, say X k and X ′
k , belonging

to the same initial condition. We quantify their similarity by
the product of the Pearson correlation coefficients [57] of their
three Cartesian components extended in time,

S (X k,X ′
k ) = cor(X̃k, X̃

′
k )cor(Ỹk, Ỹ

′
k )cor(Z̃k, Z̃

′
k ), (C1)

where X̃k = (X (1)
k ,X (2)

k , . . . ,X (N )
k ). The Pearson correlation

coefficient is given by

cor(A,B) = cov(A,B)√
var(A)var(b)

, (C2)
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FIG. 8. (a), (b) Bifurcation of the period-8 orbit for p = 4 and
α = π/2 constructed as two cycles of the period-4 orbit on the
equator. The parameters are k = π/2 (a) and k = π/2 + 0.05 (b).
(c), (d) Bifurcation of the period-4 orbit. The parameters are k = π

(c) and k = π + 0.05 (d).

with cov(A,B) the covariance between vectors A and B of
same length, and var(A) the variance of vector A. Notice that
Eq. (C2) gives 1 for perfect correlation between A and B and
0 in the absence of correlations.

We construct the similarity/dissimilarity quantifier be-
tween phase-space portraits by taking the average of S over
the ntot initial conditions,

S = 1

ntot

ntot∑
k=1

S ({X k}, {X ′
k})

= 1

ntot

ntot∑
k=1

cor(X̃k, X̃
′
k )cor(Ỹk, Ỹ

′
k )cor(Z̃k, Z̃

′
k ). (C3)

For this quantity, a value of S = 1 indicates that the two phase
spaces are identical, and S = 0 indicates that the two phase
spaces are completely different.

APPENDIX D: LYAPUNOV EXPONENT IN THE LIMIT
OF STRONGLY CHAOTIC TRAJECTORIES

In this Appendix, we provide the derivation of the analytic
expression for the largest Lyapunov exponent in the limit of
strongly chaotic trajectories [Eq. (26) in the main text].

FIG. 9. Top: mixed phase spaces of the kicked p-spin model. From left to right: models with p = 2, 3 and k = 2, 2.5. Center: phase
portraits as in the top figure colored with the value of the local Lyapunov exponent; we used 104 initial conditions distributed approximately
uniformly on the unit sphere. Bottom: values of the recurrence time for each of the Ntot initial conditions used in the Ach calculation. Notice
how well the algorithm identifies the chaotic regions (white) for the two values of p shown. Compare the white regions with the chaotic ones
in the (center) and (top) panels.
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For strongly chaotic trajectories [72,119], the largest Lya-
punov exponent is given by

�+(α, k) = lim
N→∞

1

N

N∑
m=1

ln |M+(Xm)|, (D1)

where M+(Xm) is the largest eigenvalue of the tangent map
in Eq. (B1). Using the ergodic hypothesis, we change the time
average in Eq. (D1) for a phase-space average (average over
the unit sphere). Then Eq. (D1) takes the form

�+(α, k) = 1

4π

∫ 1

−1
dZ

∫ 2π

0
dφ ln |M+(Xm)|, (D2)

where Z = cos(θ ) and (θ, φ) represent the same direction on
the unit sphere as X but in angular variables. In the limit of
k � 1, we can approximate M+ by

M(p)
+ (Xm) ≈ (p− 1)k sin(α)Zp−2

√
1 − Z2 sin(φ), (D3)

obtained by writing Eq. (B1) in angular variables and keeping
terms to first order in k. Substituting Eq. (D3) into Eq. (D2)
and computing the integral, we obtain the expression in
Eq. (26) of the main text.

APPENDIX E: NUMERICAL COMPUTATION OF THE
SURFACE AREA OF THE CHAOTIC REGION

In this Appendix, we provide further details on the method
used for the estimation of the surface are of the chaotic region.

An estimate of the surface area of the chaotic region, Ach,
can be constructed using the concept of Poincaré recurrence
times [77]. Given some initial condition, when the dynamics
is regular, the time evolution will bring the system arbitrarily
close to the initial condition after a short time, meaning that
the system usually displays some degree of periodicity. On the
other hand, when the dynamics is chaotic, these “recurrence”

times can be exponentially large. Thus, we can construct an
estimate of the area of the chaotic region by setting a trun-
cation time tmax and a distance dmin defining a small local
neighborhood around the initial condition, and counting the
number ntmax of initial conditions that have not returned inside
this neighborhood after tmax time steps.

Recalling that the surface area of the unit sphere is 4π , in
this approach we can write the are of the chaotic region as

Ach = 4π
ntmax

ntot
, (E1)

and the area of the regular region is then given by Areg =
4π − Ach. In all our numerical experiments, we use a grid
of ntot = 104 initial conditions, evenly spaced on the unit
sphere. This grid, on the sphere, can only be constructed to an
approximate degree. We use the Fibonacci algorithm (see, for
instance, Ref. [120]), which is known to give fairly accurate
results. To avoid fluctuations in our counting of the initial
conditions, we construct ntmax as an average over 20 different
values of tmax.

To check the accuracy of our implementation of the above-
described method, we compare pictures of the phase space
(in a Mercator projection) with figures of the same phase
spaces colored according to the value of the local Lyapunov
exponent, and with figures of the same phase spaces colored
according to the values of the returning time obtained with our
implementation. These phase portraits are shown in Fig. 9,
where the left column corresponds to results for the model
with p = 2, k = 2.5, and α = π/2, and the right column cor-
responds to results for the model with p = 3, k = 2.0, and
α = π/2. We observe an excellent agreement between the
chaotic region identified via the METROPOLIS-like sampling
(white region in the bottom panels of Fig. 9), and the region
displaying a nonzero value of the local Lyapunov (red region
in the center panels of Fig. 9). Therefore, we verify that our
implementation of the method accurately identifies the chaotic
region in phase space.
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