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ABSTRACT

Register automata have been used as a convenient model for speci-
fying and verifying database driven systems. An important problem
in such systems is to provide views that hide or restructure certain
information about the data or process, extending classical notions
of database views. In this paper we carry out a formal investigation
of views of register automata by considering simple views that
project away some of the registers. We show that classical register
automata are not able to describe such projections and introduce
more powerful register automata that are able to do so. We also
show useful properties of these automata such as closure under
projection and decidability of verifying temporal properties of their
runs.
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1 INTRODUCTION

Software systems centered around a database are pervasive in nu-
merous applications. They are encountered in areas as diverse as
electronic commerce, e-government, scientific applications, enter-
prise information systems, and business process management. Such
systems are generally governed by highly complex workflows that
involve stakeholders with very different needs and permissions. It
is therefore critical to provide users with views of the underlying
workflow, customized according to their role. Such views present
the same workflow at various levels of abstraction that expose only
the information relevant (or authorized) for a class of users.
While views are an integral part of practical workflow design,
there have been few rigorous studies of specification mechanisms
and semantics of data-driven workflow views. In this paper we carry
out a formal investigation of basic views that project away some of
the data as it evolves in the course of the workflow. We do so using
register automata, which have been used as a convenient model
for specifying and verifying database driven systems. Specifically,
we consider projection views that hide some of the registers of
the automaton, and possibly a portion of the database. Our main
objective is to develop mechanisms for specifying the images of
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such projection views. This would yield customized workflows that
explain to users their local views of the global workflow.

Register automata capture workflows in which a record of data
values evolves as specified by transition rules. This is essentially
the same as the popular artifact model (see related work). Each
transition rule specifies, given a current record, the set of possible
successor records. The automaton is equipped with an underlying
relational database that can be queried by the transition rules. In
addition, the automaton has a finite-state control including a Biichi
acceptance condition. A run of the automaton on a given database is
an infinite sequence of consecutive records satisfying the transition
rules and the Biichi acceptance condition.

As an informal example, consider the (simplified) workflow of a
manuscript reviewing system. The treatment of each paper might
be modeled by a set of values that evolve throughout the workflow,
identified by attributes such as paper-id, author, topic, paper-state,
reviewer, review-state. There might also be an underlying database,
with one relation holding the topic of each paper and another the
topics that each reviewer prefers to review. The transitions follow
the standard workflow for a reviewing system: a paper is submitted,
a reviewer is assigned nondeterministically based on topic, the
state of the paper transitions to under-review, the reviewers carry
out their own workflow, possibly invoving sub-reviewers, and this
proceeds until a decision is reached, possibly with a loop due to
revisions. In the register automaton model, the data values of the
attributes would be held in corresponding registers. The transitions
would specify the above stages in the processing of the paper, using
the registers and the database. While in this example one would
expect the workflow to complete in finitely many steps, its runs can
be easily made infinite, as in the formal model, by looping forever
in the final state. Note that in this scenario, some of the users might
see only a subset of the attributes. For instance, authors do not see
their reviewers or the reviewer-states. And if reviewing is double
blind, reviewers do not see the authors. These are projection views
that hide some of the registers of the automaton.

Unfortunately, register automata are not closed under projec-
tion even in the absence of a database: it is easy to construct a
register automaton whose projection view cannot be described by
another register automaton. Indeed, the problem of describing the
projections of register automata turns out to be challenging, and
a general solution remains elusive. We mainly focus in this paper
on the simpler case of register automata without a database, and
make partial progress in the case when a database is present.

Since register automata are not closed under projection, we de-
fine more powerful extended register automata. Extended automata
augment register automata with global constraints, requiring equal-
ities or inequalities among data values held in registers that may
be far apart in the run, but related using regular expressions. In the
absence of a database, we show that extended register automata
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can not only specify projections of register automata, but are them-
selves closed under projection. In terms of expressive power, we
show that extended register automata can express more than the
projections of register automata. We provide a precise character-
ization of the subclass of extended automata that are projections
of register automata. Note that being the projection of a register
automaton is a desirable property, because it means, intuitively, that
the global constraints can be enforced entirely by local transitions,
in a streaming fashion, at the cost of additional registers.

Although motivated by projection views, extended automata are
interesting in their own right, because global constraints occur nat-
urally in workflows. We show that testing emptiness of extended
automata is decidable, even when a database is present. As a con-
sequence, verification for a class of temporal properties of runs
(LTL-FO) is decidable as well.

In the presence of a database, we make partial progress in tack-
ling projections of register automata. First, we show that extended
automata are no longer able to describe projections of register au-
tomata. We identify two additional types of global constraints that
are needed in order to describe projections. The first generalizes the
inequality constraints of extended automata to inequalities of tuples
of register values (effectively introducing disjunctions of inequal-
ities). The second requires that a specified set of register values
occurring in the run be finite. We show that with these additional
features, extended register automata are able to specify projection
views of register automata where some of the registers and the
entire database are hidden.

Our results make use of a variety of techniques in logic and
automata theory, including the finite-model theory of guarded first-
order logic, and Monadic Second Order logic (MSO) on graphs and
infinite strings. The decidability of verification for extended au-
tomata relies on showing that the set of state traces (the infinite
sequences of states of their runs) is quasi-regular (an extension of
w-regularity), and emptiness of quasi-regular languages is decid-
able [5]. This stands in contrast with register automata, for which
the set of state traces is w-regular [19]. As a side benefit, our proof
of quasi-regularity for extended automata also provides an alter-
native, simpler proof of the w-regularity result of [19]. Regarding
MSO, besides routine connections to (w)-regular languages, we
use non-trivial results on properties of graphs defined by MSO on
infinite strings, as well as decidability of satisfiability on strings of
certain extensions of MSO with bounding quantifiers [5, 10].

Related work. Formal work on database-driven systems has largely
focused on automatic verification of temporal properties. For sur-
veys of this considerable body of work, see 8, 13]. One of the most
well-studied models of data-driven workflows are artifact systems,
that are formal counterparts of IBM’s business artifacts introduced
in [20, 23]. In its simplest incarnation, an artifact system is essen-
tially a register automaton equipped with a relational database.

Research on workflow views has traditionally focused on process-
centric specifications (e.g. [9, 16, 21, 27]). These abstract away the
data and their manipulations already in the original workflow spec-
ification. [26] considers view generation for artifact systems, but
in a limited setting in which there is no database queried by the
workflow. Abstraction operations are restricted to the special case
in which some of the boolean artifact variables, seen as states of
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a finite-state automaton, are replaced with their ancestors in a hi-
erarchy of states. Views of artifacts are discussed in [18] in the
context of service interoperation hubs, a framework supporting
business collaborations. The views include both the data and the
process. The data portion of a view is essentially a select-project
view, while the process view specifies a condensation operation
in which multiple states are mapped to a single state. There is no
attempt to synthesize specifications for the images of such views.

An abstract model of workflow views, used to compare the ex-
pressiveness of different workflow models, is introduced in [1]. The
approach relies on the notion of abstract tree of runs, obtained by
applying a view to the data and transitions of the workflow. Dif-
ferent workflows are compared by defining views that map them
to a common abstraction and then using a notion of simulation
on the resulting trees of runs. As an example, this mechanism is
used to show that a particular workflow model based on XML is
more powerful than the basic artifact model relative to appropri-
ate abstractions. While the views considered are very general, the
problem of describing their images is not addressed.

In [3], collaborative workflows involving multiple users are mod-
eled using a local-as-view approach, whereby the data seen by each
user is defined by projections of database relations. The goal is to
enable users to reason about the global workflow using their own
local observations. This is further pursued in [2], using selection-
projection views, with the goal of providing runtime and static
explanations of a user’s view of the workflow. The static variant
aims to produce a workflow specification describing the user’s view,
which is somewhat similar in flavor to the goal of this paper. How-
ever, the differences in the models and the restrictions imposed in
[2] in order to obtain the specifications, render the two approaches
incomparable.

The previous work most closely related to our paper is that of
[19], which studies views of artifact systems that strip away the
data and retain just the transitions occurring in runs. The goal is to
determine under what conditions the linear-time and branching-
time views are regular. It is shown that the linear-time views of
tuple artifacts are always w-regular, but branching-time views are
only regular under additional restrictions. The impact of data depen-
dencies (tuple and equality-generating dependencies) on regularity
of the views is also studied. The linear-time views of [19] are essen-
tially the state traces of our register automata. The proof of their
w-regularity in [19] relies on showing that every sequence of states
satisfying a local consistency condition is in fact the state trace of
a real run. In contrast, the alternative proof in the present paper
relies on the finite-model property of a class of guarded first-order
(FO) sentences.

Organization. The paper is organized as follows. Section 2 intro-
duces basic concepts and terminology, as well as register automata.
Extended register automata are defined in Section 3, and the quasi-
regularity of their state traces is shown, leading to decidability of
verification. Closure of extended register automata under projec-
tion is shown in Section 4. In particular, this shows that extended
automata are powerful enough to specify projections of register au-
tomata. The precise fragment required to specify such projections
is characterized in Section 5. The results on projections of register
automata with a database are presented in Section 6. The paper
ends with a few concluding remarks.
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2 PRELIMINARIES

After introducing some basic notation, we present the model of
register automata.

We view a database as a finite relational structure. A relational
signature, or database schema, is a finite set of relation symbols with
associated arities (non-negative integers). We also allow finitely
many constant symbols in the schema. We usually denote our
database schema by 0. We fix an infinite data domain D. A database
over o is a mapping D that associates to each relation R € ¢ of arity
Kk a finite k-ary relation over D, and to each constant symbol an
element of D. The active domain of a database D, denoted adom(D),
consists of all values occurring in the relations of D, together with
the constants.

We assume familiarity with first-order logic (FO) and its usual
semantics over relational structures. When querying a database
D, we will only use quantifier-free FO formulas. As usual, given
a database D, a quantifier-free FO formula ¢(x) with variables x,
and a tuple g of elements of D of the same arity as X, we denote
by D = ¢(a) the fact that the formula ¢ holds true in D with the
valuation associating a to x. We also use Monadic Second-Order
(MSO) formulas with standard semantics to express properties of
tuples of positions in an infinite string. Given an infinite string w,
an MSO formula ¢ (x) with free first-order variables X, and a tuple a
of positions of w of the same arity as X, we denote by w |= ¢(x), the
fact that w satisfies ¢ with the valuation associating a to x. Recall
that the set of strings satisfying an MSO sentence (no free variables)
forms a regular language [7].

We distinguish a subset of first order formula that we call type,
consisting of quantifier-free conjunctive formulas. As they play a
central role in this paper, we define them in detail. An atom over o
is either an equality expression x = z or an expression of the form
R(z), where Z is a tuple of variables or constants of appropriate
arity. A literal over o is either an atom or a negated atom, i.e =R(Z)
or x # y. A o-type over 7 is a satisfiable conjunction of literals
over o using variables in Z (we often omit ¢ when it is clear from
the context). A type is complete if for each m-tuple § contained in
Z U ¢, where ¢ are the constants of o, and each relation R of arity
m in o, the type includes a conjunct specifying whether or not
R(7) holds. Moreover, for every pair (x,y) where x is a variable
from z and y is either a variable from Z or a constant from ¢, a
complete type specifies whether or not x and y are equal. Notice
that every type can be extended into a complete type and there may
be exponentially many completions of a given type. An equality
type is a special case of o-type when ¢ is empty or contains only
constant symbols ¢. An equality type over z then only specifies the
(in)equality constraints among the elements in Z U ¢.

The following standard notation will be used in this paper. If d
is a k-ary tuple and i < k then d[i] denotes its ith
a positive integer n, we denote [n] = {1,...,n}.

We use the usual definition for database driven register au-
tomata, see for instance [6, 25]. A register automaton A is a tuple
(k,0,Q,1,F, A) where k is the number of registers (possibly zero),
o is a relational signature, Q a finite set of states with initial states
I and final states F, and A a finite set of transitions. A transition is a
triple (p, 8, q) where p and g are states and § is a o-type over X U ¢,
where X and § are two k-tuples of distinct variables. The variables

component. For

301

PODS ’20, June 14-19, 2020, Portland, OR, USA

X1 - - - xg denote the value of the k registers before the transition
is fired while y; - - - yi denote the value of those registers after the
transition was fired. The type § then specifies how the registers
can change.

Let D be a database over o. A run p of A over D is an infinite
sequence of triples {(dn. qn,Sn)}n>0 Where qo € I, some state in F
occurs infinitely often, and for each n > 0:

e d,, is a k-ary tuple of elements in D,
® (qn,0n,qn+1) is a transition in A,
e 8n(dn,dp+1) holds in D,
For technical reasons, we also assume that for every run p there
are infinitely many values in D that do not occur in p.
For a run p = {(dn, qn,n)}n>0 of A we consider the following:

o the register trace is {dn}n>o0
e the control trace is {(qn,5n)}Inz0
o the state trace is {qn}n>0

For a given database D, we denote by Reg(D, A) the set of register
traces of the runs of A over D. The set of register traces of all
runs of A over all possible databases is denoted by Reg(A). The
corresponding control traces are denoted by Control(A) while the
state traces are denoted by State(A).

Recall that our main motivation in this paper is to study au-
tomata as models of workflows. In a workflow, the purpose of the
specification is to describe the evolution of data (aka registers) in
the course of the workflow, for every given database. Therefore, it is
natural to use Reg(D, A) and Reg(A) as measures of expressiveness
of our automata.

ExAMPLE 1. Consider the 2-register automaton A with states q1
and qz, initial and final state q1, no database (o is empty) and transi-
tions: {(q1, 41, q2), (q2, 92, q2), (92, 83, q1)}, where &1 is the equality
type x1 = x2 A X2 = Yy, 52 the equality type xo = y2, and 83 is the
equality type xo = y2 A y2 = yi. The first type, 01, tests that the
current two registers have the same data value using x; = x3, and
copies this value to the second register of the next position, x3 = ys.
The second type, &2, simply propagates the value of the second register.
The third type, 83, propagates the value of the second register and also
copies its content to the first one, y; = ya. A typical run is of the form:

(d1d1,q1,61)(d2d1, g2, 62)(d3dy, q2, 62)(dad1, g2, 83)(d1d1, q1,61) - -+
The control and state traces are:
Control(A) = ((q1,61)(g2. 52)* (g2, 83))“ and State(A) = (q1q5)“.

It will be useful in several of our proofs to assume that the register
automaton A is complete in the sense that in each of its transitions
the o-type is complete. As our model is non-deterministic this can
be assumed without loss of generality in terms of expressive power.
However this may be at the cost of an exponential blow-up in the
size of the automaton.

ExAMPLE 2. The register automaton of Example 1 is not complete
as, for instance, 81 does not say anything about how the registers
compare at the next step, i.e. does not enforce any relationship between
y1 and yo. To complete it we would need to replace it with two types
81 and 8]’ containing the literals of 61 together with y1 = y2 in the
case of ] and y1 # yz in the case of 5/’ and replace any transition
using 81 with two transitions, one with 8/, one with 5{’. Observe that,
because x1 = x2 = y hold in 81, settling the relationship between ys
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and y; also settles all other relationships. The types 8 and &3 can be
completed in a similar way.

It will also be useful to assume that A is state-driven, meaning
that for each state p there is at most one § such that (p, §, q) € A for
some q. Every automaton can be converted to a state-driven one at
the cost of a quadratic blowup: if A = (k,0,Q, I, F, A) is a register
automaton then its state-driven variant is the register automaton
A’ = (k,0,0xX,I’,F’, \’) where X is the set of o-types occuring
in A, I’ is the set of pairs (p, §) such that p € I, similarly for F’,
the transitions are the tuples ((p, 8), 8, (q,8")) where (p, 8, q) € A.
Note that a state-driven automaton is not necessarily deterministic.
Observe that in a state-driven automaton, the state trace of a run
uniquely determines its control trace.

ExAMPLE 3. Consider again the register automaton A of Example 1.
It is not state driven as qa occurs in two transitions with 5o and
33. Consider the register automaton A’ with three states, q1,q5, q;
and transitions (q1, 61, qé), (q1, 51,q§’), (qé, 6, qé), (qé, 62, qé’) and
(95,93, q1). It is easy to verify that A" and A have the same register
traces.

When looking at a sequence of the form {(gn, dn)}n>0 can we say
that it is actually the control trace of some register automaton? The
notion of symbolic control trace from [19], slightly adapted to our
context, provides a positive answer. Roughly speaking, a sequence
as above is a symbolic control trace of a register automaton if any
two consecutive symbols could be generated by a transition of
the automaton. More formally, let A = (k,0,Q, I, F,A), and ¢ the
constants symbols of o.

An w-word {(qn, 6n)}n>o is called a symbolic control trace of A
if (i) go € I and there is a state in F that occur infinitely often,
(ii) for every n > 0 (qn,0n, qn+1) € A and (iii) 5, and d,4+1 agree
on the common registers, i.e. ;|7 is isomorphic to §,+1|x (by the
isomorphism that maps y; to x; for i € [k], where for a tuple Z of
variables, §|Z is the conjunction of literals of § using only variables
from z or constants). We denote by SControl(A) the set of symbolic
control traces of A. Clearly, SControl(A) is w-regular. It is shown
in [19] that in fact Control(A) = SControl(A). In particular, for
every complete register automaton A, the languages Control(A)
and State(A) are w-regular languages.

3 EXTENDED REGISTER AUTOMATA

We wish to study projections of the register traces of an automa-
ton. Given a k-register automaton A, a database D, and an integer
m < k, we denote by I, (Reg(D, A)) the projection of Reg(D, A)
retaining only the values for registers 1 to m (the case where
m = 0 corresponds to projecting out all registers). Register au-
tomata are not closed under projections in the sense that there
may be no m-register automaton A’ such that for all database D,
Reg(D,A’) = I, (Reg(D, A)). Indeed, this is the case even with
no database, as illustrated by the following.

ExAMPLE 4. Consider again the register automaton A of Example 1.
Now consider the projection of the runs of A on the first register. The
register trace of these runs contain all sequence of data values such
that the initial data value of the register occurs infinitely often. This
cannot be enforced by a register automaton. Indeed, suppose towards
a contradiction that A’ is such a register automaton (which we may
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assume complete). Consider the accepting run of A’ whose register
trace is didadidy - - - . By definition, all transitions of this run contain
the equality type x1 # yi1. Hence, replacing di by ds everywhere
except the first position also yields an accepting run of A’. However,
didadsdads - - - is not a register trace in the projection.

As suggested by the above, describing projections of runs re-
quires a mechanism for specifying equalities and inequalities among
register values that are no longer local to individual transitions.
The example suggests that the paths between related values in a
run could be described using regular expressions of states. To this
end, we introduce the more powerful extended register automata
model.

An extended register automaton is a pair A = (A,X) where A =
(k,0,0,I F,A) is aregister automaton and X is a finite set of regular
expressions over Q, each denoted by eizj or efj, where i,j € [k].

We say that a run p = {(dn, gn, ) }n>0 of A satisfies 3, denoted
p = Z, if for every ei:j € ¥ and every el?; €Xand 0 < ny < ny, if

ny - -4n, € €5 then dp, [i] = dn,[j] and if qp, ... qn, € e; then
dn, [i] # dn,[j]- The set of runs of A consists of the runs of A that
satisfy =. The set of register, control, and state traces are defined as
for register automata.

Observe that in an extended automaton A = (A, X) there are
two independent sources of constraints over the register values:
the local constraints enforced by the o-type § in a transition of
A and the global constraints . Note that the global constraints
can simulate the local (in)equality constraints, so the types used in
transitions may have no (in)equalities if so desired, without loss of
expressiveness.

ExaMPLE 5. Consider again Example 4. The projection of the runs
of A on its first register can be described using the extended au-
tomaton B = (B,ZX), where B is an automaton with one register,
states {p1, p2} where py is both initial and accepting, and transitions
{(P1.v.p2), (P2.v.p2). ((p2. v, p1)} wherey is the empty type, and 3.
consists of e]; = p1p; p1. The global constraint 3 enforces that there
is a data value d such that each time B switches to state p1 the data
value of the register is d.

We will see that, in the absence of a database, our extended model
of register automata is powerful enough to describe the projection
of the register trace of any register automaton. This is no longer
the case when a database is present. Indeed, we will see in Section 6
that additional features are needed in this case.

We first notice that the additional expressive power of extended
register automata is only due to the global inequality constraints.
Indeed, as shown below, the global equality constraints can be
simulated using extra registers.

PROPOSITION 6. For each extended automaton A with k regis-
ters, there exists an extended register automaton 8 with no global
equality constraints such that for all database D, Reg(D, A) =
I (Reg(D, B)).

Proor. Let A = (A, X). The general idea for constructing 8 =
(B,T) is as follows. On the first k registers, B just simulates the
transitions of A. To enforce the global equality constraints in X,
B uses additional registers. Consider an equality constraint ei:j €
¥ and let Q7 be the set of states of the minimal automaton for
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ej;-In order to enforce the corresponding constraint, at any time
during the run, B nondeterministically guesses whether the current
position is involved in a global equality test using ei:j and then
verifies that the guess is correct.

In the case where the guess is “no”, B starts a simulation of the
automaton for ei:j and rejects if it ever reaches an accepting state.

In the case where the guess is “yes”, B stores the current value
of register i in a new register and also starts a simulation of the
automaton for el.z.. Whenever the automaton reaches an accepting
state, B checks that the data value stored in register j equals the
one stored in the new register. We only need finitely many registers
because it is enough to have one register per state in Q~. Indeed,
if two simulations are in the same state, the run can only proceed
if the associated registers hold the same data value. The global
constraints I' of B are the inequality constraints of %, lifted to the
states of B. The Biichi acceptance condition of A is also lifted easily
to B. O

Global inequality constraints however cannot always be simu-
lated using extra registers. This is illustrated with the following
example.

ExaMPLE 7. Consider an extended automaton A with only one
register and no database, whose global constraints ensure that all
register values occurring in a run are distinct. This automaton cannot
be simulated even using using extra registers. The proof of this fact
is postponed to Section 5, Example 17. We only show here that there
cannot be a 1-register automaton equivalent to A. Suppose towards a
contradiction that there is a register automaton A such that Reg(A) =
Reg(A). Consider a run p = {(dn,qn,0n)}n>0 of A in which all
register values are distinct. Clearly, each §; must either be empty or
x1 # y1. Suppose 5; is empty for somei. Then p’ obtained by replacing
di+1 with d; is still a run of A but not one of A. Now suppose that all
8; are x1 # yi. Let d be a fresh data value and p’ be obtained from p
by replacing each d; by d for all even i. Again, p’ is a run of A but is
not a run of A. Thus, A does not have the same register traces as A.

Adding global regular constraints seems innocuous, but it raises
several technical challenges. In particular, the result of Koutsos and
Vianu mentioned above, establishing the w-regularity of the state
traces, no longer holds. This is shown by the following example.

ExaMPLE 8. Consider an extended automaton A with only one
register and two states p and q. The signature o of A contains only one
unary symbol P, hence the databases are finite sets. The transitions of
A ensure that the data value of the register is always in the domain of
the database, i.e. contains P(x1). The global constraints of A ensure
that between any two occurrences of state p with no occurrence of
state q in between, the register values are pairwise disjoint. Hence
the state traces of A are such that there is a finite bound (the size
of the domain of the database) on the size of the longest consecutive
sequence of occurrences of p, a non w-regular property.

Having some well-behaved characterization of the state traces
is important for deciding various properties of register automata,
such as the existence of a run, or whether all its runs satisfy prop-
erties specified in LTL or other reasonable logics. In the case of
extended register automata, we can show that the control and state
traces can be described by a well-behaved extension of w-regular
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languages introduced by Bojanczyk, called quasi-regular, for which
satisfiability over w-words remains decidable. The quasi-regular
languages include all languages that can be defined by a sentence
of the form ANYS(¢(S) — |S| < N), where N is a natural number,
S a set variable and ¢ a formula in MSO, which is sufficient for our
purposes. Decidability of satisfiability of quasi-regular languages is
shown in [5]. This is significant because, as in the case of register
automata, it can be used to show decidability of a wide range of
static analysis questions. Quasi-regular languages are also shown
in [5] to be closed under union, intersection and homomorphisms.

We use here (and later) the following notation. Consider w =
{(qn, On)tn>0 € SControl(A). Let us represent by (x, i) the register
i in position x. Define the equivalence relation ~7! on the set { (x, i) |
x > 0,i € [k]]} as the reflexive, symmetric, transitive closure of the
equalities induced by X and all §,’s. In particular if g, - - - qm € €

i=j
for some n < m then (n, i) ~f} (m, j) and if x; = y; is part of 6,
then (n, i) ~f,{ (n + 1, j). We denote the equivalence class of (x, i)
by [(x, i)]ﬁ,I and by 8“;1 the set of equivalence classes of ~§. For

€1,€3 € EVY, define ¢; 365[ €y if there exists §, or a constraint in X
that specifies that two members of €; and €, are not equal. If A is
state-driven, we sometimes use by slight abuse in the above notation
a state trace w instead of the induced control trace. Whenever A
is understood we omit it from the notation and use simply ~.,
,[(x,i)]w and 8. We show the following.

THEOREM 9. Given an extended register automaton A,
Control(A) and State(A) are quasi-regular.

ProoF. Let A = (A, X) be an extended register automaton with
k-registers. We can assume that A is complete, since otherwise
the original control traces can be obtained from the corresponding
completed automaton via a homomorphism. Similarly, we show
the proof only for Control(A), since State(A) is a homomorphic
image of Control(A).

In view of Proposition 6 we assume that ¥ contains only in-
equality global constraints, as equality global constraints can be
simulated using extra registers and states. Observe that the original
control traces can be recovered by a homomorphism, so quasi-
regularity is not affected.

By slight abuse, we say that an equivalence class € of ~,, is in the
active domain of the database relative to w if for some (n, i) € €, x;
occurs in a positive relational literal of §, or y; occurs in a positive
relational literal of §,-1. We denote the set of such equivalence
classes by adomw(8;)

Consider w € SControl(A). We associate to w a graph G,, as
follows. The vertices are the equivalence classes in adomW(S;).
There is an edge between €; and €3 if €; #., €2. Each equivalence
class € can be represented by a pair (x, i) where x is the smallest
position of w in which a member of € occurs, and i it the smallest
register containing it in position x. Clearly, there is an MSO formula
that defines G,, on w using the representatives of each class. Recall
that we also have an MSO formula stating that w € SControl(A).
From this formula we can construct a formula witnessing quasi-
regularity, by stating that w is in SControl(A) and that there is a
bound N on the largest clique of G,,. Clearly, this can be expressed
by a formula ¢ of the form ANVYS(¢(S) — |S| < N). We next prove
that the language defined by ¢ is exactly Control(A).
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One direction is clear: every word w in Control(A) is also in
SControl(A) and the largest clique of G, is bounded by the size N
of the active domain of the database witnessing the membership of
w in Control(A). Thus, w satisfies .

To show the converse, consider w = {(qn, Sn)}n>0 in SControl(A)
satisfying i/, with N as the bound on the largest clique of G,,. We
need to construct a finite database D and a run p of A over D whose
control trace is w. We proceed in two stages. First, we construct
from w a database D" and a run p’ of A over D’ whose control trace
is w. Next, we modify D’ and p’ in order to obtain a database D
and a run p over D that additionally satisfies the constraints in 3.

We start with the case when ¢ contains no constants. We then
explain how the proof can be modified in order to account for
constants.

Assume now that o contains no constant symbols and towards
the first stage, let ¢’ be the signature extending the signature o of
A with two new relation symbols, R of arity k, and S of arity 2k.
For each o-type § over x U 7, let 71 (8) be the o-type induced by &
on x. From A we construct the following formula Wa:

N VE[RE) Am(8)®)] — [395(x9) A R@) A 5(x7)]
(p.S8,q)eA
A /\ A%R(Z) A 1 (8)(F)

(p,5,q)eA

As our o-types are quantifier-free formulas, ¥4 is guarded in the
sense of [4] hence it has the finite model property [17]. We now
construct an infinite model I of Wa. For every transition (p, §, q)
of A we add to I a tuple dg such that I |= R(ds) A 71(8)(ds). Once
this is done we construct the rest of I by chasing the formula ¥ :
whenever I |= R(a) A m1(5)(a) for some transition (p, 8, q), we add
b such that I |= S(ab) A R(b) A 8(ab) by introducing fresh new
elements as needed. By construction, I |= ¥5. Because ¥p has
the finite model property, there is a finite database I* such that
I |= Pa.

Let D’ be the finite database obtained by restricting I* to o.
We construct by induction a run p’ = {(dy, qn, 6n)}n>0 of A over
D’. Let ap, = m(8y) for n > 0. For the basis, set dy to any tuple
witnessing satisfaction of IXR(¥) A ao(¥) by I*. For the induction
step, let n > 0 and assume we have constructed dy - - - d, such
that (do, go, &) - - - (dn, qn, On) forms a valid prefix of a run of A
over D', and D’ |= a,(dy). By construction, I* |= R(dy) A an(dyn).
Hence, there is a tuple dy,+1 for which I* |= R(dp+1) A S(dndn+1) A
On(dndn+1). Clearly, (do, 90, 60) - (dn+1, gn+1, Sn+1) forms a valid
prefix of a run of A over D’.

Let p’ = {(dn,qn>On)}ns0. Clearly, p’ is a run of A over D’
and its control trace is w. This completes the first stage of the
proof. Observe that this part of the proof involves A alone and
is independent of the constraints of A. As such, it provides an
alternative (and simpler) proof of the result of [19] that Control(A)
equals SControl(A) (and is therefore w-regular) for every register
automaton A.

In the second stage, we modify the database D’ and the run p’
obtained above in order to enforce satisfaction of X. To this end, we
use several properties of the graph G,, constructed earlier. Since
G,y is represented by an MSO formula over an infinite string, it has
bounded clique-width (see for example Theorem 7.36 in [11]). Like
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any graph of bounded clique-width, G,, is y-bounded [15], i.e. its
chromatic number is bounded by a function of its clique number.
In our case this means that it is A(N)-colorable for some function
h which is explicit in the proof of [15]. Let g be an h(N)-coloring
function of G,,, associating to each vertex of G,, a positive integer
less or equal to h(N) such that no vertices connected by an edge
have the same associated integer. We extend g to all equivalence
classes of ~,, as follows. If a class € is in the active domain but not
occurring in an edge of G,,, let g(¢) = 0. If € is not in the active
domain assign to it an arbitrary unique integer larger than h(N).

We now construct a run p = {(én, qn,dn)}n>0 and a database D
such that p is a run of A over D with the same control trace as p’
but additionally satisfying . Intuitively, p and D are obtained by
appropriately coloring data values in order to enforce inequalities.

To any position x and register i, set &x[i] as (dx[i], g([(x, i)]w).
This defines p. We construct D from D’ as follows: whenever
R(dy,--- ,d;) is a fact of D’, then R((d1, @1), - - - , (d}, a;)) are facts
of D for all possible values of a; € [h(N)].

We first claim that p is a run of A over D. To see this it is enough
to verify that for each position x, D |= dx(€x, €x+1). This is imme-
diate from the construction and the fact that D’ |= 8y (dx, dx+1).

We now claim that p verifies all constraints of X. Assume
Wp Wy € e;j.. Then either ([(n,i)]w, [(m,j)]w) is an edge of
Gy, or at least one of ([(n,i)].y and [(m, j)].y) is not in the active
domain. In either case, g([(n, i)]w) # g([(m. j)]w) and &, [i] # ém[j]
as desired.

This completes the proof for the case when ¢ contains no con-
stants. We now explain how to extend it when constants are present.
Recall that from any symbolic control trace w such that the asso-
ciated graph has a bound N on its cliques, we need to construct a
finite database D and a run p of A over D whose control trace is w.

We proceed as above to construct D with minor modifications
in order to cope with the constants. We modify the formula ¥4 as
follows. First we restrict the conjuncts to those transitions contain-
ing only types § occurring in w. Next, we add at the beginning of
the formula an existential quantification 3z where Z has arity [, the
number of constant symbols, and replace any occurrence of the
constant ¢; by z;. Finally the schema is modified by eliminating
the constants and adding [ to the arity of all relational symbols.
Moreover, each atom R(#) is replaced by R(i, z). Observe that by
definition of symbolic control trace with constants, the isomor-
phism type of z is the same throughout the trace. It then follows
that ¥4 has an infinite model, constructed as above, where in addi-
tion the substructure induced on the constant symbols is induced
by the type of z.

Using the finite model property we therefore have a finite model
I* for ¥o. The database D’ is constructed from I* in the obvious
way: fix arbitrarily a tuple Z making the formula true and associate
the constant symbols with z. For each symbol R of o, the relation R
in D’ consists of the tuples @ such that R(, z) is a fact of I* for the
chosen z.

As above, it is straightforward to verify that the database D’
yields a run of A whose control trace is w. The remaining part of
the proof proceeds as in the case without constants, by combining
D’ with N in order to obtain the desired database D and run p of
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A that has control trace w and additionally satisfies the inequality
constraints. o

As noted above, the proof of Theorem 9 includes an alternative,
simpler proof of the result of [19] that for register automata, with
no global constraints, the control trace is w-regular.

It follows from Theorem 9 that the emptiness problem is decid-
able for extended register automata. Indeed the proof of Theorem 9
is constructive and satisfiability of the corresponding formula is

decidable [5].

CoROLLARY 10. Given an extended register automaton A, it is
decidable whether there exists a finite database D and an infinite run
p of A over D.

Verification of extended automata

We next briefly discuss how the quasi-regularity of the control
traces of extended register automata can be used to show decidabil-
ity of LTL-FO properties of such automata !, generalizing previous
results on verification of register automata (aka artifact systems)
[12, 14]. We begin by reviewing the temporal language LTL-FO.
First, LTL (linear-time temporal logic) is propositional logic aug-
mented with temporal operators G (always), F (eventually), X (next)
and U (until) (e.g., see [24]). Informally, Gp says that p holds at all
times in the run, Fp says that p will eventually hold, Xp says that p
holds at the next configuration, and p U q says that ¢ will hold at
some point in the future and p holds up to that point. For example,
G(p — Fq) says that whenever p holds, ¢ must hold sometime in
the future.

LTL-FO is an extension of LTL obtained by interpreting proposi-
tions with quantifier-free FO statements over the database schema
o. The statements use the variables x and § referring to consecu-
tive registers, and in addition may use global variables, shared by
different statements and allowing to refer to other values across
the run. The global variables are universally quantified over the
entire formula.

DEFINITION 11. Let o be a relational signature and x, i, Z be
tuples of distinct variables, where X and § have arity k. An LTL-FO
sentence is an expression VZog, where (i) ¢ is an LTL formula with
propositions P, and (ii) f is a mapping from P to quantifier-free FO
formulas over o using variables in Xyz.

The semantics of an LTL-FO sentence { = Vzgy is defined as
follows. Let A be a extended automaton with k registers. Let p =
{(dn,qn> 6n)}n>0 be a run of A on database D. Let y be a valuation
of Z into D. An FO formula y/(x, , Z) is satisfied at position i with
valuation y if D |= /(d;, dj+1, 1(2)). The run p satisfies @f with
valuation y if {0;}i>0 |= ¢, where o; is the truth assignment for P
in which p is true iff f(p) is satisfied at position i with valuation p.
Finally, p |= Yzoy if p |= ¢ with every valuation p of Z into D. We
say A satisfies an LTL-FO sentence ¢, denoted A |= &, if p |= & for
every run p of A.

Note that, for the purpose of verification, the global variables
can be easily eliminated from an LTL formula Vz¢. Indeed, the
global variables Z can be simulated by adding |Z| registers that are
propagated at each transition (so the value of each such register

Here and in some previous work, LTL-FO uses only quantifier-free FO
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remains constant throughout a run). Thus, each run provides a
valuation for Z and the new automaton satisfies ¢ iff the initial
one satisfies Yzpy. We assume from here on that LTL-FO formulas
have no global variables.

Observe that in a complete automaton, the control trace of a
run p = {(dn, qn.8n)}n>0 provides sufficient information to deter-
mine if the run satisfies ¢¢. This is because at each position i, J;
provides the complete type of X U g. This also allows extending
the semantics of ¢ from runs to control traces in the obvious way.
Clearly, satisfaction of ¢ by a control trace can be defined by an
MSO formula a(¢y). Let § be the quasi-regular formula defining
Control(A). Since MSO is closed under complement and quasi-
regular languages are closed under intersection, § A —a(¢f) defines
a quasi-regular language, which is empty iff A |= ¢g. Thus, we
have:

THEOREM 12. It is decidable, given an extended register automaton
A and an LTL-FO formula @7 for A, whether A |= ¢f.

The precise complexity of the decision problem mentioned in
Theorem 12 is open. The current proof of Theorem 9 uses MSO
logic in order to express the fact that there is a bound on the size
of all cliques in a given graph. This clearly does not yield optimal
complexity. An obvious way to get lower complexity would be to
use an automaton of small size for expressing the same fact. This is
left for future work.

4 PROJECTIONS OF EXTENDED REGISTER
AUTOMATA WITH NO DATABASE

Characterizing projections of general register automata turns out
to be challenging. In this paper we focus, as a first step, on register
automata without an underlying database. We will show that in this
case, extended register automata are sufficient to specify projec-
tions. Moreover, they are themselves closed under projection. We
discuss in Section 6 some of the challenges raised when a database
is present.

In the remainder of the section, all (extended) automata are
assumed to be without an underlying database and the relational
signature is dropped from their definition.

We next show that extended register automata are closed under
projection.

THEOREM 13. Let A be an extended register automaton with k
registers and m < k. There is an extended register automaton A’ with

m registers such that Reg(A’) = Iy (Reg(A)).

Proor. It is enough to prove the theorem for m = k — 1 as we
can then project out the desired registers one by one.

Fix an extended register automaton A = (A, ZX), where A =
(k,Q, I, F, A). We construct a new extended automaton A’ = (A’,X’)
with k — 1 registers recognizing the projection of the traces of A
on its first k — 1 registers. The general idea is that A’ mimics the
behavior of A on the remaining registers and 3’ collects all global
constraints induced by the register k on the first k — 1 registers.

We can assume that A is complete and state-driven. We can also
assume that its (in)equality constraints are consistent on all its con-
trol traces (otherwise, since this is clearly a regular property, we can
intersect A with a Biichi automaton that accepts the control traces
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on which A is consistent). For each equality type &, let &|x_) be
its restriction to the first k — 1 registers. The construction of A’ will
require performing refinements of the states and transitions of A
and modifications of its acceptance condition. Intuitively, this corre-
sponds to taking the intersection of A with several automata. More
precisely, we will construct A’ = (k — 1,Q’,1’, F’, A’) for which
there is a surjective mapping a : Q’ + Q such that (p’,8’,q") € A’
iff (a(p), 5, a(q)) € Aand 8" = Slx_q, a(I’) = I, and w € (Q")? is
accepted by A’ iff a(w) is accepted by A. In particular, State(A) is a
homomorphic image of State(A”). Observe that A’ is still complete
and state-driven (so its control and state traces are interchangeable).
We will define 3’ so that:

A
a(w)

to the first k — 1 registers, and similarly for ab,‘z[/ and aBZEW).

1) for each state trace w of A’, ~A" is the restriction of ~
w

where A’ = (A’,3’). Suppose we have defined such 3. We claim
that I _; (Reg(A)) = Reg(A’). The inclusion I1;_; (Reg(A)) C
Reg(A’) is immediate. Consider the converse. Let p” =

{(d}, qn, Snl(k-1))Inz0 be arun of A’. Let w be the state trace of p’.

For each equivalence class ¢’ of ~71, let € be the equivalence class
A A .
of ~(w) € 8;[,, e{ #y 62’ iff
€1 aeoy{{(w) €2. We define a mapping f : S;I(W) — Dby f(e) = dpli]
if (n,i) € € for some position n and some i < k, and f(€) is a new
fresh value if € contains no class of 8;,. By (F), f is well defined.

A ). Let

a(w)
p = {(dn, a(qn),8n)}n>0 where dy, = (d},, e,). It is immediate to
verify that p is a run of A. By construction, the register trace of p’
and p agree on the first k — 1 registers.

We now show how to construct A’ and 3’ satisfying (). Let w €
Q% and recall that a state uniquely determine the type. Consider the
reflexive, symmetric, transitive closure of the equality constraints
induced by ¥ and A on w. More precisely, denote w |= el.:j(x, y) if

containing it. By (), for all e{, eé

For every position x, we define ex[k] to equal f([(x, k)]

x < yand the sequence of states from x to y is in ei:j, andw |= 51‘:]‘ (x)

i (x,x + 1) if J, states that
x; = y;. The inequality counterparts w |= e;(x, y),wl= 5;(X), and

if x states that x; = xj,and w |= 6

w = 5; (x,x + 1) are defined similarly. Let

Y ((x,0), () =(x <y Aej;(x.y)) V (y < x Aej(y,x)
Vx=yA OG0 Vi=)
V(y=x+1/\5i:j(x,x+1))

We can interpret = ((x, i), (y, j)) over the string whose positions
are pairs (x,i) (x > 0,i € [k]) in lexicographic order. Clearly,
¥~ is definable in MSO over such strings, and so is its transitive
closure ¢/ . For fixed i and j, let qol.:j(x, y) =5 ((x,0), (y, ))) Ax <y
interpreted on Q. We will show shortly how to extract from this
formula the desired regular expression e for all i, j. We first develop
an analogous formula for inequalities. Consider the formula

LGy = Vivepkn 3ol (nu) A e (w,0) A g, (0.9)
v Ju(e} (x.u) A 8], () A ¢ (1)
\% Hu((pi:l(x, u) A 5;;, (u,u+1) A q)l:,j(u +1,y))

Intuitively, (p;(x, y) specifies all inequalities implied by the initial
inequalities together with the equalities.
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We next show how to extract the regular expressions el.:j and el?;.
from the formulas ‘pi:j (x,y) and (pfj (x,y). To this end, we use the

following "folklore" lemma, that is implicit in Biichi’s initial proof
that MSO characterizes w-regular languages [7].

LEMMA 14. Given an MSO formula ¢(x,y) over Q% there exists a
Biichi automaton B reading symbols from Q and having Q' as set of
states, together with a finite-state automaton C reading symbols from
Q’, such that for every word w € Q% and positions x < y of w we
have: w |= ¢(x,y) iff there is an accepting run of B on w such that if
w’ is the corresponding sequence of states of B then the segment of
w’ between positions x and y is a word accepted by C.

By applying Lemma 14 concomittantly to all (pi:j (x,y) and (p;. (x,y)
and combining the results, we can refine the states and transitions
of A using the automata B given by the lemma and use the automata
C for specifying each of the regular expressions eizj and e;.

Let 3’ consist of the ei:j and ef. obtained above. It is straight-
forward to verify that the resulting extended automaton satis-
fies (1). o

Since register automata are special cases of extended automata,
Theorem 13 shows that extended automata are powerful enough to
specify projections of register automata, as desired. But are general
extended register automata unnecessarily powerful for describing
projections of register automata? If so, what is the subclass of
extended automata that captures precisely projections of register
automata? We answer these questions next.

5 LR-BOUNDEDNESS

As in the previous section, the automata we consider here do not
access a database, i.e. their database schema is empty. As will be
seen in Example 17, even in this limited setting, extended register
automata can produce register traces that are not the projections
of the register traces of a register automaton. We now present a
subclass of extended register automata that characterizes precisely
projections of register automata. As mentioned earlier, being the
projection of a register automaton is desirable because it means,
intuitively, that the global constraints can be enforced entirely by
local transitions, in a streaming fashion, at the cost of additional
registers.

Before stating our characterization we need some further no-
tation. We say that two extended automata A and A’ with no
database are register-trace equivalent if Reg(A) = Reg(A’). While
not important for this paper, we note that register-trace equivalence
is undecidable already for 1-register extended automata without a
database. Indeed, it is shown in [22] that given a (k + 1)-register
automaton A without a database (additionally equipped with ac-
cepting states) it is undecidable whether the set of finite prefixes of
I1; (Reg(A)) contains all words in D*. This can be easily adapted
to show that it is undecidable in our model whether IT; (Reg(A))
contains all infinite words in D®. But as shown in Theorem 13,
IT; (Reg(A)) can be specified using an extended register automa-
ton without a database, using one register. The undecidablity of
register-trace equivalence then follows.

Let A be an extended automaton with k registers. Let w €
Control(A). For a position h in w, let L(h) = {h’ | ¥ < h} and
R(h) = {h" | K’ > h} be the set of positions of w to the left
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or to the right of h. For a class € € &} and h > 0 we denote
€ C Lh)if {n | (n,i) € €,i € [k]} € L(h) and ¢ T R(h) if
{n| (n,i) €eielkl} €R(h).IfeZ L(h) and € £ R(h), we say
that € straddles h. By a simple pigeonhole argument, the number of
such € is at most |2| where | 2| is the total number of states of all
the automata describing all the regular expressions in X.

Let G” be the following graph. Its set of nodes is &7;. The edges
are as follows. For €1, €3 € 8;( such that e; C L(h) and 2 C R(h),
there is an edge between €; and €3 iff €1 %4 €.

The graph G, describes all inequality constraints of % that must
be enforced at position A in w. Intuitively, without constraints and
finitely many registers, we have only finite memory and therefore
can enforce only finitely many such edges. However, if several
edges share the same endpoint, the same register can be used for all
of them. Hence a relevant parameter is the size of the vertex cover
of G;l". This justifies the next definition. Note that we do not need
to consider equality constraints as those can always be simulated
with extra registers.

DEFINITION 15. An extended register automaton ‘A is LR-bounded
if there exists N > 0 such that, for every w € Control(A) and h > 0,
the graph G} has a vertex cover of size at most N.

Observe that LR-boundedness is a syntactic notion, not pre-
served under register-trace equivalence. That is, an LR-bounded
extended register automaton A may be register-trace equivalent to
an extended automaton A’ that is not LR-bounded, as shown next.

EXAMPLE 16. Let A = (A,X) be a automaton with one register,
no constraints (i.e X = 0), no database, one state q and one transition
(¢.6.q), where § is the equality type x1 # yi1 enforcing that the
data value changes at each step. Clearly, A is LR-bounded since for
all w € Control(A) and all positions h of w, G’Vl" has a single edge
conecting the class of the current positions to the one of the next
position. Now consider the automaton A’ = (A’,3’) where A’ has
two states p and q and two transitions (q, 8, q), (p, &, p) with the same
equality type § as above, together with a constraint efl € 3’ defined
by the regular expression p*. A run of A’ starting with state p will
generate a register trace where all values are pairwise distinct. But
this register trace is also a trace of a run of A’ starting with state q,
which in turn is also a register trace of A. Hence Reg(A) = Reg(A’).
However A’ is not LR-bounded as in a position h of a control trace of
A’ starting with state p, all positions to the left of h are connected to
all positions to the right of h.

We will see that LR-boundedness characterizes the projections
of register automata up to register-trace equivalence. We now show
an example of an extended register automaton that is not register-
equivalent to any LR-bounded register automaton. In view of The-
orem 19, this extended automaton cannot be simulated by any
register automaton, even with additional registers.

ExaMPLE 17. Consider again the extended automaton in Example
7. The automaton has one register, one state with a trivial looping
transition and a global inequality constraint ensuring that all data
values stores in the register are pairwise distinct. Suppose that there
is an LR-bounded automaton B with the same register traces. Let N
be the bound witnessing LR-boundedness. Consider a run p of 8 with
all values of its register pairwise distinct. Consider the situation at
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position N + 2. Since B is LR-bounded there are positions x, y such
x < N + 2 < y such that there is no edge between x and y in Gn42.
It is then straightforward to verify that the run p’ formed from p
by identifying the values at position x and y is still a run of B, a
contradiction.

Before proceeding, we show that LR-boundedness is a decidable
property.

THEOREM 18. It is decidable whether an extended register automa-
ton A with no access to the database is LR-bounded.

ProOF. Let A = (A, X) be an extended register automaton with
k registers. We need to test whether there exists a bound N on the
size of vertex covers of all the G;:’ for all traces w € Control(A)
and positions h of w.

Note first that in the absence of a database, the set of control
traces of A forms an w-regular language. This follows from the
construction in Theorem 13, that yields a finite-state automaton
after projecting away all registers.

Also observe that for each w € Control(:A), each equivalence
class € € &7 can be uniquely represented by the lexicographically
minimum pair (n, i) such that register i contains an element of the
class in position n. Moreover, for each i € [k] there is an MSO
formula a;(x) such that w |= a;(n) iff (n, i) is the representative
of some equivalence class. Using these MSO formulas one can
obtain MSO formulas ¢;;(z, x, y) such that for each w € Control(A)
and each position h of w, w |= ¢;;j(h,n,m) iff (n,i) and (j, m) are
representatives of classes forming an edge in G;;’. As we can also
express in MSO the fact that a set S is a vertex cover of some graph,
we are left to decide statements of the form:

AN such that for all words w from a given w-regular language,

Yx3ASp(x,S) A S| < N
where ¢ is in MSO. It turns out that such statements belong to a
class of MSO formulas known to be decidable [10]. m]

We are now ready to state the main result of this section.

THEOREM 19. Let B be an extended automaton with m registers.
Reg(B) equals I1, (Reg(A)) for some register automaton A iff B is
register-trace equivalent to some LR-bounded extended automaton.

Since the proof is rather involved, we present separately the
"only-if" part and the "if" part. We start with the "only if" part of
Theorem 19.

PROPOSITION 20. Let B be an extended automaton with m registers.
IfReg(B) equalsI1,, (Reg(A)) for some register automaton A then 8
is register-trace equivalent to some LR-bounded extended automaton.

ProoF. We exhibit an LR-bounded extended register automaton
A such that IT;;, (Reg(A)) = Reg(A). Without loss of generality
we assume that A is complete and state-driven. Let k be the number
of registers of A and let m < k. We start with a few preliminaries.
Let A be an extended register automaton. We say that a mapping f
from 8;’( to D is consistent with w in A if for all classes €1, €2 € 8;,
if €1 #4, €2 then f(e1) # f(e2). The following lemma will provide
the global constraints used in the construction of A.

LEmMA 21. Let A = (k,Q, I, F,A) be a complete and state-driven
register automaton. For all i,j < k there exist regular expressions
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such that for all state traces w of A, positions a < b and
~% (b, ]) iff the factor of w between position
)] #w [(b,)]w iff the same factor is in

Ly = and 7’ i
registersi,j € [k], (a,i) ~
a andb isin e . and [(a,

et..

ij

Proor. Let i,j € [k]]. We construct a finite state automaton A
for e .. At any time during its run, A simulates A and remembers
in 1ts state the set of registers whose value in the current position
must be equal to that of register i at the start of the run. The states
of A are the subsets of [k]. The initial state of A contains only i.
For a state g of A with § the equality type induced by ¢, A has a
transition (S, g, 5(S)), where 6(S) = {m | Al € S x; = ymm € 6}. The
accepting states of A are all those containing j. It is immediate to
check that A has the desired properties.

We proceed similarly for el?;.. It is immediate to see that [(a, i)] #
[(], j)] iff there is a position ¢ between a and b such that:

o [(a,i)] ~ [(c,D)], [(c + 1,m)] ~ [(b,))], and the state g at
position ¢ induces an equality type § containing x; # ym, or

o [(a,i)] ~ [(c,D)], [(c,m)] ~ [(b, )], and the state q at position
¢ induces an equality type J containing x; # xp,.

This property is easily checkable by a finite state automaton. O

Given an equality type §, let § Im be & restricted to registers
[1..m]. Let X consist of el.] and e . for i,j € [[m] as given by
Lemma 21. Let A be the extended reglster automaton (A’, X) where

=(m,Q,I,F,A’) and A" = {(q,6|lm,q’) | (q.5,q") € A}. Notice
that as A is state-driven, so is A. We first show that Reg(A) =
L (Reg(A)).

The inclusion IT,,;, (Reg(A)) € Reg(A) is immediate. Consider
the converse, Reg(A) C I, (Reg(A)). Let p = {(d}, qn, Snlm) In0
be a run of A and w be its state trace. By construction w is also a
state trace of A. In view of Lemma 21, ~Y is the restriction of ~¥ to

ﬂ A

[1..m]. For each equivalence class €’ of ~*, let € be the equivalence

o
class of ~ X containing it. From the same lemma it also follows that

e EV . el #,, ez in A iff €1 #4 €2 in A. Consider the

€l
function f’ from &7 to D associating d! [i] to the class [(n, )]
for every n > 0 and i € [m]. This function is clearly consistent
with w in A. Let f be a function from & to D that maps every
€ that contains an equivalence class €’ of ~% to f’(e’) and every
other € to a fresh new data value. Clearly, f is consistent with w in
A-Let p = {(dn, G, 6n) o where dn[i] = F([(n, )]A). Tt is casy
to verify that p’ is a run of A and by construction the register trace
of p is the projection of the register trace of p’ on [1..m].

We next show that A is LR-bounded. Let w = {(qn,dn)}n=0
be a control trace of A and denote w,p, = (qa,04) - - - (qp, 5p) for
0 <a<b Leth > 0.Let (e1,€2) be an edge in G;Vl". By Lemma
21, there exist a,b,a < h < b such that (a,i) € €1, (b,j) € € for
some i,j € [k] and wg, € e} From the definition of #4 in the
case of register automata it follows that there exists [ € [k] such
that either (i) [(a, z)] [(h l)] and [(h l)] aeA [(, ])]W or
(i) [(a, D15 %% [(h, l)]év and [(h, D14 ~4 (B )T

Let C consist of the classes €1 E L(h) for which (i) holds, together
with the classes e T R(h) for which (ii) holds. Clearly, C is a
vertex cover of G}”l" and its size is bounded by k. Thus, A is LR-
bounded. O

for all e
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We next prove the "if" part of Theorem 19.

PROPOSITION 22. Let B be an LR-bounded extended automaton
with m registers. Then Reg(B) equals I1, (Reg(A)) for some register
automaton A.

Proor. Consider an LR-bounded register automaton 8 = (B, X).
Proposition 6 shows how global equality constraints can be simu-
lated with additional registers, so we assume that ¥ does not have
global equality constraints of the form eizj.

It remains to take care of the inequality constraints. For read-
ability, we provide the proof for the case when m = 1 (so B8 has a
single register). The extension to multiple registers is straightfor-
ward. Let N be the vertex cover bound witnessing the fact that 8
is LR-bounded.

We denote efl by e*. We also denote the equivalence class
[(n, 1)]sw by [n]4y for n > 0 (or simply [n] when w is understood). We
construct a register automaton A for which Reg(8) = I1; (Reg(A)).
The intuition is the following. Let {dn},>0 be a register trace of
B. A computation of A on {dp}n>0 guesses an accompanying
control trace w = {(qn,n)}n>0 of B and first checks that p =
{(dn, qn,n)}n>0 is a run of B. Register 1 of A is treated in each
transition identically to register 1 of 8. In addition, A checks satis-
faction of the inequality constraints of 3. To do this, extra registers
are used to carry information, for every position h > 0, about the
prefix {(dn, qn, On)}n<p and to guess information about the suffix
{(dn, qn, On)}n>p- At a given position that participates in inequality
constraints, A is faced with two choices: either store the current
data value in some register and then later check that it is indeed
unequal to all the data values paired with the current position by
e¥, or guess, and store in the registers, a set of data values unequal
to the current one, and later check that all positions paired with
the current one have a data value in the guessed set. The choice A
will make at position h will depend on the out-degree of h in GhW:
if it is larger than N then it will choose the first option, otherwise
the second. LR-boundedness will guarantee that this strategy can
be enforced using a number of registers depending only on N.

We next present more details. Recall that the construction is
shown for the case when 8 has a single register and no global
equality constraints (because these can be simulated with extra
registers by Proposition 6). We assume without loss of generality a
normal form on e¥: if e* connects a member n of an equivalence
class €1 to a member m, m > n, of another equivalence class €3,
then m is the first member of e, that is larger than n and n is the
last member of €; that is smaller than m. Let E* = (Q7, q(‘;, a®, F%)
be a deterministic automaton accepting e*, where 0= is the set

=(#)

F=(#) the set of accepting states.

For each h > 0, consider the graph G_;:’ whose edges are all pairs
(n, m) for which wy,,;, € e* and n < h,m > h. Observe that such
an edge exists iff there are €1, €2 such that n € €1, m € €3, and (i)
(e1,€2) is an edge in G}”, or (ii) €1 #4 € and € or € straddles h.

of states, 9 the initial state, =@ the transition function, and

Also note that, due to the normal form for e*, for each €, 3 there
is at most one corresponding edge in GX. Since there is at most
one equivalence classes that can straddle h, it follows that G}‘:’ has
a vertex cover of size at most M = N + 1.
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Clearly, it is sufficient for A to enforce, for all & > 0 all inequali-
ties represented by G}‘l“’. To do so we use registers, with additional
bookkeeping information in the states. We distinguish between two
kinds of nodes in G;:’: (a) nodes that have a large out-degree and
(b) nodes with a small out-degree. In the first case A will store the
data value of the node of G}” in its registers while in the second
case it will store the non-deterministically guessed data values of
the target nodes. Fix k > 0 (a parameter of the construction). We
use 2k registers, denoted R, = {ai,...ax} and Ry = {b1,...b}.
Registers in R, hold values of nodes of type (a), and those in Ry,
hold values of nodes of type (b). For register r, we denote the value
it holds by val(r). We also use, as components of the state of A,
mappings on : R U Ry +— {0,1} (indicating, as earlier, whether
r is "occupied" or "free"), and state : R, U R, = Q7 providing,
for each register, an associated state. For each ¢ € QF, we de-
note regq(q) = {r € Rq | on(r) = 1, state(r) = q} and similarly
for regy(q). For g € Q7, let val-states(q) be the bag of values
held by the registers in reg,(q), and similarly for val-statey(q).
At position h, val-state,(q) holds the values of current nodes of
type (a), such that for all d € val-state,(q), if d was guessed at
transition n, then ai(qat, wpp) = q (the multiplicities are irrele-
vant). And val-statey, (q) represents the bag of values such that, if
d € val-statey(q) is introduced at transition n, a® (q(;;, wpp) = qand
the multiplicity of d is the number of target nodes reachable from
n that occur beyond h and have value d. We additionally maintain,
as a component of the state of A, a set Q) C Q7 of states that are
updated at each transition and are prohibited from ever reaching
an accepting state.

In a computation of A, all registers are initially available (i.e.,
on(r) = 0 for all r). This is easily enforced by having A reject
otherwise. In a transition from position h — 1 to h, A does the
following:

(1)  for each accepting state q of Q%:

(a) if g € O, reject;

(b) if dy, € val-state,(q), reject;

(c) ifregp(q) # 0 and dj, ¢ val-state,(q), reject; if regy (q) #
0 and dj, € val-state,(q), pick one r € regy(q) for which
val(r) = dp, and set on(r) = 0 (this decreases the multi-
plicity of dy, in val-statey (g)).

(d) guess whether there is another #-match from g in the
future. For a negative guess, insert ¢ in Q_/, and set on(r) =
0 for all r € regq(q). For a positive guess, either continue
or do the following ("switch" from R, to Rp):

o if val-state, (q) # 0, do nothing;

o if val-state, (q) = 0 pick a subset of registers r of Ry, for
which on(r) = 0 (if none exists, reject), set each on(r) =
1, state(r) = g, and set each val(r) to an arbitrary value
not in val-state, (q). Moreover, set on(r) = 0 for all r €
rega(q): )

(2)  guess whether hyields at least one edge in G}‘:“. For a negative
guess, add qg to Q. For a positive guess, nondeterministi-
cally choose one of the following:

(i) pick a register r € R, for which on(r) = 0 (if such exists)

and set state(r) = q(f, on(r) = 1, and val(r) = dy;

(ii) if val-state (qat) # 0 and dy, ¢ val-statey, (qat), continue; if

val—stateb(qg) = 0 pick a subset of registers r of R;, for
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which on(r) = 0 (if such exist), set each on(r) = 1, state(r)
to q(’;, and set each val(r) to an arbitrary value different
from dp,.
for p € Q% let pre(p.qn) = (g € Q% | a*(g.qn) = p)
Reject if for some p and q1, g2 € pre(p, qp), val-statey(q1) #
val-statep (q2) # 0. Otherwise, for each p choose an arbitrary
q € pre(p, q) for which val-state,(q) # 0 (if such exists),
and set on(r) = 0 for all r € regy(q’) for ¢’ € pre(p, qp),
g’ # q (this merges the bags corresponding to the states in
pre(p,qn))-
for each register r € R, U Ry, advance its state according to
a” on input qy; similarly, advance each state in Q7.

®)

4)

Note that the construction of A is parameterized by k, which de-
termines its register "budget”. We claim that IT (Reg(A)) € Reg(B)
for every k, and Reg(8B) C II;(Reg(A)) for some sufficiently large
k.

Consider T (Reg(A)) S Reg(B). Let p = {(dn,qn,0n)}n>o0
be a run of A. By construction, {(dn, gn,n)}n>0 is a run of B,
where {dn}ns>0 = 1 ({dn}n>0) and w = {(qn, On)}n>o0 is the cor-
responding control trace of B generated by A. We need to show
that {(dn, qn, On)}n>0 satisfies 3. Note that at each transition from
h to h + 1, A non-deterministically guesses whether h is the source
of an edge of G_;l”, In the case of an incorrect negative guess, the
run is guaranteed to reject by reaching Q' containing an accepting
state. If the guess is correct, the run rejects in these cases: (i) the
constraint corresponding to the edge is violated, or (ii) the regis-
ter budget is exceeded, or (iii) other incorrect guesses about the
computation. Thus, an accepting run guarantees satisfaction of all
constraints.

Now consider Reg(8) C II1(Reg(A)). Let {dp}nz0 and w =
{(qn,On)}n>0 the control trace of B generated by A. We need to
show that, given a sufficiently large k, there exists a computation of
A that enforces all constraints of X on {(dn, gn, On)}n>0. We claim
that such a computation is guaranteed to exist for k > M?. Consider
the computation in which the guesses at each transition from h
to h + 1 are made according to the following strategy. Consider
first the treatment of h ((2) above). If h yields no edge in GZ", make
the negative guess by inserting qg in Q. Otherwise, the positive
guesses are made as follows (deg(h) denotes the degree of h in G;l"):

(a) ifdeg(h) > M, take choice 2(i) (propagate dj, in a free register
of Ry).

(b) if deg(h) < M, take choice 2(ii), by generating a bag of size
deg(h) containing the values of the targets nodes from h.

Now consider the choices in 1(d). Consider the values propagated
in registers of R, that reach an accepting state q. Let degy, (q) be the
number edges from g at position A, i.e. the number of distinct words
whp, for which a® (q, wy,) € F* (n > h). If degy(q) > M, continue.
Otherwise, "switch" from R, to Ry. If a new bag is generated, it
contains the values of the target nodes from q at h (so its size is
degp(q))-

With the above strategy, we claim that at each position h, (i)
the number of occupied registers of R, is at most M and (ii) the
number of occupied registers in Ry, is at most M2. Let V be a vertex
cover of G of size M. To see (i), note that for every g € Q7 for
which regq(q) # 0, degy(q) > M. This means that every value in
R, corresponds to a node in V. For (ii), note that every value in Ry,
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corresponds to a target node in C_}X connected to a source node of

degree < M. Clearly, the number of such target nodes is at most M?
(if & is the number of such source nodes in V and f is the number
of such target nodes in V, then we have a + § = M and the number
of target nodes is less than f§ + aM, hence at most M?).
Altogether, the total number of registers used by A to enforce
the constraints is 2 - M? + 1. O

This completes the proof of Theorem 19.

6 PROJECTION WITH A DATABASE

We have seen in the previous section that extended automata can
specify the projections of register automata with no database. In
this section we discuss some of the issues that arise when the
register automaton is equipped with a database. As we shall see,
describing projections becomes a much more a challenging problem.
In particular, extended automata are no longer able to specify the
projections.

Consider a register automaton with a database. One can con-
sider various notions of projection. In addition to hiding some of
the registers, one could project some of the database relations, or
hide them altogether in the projected runs. Perhaps surprisingly,
performing no projection at all on the database appears to be the
most challenging option. We illustrate this next.

ExAMPLE 23. Consider a register automaton A with 2 registers and
states p and q, with initial and final state p. Its database is a binary
relation E representing edges in a graph together with a unary relation
U. There are two transitions in A: (p, 8, q) and (q,5’, p). The types §
and &’ enforce that the value of register 2 remains unchanged and that
the value of register 1 is always in U, i.e. both types contain xa = yz A
U (x1). Moreover § contains E(x2,x1) while 8’ contains —=E(x2, x1).
Hence the projections of runs of A on register 1 consist of infinite
sequences of nodes of the database for which there is a node in the
graph that points exactly to every even position in the sequence. This
is a property over the database that an extended register automaton
cannot express. Indeed, assume towards a contradiction that there is
an extended automaton B such that for all databases D, Reg(D, B) =
IT; (Reg(D, A)). Let D be the database consisting of the edge E(c, dp)
and the facts U(dy), U(d1), where c,dy, and dy are distinct values.
Then the sequence dyd1dod1dody - - - isinIl1(Reg(D, A)). Hence there
is an accepting run p of B over D whose register trace is the above
sequence. Observe that no type in a transition of the run includes a
positive atom E(—, —) since such an atom would be false (as the only
edge is E(c,do) and ¢ # dy, d1). Now consider the database D’ which
is the same as D with the edge E(c,dy) removed. Then p remains an
accepting run of B over D’, since by the earlier observation, all types
at each step remain true. But the sequence is not in I1; (Reg(D’, A)),
contradiction.

The above example is relatively simple but already suggests that
describing projections of runs may require specifying non-trivial
combinatorial properties involving both the register trace and the
database. As seen above, extended automata are unable to describe
such projections.

In this section we make partial progress by considering the
special case of projections in which the entire database is hidden,
together with some of the registers. Consider a register automaton
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A = (k,0,Q,I,F,A), and m < k. We denote by II,,,(Reg(D, A))
the projection of Reg(D, A) retaining only the values of registers
[1..m]. We would like to describe these projections as the runs of
some register automaton without a database. More precisely, we
are looking for an automaton A with no database such that: (i) for
each database D over o and run of A over D whose register trace
is r, there is some run of A whose register trace is II,,(r), and (ii)
conversely, for each run of A whose register trace is r’, there is a
database D over o and a run of A over D whose register trace is r
and r’ = I, (r). In other words, we wish to have that Reg(A) =
Up I ;n(Reg(D, A)). To this end, we augment extended automata
with two new kinds of global constraints: finiteness contraints and
tuple inequality constraints.

Finiteness constraints. Consider again the automaton A of Ex-
ample 23. We wish to describe the sequences of values in register 1
when the database is hidden. First, the data values occurring at
even and odd positions must be disjoint. This can be enforeced by
an inequality constraint efl on values at odd distance in the run.
However, this is not sufficient, as it allows for infinitely many data
values in the run. In order to deal with this problem, we introduce
finiteness constraints defined by MSO formulas qofm (x), where xisa
free variable. A run {(dy, qn, On)}n>0 of a register automaton satis-
fies <p‘£m (x) if the set {dm [i] | {gn}n>0 = (p?n(m)} is finite. Allowing
only finitely many values in the run, together with the previous
constraint, is clearly sufficient for describing the projections of the
register traces of A on the first register.

Tuple inequality constraints. Consider again the register au-
tomaton A of Example 23, but now E is ternary and J contains
E(x1,x2,y1) while 8" contains is negation, =E(x1, x2, y1). We again
wish to project away register 2. It is now allowed for a data value in
register 1 to appear in both odd and even positions within the same
run. However, if we consider an odd position « and an even position
S within a run, the tuple formed with the data values in register 1
at position « and « + 1 cannot be equal to the tuple formed with the
data values in register 1 at a position ff and f + 1. To deal with this,
we introduce a mechanism to specify tuple inequality constraints
as follows. A tuple inequality constraint for a register automaton A
with states Q is an MSO formula (pjfi(o'c, p) over Q%, where @ and

P are tuples of distinct free variables of the same arity [ and 7, j are
tuples of registers of the same arity. The constraint is satisfied in
arun {(dy, qn,0n)}n>o if for every pair of tuples (@, p) such that
{qnin>0 & <P§Jf(0?,ﬂ), (day[i1], - . - day [ig]) # (dp, 1], - - - dg, Lir]).

In the extension of Example 23 with a ternary symbol E men-
tioned above, in order to describe the projections to register 1, we
would add the binary constraints (pfl’ 11 (xx’, yy") with a formula ex-
pressing the fact that position x is odd, position y is even, x” = x + 1
and y’ = y + 1. Notice that the inequality constraints efl, that can
be used when E is binary in order to enforce that a data value at
an even position can not be equal to a data value at a odd position,
can equivalently be enforced with a tuple inequality constraint
(pf 1 (%, y) whose formula express the fact that x is even and y is
odd. Similarly, every inequality constraint can be expressed as a
tuple inequality constraint of arity 1. Tuple inequality constraints
are therefore generalizations of inequality constraints.
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We next define an automaton model that augments extended
automata with finiteness and tuple inequality constraints. An en-
hanced automaton is a pair (A, X) where A is a register automaton
and X is a set of equality, tuple inequality, and finiteness constraints
for A. We show the following.

THEOREM 24. Let A be an automaton with k registers and schema
o. Let m < k. There is an enhanced automaton B with m registers
and no database, such that Reg(8) = Up I (Reg(D,A)), where
the databases D are over schema o.

Proor. Let A = (k,0,Q,I, F, A) be a register automaton. With-
out loss of generality we can assume that A is state-driven and com-
plete. Let m < k. We construct the enhanced automaton 8 = (B, X)
as follows. First, B = (m,Q,I,F,A’) where A’ = {(p,5|m,q) |
(p,d,q) € A} and §|m denotes the restriction of § to the first m
registers. Note that B remains complete and state-driven. We now
describe X. The equality constraints are constructed as done in the
absence of a database (see the proof of Theorem 13). The finite-
ness constraints are defined as follows. Let w = {gn }n>0 be a state
trace of B (which is also a state trace of A). As A is state-driven,
qn determines the type 8, such that {(qn,5n)}n>0 is the control
trace associated to w. For each i € [m], <pfm(x) defines the set of
positions A such that [(h, i)]ﬁ, is in adom,, (E)) (recall the defini-
tion of adomW(SX) in the proof of Theorem 9). Clearly, this can
be specified in MSO. Observe that in an actual run on database D,
the values of registers in the active domain are generally a subset
of adom(D). Indeed, D may contain values not occurring in any
register in the run.

We next explain the construction of the tuple inequality con-
straints. We use the following notation. Forr € {x;, y;},r" € {xj,y;}
and positions n and n’, we denote (n,r) ~3 (n’,r’) if (un,i) ~4
(up,j), where up = nifr = xj, up = n+ 1if r = y;, and similarly
for u,.

Consider a control trace w = {(qn,n)}n>0 of A. First, the in-
equality constraints el?; constructed as in Theorem 13 are expressed
straightforwardly as monadic tuple inequality constraints qofj (a, p).
Next, we define several tuple inequality constraints for each sym-
bol R in o. Let k be the arity of R. Each tuple inequality constraint
qo:fj(d,ﬁ_) for R states that there exist positions n and n’ and a
pa’rtition {E, F} of [x] such that:

e |a| =1pl = IF|

e §, contains a negative literal =R(s1, . . . Sx)
e J, contains a positive literal R(ry, ..., rx)
o (n,57) ~A (n’,r;) for | € E,

o (ay,i) ~$ (n,s;) forl € F,

o (Br.ji) ~% (') forl € F.

Clearly, the above can be stated in MSO. This means that the
positions involved can be specified using regular expressions over
the states in w.

Let ¥ consist of the equality, finiteness, and tuple inequality
constraints defined above and B be (B, ). We claim that Reg(B) =
Up Im(Reg(D, A)), where each D is over o.

The inclusion Reg(B) 2 Up I (Reg(D,A)) is simple and
omitted here. We next prove the converse.
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We will need the following easily proven lemma. Intuitively, it
says that in a run of a register automaton on a database, the values
of registers that are not forced to be in the active domain of the
database by the control trace can be changed to values outside
the active domain of the database in any way consistent with the
(in)equalities, without affecting validity of the run on that database.

LEmMA 25. Let A = (k,0,Q, I, F,A) be a register automaton and
p = {(dn,qn.6n)}n>0 a run of A over some database D. Denote by w
the control trace of p. Let g be a mapping from &)Y toD that associates
to each € € adom,,(EY’) the value induced by p, and an arbitrary

value inD — adom(D) to each € ¢ adom,,(EY’), such that e; 365,{ €
implies that g(e1) # g(e2). Consider the sequence g(p) obtained from
p by replacing dy,[i] with g([(n,i)]1) (observe that g does not modify
registers whose value is in adom(D)). Then g(p) is a run of A on D.

Let p’ = {(d},, qn> Snlm)}n >0 be a run of B. We need to construct
a database D over o and a run p of A over D such that the projection
of the register trace of p to the first m registers is {d,},>0. The
control trace of p will be w = {(qn, n)}n>0. It remains to construct
D and the values of the registers d,, for each position n.

This is done as follows. From p’ we construct a symbolic trace
w* of some register automaton A* over the schema ¢* which is
o augmented with the set C of constants from the active domain
(this is made more precise below). Essentially, w* and A* are the
extension of w and A to the schema o* enforcing equality with the
constants whenever necessary. By the proof of Theorem 9 there is a
finite database D* over the schema ¢* witnessing the fact that the
symbolic trace is actually a control trace via some run p* over D*.
We then need to slightly modify D* and p* so that the projection of
the register trace of p* to the first m registers is the register trace of
p’. This yields the desired database and run of A over the database.
We now provide the details of the construction.

We start by defining the set of constants that are part of o*. Let
C be the set of data values occurring in p’ that are forced by w to
be the active domain of the database. In other words, C is the set
of data values d such that d = J;l [i] for some register i < m and
some position h such that [(h, i)]ﬁ € adom(SQ). The finiteness
constraints of I' ensure that C is finite.

We now construct a symbolic trace w* = {(qp, 8;,)}n>0, where
0y, is defined from &, as follows.

For each 6, we denote by C(,) the extension of §, with the
constants C by including the following positive literals (for all
i€ I[k]],CEC,REO',and}_l(;JEUy'UC):

o x; =cif (n,i) ~4 (n’,j) with j < mandd”l,[j] =c

ey =cif(n+1,i) ~& (n',j) with j < mandci;l,[j] =c

o R(hy,...hy) if there is a partition {E, F} of [k] such that
hi e xUgfori € E, hjisc; € Cfori € F, and for some
position n’ there is R(r1, . . ., i) € &,y such that for alli € E,
(n, hj) ~ﬁ, (n’,r;),and for all i € F, r; = ¢; has been derived
in 8,/ by one of the previous two items.

Let §,, consist of C(6,) together with the negative literals in-
duced by the complement of the above positive literals. Thus, J;,
is complete. To show that it is consistent, it is enough to show
consistency of the positive facts with respect to equality. Con-
sistency without constants is inherited from ;. Therefore, the
non-trivial cases are those involving constants. We illustrate with
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two representative cases. For equality, we need to show, for in-
stance, that x; = c¢,x; = ¢ € J, implies that x; = x; € J;,
Suppose that x; # x; € J;. By definition, we have positions
ni,n; such that (n, i) ~A (n},u) with u < m and d_;,l [u] = ¢
and (n, j) ~& (ng,v) withv < m and d_;, [v] = c. By definition we
2
also have (n,i) #% (n, ) and therefore (n},u) # (n3,v). But as
p'E
contradicting the fact that J; ,u] = J”l, [v] = c. The other cases are
1 2

%, this implies (assuming that n] < nj) that Qn; - dny € el

treated similarly.

Consider now consistency of relational atoms with respect to
equality. Again, the interesting case involves the constants. As a
typical example, suppose R(x1, c2,¢3),x2 = c2,x3 = ¢3 € 0,. We
need to show that R(x1, x2, x3) € ;. Suppose towards a contradic-
tion that =R(x1,x2,x3) € §,,. By definition of the equalities x =
c2,x3 = c3, there exist positions az, a3 such that (n, 2) ~ﬁ (a2, i2)
with is < mand d_az[iz] = cp and (n,3) ~Q (a3, i3) with i3 < mand
JaS [is] = c3. By definition of R(x1, 2, ¢3), we have a position n’,
and registers rq, rz, r3 such that (n, x1) ~Q (n’,r1)andry = c2,73 =
c3 € &;,. By definition of the equalities rz = c2, 73 = c3, there are po-
sitions Sz, B3 such that (n’,r2) ~4 (B2, j2), (n',r3) ~4 (B3.3), for
Jj2.j3 < m, and dg, [j2] = ¢z, dp,[j3] = c3. However, the inequality
constraint for =R(x1, x2, x3) at position n, R(r1, rz,r3) at position
n’,E = {1}:F = {2:3}, a = aas, B =7ﬁ2ﬂ3, i = iziz and j = jojs,
says that (dg, [i2], de [13]) # (dg,[j2]. dg, [j3]), a contradiction.

Consider the sequence w* = {(qn, 55;)}n>0. We show that w*
satisfies the conditions of a symbolic control trace with constants
C. As we have constructed the J;, so that they are complete and
consistent, it remains to show that 5:; 4+1 18 consistent with &}, in
the sense that 6;,|(§ U C) is isomorphic to 67, [(X U C). The case
of literals without constants is inherited from w. Suppose that
y; = ¢ € 8;. From the definition of equality with constants, and
the fact that (n,y;) ~@ (n+ 1,x;), it follow_s thatx; =c €&, .
Similarly, suppose R(h,¢) is part of §;, for h C §. From the fact
that (n, y;) ~Q (n + 1,x;) for every i € [k] it easily follows that
R(h(§ « %), ¢) is part of 3, 1> where h(j « %) is obtained from
by replacing each y; with x;, as desired.

One can easily construct a register automaton A* over o* for
which w* is a symbolic control trace (the automaton simply al-
lows all transitions occurring in the sequence). By the proof of
Theorem 9, this symbolic run is actually the control trace of a
real run. Hence there is a finite database D* over ¢* and a run
p* = {(dn. qn»63)In>0 of A* over D*. Observe that by construction
of the 8}, dn, agrees with d/, on all registers with values in C, but
may disagree on others. To fix this, we modify D* and p* as follows.
We first ensure that adom(D*) contains no value that occurs in p’
but is not in C by applying to D* and p* an appropriate isomor-
phism (note that this uses the assumption that each run leaves out
infinitely many values of D). that is the identity on C. Let D* and
5" = {(€n,qn, On)}n>0 be the resulting database and run. Finally, we
can use Lemma 25 to modify {€, }, >0 so that it agrees with {117;1 In>o
on the first m registers. More precisely, let g be the mapping on
&Y such that g([n, L) = dr,[j1if (n, i) ~A (n’, j) for some n’ and
Jj < m, and g is the identity everywhere else. Note that g is the iden-
tity on adom,, (6*) (including C). Indeed, if (n, i) ~ﬁ (n’,j) then
either e, [i] = (1;1, [j] € Cor [(n, i)]ﬁ ¢ adom,, (p*). The fact that g
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does not modify register values in C, together with the (in)equality
constraints of %, ensure that g is consistent with (in)equalities. Also,
g(€) € D — adom(D*) whenever g(e¢) # €. By Lemma 25, g(p*) is a
run of A on D* and by construction, the projection of its register
trace on the first m registers is the register trace of p’. O

7 CONCLUSIONS

The main contribution of this paper is to gain insight into the means
needed to specify views of database-driven systems. We use as a
vehicle register automata, essentially identical to artifact systems.
We have seen that describing even very simple projection views
of register automata without a database requires the addition of
global constraints. This gave rise to extended register automata. We
showed that these have desirable properties, including decidability
of verification of LTL-FO properties. We also characterized the pre-
cise fragment of extended automata needed to specify projections
of register automata. In the absence of a database, extended regis-
ter automata are themselves closed under projection, but this fails
when a database is present. We therefore considered the additional
features needed to specify projections of register automata with a
database. While a solution to the general case remains elusive, we
addressed projection views in which the entire database is hidden
in addition to some of the registers. We showed that these views
can be specified by extended automata further augmented with
finiteness constraints and tuple inequality constraints. This gave
rise to enhanced automata.

Recent results, which we will present in the full paper, show
that the enhanced register automata model enjoys most of the nice
properties of the extended register automata model. In particu-
lar, its state and control traces remain quasi-regular, generalizing
Theorem 9. As a consequence, enhanced automata have all the
nice decidablity properties mentioned in Theorem 12. On the other
hand, Theorem 24 does not fully extend to enhanced automata.
Specifically, enhanced automata are closed under the projection
that removes the database entirely (yielding the variant of Theo-
rem 24 where k = m, but with an enhanced register automaton as
input instead of a simple register automaton). However, they are
not closed under projections that eliminate one or more registers.

The results obtained highlight the technical challenges in speci-
fying views of database driven systems. Remaining open questions
closely related to this paper include the following: (i) precise com-
plexity of our decision procedures and automata constructions, and
(ii) characterization of more general projection views that include
arbitrary projections of database relations. More broadly, richer
classes of views need to be investigated for richer models of data-
base driven systems. The difficulties encountered even in the simple
framework studied here suggest that obtaining precise specifica-
tions of such views may turn out to be a challenging goal. As a
second best, it would be useful to provide approximate descriptions
that satisfy certain tightness conditions.
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