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Abstract

We present several first-order and second-order numerical schemes for the Cahn–Hilliard equation with unconditional energy
tability in terms of a discrete energy. These schemes stem from the generalized Positive Auxiliary Variable (gPAV) idea, and
equire only the solution of linear algebraic systems with a constant coefficient matrix. More importantly, the computational
omplexity (operation count per time step) of these schemes is approximately a half of those of the gPAV and the scalar auxiliary
ariable (SAV) methods in previous works. We investigate the stability properties of the proposed schemes to establish stability
ounds for the field function and the auxiliary variable, and also provide their error analyses. Numerical experiments are
resented to verify the theoretical analyses and also demonstrate the stability of the schemes at large time step sizes.
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The Cahn–Hilliard equation [1] plays a key role in the modeling of two-phase and multiphase flows based on
he phase field (or diffuse interface) approach [2–5]. Under appropriate boundary conditions, the mass (or volume)
f each fluid component described by the Cahn–Hilliard equation is conserved. Indeed, the Cahn–Hilliard equation
an be derived from the mass balance equations for individual fluid components in a multicomponent fluid mixture
y choosing an appropriate form for the free energy density function; see e.g. [4,6,7]. Developing effective and
fficient numerical algorithms for the Cahn–Hilliard equation can have important ramifications on the modeling and
imulation of two-phase and multiphase flows. This problem has witnessed a sustained interest from the research
ommunity, and we refer to [8–11] for some examples.

The design of numerical schemes for the Cahn–Hilliard equation confronts several challenges. The predominant
ssue among these is posed by the nonlinear term. The nonlinear term in the Cahn–Hilliard equation stems from
he potential energy (double-well) in the free energy density function. The system described by the Cahn–Hilliard
quation admits an energy balance equation (energy law) on the continuous level. To achieve discrete energy stability
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in the numerical scheme, i.e. retaining a corresponding discrete energy law, hinges on the numerical treatment of
the nonlinear term. Energy-stable schemes allow the use of larger time step sizes, which can potentially accelerate
dynamic simulations if its computational cost per time step is manageable. A downside about energy-stable schemes
is that their cost is typically markedly higher when compared with semi-implicit type schemes (see e.g. [5,12–16]),
which are only conditionally stable. This is because the energy-stable schemes oftentimes entail the solution of
nonlinear algebraic equations, or the solution of linear algebraic systems (either coupled linear systems or a linear
system for multiple times). To achieve discrete energy stability and a low computational complexity (or operation
count) per time step in the numerical scheme is the focus of the current work.

Numerical algorithms for the Cahn–Hilliard equation available in the literature generally consist of two classes:
nonlinear schemes and linear schemes. With nonlinear schemes one treats the nonlinear term or a part of the
nonlinear term implicitly, and this requires the solution of nonlinear algebraic equations upon discretization; see
e.g. [17–24], among others. Among the nonlinear schemes, convex splitting of the potential energy [25,26] and
its variants are a widely-used approach for treating the nonlinear term. Other approaches include the midpoint
approximation [17,27], Taylor expansion approximation [20], and special quadrature rules [28], among others.

Unlike nonlinear schemes, the linear schemes (see e.g. [16,29–31]) require only the solution of linear algebraic
systems upon discretization, due to the explicit treatment of the nonlinear term, while maintaining energy stability.
Among the linear schemes, incorporation of a stabilizing zero term, together with a modified potential energy
with bounded second derivative, is an often-used method [16,29]. Other researchers have also employed a Lagrange
multiplier to enforce energy stability [16,32]. In the past few years, the use of certain auxiliary functions or variables
proves to be effective in devising linear energy-stable schemes. The invariant energy quadratization (IEQ) [30]
and the scalar auxiliary variable (SAV) [31] are two prominent examples of such methods; see also [11,33–38],
among others. The IEQ method introduces an auxiliary field function as an approximation of the square root of the
potential energy density function together with a dynamic equation for this field function, and allows one to ensure
the energy stability relatively easily. It gives rise to a system of linear algebraic equations involving time-dependent
coefficient matrices upon discretization. The SAV method uses an auxiliary variable (a scalar number rather than
a field function) to approximate the square root of the potential energy integral. It retains the ease to ensure the
energy stability, and moreover leads to linear algebraic systems with a constant coefficient matrix, thus making
the implementation considerably simpler [11]. The use of the square root function form in IEQ and SAV, either
for a field function and a scalar number, is critical to the proof of energy stability in these methods. A recent
further development in this area is the generalized Positive Auxiliary Variable (gPAV) method [39]. The gPAV
method also employs a scalar-valued number as the auxiliary variable to ensure the energy stability, and it gives
rise to a linear algebraic system with a constant coefficient matrix. This method makes three advances in terms
of the methodology: (i) gPAV allows the use of a general class of function forms to define the auxiliary variable,
not limited to the square root function as in IEQ and SAV. (ii) gPAV guarantees the positivity of the computed
values for the auxiliary variable. (iii) gPAV applies to general types of dissipative or conservative partial differential
equations (PDE) for the development of energy-stable schemes, not limited to gradient type systems.

In the current paper we present several unconditionally energy-stable linear schemes with first- and second-
order accuracy for solving the Cahn–Hilliard equation, and provide analyses for their stability properties and
errors. The unconditional stability properties are with respect to a discrete energy, not the original free energy
of the system. These schemes stem from the gPAV idea [39], and inherit the useful properties of guaranteed
positivity for the computed auxiliary variable and constant coefficient matrix for the resultant linear algebraic system
upon discretization. Two advances have been made algorithm-wise: (i) Stability bounds for both the phase field
function and the auxiliary variable can be established with the current schemes. In contrast, with the original gPAV
scheme [39] the stability property is only through the auxiliary variable. (ii) The operation counts (or computational
cost) per time step of the current schemes are comparable to that of the semi-implicit schemes (see e.g. [14]), and
are about a half of those of the gPAV scheme [39] and the SAV scheme [31]. This is because the linear system
resulting from the Cahn–Hilliard equation only needs to be solved once within each time step with the current
schemes. In contrast, with gPAV [39] and SAV [11,31] the linear system needs to be solved twice for the two
copies of the field function therein within each time step. We provide the stability analyses and error estimates for
these schemes, and present numerical experiments to verify the theoretical analyses.

The contributions of this work consist of two aspects: (i) the unconditionally energy-stable schemes for the

Cahn–Hilliard equation, and (ii) the stability and error analyses for the proposed schemes.
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The rest of this paper is organized as follows. In Section 2 we reformulate the Cahn–Hilliard equation using
the gPAV idea, and present two first-order and two second-order schemes for numerically solving the reformulated
system of equations. We prove the unconditional energy stability properties of these schemes and provide the error
estimates. In Section 3 we present numerical examples to verify the convergence rates and the unconditional stability
of these schemes. Section 4 then concludes the presentations with some closing remarks. In the Appendix we
provide proofs to several theorems from the main text.

2. gPAV-based unconditionally energy-stable schemes

2.1. Cahn-Hilliard equation and gPAV formulation

Let Ω ∈ Rd (d = 2, 3) be a bounded domain with a smooth boundary ∂Ω . We consider the following gradient
flows

∂φ

∂t
= ∆µ = ∆ (−∆φ + λφ + h(φ)) , (2.1)

where φ(x, t) is the phase field function, λ ⩾ 0 is a constant parameter, ∆ is the Laplace operator, and x and t and
the spatial coordinate and time. The nonlinear term

h(φ) = H ′(φ) = φ3
− φ, with H (φ) =

1
4

(φ2
− 1)2 (2.2)

being the double-well potential function [1,40]. As is well-known, this is the celebrated Cahn–Hilliard equation
with λ = 0.

Eq. (2.1) is supplemented by the initial condition

φ(x, t = 0) = φin(x) (2.3)

where φin denote the initial phase field distribution, and the boundary conditions of either

∇φ · n = ∇µ · n = 0 on ∂Ω , (2.4)

or the periodic boundary conditions for φ. Here n denotes the outward-pointing unit normal vector of the boundary.
Taking the L2 inner product between (2.1) and φ, using the integration by parts and (2.4), we derive the following

free energy functional Etot for this system

Etot (t) =

∫
Ω

(
1
2
|∇φ|

2
+
λ

2
φ2

+ H (φ)
)

dx.

To facilitate energy-stable numerical approximations of the system (2.1), we define a shifted energy of the following
form

E(t) = E[φ] =

∫
Ω

(
1
2
|∇φ|

2
+
λ

2
φ2

+ H (φ)
)

dx + c0, (2.5)

where c0 is a chosen energy constant to ensure that E(t) > 0 for 0 ≤ t ≤ T , and T denotes the time interval
on which the system to be solved. It is straightforward to verify that the system (2.1)–(2.4) satisfies the energy
issipation law

d E
dt

=

∫
Ω

(∇φ · ∇φt + λφφt + h(φ)φt ) dx =

∫
Ω

φtµdx = −

∫
Ω

|∇µ|
2dx ≤ 0, (2.6)

here φt denotes the time derivative of φ.
Following the gPAV idea [39], we introduce a positive scalar variable R(t)2

= E(t) (or R(t) =
√

E(t)). R(t)
satisfies the following evolution equation

2R
d R
dt

=
d E
dt

= −

∫
Ω

|∇µ|
2dx. (2.7)

Noting that R
√

E
= 1, we rewrite (2.7) into

d R
= −

1
∫

|∇µ|
2dx = −

1
√

∫
|∇µ|

2dx = −
1
√

R
√

∫
|∇µ|

2dx = −
R
∫

|∇µ|
2dx. (2.8)
dt 2R Ω 2 E Ω 2 E E Ω 2E Ω
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Then, we rewrite (2.1) into the following equivalent form

φt = ∆µ, (2.9a)

µ = −∆φ + λφ +
R2

E
h(φ), (2.9b)

d R
dt

= −
R

2E

∫
Ω

|∇µ|
2dx. (2.9c)

n this reformulated system, the dynamic variables are φ, µ and R, which are coupled in Eqs. (2.9), together with
he boundary conditions (2.4), the initial condition (2.3) for φ, and the following initial condition for R(t)

R(0) =
√

E[φin], where E[φin] =

∫
Ω

(
λ

2
φ2

in +
1
2
|∇φin|

2
+ H (φin)

)
dx + c0. (2.10)

Note that R(t) in this system is determined by solving the coupled system of equations, not by using the relation
R2(t) = E(φ). Therefore R2(t) is an approximation of E(t), rather than E(t) itself.

2.2. Preliminaries

We first outline the notation used herein and recall some basic results, including the existence, uniqueness, and
regularity results about the H−1 gradient flows.

For the non-negative integers p, k and an open Lipschitz subdomain D ⊂ Ω , let L p(D) denote the standard
anach space with norm ∥v∥0,p,D =

(∫
D |v|pdx

)1/p and W k,p(D) the standard Sobolev space with the norm
v∥k,p,D =

(∑
|α|≤k

∫
D ∥Dαv∥

p
L p dΩ

)1/p. For simplicity, we take the Sobolev space H k(D) = W k,2(D) with the
norm ∥ · ∥k,D and semi-norm | · |k,D , and the space H 0(D) = L2(D) with the usual L2-inner product (·, ·)D and
L2-norm ∥ · ∥0,D . If D is chosen as Ω , we abbreviate them by the norms ∥ · ∥k , ∥ · ∥0, the semi-norm | · |k and the
nner product (·, ·), respectively. Therefore, we introduce the space L p(0, T ; V ), L∞(0, T ; V ) and C(0, T ; V ) with
he norms

∥ϕ∥L p(0,T ;V ) =

[∫ T

0
∥ϕ(t)∥p

V dt
]1/p

, ∥ϕ∥L∞(0,T ;V ) = ess sup
0≤t≤T

∥ϕ(t)∥V and ∥ϕ∥C(0,T ;V ) = max
0≤t≤T

∥ϕ(t)∥V .

Assume that the nonlinear free energy potential H (s) ∈ C3(R). For some cases, in order to ensure the uniqueness,
we assume the following condition: there exists a constant c1 > 0 such that

H ′′(s) = h′(s) ≥ −c1. (2.11)

Lemma 2.1 (See [41]). (i) For the H−1 gradient flow, assume that (2.11) holds, φin ∈ L2(Ω ) and there exists
p0 > 0 such that

sh(s) ≥ b|s|p0 − c2, (2.12)

where b > 0 and c2 are constants. Then, for any T > 0, there exists a unique solution φ for (2.1) such that

φ ∈ C(0, T ; L2(Ω )) ∩ L2(0, T ; H 2(Ω )) ∩ L p0 (0, T ; L p0 (Ω )). (2.13)

ii) For the H−1 gradient flow, assume that φin ∈ H 2(Ω ) and

|h′(x)| < C(|x |
p1 + 1), p1 > 0 arbitrary if d = 1, 2; 0 < p1 < 4 if d = 3, (2.14)

|h′′(x)| < C(|x |
p2 + 1), p2 > 0 arbitrary if d = 1, 2; 0 < p2 < 3 if d = 3, (2.15)

here d denotes the dimension in space. Then, for any T > 0, there exists a unique solution φ for (2.1) such that

φ ∈ C(0, T ; H 2(Ω )) ∩ L2(0, T ; H 4(Ω )). (2.16)

emma 2.2 (See [34]). Assume that ∥φ∥1 ≤ M.
i) Under the conditions of (2.14) and φ ∈ H 3(Ω ), there exist 0 < σ < 1 and a constant C(M) such that

∥∇h(φ)∥2
≤ C(M)(1 + ∥∇∆φ∥

2σ ). (2.17)
0 0

4
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L

(ii) Under the assumptions of (2.14), (2.15) and φ ∈ H 4(Ω ), there exist 0 < σ < 1 and a constant C(M) such that

∥∆h(φ)∥2
0 ≤ C(M)(1 + ∥∆2φ∥

2σ
0 ). (2.18)

emma 2.3 (Discrete Gronwall Lemma [42]). Let ai , bi , ci , di , ∆t and C0, for integers i ≥ 0, be non-negative
numbers such that

an + ∆t
n∑

i=0

bi ≤ ∆t
n∑

i=0

di ai + ∆t
n∑

i=0

ci + C0, ∀ n ≥ 0.

Then, if di ∆t < 1 for all i ,

an + ∆t
n∑

i=0

bi ≤

(
C0 + ∆t

n∑
i=0

ci

)
exp

(
∆t

n∑
i=0

di

1 − di ∆t

)
, ∀ n ≥ 0.

Lemma 2.4 (Discrete Gronwall Lemma [43,44]). Let ai , bi , ci , di , ∆t and C0, for integers i ≥ 0, be non-negative
numbers such that

an + ∆t
n∑

i=0

bi ≤ ∆t
n−1∑
i=0

di ai + ∆t
n−1∑
i=0

ci + C0, ∀ n ≥ 0.

Then,

an + ∆t
n∑

i=0

bi ≤

(
C0 + ∆t

n−1∑
i=0

ci

)
exp

(
∆t

n−1∑
i=0

di

)
, ∀ n ≥ 0.

2.3. First-order schemes

We introduce several unconditionally energy-stable schemes for solving the reformulated Cahn–Hilliard equations
(2.9), the boundary conditions (2.4), and the initial conditions (2.3) and (2.10). These schemes stem from the gPAV
idea [39], and they inherit some of the attractive properties of gPAV. For example, the auxiliary variable is computed
via a well-defined explicit form, and its computed values are guaranteed to be positive. The departure point lies in
that all the schemes presented herein require only the computation of a single copy of the field functions per time
step. In contrast, the original gPAV method [39] entails the computation of two copies of the field functions within
each time step. The amount of operations involved in the current schemes is approximately a half of that in the
scheme of [39]. The current schemes have a computational cost roughly the same as the semi-implicit schemes for
the Cahn–Hilliard equation (see e.g. [14]).

We provide stability analysis and error estimates for these schemes in what follows. The first-order schemes are
discussed in this section, followed by the second-order schemes in the subsequent section.

2.3.1. Scheme 1A
Let ∆t > 0 be the time step size and n ≥ 0 denote the time step index, and we set tn

= n∆t for 0 ≤ n ≤ N
with N = T/∆t . For a generic function χ (x, t) continuous in t , let χn denote the approximation of χ (x, tn) at
time tn , where χ can be φ, µ or ψ (defined below). Similarly, let Rn denote the approximation of R(tn). Set⎧⎪⎨⎪⎩

φ0
= φin, µ0

= −∆φ0
+ λφ0

+ h(φ0),

R0
=

√
E(0) =

√∫
Ω

(
1
2
|∇φ0|

2
+
λ

2
|φ0|

2
+ H (φ0)

)
dx + c0.

(2.19)
5
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Then given φn , µn and Rn , we compute φn+1, µn+1 and Rn+1 through the following scheme,

φn+1
− φn

∆t
= ∆µn+1, (2.20a)

µn+1
= −∆φn+1

+ λφn+1
+ |ξ n+1

1A
|
2
h(φn), (2.20b)

Rn+1
− Rn

∆t
= −

ξ n+1
1A

2
√

E[φn]

∫
Ω

|∇µn
|
2dx, (2.20c)

with the boundary conditions

∇φn+1
· n = ∇µn+1

· n = 0, on ∂Ω , (2.21)

where

ξ n+1
1A

=
Rn+1

√
E[φn]

. (2.22)

Note that here ξ n+1
1A

is an approximation of the constant R(t)
√

E(t) = 1.

Remark 2.5. In this scheme we have treated the nonlinear term h(φ) in (2.20b) and the |∇µ|
2 term in (2.20c)

explicitly. Consequently, Eq. (2.20c) for Rn+1 is not coupled with Eqs. (2.20a) and (2.20b) for φn+1 and µn+1 on
the discrete level.

Substituting the ξ n+1
1A

expression in (2.22) into Eq. (2.20c), we get

ξ n+1
1A

=
Rn

√
E[φn] +

∆t
2
√

E[φn ]

∫
Ω |∇µn|2dx

. (2.23)

Since R0 > 0 according to Eq. (2.19), we conclude by induction that ξ n
1A
> 0 for all n. Then Rn+1 is given by, in

ight of (2.22),

Rn+1
= ξ n+1

1A

√
E[φn]. (2.24)

We conclude that Rn+1 > 0 for all time steps n.
The time stepping with the current scheme is thus as follows. Within a time step, given φn , µn and Rn , we

compute E[φn] by (2.5), ξ n+1
1A

by (2.23), and Rn+1 by (2.24). Then with ξ n+1
1A

known, we compute φn+1 and µn+1

by solving Eqs. (2.20a)–(2.20b) together with the boundary conditions (2.21).
It should be emphasized that the Cahn–Hilliard field equation is only solved once per time step with the current

scheme. This is very different from the previous gPAV and SAV-type schemes (see e.g. [11,31,39]), which require
solving the field equations twice per time step (for two copies of the field variables therein). Therefore, the operation
count induced by the current scheme is approximately a half of those with the previous SAV and gPAV schemes, and
it is comparable to that of the semi-implicit type schemes (see e.g. [14]). It can further be noted that the auxiliary
variables Rn+1 and ξ n+1

1A
are computed by well-defined explicit forms, with their values guaranteed to be positive.

Stability properties. The scheme given by Eqs. (2.20)–(2.22) is unconditionally stable. We summarize its stability
properties into several lemmas or theorems below.

Lemma 2.6. The scheme (2.20) is mass conserving in the sense that (φn+1, 1) = (φn, 1).

Proof. In light of the boundary conditions (2.21), the L2 inner product between (2.20a) and the constant one leads
to

(φn+1
− φn, 1) = ∆t(∆µn+1, 1) = −∆t(∇µn+1,∇1) = 0.

So the solution of (2.20) satisfies (φn, 1) = (φ0, 1) for any n. □

Lemma 2.7. With the scheme (2.20) for all time step n,

0 < Rn+1
≤ Rn. (2.25)
6
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Proof. Multiplying 2∆t Rn+1 to Eq. (2.20c) and using Eq. (2.22), we get

|Rn+1
|
2
− |Rn

|
2

≤ |Rn+1
|
2
− |Rn

|
2
+ |Rn+1

− Rn
|
2

= −
∆t |Rn+1

|
2

E[φn]

∫
Ω

|∇µn
|
2dx ≤ 0. (2.26)

e arrive at (2.26) by further noting that Rn > 0 for all n. □

Lemma 2.7 implies that there exists a constant M , depending only on Ω , φin and c0, such that for any n,

Rn
≤ M. (2.27)

ote that c0 in (2.5) is a chosen constant to ensure E(t) > 0 for 0 ≤ t ≤ T . We can choose c0 such that E(t) ≥ C0,
or some constant C0 > 0. It then follows from Eq. (2.23) that ξ n+1

1A
is bounded from above, since

ξ n+1
1A

=
Rn

√
E[φn] +

∆t
2
√

E[φn ]

∫
Ω |∇µn|2dx

≤
Rn

√
E[φn]

≤
M

√
C0
. (2.28)

Theorem 2.8. Suppose φin ∈ H 3(Ω ) and the condition (2.14) holds. The following inequality holds for all n with
the scheme (2.20),

∥∇φn+1
∥

2
0 +

λ

2
∥φn+1

∥
2
0 +

∆t
2

∥∇∆φn+1
∥

2
0 + λ∆t

n∑
k=0

∥∆φk+1
∥

2
0 +

∆t
2

n∑
k=0

∥∇µk+1
∥

2
0 ≤ Ĉ1,

here Ĉ1 = exp (C(M)T )
(
∥∇φ0

∥
2
0 +

λ
2 ∥φ0

∥
2
0 +

∆t
2 ∥∇∆φ0

∥
2
0

)
, and C(M) is a constant depending on M.

Proof. Taking the L2 inner product between (2.20a) and ∆tµn+1 and between (2.20b) and −(φn+1
− φn), and

summing up the two resultant equations, we have
1
2

(∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇φn+1

− ∇φn
∥

2
0) +

λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0

+ ∥φn+1
− φn

∥
2
0) + ∆t∥∇µn+1

∥
2
0 = −|ξ n+1

1A
|
2
(h(φn), φn+1

− φn), (2.29)

where the boundary condition (2.21) has been used. In light of (2.20a), we have

− |ξ n+1
1A

|
2
(h(φn), φn+1

− φn) = −|ξ n+1
1A

|
2
∆t(h(φn),∆µn+1) = |ξ n+1

1A
|
2
∆t(∇h(φn),∇µn+1)

≤
∆t
2

∥∇µn+1
∥

2
0 +

|ξ n+1
1A

|
4
∆t

2
∥∇h(φn)∥2

0. (2.30)

Taking the L2 inner product between (2.20a) and ∆φn+1 and between (2.20b) and ∆2φn+1, and summing up the
esultant equations, we arrive at

1
2

(∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇(φn+1

− φn)∥2
0) + ∆t∥∇∆φn+1

∥
2
0 + λ∆t∥∆φn+1

∥
2
0

= ∆t |ξ n+1
1A

|
2
(∇h(φn),∇∆φn+1) ≤

∆t
2

∥∇∆φn+1
∥

2
0 +

|ξ n+1
1A

|
4
∆t

2
∥∇h(φn)∥2

0. (2.31)

y incorporating (2.30) into (2.29) and summing up Eqs. (2.29) and (2.31), we get

∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇φn+1

− ∇φn
∥

2
0 +

λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0 + ∥φn+1

− φn
∥

2
0)

+
∆t
2

∥∇µn+1
∥

2
0 +

∆t
2

∥∇∆φn+1
∥

2
0 + λ∆t∥∆φn+1

∥
2
0 ≤ |ξ n+1

1A
|
4
∆t∥∇h(φn)∥2

0. (2.32)

To deal with the term on the right hand side of (2.32), we use an idea from [34,41]. Noting that ∇h(φn) =

h′(φn)∇φn , Eq. (2.2) and the relation (2.14), we have

∥∇h(φn)∥2
0 ≤ ∥h′(φn)∥2

0,∞∥∇φn
∥

2
0 ≤ C

(
∥∇φn

∥
2
0 + ∥∇φn

∥
2
0∥φ

n
∥

4
0,∞

)
. (2.33)

Let φ̆n
=

1
|Ω |

∫
Ω φ

ndx. Lemma 2.6 implies that

|φ̆n
|
2

= |φ̆0
|
2

≤
1

∥φ0
∥

2
0 ≤ C. (2.34)
|Ω |

7



Y. Qian, Z. Yang, F. Wang et al. Computer Methods in Applied Mechanics and Engineering 372 (2020) 113444

A
w

B

B

W
l

T

w

Using Sobolev embedding theorems H 1(Ω ) ↪→ L∞(Ω ) (d = 1), H 1+2σ (Ω ) ↪→ L∞(Ω ) for any σ > 0 (d = 2), the
gmon’s inequality (d = 3, see [34,41] for more details) and the interpolation inequality about the spaces H s(Ω ),
e deduce that

∥φn
− φ̆n

∥0,∞ ≤

⎧⎪⎨⎪⎩
C∥∇φn

∥0 for d = 1,

C∥∇φn
∥

1−σ
0 ∥∇∆φn

∥
σ
0 for d = 2,

C∥∇φn
∥

3/4
0 ∥∇∆φn

∥
1/4
0 for d = 3.

(2.35)

y the triangle inequality, we have

∥φn
∥

4
0,∞ ≤ 8

(
∥φn

− φ̆n
∥

4
0,∞ + ∥φ̆n

∥
4
0,∞

)
.

y setting σ = 1/4 and using ∥φ̆n
∥

4
0,∞ ≤ C , we arrive at the relation

∥∇φn
∥

2
0∥φ

n
∥

4
0,∞ ≤

⎧⎪⎨⎪⎩
C∥∇φn

∥
2
0 + C∥∇φn

∥
6
0 for d = 1,

C∥∇φn
∥

2
0 + C∥∇φn

∥
5
0∥∇∆φn

∥0 for d = 2,

C∥∇φn
∥

2
0 + C∥∇φn

∥
5
0∥∇∆φn

∥0 for d = 3.

Applying the following inequality

ξ n+1
1A

=
Rn

√
E[φn] +

∆t
2
√

E[φn ]

∫
Ω |∇µn|20dx

≤
C(M)
∥φn∥1

(2.36)

and (2.28), i.e. ξ n+1
1A

≤ C(M), we obtain

|ξ n+1
1A

|
4
∥∇φn

∥
2
0∥φ

n
∥

4
0,∞ ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(M)∥∇φn

∥
2
0 +

C(M)
∥φn∥

4
1
∥∇φn

∥
6
0 for d = 1,

C(M)∥∇φn
∥

2
0 +

C(M)
∥φn∥

4
1
∥∇φn

∥
5
0∥∇∆φn

∥0 for d = 2,

C(M)∥∇φn
∥

2
0 +

C(M)
∥φn∥

4
1
∥∇φn

∥
5
0∥∇∆φn

∥0 for d = 3.

By using the Cauchy Schwarz inequality, for any εi > 0 (i = 1, 2), there exist constants C(εi ,M) depending on εi

and M , such that

|ξ n+1
1A

|
4
∥∇h(φn)∥2

0 ≤

⎧⎪⎨⎪⎩
C(M)∥∇φn

∥
2
0 for d = 1,

C(M)∥∇φn
∥

2
0 + C(ε1,M)∥∇φn

∥
2
0 + ε1∥∇∆φn

∥
2
0 for d = 2,

C(M)∥∇φn
∥

2
0 + C(ε2,M)∥∇φn

∥
2
0 + ε2∥∇∆φn

∥
2
0 for d = 3.

(2.37)

We set ε1 = ε2 =
1
2 and combine the above inequalities with (2.32), and then

∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 +

λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0) +

∆t
2

∥∇µn+1
∥

2
0

+
∆t
2

(∥∇∆φn+1
∥

2
0 − ∥∇∆φn

∥
2
0) + λ∆t∥∆φn+1

∥
2
0 ≤ C(M)∆t∥∇φn

∥
2
0. (2.38)

e conclude the proof by summing up the above relation for indices from 0 to n and by using the discrete Gronwall
emma 2.4. □

heorem 2.9. Suppose φin ∈ H 4(Ω ), and that the conditions for Lemmas 2.1 and 2.2 hold. The following inequality
holds for all n with the scheme (2.20),

∥∆φn+1
∥

2
0 +

∆t
2

∥∆2φn+1
∥

2
0 +

∆t
2

n∑
k=0

∥∆2φk+1
∥

2
0 + 2λ∆t

n∑
k=0

∥∇∆φk+1
∥

2
0 ≤ Ĉ2,

here Ĉ2 = ∥∆φ0
∥

2
0 +

∆t
2 ∥∆2φ0

∥
2
0 + C(M)T .

Proof. The proof is similar to that for the SAV scheme in [34], by using Lemmas 2.1 and 2.2. □
8
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C

w

w
C

Error estimate. We next examine the errors of the solution to the Cahn–Hilliard equation with the scheme (2.20).
Let

en
φ = φn

− φ(tn), en
µ = µn

− µ(tn) and en
R = Rn

− R(tn). (2.39)

Assume that φin ∈ H 4(Ω ) and the solution (φ,µ) of Eqs. (2.1)–(2.4) satisfies

φ ∈ L∞(0, T ; W 3,∞(Ω )), φt ∈ L4(0, T ; H 1(Ω )) ∩ L2(0, T ; H 1(Ω )),

φt t ∈ L2(0, T ; H−1(Ω )), µ ∈ L∞(0, T ; H 1(Ω )). (2.40)

In light of Lemma 2.1 and Theorems 2.8 and 2.9, we conclude that

∥φ(t)∥2 ≤ C, ∥φn
∥2 ≤ C, (2.41)

where the constant C is dependent on T , φin , and Ω . Since H 2(Ω ) ↪→ L∞(Ω ), we conclude that

|h(φ)|, |h′(φ)|, |h′′(φ)|, |h(φn)|, |h′(φn)|, |h′′(φn)| ≤ C. (2.42)

Based on the relation R(t) =
√

E[φ] and Eq. (2.5), we have

d2 R
dt2 = −

1

4
√

E[φ]3

(∫
Ω

(
∇φ · ∇φt + λφφt + h(φ)φt

)
dx
)2

+
1

2
√

E[φ]

∫
Ω

(
|∇φt |

2
+ ∇φ · ∇φt t + λ|φt |

2
+ λφφt t + h′(φ)|φt |

2
+ h(φ)φt t

)
dx. (2.43)

ombining (2.4), (2.40), (2.41) and (2.42) with (2.43), we deduce that∫ T

0

⏐⏐⏐⏐d2 R
dt2

⏐⏐⏐⏐2 dt ≤ C
∫ T

0

(
∥φt∥

4
1 + ∥φt∥

2
1 + ∥φt t∥

2
−1

)
dt, (2.44)

where φt t denotes the second time derivative of φ.
The truncation errors T n+1

φ1A
and T n+1

R1A
are defined by

φ(tn+1) − φ(tn)
∆t

= ∆µ(tn+1) +
1
∆t

T n+1
φ1A

, (2.45a)

µ(tn+1) = −∆φ(tn+1) + λφ(tn+1) +
R(tn+1)2

E[φ(tn+1)]
h(φ(tn+1)), (2.45b)

R(tn+1) − R(tn)
∆t

= −
R(tn)

2E[φ(tn)]

∫
Ω

|∇µ(tn)|2dx +
1
∆t

T n+1
R1A

, (2.45c)

here

T n+1
φ1A

=

∫ tn+1

tn
(tn

− t)φt t (t)dt and T n+1
R1A

=

∫ tn+1

tn
(tn+1

− t)
d2 R(t)

dt2 dt. (2.46)

With the above definitions and relations, the errors of the scheme (2.20) is summarized by the following result.

Theorem 2.10. Suppose the condition (2.40), and the conditions for Theorems 2.8 and 2.9 hold. The following
result holds with sufficiently small ∆t ,

1
2
∥∇en+1

φ ∥
2
0 +

λ

2
∥en+1
φ ∥

2
0 +

∆t
2

∥∇en+1
µ ∥

2
0 + |en+1

R |
2

≤ Ĉ3∆t2, (2.47)

here Ĉ3 = C exp(∆t
∑n

k=0
rk

1−rk∆t
)
∫ tn+1

0

(
∥φt (s)∥4

1 + ∥φt (s)∥2
1 + ∥φt t (s)∥2

−1

)
ds, r k

= 1+∥∇µk
∥

2
0 and the constant

is dependent on T , φin , Ω , ∥φ∥L∞(0,T ;W 3,∞(Ω)) and ∥µ∥L∞(0,T ;H1(Ω)).
9
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B

Proof. By subtracting (2.45) from (2.20), we have

en+1
φ − en

φ

∆t
= ∆en+1

µ −
1
∆t

T n+1
φ1A

, (2.48a)

en+1
µ = −∆en+1

φ + λen+1
φ + An+1

1 , (2.48b)

en+1
R − en

R

∆t
= −

1
2

An+1
2 −

1
∆t

T n+1
R1A

, (2.48c)

where

An+1
1 = |ξ n+1

1A
|
2
h(φn) −

R(tn+1)2

E[φ(tn+1)]
h(φ(tn+1))

=
en+1

R (Rn+1
+ R(tn+1))

E[φn]
h(φn) + R(tn+1)2

(
h(φn)
E[φn]

−
h(φ(tn))
E[φ(tn)]

)
+ R(tn+1)2

(
h(φ(tn))
E[φ(tn)]

−
h(φ(tn+1))
E[φ(tn+1)]

)
,

An+1
2 =

ξ n+1
1A

√
E[φn]

∫
Ω

|∇µn
|
2dx −

R(tn)
E[φ(tn)]

∫
Ω

|∇µ(tn)|2dx

=
en+1

R

E[φn]

∫
Ω

|∇µn
|
2dx +

R(tn+1)
E[φn]

∫
Ω

(|∇µn
|
2
− |∇µ(tn)|2)dx

+ R(tn+1)
(

1
E[φn]

−
1

E[φ(tn)]

)∫
Ω

|∇µ(tn)|2dx +
R(tn+1) − R(tn)

E[φ(tn)]

∫
Ω

|∇µ(tn)|2dx.

Taking the inner product between (2.48a) and ∆ten+1
µ and between (2.48b) and en+1

φ − en
φ , multiplying (2.48c)

by 2∆ten+1
R , and combining the resultant equations, we get

1
2

(∥∇en+1
φ ∥

2
0 − ∥∇en

φ∥
2
0 + ∥∇en+1

φ − ∇en
φ∥

2
0) +

λ

2
(∥en+1

φ ∥
2
0 − ∥en

φ∥
2
0

+ ∥en+1
φ − en

φ∥
2
0) + ∆t∥∇en+1

µ ∥
2
0 = −(T n+1

φ1A
, en+1
µ ) − (An+1

1 , en+1
φ − en

φ), (2.49a)

|en+1
R |

2
− |en

R|
2
+ |en+1

R − en
R|

2
= −∆t An+1

2 en+1
R − 2en+1

R T n+1
R1A

. (2.49b)

y the Taylor expansion theorem, we deal with the truncation errors as follows,

−(T n+1
φ1A

, en+1
µ ) ≤

∆t
8

∥∇en+1
µ ∥

2
0 +

2
∆t

∥(−∆)−1/2T n+1
φ1A

∥
2
0

≤
∆t
8

∥∇en+1
µ ∥

2
0 + C∆t2

∫ tn+1

tn
∥φt t (s)∥2

−1ds,

−2en+1
R T n+1

R1A
≤ ∆t |en+1

R |
2
+

1
∆t

|T n+1
R1A

|
2

≤ ∆t |en+1
R |

2
+ C∆t2

∫ tn+1

tn

⏐⏐⏐⏐d2 R(s)
dt2

⏐⏐⏐⏐2 ds,

where (−∆)−1/2 denotes the power of −∆ by the spectral theory of self-adjoint operators. We treat the An+1
1 term

on the right-hand side of (2.49a) as follows.

− en+1
R (Rn+1

+ R(tn+1))
(

h(φn)
E[φn]

, en+1
φ − en

φ

)
= en+1

R (Rn+1
+ R(tn+1))

(
h(φn)
E[φn]

,∆t∆en+1
µ − T n+1

φ1A

)
≤ Cen+1

R

(
∆t∥∇en+1

µ ∥0 + ∥(−∆)−1/2T n+1
φ1A

∥0

) ∇h(φn)
E[φn]


0

= Cen+1
R

(
∆t∥∇en+1

µ ∥0 + ∥(−∆)−1/2T n+1
φ1A

∥0

) h′(φn)∇φn

E[φn]


0

≤
∆t

∥∇en+1
µ ∥

2
0 + C∆t |en+1

R |
2
+ C∆t2

∫ tn+1

∥φt t (s)∥2
−1ds.

(2.50)
8 tn

10
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T

Additionally,

− R(tn+1)2
(

h(φn)
E[φn]

−
h(φ(tn))
E[φ(tn)]

, en+1
φ − en

φ

)
≤

∆t
8

∥∇en+1
µ ∥

2
0 + C∆t

∇h(φn)
E[φn]

−
∇h(φ(tn))
E[φ(tn)]

2

0
+ C∆t2

∫ tn+1

tn
∥φt t (s)∥2

−1ds,

− R(tn+1)2
(

h(φ(tn))
E[φ(tn)]

−
h(φ(tn+1))
E[φ(tn+1)]

, en+1
φ − en

φ

)
≤

∆t
8

∥∇en+1
µ ∥

2
0 + C∆t

∇h(φ(tn))
E[φ(tn)]

−
∇h(φ(tn+1))
E[φ(tn+1)]

2

0
+ C∆t2

∫ tn+1

tn
∥φt t (s)∥2

−1ds.

Note that
∫
Ω φ(t)dx is a constant and

∫
Ω T n+1

φ1A
dx = 0. Noting the definition of E[φ] and that H (s) ∈ C3(R),

we have

E[φn] − E[φ(tn)]

=
1
2

∫
Ω

(∇φn
+ ∇φ(tn))∇en

φdx +
λ

2

∫
Ω

(φn
+ φ(tn))en

φdx +

∫
Ω

(
H (φn) − H (φ(tn))

)
dx

≤ C∥∇en
φ∥0 + C∥en

φ∥0 +

∫
Ω

H ′
(
θφn

+ (1 − θ )φ(tn)
)(
φn

− φ(tn)
)
dx

≤ C∥∇en
φ∥0 + C∥en

φ∥0.

(2.51)

We rewrite the term ∇h(φn )
E[φn ] −

∇h(φ(tn ))
E[φ(tn )] into

∇h(φn)
E[φn]

−
∇h(φ(tn))
E[φ(tn)]

=
∇h(φn) − ∇h(φ(tn))

E[φn]
+

∇h(φ(tn))
(
E[φ(tn)] − E[φn]

)
E[φn]E[φ(tn)]

.

It follows from the Hölder’s inequality and Sobolev embedding theorem that,

∥∇h(φn) − ∇h(φ(tn))∥0 ≤∥(h′(φn) − h′(φ(tn)))∇φ(tn)∥0 + ∥h′(φn)∇en
φ∥0

≤C∥∇φ(tn)en
φ∥0 + C∥∇en

φ∥0 ≤ C(∥∇φ(tn)∥0,3∥en
φ∥0,6 + ∥∇en

φ∥0)

≤C∥φ(tn)∥2∥en
φ∥1 + C∥∇en

φ∥0 ≤ C(∥∇en
φ∥0 + ∥en

φ∥0).

hen, ∇h(φn)
E[φn]

−
∇h(φ(tn))
E[φ(tn)]

2

0

=

∇h(φn) − ∇h(φ(tn))
E[φn]

+
∇h(φ(tn))

(
E[φ(tn)] − E[φn]

)
E[φn]E[φ(tn)]

2

0

≤C∥∇h(φn) − ∇h(φ(tn))∥2
0 + C∥∇h(φ(tn))∥2

0

⏐⏐E[φn] − E[φ(tn)]
⏐⏐2

≤C(∥∇en
φ∥

2
0 + ∥en

φ∥
2
0). (2.52)

Similarly,∇h(φ(tn))
E[φ(tn)]

−
∇h(φ(tn+1))
E[φ(tn+1)]

2

0

≤C∥∇h(φ(tn)) − ∇h(φ(tn+1))∥2
0 + C∥∇h(φ(tn+1))∥2

0

⏐⏐E[φ(tn+1)] − E[φ(tn)]
⏐⏐2

≤C(∥∇φ(tn+1) − ∇φ(tn)∥2
0 + ∥φ(tn+1) − φ(tn)∥2

0)

≤C∆t
∫ tn+1

tn
∥φt (s)∥2

1ds. (2.53)
11
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Next, we treat the right-hand side of (2.49b) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∆t |en+1

R |
2

E[φn]

∫
Ω

|∇µn
|
2dx ≤ C∆t∥∇µn

∥
2
0|e

n+1
R |

2
,

−
∆ten+1

R R(tn+1)
E[φn]

∫
Ω

(|∇µn
|
2
− |∇µ(tn)|2)dx

≤
∆ten+1

R R(tn+1)
E[φn]

∥∇en
µ∥0∥∇µ

n
+ ∇µ(tn)∥0

≤ C∆t(∥∇µn
∥

2
0 + 1)|en+1

R |
2
+

∆t
2

∥∇en
µ∥

2
0,

− ∆t R(tn+1)en+1
R

(
1

E[φn]
−

1
E[φ(tn)]

)∫
Ω

|∇µ(tn)|2dx

≤ C∆t∥∇µ(tn)∥2
0

(
|en+1

R |
2
+
⏐⏐E[φn] − E[φ(tn)]

⏐⏐2)
≤ C∆t

(
|en+1

R |
2
+ ∥∇en

φ∥
2
0 + ∥en

φ∥
2
0

)
,

− ∆ten+1
R

R(tn+1) − R(tn)
E[φ(tn)]

∫
Ω

|∇µ(tn)|2dx

≤ C∆t∥∇µ(tn)∥2
0

(
|en+1

R |
2
+
⏐⏐R(tn+1) − R(tn)

⏐⏐2)
≤ C∆t |en+1

R |
2
+ C∆t2

∫ tn+1

tn

⏐⏐⏐⏐d R(s)
dt

⏐⏐⏐⏐2 ds.

(2.54)

By combining the above inequalities with (2.49a) and (2.49b), we have

1
2

(∥∇en+1
φ ∥

2
0 − ∥∇en

φ∥
2
0) +

λ

2
(∥en+1

φ ∥
2
0 − ∥en

φ∥
2
0) + |en+1

R |
2
− |en

R|
2
+

∆t
2

(∥∇en+1
µ ∥

2
0 − ∥∇en

µ∥
2
0)

+
1
2
∥∇en+1

φ − ∇en
φ∥

2
0 +

λ

2
∥en+1
φ − en

φ∥
2
0 + |en+1

R − en
R|

2

≤ C∆t(1 + ∥∇µn
∥

2
0)|en+1

R |
2
+ C∆t

(
∥∇en

φ∥
2
0 + ∥en

φ∥
2
0

)
+ C∆t2

∫ tn+1

tn
∥φt (s)∥2

1ds

+ C∆t2
∫ tn+1

tn
∥φt t (s)∥2

−1ds + C∆t2
∫ tn+1

tn

⏐⏐⏐⏐d2 R(s)
dt2

⏐⏐⏐⏐2 ds + C∆t2
∫ tn+1

tn

⏐⏐⏐⏐d R(s)
dt

⏐⏐⏐⏐2 ds. (2.55)

We sum up the above inequality for the indices from 0 to n and use the discrete Gronwall lemma 2.3 to finish the
proof. □

2.3.2. Scheme 1B
An alternative algorithm, in some sense reciprocal to the scheme presented in the previous section, is as follows.

Let φ0, µ0 and R0 be defined by (2.19). Given (φn , Rn), we compute (φn+1, µn+1, Rn+1) by the following procedure,

φn+1
− φn

∆t
= ∆µn+1, (2.56a)

µn+1
= −∆φn+1

+ λφn+1
+ |ξ n

1B
|
2h(φn), (2.56b)

Rn+1
− Rn

∆t
= −

ξ n+1
1B

2
√

E[φn+1]

∫
Ω

|∇µn+1
|
2
dx, (2.56c)

with the boundary conditions

∇φn+1
· n = ∇µn+1

· n = 0, on ∂Ω , (2.57)
12
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where

ξ n+1
1B

=
Rn+1√

E[φn+1]
. (2.58)

ote that ξ n+1
1B

is again an approximation of the constant R(t)
√

E(t) = 1.

Remark 2.11. In this scheme Eqs. (2.56a)–(2.56b) are not coupled with Eqs. (2.56c) and (2.58), because of the
xplicit treatments of h(φn) and ξ n

1B
in (2.56b). Therefore, the computations for (φn+1, µn+1) and for Rn+1 are

e-coupled with this scheme.

Substituting the ξ n+1
1B

expression in (2.58) into Eq. (2.56c) leads to

ξ n+1
1B

=
Rn√

E[φn+1] +
∆t

2
√

E[φn+1]

∫
Ω |∇µn+1|

2dx
. (2.59)

ince R0 > 0, we conclude by induction that ξ n
1B
> 0 for all n.

Given φn , ξ n
1B

and Rn , we first compute φn+1 and µn+1 by solving Eqs. (2.56a)–(2.56b), together with the
oundary conditions (2.57). Then, we compute E[φn+1] and ξ n+1

1B
by Eqs. (2.5) and (2.59), respectively. Rn+1 can

hen be computed based on Eq. (2.58) as follows,

Rn+1
= ξ n+1

1B

√
E[φn+1]. (2.60)

We therefore conclude that Rn+1 > 0 for all n with this scheme.
Similar to Scheme 1A from Section 2.3.1, this scheme requires the solution of the Cahn–Hilliard field equation

only once per time step. Its operation count per time step is comparable to that of Scheme 1A, and is approximately
a half of those of the original gPAV scheme [39] and the SAV scheme [11,31]. Note that in Scheme 1A Rn+1 is
computed first, followed by the fields (φn+1, µn+1). In contrast, in the current scheme the fields (φn+1, µn+1) are
omputed first, followed by the variables (ξ n+1

1B
, Rn+1).

tability properties. The scheme given by Eqs. (2.56)–(2.58) is unconditionally stable. Its stability properties are
ummarized by the following results.

emma 2.12. The scheme (2.56) is mass conserving in the sense that (φn+1, 1) = (φn, 1).

roof. Integrating equation (2.56a) over Ω and using the boundary condition (2.57) lead to the result. □

emma 2.13. With the scheme (2.56),

0 < Rn+1
≤ Rn

≤ M, (2.61)

0 < ξ n+1
1B

≤
M

√
C0
, (2.62)

for some constant C0 > 0, and a constant M that depends only on Ω , φin and c0.

heorem 2.14. Suppose φin ∈ H 3(Ω ) and the condition (2.14) holds. The following inequality holds with the
scheme (2.56),

∥∇φn+1
∥

2
0 +

λ

2
∥φn+1

∥
2
0 +

∆t
2

∥∇∆φn+1
∥

2
0 + λ∆t

n∑
k=0

∥∆φk+1
∥

2
0 +

∆t
2

n∑
k=0

∥∇µk+1
∥

2
0 ≤ Ĉ1,

here Ĉ1 is the constant as given in Theorem 2.8.
The proof of this theorem is provided in Appendix.

13
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T
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Theorem 2.15. Suppose φin ∈ H 4(Ω ), and the conditions for Lemmas 2.1 and 2.2 hold. The following inequality
holds,

∥∆φn+1
∥

2
0 +

∆t
2

∥∆2φn+1
∥

2
0 +

∆t
2

n∑
k=0

∥∆2φk+1
∥

2
0 +

λ∆t
2

n∑
k=0

∥∇∆φk+1
∥

2
0 ≤ Ĉ2,

where the constant Ĉ2 is given in Theorem 2.9.

Proof. The proof is similar to that for the SAV scheme in [34], by using Lemmas 2.1 and 2.2. □

Error estimate. We define the errors of the variables by (2.39). Suppose that the solution (φ,µ) of Eqs. (2.1)–(2.4)
satisfies (2.40). Based on Lemma 2.2 and Theorems 2.14 and 2.15, we have the same results expressed by the
inequalities (2.41), (2.42) and (2.43), i.e.

∥φ(tn)∥2 ≤ C, ∥φn
∥2 ≤ C,

|h(φ)|, |h′(φ)|, |h′′(φ)|, |h(φn)|, |h′(φn)|, |h′′(φn)| ≤ C,∫ T

0

⏐⏐⏐⏐d2 R
dt2

⏐⏐⏐⏐2 dt ≤ C
∫ T

0

(
∥φt∥

4
1 + ∥φt∥

2
1 + ∥φt t∥

2
−1

)
dt.

The truncation errors T n+1
φ1B

and T n+1
R1B

are given by

φ(tn+1) − φ(tn)
∆t

= ∆µ(tn+1) +
1
∆t

T n+1
φ1B

, (2.63a)

µ(tn+1) = −∆φ(tn+1) + λφ(tn+1) +
R(tn+1)2

E[φ(tn+1)]
h(φ(tn+1)), (2.63b)

R(tn+1) − R(tn)
∆t

= −
R(tn+1)

2E[φ(tn+1)]

∫
Ω

|∇µ(tn+1)|
2
dx +

1
∆t

T n+1
R1B

, (2.63c)

where

T n+1
φ1B

=

∫ tn+1

tn
(tn

− t)φt t (t)dt and T n+1
R1B

=

∫ tn+1

tn
(tn

− t)
d2 R(t)

dt2 dt. (2.64)

heorem 2.16. Suppose the condition (2.40) and the conditions for Theorems 2.14 and 2.15 hold. We have the
ollowing result with sufficiently small ∆t ,

1
2
∥∇en+1

φ ∥
2
0 +

λ

2
∥en+1
φ ∥

2
0 + |en+1

R |
2
+

∆t
2

n∑
k=0

∥∇ek+1
µ ∥

2
0 ≤ Ĉ4∆t2,

where Ĉ4 = C exp(∆t
∑n

k=0
rk+1

1−rk+1∆t
)
∫ tn+1

0

(
∥φt (s)∥4

1 + ∥φt (s)∥2
1 + ∥φt t (s)∥2

−1

)
ds, r k

= 1 + ∥∇µk
∥

2
0 and the

constant C depends on T , φin , Ω , ∥φ∥L∞(0,T ;W 3,∞(Ω)) and ∥µ∥L∞(0,T ;H1(Ω)).

The proof of this theorem is provided in Appendix.

2.4. Second-order schemes

We next present two second-order schemes for solving the reformulated system of equations, both of which
are unconditionally energy stable. Similar to their first-order counterparts from Section 2.3, these schemes solve
the Cahn–Hilliard field equation only once per time step. A prominent feature of these schemes lies in that the
Cahn–Hilliard field equation and the dynamic equation for the auxiliary variable are discretized in time by different
methods, the former by the backward differentiation formula (BDF2) and the latter by the Crank–Nicolson scheme
(CN2). This allows the computation of the auxiliary variable, and ensures the positivity of its computed values, in
a very straightforward way. We provide stability analyses for both schemes, as well as the error estimate for the
second scheme. Due to a technical difficulty caused by its multi-step nature, the error estimate for the first scheme
(Scheme 2A) is not available at this time.
14
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2.4.1. Scheme 2A
Suppose (φ0, µ0, R0) is given by (2.19). Define

φn−1
⏐⏐
n=0 = φ0, µ0

= −∆φ0
+ λφ0

+ h(φ0), µn−1
⏐⏐
n=0 = µ0.

Given φn , Rn , φn−1 and µn−1 for n ≥ 0, we compute φn+1, µn+1 and Rn+1 as follows,

3φn+1
− 4φn

+ φn−1

2∆t
= ∆µn+1, (2.65a)

µn+1
= −∆φn+1

+ λφn+1
+ |ξ n+1

2A
|
2
h(φ

n
), (2.65b)

Rn+1
− Rn

∆t
= −

ξ n+1
2A

2
√

E[φ̃n+1/2]

∫
Ω

⏐⏐∇µ̃n+1/2
⏐⏐2 dx, (2.65c)

n · ∇φn+1
= n · ∇µn+1

= 0, on ∂Ω , (2.65d)

where

ξ n+1
2A

=
Rn+1√
E[φ

n
]
. (2.66)

The symbols in the above equations are defined by

φ
n

= 2φn
− φn−1, φ̃n+1/2

=
3
2
φn

−
1
2
φn−1, µ̃n+1/2

=
3
2
µn

−
1
2
µn−1.

Obviously, φ
n

is a second-order explicit approximation of φn+1, and µ̃n+1/2 is a second-order explicit approximation
of µ at step (n + 1/2), both by extrapolations. It follows that ξ n+1

2A
in (2.66) is a second-order approximation of the

constant R(t)
√

E(t) = 1 at step (n + 1).
Notice that we have used BDF2 to approximate ∂φ

∂t in (2.65a) and enforced this equation at step (n + 1). On the
other hand, we approximate d R

dt by the Crank–Nicolson form, and enforce all terms in Eq. (2.65c), except for the
variable ξ n+1

2A
, at the time step (n + 1/2). Note that the ξ n+1

2A
variable in (2.65c) is approximated at the time step

n + 1) according to (2.66). This is a crucial point, and it allows Rn+1 to be computed by a well-defined formula
nd ensures the positivity of its values. It should be appreciated that this approximation of ξ n+1

2A
does not spoil the

econd-order accuracy of the overall scheme, because ξ n+1
2A

is an approximation of the constant R(t)
√

E(t) = 1.
Thanks to the explicit nature of µ̃n+1/2 in (2.65c), the computation for Rn+1 from (2.65c) and (2.66) is un-

coupled with the computations for φn+1 and µn+1 from (2.65a)–(2.65b). Substituting the ξ n+1
2A

expression in (2.66)
into Eq. (2.65c), one finds

ξ n+1
2A

=
Rn√

E[φ
n
] +

∆t

2
√

E[φ̃n+1/2]

∫
Ω |∇µ̃n+1/2|

2dx
. (2.67)

ince R0 > 0, we conclude by induction that ξ n
2A
> 0 for all n ≥ 0. It then follows that Rn > 0 for all n ≥ 0.

To implement this scheme, we first compute ξ n+1
2A

from Eq. (2.67) and Rn+1 from (2.66). Then we solve
qs. (2.65a)–(2.65b) for φn+1 and µn+1. It can be noted that the Cahn–Hilliard field equation (2.65a)–(2.65b) is
olved only once per time step with this scheme.

tability properties. The scheme given by Eqs. (2.65a)–(2.66) is unconditionally stable. The following lemmas and
heorems summarize its stability properties.

emma 2.17. The scheme (2.65) is mass conserving in the sense that (φn+1, 1) = (φ0, 1).

roof. Taking the L2 inner product between equation (2.65a) and the constant 1 leads to (φn+1, 1) =
4
3 (φn, 1) −

1
3 (φn−1, 1) for all n ≥ 0. Since φn−1

|n=0 = φ0 by definition, we conclude by induction that (φn, 1) = (φ0, 1) for all
n ≥ 0. □
15
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Lemma 2.18. With the scheme (2.65),

0 < Rn+1
≤ Rn

≤ M, (2.68)

0 < ξ n+1
2A

≤
M

√
C0
, (2.69)

for some constant C0 > 0, and a constant M that depends on Ω , φin and c0.

heorem 2.19. Suppose φin ∈ H 3(Ω ) and the condition (2.14) holds. The following inequality holds for all n with
the scheme (2.65),

∥∇φn+1
∥

2
0 + ∥∇(2φn+1

− φn)∥2
0 +

1
2
∥∇(φn+1

− φn)∥2
0 +

λ

2
(∥φn+1

∥
2
0 + ∥2φn+1

− φn
∥

2
0)

+ λ∆t∥∆φn+1
∥

2
0 +

3∆t
2

∥∇∆φn+1
∥

2
0 +

∆t
2

∥∇∆(φn+1
− φn)∥2

0 + ∆t
n∑

k=0

∥∇µk+1
∥

2
0 ≤ Ĉ5,

where Ĉ5 = (2∥∇φ0
∥

2
0 + λ∥φ0

∥
2
0 + λ∆t∥∆φ0

∥
2
0 +

3∆t
2 ∥∇∆φ0

∥
2
0) exp (C(M)T ).

The proof of this theorem is provided in Appendix.

heorem 2.20. Suppose φin ∈ H 4(Ω ), and that the conditions for Lemmas 2.1 and 2.2 hold. The following
nequality holds for all n with the scheme (2.65),

1
2
∥∆φn+1

∥
2
0 +

1
2
∥∆(2φn+1

− φn)∥2
0 +

1
2
∥∆(φn+1

− φn)∥2
0 + λ∆t∥∇∆φn+1

∥
2
0

+
3∆t

2
∥∆2φn+1

∥
2
0 +

∆t
2

∥∆2(φn+1
− φn)∥2

0 + λ∆t
n∑

k=0

∥∇∆φk+1
∥

2
0 ≤ Ĉ6,

where Ĉ6 = ∥∆φ0
∥

2
0 +

3∆t
2 ∥∆2φ0

∥
2
0 + λ∆t∥∇∆φ0

∥
2
0 + C(M)T .

The proof of this theorem is provided in Appendix.

2.4.2. Scheme 2B
Suppose (φ0, µ0, R0) are given by (2.19), and let φn−1

|n=0 = φ0 and Rn−1
|n=0 = R0. Given (φn , φn−1, Rn ,

Rn−1) for n ≥ 0, we compute (φn+1, µn+1, Rn+1) as follows,

3φn+1
− 4φn

+ φn−1

2∆t
= ∆µn+1, (2.70a)

µn+1
= −∆φn+1

+ λφn+1
+ |̂ξ n

2B
|
2h(φ

n
), (2.70b)

Rn+1
− Rn

∆t
= −

ξ n+1
2B

2
√

E[φ̃n+1/2]

∫
Ω

⏐⏐∇µn+1/2
⏐⏐2 dx, (2.70c)

n · ∇φn+1
= n · ∇µn+1

= 0, on ∂Ω , (2.70d)

here

ξ n+1
2B

=
Rn+1√

E[φn+1]
. (2.71)

The symbols in the above equations are defined by

R
n

= 2Rn
− Rn−1, φ

n
= 2φn

− φn−1, ξ̂ n
2B

=
R

n√
E[φ

n
]
,

φ̃n+1/2
=

3
2
φn

−
1
2
φn−1, µn+1/2

=
1
2

(µn+1
+ µn).

It can be noted that R
n

and φ
n

are second-order explicit approximations of Rn+1 and φn+1, respectively. So ξ̂ n
2B

is
a second-order explicit approximation of the constant R(t)

√
E(t) = 1 at the time step (n + 1).

It should be noted that Eqs. (2.70a)–(2.70b) are enforced at the time step (n + 1), while Eq. (2.70c) is enforced
at the step (n + 1/2), except for the term ξ n+1, which is approximated at the time step (n + 1). Similar to Scheme
2B
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2A in the previous subsection, this treatment of ξ n+1
2B

here does not spoil the second-order accuracy of the scheme
and ensures the positivity of the computed values for Rn+1 and ξ n+1

2B .
Substitution of the ξ n+1

2B
expression in (2.71) into Eq. (2.70c) leads to

ξ n+1
2B

=
Rn√

E[φn+1] +
∆t

2
√

E[φ̃n+1/2]

∫
Ω |∇µn+1/2|

2dx
. (2.72)

ince R0 > 0, we conclude by induction that ξ n+1
2B

> 0 and Rn+1 > 0 for all n ≥ 0 with the current scheme.
Thanks to the explicit nature of ξ̂ n

2B
, the field Eqs. (2.70a)–(2.70b) are de-coupled from Eq. (2.70c). To compute

φn+1, µn+1, Rn+1), we can first solve (2.70a)–(2.70b) and (2.70d) for φn+1 and µn+1. Then we compute ξ n+1
2B

by
2.72), and compute Rn+1 by Eq. (2.71).

tability properties. This scheme is also unconditionally energy stable. Its stability properties are summarized by
he following results.

emma 2.21. The scheme (2.70) is mass conserving in the sense that (φn+1, 1) = (φ0, 1).

emma 2.22. The scheme (2.70) satisfies, for all n,

0 < Rn+1
≤ Rn

≤ M, (2.73)

0 < ξ n+1
2B

≤
M

√
C0
, (2.74)⏐⏐⏐̂ξ n

2B

⏐⏐⏐ ≤
3M
√

C0
, (2.75)

for some constant C0 > 0, and a constant M that depends on Ω , φin and c0.

heorem 2.23. Suppose φin ∈ H 3(Ω ) and the condition (2.14) holds. The following inequality holds for all n with
the scheme (2.70),

∥∇φn+1
∥

2
0 + ∥∇(2φn+1

− φn)∥2
0 +

1
2
∥∇(φn+1

− φn)∥2
0 +

λ

2
(∥φn+1

∥
2
0 + ∥2φn+1

− φn
∥

2
0)

+ λ∆t∥∆φn+1
∥

2
0 +

3∆t
2

∥∇∆φn+1
∥

2
0 +

∆t
2

∥∇∆(φn+1
− φn)∥2

0 + ∆t
n∑

k=0

∥∇µk+1
∥

2
0 ≤ Ĉ5,

where Ĉ5 is given in Theorem 2.19.

The proof of this theorem is provided in Appendix.

Theorem 2.24. Suppose φ0
∈ H 4(Ω ), and that the conditions for Lemmas 2.1 and 2.2 hold. Then the following

inequality holds with the scheme (2.70),
1
2
∥∆φn+1

∥
2
0 +

1
2
∥∆(2φn+1

− φn)∥2
0 +

1
2
∥∆(φn+1

− φn)∥2
0 + λ∆t∥∇∆φn+1

∥
2
0

+
3∆t

2
∥∆2φn+1

∥
2
0 +

∆t
2

∥∆2(φn+1
− φn)∥2

0 + λ∆t
n∑

k=0

∥∇∆φk+1
∥

2
0 ≤ Ĉ6,

where Ĉ6 is given in Theorem 2.20.

The proof of this theorem is provided in Appendix.

Error estimate. Assume that

φ ∈ L∞(0, T ; W 3,∞(Ω )), φt ∈ L∞(0, T ; L2(Ω )) ∩ L4(0, T ; H 1(Ω )) ∩ L2(0, T ; H 1(Ω )),
φt t ∈ L2(0, T ; H 1(Ω )), φt t t ∈ L∞(0, T ; H−1(Ω )), µ ∈ L∞(0, T ; H 1(Ω )). (2.76)

y Lemma 2.2 and Theorems 2.23 and 2.24, we can also arrive at the boundedness properties in (2.41) and (2.42).
In light of the relation R(t) =

√
E[φ], we have

d3 R
3 =

3√
5

(
d E

)3

−
3√

3

d E d2 E
2 +

1
√

d3 E
3 , (2.77)
dt 8 E[φ] dt 4 E[φ] dt dt 2 E[φ] dt
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where
d2 E
dt2 =

∫
Ω

(
|∇φt |

2
+ ∇φ · ∇φt t + λ|φt |

2
+ λφφt t + h′(φ)|φt |

2
+ h(φ)φt t

)
dx,

d3 E
dt3 =

∫
Ω

(
3∇φt · ∇φt t + ∇φ · ∇φt t t + 3λφtφt t + λφφt t t + h′′(φ)φ3

t + 3h′(φ)φtφt t + h(φ)φt t t
)

dx.

t follows that∫ T

0

⏐⏐⏐⏐d3 R
dt3

⏐⏐⏐⏐2 dt ≤ C
∫ T

0

(
∥φt∥

4
1 + ∥φt∥

2
1 + ∥φt t∥

2
1 + ∥φt t t∥

2
−1

)
dt. (2.78)

Based on the Taylor expansion theorem, we arrive at

3φ(tn+1) − 4φ(tn) + φ(tn−1)
2∆t

= ∆µ(tn+1) +
1
∆t

T n+1
φ2B

, (2.79a)

µ(tn+1) = −∆φ(tn+1) + λφ(tn+1) +
R(tn+1)2

E[φ(tn+1)]
h(φ(tn+1)), (2.79b)

R(tn+1) − R(tn)
∆t

= −
R(tn+1)√

E[φ(tn+1)]

1

2
√

E[φ(tn+1/2)]

∫
Ω

⏐⏐∇µ(tn+1/2)
⏐⏐2 dx +

1
∆t

T n+1
R2B

, (2.79c)

where⎧⎪⎪⎨⎪⎪⎩
T n+1
φ2B

=

∫ tn+1

tn
(t − tn)2φt t t (t)dt −

1
4

∫ tn+1

tn−1
(t − tn−1)2φt t t (t)dt,

T n+1
R2B

=
1
2

∫ tn+1

tn+1/2
(tn+1

− t)2 d3 R
dt3 (t)dt −

1
2

∫ tn+1/2

tn
(tn

− t)2 d3 R
dt3 (t)dt.

(2.80)

Theorem 2.25. Suppose the condition (2.76), and the conditions for Theorems 2.23 and 2.24 hold. The following
inequality holds for sufficiently small ∆t ,

1
2

(
∥∇en+1

φ ∥
2
0 + ∥∇(2en+1

φ − en
φ)∥2

0

)
+
λ

2

(
∥en+1
φ ∥

2
0 + ∥2en+1

φ − en
φ∥

2
0

)
+

∆t
2

∥∇en+1
µ ∥

2
0 +

⏐⏐en+1
R

⏐⏐2 ≤ Ĉ7∆t4,

here Ĉ7 = C exp(∆t
∑n+1

k=0
rk+1/2

1−rk+1/2∆t
)
∫ tn+1

0

(
∥φt (s)∥4

1 + ∥φt (s)∥2
1 + ∥φt t (s)∥2

1 + ∥φt t t (s)∥2
−1

)
ds, r k+1/2

= 1 +

∥∇µk+1/2
∥

2
0, and the constant C depends on T , φin , Ω , ∥φ∥L∞(0,T ;W 3,∞(Ω)), ∥φt∥L∞(0,T ;L2(Ω)) and ∥µ∥L∞(0,T ;H1(Ω)).

The proof of this theorem is provided in Appendix.

emark 2.26. The four schemes presented in this section share several common characteristics: (i) They are all
nconditionally energy stable. (ii) The Cahn–Hilliard field equation only needs to be computed once per time step,
y solving linear algebraic systems with a constant coefficient matrix. (iii) The auxiliary variable is given by a
ell-defined explicit form, and its computed values are guaranteed to be positive.

emark 2.27. In the analysis of these schemes (Schemes 1A/1B and 2A/2B) we have focused on the boundary
onditions given by (2.4). We would like to point out that the stability properties about these schemes proved in
his section equally hold with periodic boundary conditions for the domain.

. Numerical examples

In this section we provide numerical results to verify the stability and error analysis of the proposed numerical
chemes from the previous section. The convergence rates of these schemes are first demonstrated using a
anufactured analytic solution. We then look into the coalescence of an array of drops and show that the proposed

chemes produce stable and accurate numerical results.
In the forthcoming numerical experiments, we add the mobility coefficient and the interfacial thickness parameter

o the Cahn–Hilliard equation as follows so that it resembles the applications (e.g. in two-phase flows) more closely,
φt = m0∆µ+ f (x, t), µ = −β∆φ + h(φ), (3.1)

18
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Fig. 3.1. Temporal convergence rates: L∞ and L2 errors of φ at t = t f versus ∆t for the (a) first-order, and (b) second-order schemes. L∞

and L2 errors of the auxiliary variable ξ (t) (for t ∈ [t0, t f ]) versus ∆t for the (c) first-order and (d) second-order schemes. The parameters
are t0 = 0.1, t f = 1.1, (Nx , Ny ) = (20, 20) and c0 = 1.

where h(φ) = H ′(φ) with H (φ) =
β

4η2 (φ2
− 1)2. Here, the constant m0 (m0 > 0) is the mobility of the interface, η

is a characteristic scale of the interfacial thickness, β is the mixing energy density coefficient and is related to the
surface tension by β =

3
2
√

2
ση, where the constant σ is the interface surface tension. f (x, t) is a prescribed source

term for testing the convergence rate only, and will be set to f = 0 in practical simulations. For simplicity and
fficiency, we will consider periodic boundary conditions in the following tests. These algorithms are employed to
umerically integrate the governing equation (3.1) in time from t = t0 to t = t f (t0 and t f to be specified below).

.1. Convergence rates

We first test the convergence rates of the proposed methods using a manufactured analytic solution. Consider
q. (3.1) in the domain Ω = [0, 2] × [0, 2] with a manufactured solution

φ(x, t) = cos(πx) cos(πy) sin(t). (3.2)

The external source term f (x, t) in (3.1) is chosen such that this equation is satisfied by the analytic expression
given in (3.2). Periodic conditions are assumed for the boundaries in the x and y directions. We employ the Fourier
spectral method for spatial discretization throughout this section. Let Nx and Ny denote the number of Fourier
collocation points along x and y directions, respectively. In the simulations, we set (Nx , Ny) = (20, 20), with which
the spatial discretization error is negligible compared with the temporal discretization error. Other parameters are
t0 = 0.1, t f = 1.1, m0 = 0.01, β = 0.01, η = 0.1 and c0 = 1. The L∞ and L2 errors of the field function φ
(against the analytic solution (3.2)) at t = t f = 1.1 are plotted respectively for the Schemes 1A/1B and 2A/2B in

∞ 2
Fig. 3.1(a) and (b). In Fig. 3.1(c) and (d) we plot the L and L errors of the auxiliary variable ξ (against the
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Fig. 3.2. Temporal sequence of snapshots showing the evolution of an array of 361 drops governed by the Cahn–Hilliard equation. Simulation
results are obtained using Scheme 2A with ∆t = 10−3. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

constant 1) as a function of ∆t corresponding to different schemes. Here the L∞ and L2 errors are computed based
on the ξ (t) data on the interval t ∈ [t0, t f ]. We can observe the expected convergence rate for all cases. The error
curves of φ corresponding to Schemes 1A and 1B, and also for Schemes 2A and 2B, essentially overlap with each
other, indicating a negligible difference in the error levels. On the other hand, the error values of ξ corresponding
to Scheme 1B appear to be slightly and consistently lower than those of Scheme 1A. Similarly, the error values of
ξ corresponding to Scheme 2B appear slightly and consistently lower than those of Scheme 2A.

3.2. Coalescence of an array of drops

Another test problem we would like to consider is the evolution and interaction of 361 circular drops of one
material, with their centers arranged on a 19 × 19 grid (see Fig. 3.2(a)), which are immersed in another material.
We assume that the evolution of the material regions is described by the Cahn–Hilliard equation. The computational
domain is taken to be [0, 4] × [0, 4], and the initial phase field distribution is given by

φ0(x, t = 0) = 360 −

19∑ 19∑ tanh
(√

(x − xi )2 + (y − y j )2 − R0
)

√
2η

, (3.3)

i=1 j=1
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Fig. 3.3. Early evolution of the two material regions: (a) t = 0.15, (b) t = 0.2, (c) t = 0.3, and (d) t = 1.0. The initial drops of material one
(red) merge to form the new background material. The space between the initial drops filled with material two (blue) form a new 18 × 18
array of blue drops in the new background material (red). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

where R0 is the initial drop radius with R0 = 0.085, and xi = 0.2 × i and y j = 0.2 × j for i, j = 1, 2, . . . , 19.
We employ 512 grid points in both x and y directions in the Fourier spectral discretization. The other simulation
arameters are m0 = 10−6, σ = 151.15, η = 0.01, β =

3
2
√

2
ση and c0 = 1. We set f (x, t) = 0 in (3.1) and periodic

oundary conditions are prescribed on the domain boundaries in both directions.
The regions for the two materials (circular drops, and the background) are observed to evolve and coalesce to

orm coarser regions. This process is visualized in Fig. 3.2 with a long temporal sequence of snapshots of the
hase field distributions obtained using Scheme 2A with ∆t = 10−3. The first material is marked by red and the
ther material is marked by blue. Increasingly coarser regions can be observed to form over time. Comparison
etween Fig. 3.2(a) and (b) indicates that the roles (foreground/background) of the two materials seem to have
eversed early in the evolution. The first material (initial red drops) evolves into a new background material, while
he second material (initial blue background) form blue drops in the red background; see Fig. 3.2(b). This process is
llustrated in Fig. 3.3 with four snapshots at the early stage of the evolution. We can observe that the initial 19 × 19
rray of red drops coalesce to form a new background material, while the second material in the spaces between
he red drops evolves into a new 18 × 18 array of blue drops immersed in the red background material.

The distribution of the material interface at t = 100 obtained with several time step sizes, ranging from
t = 10−4 to ∆t = 10−2, computed using Scheme 2A are shown in Fig. 3.4. It is observed that the results

btained with ∆t = 10−4 and ∆t = 10−3 are essentially the same. With the larger time step size ∆t = 10−2, we
an observe some differences in the material distribution from those obtained using smaller ∆t values, indicating
hat the simulation starts to lose accuracy with this step size.

Note that the quantity ξ =
R(t)

√
E(t) is an approximation of the unit value. This ξ can serve as an indicator of the

accuracy of the simulations. If the deviation of ξ from the unit value is small, then the simulation tends to be more
accurate. In Fig. 3.5(a), we depict the time histories of ξ , computed using Scheme 2B with various time step sizes
ranging from ∆t = 1 to 10−4. It can be observed that ξ remains close to 1 for small time steps 10−3

∼ 10−4. While
or relatively larger time step sizes 1 ∼ 10−2, ξ exhibits an obvious deviation from 1, suggesting that the simulation
esults are no longer accurate. In Fig. 3.5(b), we compare the time histories of ξ , obtained using the four schemes
1A/1B and 2A/2B) with ∆t = 10−3. The schemes 1A, 2A and 2B all produce quite accurate simulation results
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Fig. 3.4. Coalescence of arrays of 361 circles: snapshots of the phase field function at t = 100 computed using Scheme 2A with (a)
∆t = 10−4, (b) ∆t = 10−3, (c) ∆t = 10−2.

Fig. 3.5. Coalescence of an array of drops: time histories of ξ (t) = R(t)/
√

E(t) corresponding to (a) a range of time step sizes
∆t = 1, 10−1, 10−2, 10−3, 10−4, computed using Scheme 2B, and (b) computed using different schemes (Schemes 1A/1B, 2A/2B) with
a fixed ∆t = 10−3.

with this time step size, with the computed ξ taking essentially the unit value. On the other hand, the ξ computed
by Scheme 1B has the unit value initially, and at about t = 10 it decreases sharply to a small positive value (on
he order 10−6) and remains at that level for the rest of the simulation. As a result, the simulation with Scheme 1B
oses accuracy completely from that point onward. It should be noted that this occurs not at the beginning, but after

quite long time (around 10,000 time steps) into the simulation. Since the system is very dynamic, it is hard to
in-point what interactions in the evolution of the drops cause the method to lose accuracy. We can observe from the
onvergence-rate tests in Fig. 3.1(c) that the Scheme 1B appears to produce more accurate values for the auxiliary
ariable ξ than Scheme 1A in short-term simulations (The convergence tests cover a unit value in time). The test
esults here suggest that this is apparently not the case in longer-time simulations. Overall, these results indicate
hat among the four schemes developed here the Scheme 1B might be somewhat inferior to the other schemes under
he same conditions in long-time simulations.

To validate the stability analysis of the schemes in the previous section, we look into the time histories of the
H 2 norm of the phase field function φ in Fig. 3.6. Fig. 3.6(a) shows the time histories of the H 2-norm of the
hase field function φ corresponding to a number of time step sizes, ranging from ∆t = 10−4 to ∆t = 1, obtained
sing Scheme 2A. It is observed that with smaller ∆t values the H 2 norm decreases over time, and for larger ∆t
alues it remains approximately at some constant level over time (except for an initial dip at the early stage of the
imulation). These characteristics signify the stability of the computations. In Fig. 3.6(b), we fix ∆t = 1 and depict
he time histories of the H 2-norm of φ obtained using the different schemes developed herein. Since the ∆t is quite
arge, we do not expect these simulations to be accurate. Nonetheless, it can be observed that the H 2-norms are all
ounded, indicating the stability of the proposed schemes.

Finally, we compare the performance of the current schemes with the SAV method [11,31] and the semi-implicit

cheme [14] for the drop evolution problem. In the SAV method, the auxiliary variable is defined based on the
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Fig. 3.6. Coalescence of an array of drops: time histories of ∥φ∥H2(Ω) corresponding to (a) a range of time step sizes ∆t =

1, 10−1, 10−2, 10−3, 10−4, computed using Scheme 2A, and (b) computed using different schemes with a fixed ∆t = 1.

potential energy only, R1(t) =

√∫
Ω H (φ)dΩ + c0. Here we use R1(t) to denote the auxiliary variable in SAV,

in order to distinguish the auxiliary variable R(t) employed here based on the total energy (R(t) =
√

E(t)). In
the semi-implicit scheme [14], the nonlinear term h(φ) is simply treated explicitly and the linear terms are treated
implicitly. Note that in the SAV method, the linear system resulting from the Cahn–Hilliard equation needs to be
solved twice within a time step [11,31]. On the other hand, with the schemes proposed here we only need to solve
the linear system once per time step. So the operation counts of the current schemes are comparable to that of the
semi-implicit scheme, and are about a half of that of the SAV method.

Fig. 3.7(a) shows the time histories of the total energy E[φ] obtained using the current Scheme 2A and the
SAV method with several time step sizes (ranging from ∆t = 10−4 to ∆t = 10−1), together with the semi-implicit
scheme with a time step size ∆t = 5 × 10−3. We note that the history curves corresponding to the relatively small
time step sizes ∆t = 10−4 and ∆t = 10−3 all overlap with one another for both the current scheme and SAV, while
some difference between them can be discerned in the history curves corresponding to ∆t = 10−2, suggesting that
both the current scheme and SAV exhibit similar accuracy with relatively small time step sizes. With the larger step
size ∆t = 10−1, the simulation result is no longer accurate for both the current scheme and SAV, and indeed we
can notice significant differences when compared with the curves obtained with smaller time step sizes; see also
Fig. 3.8 for a snapshot of the field distributions at t = 100 obtained using these two methods with ∆t = 10−1,
which shows a marked difference. Nevertheless, the stability in the computations with the current scheme and SAV
is evident. This, however, is not the case with the semi-implicit scheme. Simulation using the semi-implicit scheme
blows up after a while into the computation with a relatively small ∆t = 5 × 10−3, with the energy suddenly
growing exponentially. These comparisons indicate that the current methods share some characteristics with SAV
in terms of the accuracy and stability. Note that the current methods require the solution of the linear system only
once within a time step. So their computational cost is about half of the SAV method.

The schemes proposed here guarantee the unconditional positivity of the computed R(t) values, irrespective of
the time step size. In Fig. 3.7(b) and (c) , we show the time history of the auxiliary variable R(t) computed using
the current Scheme 2A and the history of the auxiliary variable R1(t) obtained by the SAV method, both with
∆t = 0.4. Note that in the current schemes R(t) is computed by a dynamic equation stemming from the relation
R(t) =

√
E(t), while in the SAV method the auxiliary variable R1(t) is computed by a dynamic equation stemming

from the relation R1(t) =

√∫
Ω H (φ)dΩ + c0. So both auxiliary variables should be positive physically. The current

schemes indeed guarantee the positivity of R(t). In contrast, SAV lacks such a property and the auxiliary variable
computed using SAV can take negative (unphysical) values, which is evident from Fig. 3.7(c).

4. Concluding remarks

In this paper we have presented two first-order and two second-order unconditionally energy-stable schemes,
in terms of a discrete energy, for numerically solving the Cahn–Hilliard equation. The stability properties of
these schemes have been investigated in relative detail, and their error analyses are provided. Besides the discrete
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Fig. 3.7. Comparison of current gPAV method with other methods (SAV scheme and the semi-implicit scheme). (a) Time histories of the
otal energy E(t) obtained by the current Scheme 2A and the SAV scheme with ∆t = 10−1

− 10−4, and by the semi-implicit scheme
from [14] with ∆t = 5 × 10−3. (b) Time history of the auxiliary variable R(t) obtained by the current Scheme 2A. (c) Time history of the
auxiliary variable (denoted by R1(t)) obtained by the SAV method.

Fig. 3.8. Snapshot of the field function φ at t = 100 computed with ∆t = 0.1 using the (a) Scheme 2A and (b) SAV method.

nconditional stability, these schemes have several other attractive properties: (i) These are linear schemes, and only
inear algebraic systems with a constant coefficient matrix need to be solved. (ii) The auxiliary variable (scalar-
alued number) involved in each of these schemes is computed by a well-defined explicit form, and its value is
uaranteed to be positive. (iii) The computational complexity (operation count or computational cost per time step)
f these schemes is comparable to that of the semi-implicit schemes, and is about a half of the gPAV and SAV
chemes.

The proposed schemes allow the use of fairly large time step sizes in dynamic problems and stable computations
an be attained. These have been demonstrated by numerical examples. Thanks to the aforementioned properties,
24
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these schemes are computationally efficient and simple to implement. They can be a useful tool for two-phase and
multiphase problems and materials applications.
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Appendix. Proofs of several theorems

Theorem 2.14. Suppose φin ∈ H 3(Ω ) and the condition (2.14) holds. The following inequality holds with the
scheme (2.56),

∥∇φn+1
∥

2
0 +

λ

2
∥φn+1

∥
2
0 +

∆t
2

∥∇∆φn+1
∥

2
0 + λ∆t

n∑
k=0

∥∆φk+1
∥

2
0 +

∆t
2

n∑
k=0

∥∇µk+1
∥

2
0 ≤ Ĉ1,

here Ĉ1 is the constant as given in Theorem 2.8.

roof. Taking the inner product of (2.56a) and (2.56b) with ∆tµn+1 and φn+1
− φn , respectively, we have

1
2

(∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇φn+1

− ∇φn
∥

2
0) +

λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0 + ∥φn+1

− φn
∥

2
0)

+ ∆t∥∇µn+1
∥

2
0 = −|ξ n

1B
|
2(h(φn), φn+1

− φn) ≤
∆t
2

∥∇µn+1
∥

2
0 +

|ξ n
1B

|
4∆t

2
∥∇h(φn)∥2

0. (A.1)

ake the inner product of (2.56a) and (2.56b) with ∆φn+1 and ∆2φn+1, respectively. Applying the boundary
condition (2.57), we arrive at

1
2

(∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇(φn+1

− φn)∥2
0) + ∆t∥∇∆φn+1

∥
2
0 + λ∆t∥∆φn+1

∥
2
0

= |ξ n
1B

|
2∆t(∇h(φn),∇∆φn+1) ≤

∆t
2

∥∇∆φn+1
∥

2
0 +

|ξ n
1B

|
4∆t

2
∥∇h(φn)∥2

0. (A.2)

Summing up (A.1) and (A.2), we have

∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇φn+1

− ∇φn
∥

2
0 +

λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0 + ∥φn+1

− φn
∥

2
0)

+
∆t
2

∥∇µn+1
∥

2
0 +

∆t
2

∥∇∆φn+1
∥

2
0 + λ∆t∥∆φn+1

∥
2
0 ≤ |ξ n

1B
|
4∆t∥∇h(φn)∥2

0. (A.3)

s is shown in the proof of Theorem 2.8, the nonlinear term ∥∇h(φn)∥2
0 can be estimated by using the positive

uxiliary variable ξ n+1
1A

, which satisfies the properties (2.36) and (2.28). Notice that ξ n
1B satisfies similar properties,

i.e. ξ n
1B

≤ C(M) and

ξ n
1B

=
Rn

√
E[φn]

≤
C(M)
∥φn∥1

.

The rest of the proof parallel those steps in the proof of Theorem 2.8. □

Theorem 2.16. Suppose the condition (2.40), and the conditions of Theorems 2.14 and 2.15 hold. We have the
following result with sufficiently small ∆t ,

1
2
∥∇en+1

φ ∥
2
0 +

λ

2
∥en+1
φ ∥

2
0 + |en+1

R |
2
+

∆t
2

n∑
∥∇ek+1

µ ∥
2
0 ≤ Ĉ4∆t2,
k=0
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where Ĉ4 = C exp(∆t
∑n

k=0
rk+1

1−rk+1∆t
)
∫ tn+1

0

(
∥φt (s)∥4

1 + ∥φt (s)∥2
1 + ∥φt t (s)∥2

−1

)
ds, r k

= 1 + ∥∇µk
∥

2
0 and the

constant C depends on T , φin , Ω , ∥φ∥L∞(0,T ;W 3,∞(Ω)) and ∥µ∥L∞(0,T ;H1(Ω)).

Proof. By subtracting (2.63) from (2.56), we have

en+1
φ − en

φ

∆t
= ∆en+1

µ −
1
∆t

T n+1
φ1B

, (A.4a)
en+1
µ = −∆en+1

φ + λen+1
φ + An+1

3 , (A.4b)
en+1

R − en
R

∆t
= −

1
2

An+1
4 −

1
∆t

T n+1
R1B

, (A.4c)

where

An+1
3 = |ξ n

1B
|
2h(φn) −

R(tn+1)2

E[φ(tn+1)]
h(φ(tn+1))

=
en

R(Rn
+ R(tn))

E[φn]
h(φn) +

R(tn)2
− R(tn+1)2

E[φn]
h(φn) + R(tn+1)2

(
h(φn)
E[φn]

−
h(φ(tn))
E[φ(tn)]

)
+ R(tn+1)2

(
h(φ(tn))
E[φ(tn)]

−
h(φ(tn+1))
E[φ(tn+1)]

)
,

An+1
4 =

ξ n+1
1B√

E[φn+1]

∫
Ω

|∇µn+1
|
2
dx −

R(tn+1)
E[φ(tn+1)]

∫
Ω

|∇µ(tn+1)|
2
dx

=
en+1

R

E[φn+1]

∫
Ω

|∇µn+1
|
2
dx +

R(tn+1)
E[φn+1]

∫
Ω

(|∇µn+1
|
2
− |∇µ(tn+1)|

2
)dx

+ R(tn+1)
(

1
E[φn+1]

−
1

E[φ(tn+1)]

)∫
Ω

|∇µ(tn+1)|
2
dx.

aking the inner product of (A.4a) with ∆ten+1
µ and (A.4b) with en+1

φ − en
φ , and multiplying (A.4c) with 2∆ten+1

R ,
e get the following:

1
2

(∥∇en+1
φ ∥

2
0 − ∥∇en

φ∥
2
0 + ∥∇en+1

φ − ∇en
φ∥

2
0) +

λ

2
(∥en+1

φ ∥
2
0 − ∥en

φ∥
2
0

+ ∥en+1
φ − en

φ∥
2
0) + ∆t∥∇en+1

µ ∥
2
0 = −(T n+1

φ1B
, en+1
µ ) − (An+1

3 , en+1
φ − en

φ), (A.5a)
|en+1

R |
2
− |en

R|
2
+ |en+1

R − en
R|

2
= −∆t An+1

4 en+1
R − 2en+1

R T n+1
R1B

. (A.5b)

ow, the right-hand side terms of (A.5a) can be treated as follows.

−(T n+1
φ1B

, en+1
µ ) ≤

∆t
12

∥∇en+1
µ ∥

2
0 +

3
∆t

∥(−∆)−1/2T n+1
φ1B

∥
2
0

≤
∆t
12

∥∇en+1
µ ∥

2
0 + C∆t2

∫ tn+1

tn
∥φt t (s)∥2

−1ds,

−en
R(Rn

+ R(tn))
(

h(φn)
E[φn]

, en+1
φ − en

φ

)
= en

R(Rn
+ R(tn))

(
h(φn)
E[φn]

,∆t∆en+1
µ − T n+1

φ1B

)
≤ Cen

R

(
∆t∥∇en+1

µ ∥0 + ∥(−∆)−1/2T n+1
φ1B

∥0

) ∇h(φn)
E[φn]


0

= Cen
R

(
∆t∥∇en+1

µ ∥0 + ∥(−∆)−1/2T n+1
φ1B

∥0

) h′(φn)∇φn

E[φn]


0

≤
∆t
12

∥∇en+1
µ ∥

2
0 + C∆t |en

R|
2
+ C∆t2

∫ tn+1

tn
∥φt t (s)∥2

−1ds,

−(R(tn)2
− R(tn+1)2)

(
h(φn)
E[φn]

, en+1
φ − en

φ

)
= (R(tn)2

− R(tn+1)2)
(

h(φn)
E[φn]

,∆t∆en+1
µ − T n+1

φ1B

)
≤

∆t
12

∥∇en+1
µ ∥

2
0 + C∆t |R(tn) − R(tn+1)|

2

+ C∆t2
∫ tn+1

tn
∥φt t (s)∥2

−1ds,

−R(tn+1)2
(

h(φn)
E[φn]

−
h(φ(tn))
E[φ(tn)]

, en+1
φ − en

φ

)
= R(tn+1)2

(
h(φn)
E[φn]

−
h(φ(tn))
E[φ(tn)]

,∆t∆en+1
µ − T n+1

φ1B

)
≤

∆t
∥∇en+1

µ ∥
2
0 + C∆t

∇h(φn)
−

∇h(φ(tn))2
12 E[φn] E[φ(tn)] 0
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C

p

T
t

+ C∆t2
∫ tn+1

tn
∥φt t (s)∥2

−1ds,

−R(tn+1)2
(

h(φ(tn))
E[φ(tn)]

−
h(φ(tn+1))
E[φ(tn+1)]

, en+1
φ − en

φ

)
= R(tn+1)2

(
h(φ(tn))
E[φ(tn)]

−
h(φ(tn+1))
E[φ(tn+1)]

,∆t∆en+1
µ − T n+1

φ1B

)
≤

∆t
12

∥∇en+1
µ ∥

2
0 + C∆t

∇h(φ(tn))
E[φ(tn)]

−
∇h(φ(tn+1))
E[φ(tn+1)]

2

0

+ C∆t2
∫ tn+1

tn
∥φt t (s)∥2

−1ds.

Next, the right-hand side terms of (A.5b) can be treated as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∆t |en+1

R |
2

E[φn+1]

∫
Ω

|∇µn+1
|
2
dx ≤ C∆t∥∇µn+1

∥
2
0|e

n+1
R |

2
,

−
∆ten+1

R R(tn+1)
E[φn+1]

∫
Ω

(|∇µn+1
|
2
− |∇µ(tn+1)|

2
)dx

≤
∆ten+1

R

E[φn+1]
∥∇en+1

µ ∥0∥∇µ
n+1

+ ∇µ(tn+1)∥0

≤ C∆t(∥∇µn+1
∥

2
0 + 1)|en+1

R |
2
+

∆t
12

∥∇en+1
µ ∥

2
0,

− ∆t R(tn+1)en+1
R

(
1

E[φn+1]
−

1
E[φ(tn+1)]

)∫
Ω

|∇µ(tn+1)|
2
dx

≤ C∆t
(
|en+1

R |
2
+
⏐⏐E[φn+1] − E[φ(tn+1)]

⏐⏐2),
− 2en+1

R T n+1
R1B

≤ ∆t |en+1
R |

2
+

1
∆t

|T n+1
R1B

|
2

≤ ∆t |en+1
R |

2
+ C∆t2

∫ tn+1

tn

⏐⏐⏐⏐d2 R(s)
dt2

⏐⏐⏐⏐2 ds.

ombining (2.51), (2.52), (2.53) and the above inequalities with (A.5a) and (A.5b), we have

1
2

(∥∇en+1
φ ∥

2
0 − ∥∇en

φ∥
2
0) +

λ

2
(∥en+1

φ ∥
2
0 − ∥en

φ∥
2
0) + |en+1

R |
2
− |en

R|
2
+

∆t
2

∥∇en+1
µ ∥

2
0

+
1
2
∥∇en+1

φ − ∇en
φ∥

2
0 +

λ

2
∥en+1
φ − en

φ∥
2
0 + |en+1

R − en
R|

2

≤ C∆t(1 + ∥∇µn+1
∥

2
0)|en+1

R |
2
+ C∆t

(
∥∇en+1

φ ∥
2
0 + ∥en+1

φ ∥
2
0 + ∥∇en

φ∥
2
0 + ∥en

φ∥
2
0 + |en

R|
2)

+ C∆t2
∫ tn+1

tn
(∥φt t (s)∥2

−1 + ∥φt (s)∥2
1)ds + C∆t2

∫ tn+1

tn

(⏐⏐⏐⏐d2 R(s)
dt2

⏐⏐⏐⏐2 +

⏐⏐⏐⏐d R(s)
dt

⏐⏐⏐⏐2
)

ds. (A.6)

Summing up these equations for the indices from 0 to n and using the discrete Gronwall lemma 2.3 conclude the
roof. □

heorem 2.19. Suppose φin ∈ H 3(Ω ) and the condition (2.14) holds. The following inequality holds for all n with
he scheme (2.65),

∥∇φn+1
∥

2
0 + ∥∇(2φn+1

− φn)∥2
0 +

1
2
∥∇(φn+1

− φn)∥2
0 +

λ

2
(∥φn+1

∥
2
0 + ∥2φn+1

− φn
∥

2
0)

+ λ∆t∥∆φn+1
∥

2
0 +

3∆t
2

∥∇∆φn+1
∥

2
0 +

∆t
2

∥∇∆(φn+1
− φn)∥2

0 + ∆t
n∑

k=0

∥∇µk+1
∥

2
0 ≤ Ĉ5,

where Ĉ5 = (2∥∇φ0
∥

2
0 + λ∥φ0

∥
2
0 + λ∆t∥∆φ0

∥
2
0 +

3∆t
2 ∥∇∆φ0

∥
2
0) exp (C(M)T ).

Proof. Taking the inner product of (2.65a) and (2.65b) with 2∆tµn+1 and 3φn+1
− 4φn

+ φn−1, respectively, we
have

1
2

(∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇(2φn+1

− φn)∥2
0 − ∥∇(2φn

− φn−1)∥2
0 + ∥∇(φn+1

− 2φn
+ φn−1)∥2

0)

+
λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0 + ∥2φn+1

− φn
∥

2
0 − ∥2φn

− φn−1
∥

2
0 + ∥φn+1

− 2φn
+ φn−1

∥
2
0) + 2∆t∥∇µn+1

∥
2
0

= −|ξ n+1
2A

|
2
(h(φ

n
), 3φn+1

− 4φn
+ φn−1) ≤ ∆t∥∇µn+1

∥
2
0 + |ξ n+1

2A
|
4
∆t∥∇h(φ

n
)∥2

0. (A.7)
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t

a

Taking the inner product of (2.65a) and (2.65b) with ∆(2φn+1
−φn) and ∆2(2φn+1

−φn), respectively, and by using
he boundary conditions, we can re-write the two resultant equations into

1
2

(∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇(2φn+1

− φn)∥2
0 − ∥∇(2φn

− φn−1)∥2
0 + ∥∇(φn+1

− 2φn
+ φn−1)∥2

0)

+ 2∥∇(φn+1
− φn)∥2

0 +
1
2

(
∥∇(φn+1

− φn)∥2
0 − ∥∇(φn

− φn−1)∥2
0 + ∥∇(φn+1

− 2φn
+ φn−1)∥2

0

)
+ 2∆t∥∇∆φn+1

∥
2
0 + ∆t

(
∥∇∆φn+1

∥
2
0 − ∥∇∆φn

∥
2
0 + ∥∇∆(φn+1

− φn)∥2
0

)
+ 2λ∆t∥∆φn+1

∥
2
0

+ λ∆t
(
∥∆φn+1

∥
2
0 − ∥∆φn

∥
2
0 + ∥∆φn+1

− ∆φn
∥

2
0

)
= 2|ξ n+1

2A
|
2
∆t(∇h(φ

n
),∇∆φn+1) + 2|ξ n+1

2A
|
2
∆t(∇h(φ

n
),∇∆(φn+1

− φn))

≤ ∆t∥∇∆φn+1
∥

2
0 +

∆t
2

∥∇∆(φn+1
− φn)∥2

0 + 3∆t |ξ n+1
2A

|
4
∥∇h(φ

n
)∥2

0. (A.8)

Summing up (A.7) and (A.8), we have

∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇(2φn+1

− φn)∥2
0 − ∥∇(2φn

− φn−1)∥2
0 + 2∥∇(φn+1

− φn)∥2
0 + ∆t∥∇µn+1

∥
2
0

+
1
2

(
∥∇(φn+1

− φn)∥2
0 − ∥∇(φn

− φn−1)∥2
0

)
+
λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0 + ∥2φn+1

− φn
∥

2
0

− ∥2φn
− φn−1

∥
2
0) + ∆t∥∇∆φn+1

∥
2
0 + ∆t(∥∇∆φn+1

∥
2
0 − ∥∇∆φn

∥
2
0) +

∆t
2

∥∇∆(φn+1
− φn)∥2

0

+ λ∆t(∥∆φn+1
∥

2
0 − ∥∆φn

∥
2
0 + ∥∆φn+1

− ∆φn
∥

2
0)

≤ 4|ξ n+1
2A

|
4
∆t∥∇h(φ

n
)∥2

0. (A.9)

Using Lemma 2.1, one finds

4|ξ n+1
2A

|
4
∥∇h(φ

n
)∥2

0 ≤ 4|ξ n+1
2A

|
4
∥h′(φ

n
)∥2

0,∞∥∇φ
n
∥

2
0 ≤ 4C |ξ n+1

2A
|
4
∥∇φ

n
∥

2
0(1 + ∥φ

n
∥

4
0,∞). (A.10)

By using the same technique as in the proof of Theorem 2.8, the Cauchy Schwarz inequality and the triangle
inequality, we have

4|ξ n+1
2A

|
4
∥∇h(φ

n
)∥2

0 ≤

⎧⎪⎨⎪⎩
C(M)∥∇φ

n
∥

2
0 for d = 1,

C(M)∥∇φ
n
∥

2
0 + C(ε1,M)∥∇φ

n
∥

2
0 + ε1∥∇∆φ

n
∥

2
0 for d = 2,

C(M)∥∇φ
n
∥

2
0 + C(ε2,M)∥∇φ

n
∥

2
0 + ε2∥∇∆φ

n
∥

2
0 for d = 3.

Noting that

∥∇∆φ
n
∥

2
0 ≤ 2∥∇∆φn

∥
2
0 + 2∥∇∆(φn

− φn−1)∥2
0,

nd by setting ε1 = ε2 =
1
4 and combining the above inequalities with (A.9), we obtain

∥∇φn+1
∥

2
0 − ∥∇φn

∥
2
0 + ∥∇(2φn+1

− φn)∥2
0 − ∥∇(2φn

− φn−1)∥2
0 + ∆t∥∇µn+1

∥
2
0

+
1
2

(
∥∇(φn+1

− φn)∥2
0 − ∥∇(φn

− φn−1)∥2
0

)
+
λ

2
(∥φn+1

∥
2
0 − ∥φn

∥
2
0 + ∥2φn+1

− φn
∥

2
0

− ∥2φn
− φn−1

∥
2
0) + λ∆t(∥∆φn+1

∥
2
0 − ∥∆φn

∥
2
0) +

3∆t
2

(∥∇∆φn+1
∥

2
0 − ∥∇∆φn

∥
2
0)

+
∆t
2

(∥∇∆(φn+1
− φn)∥2

0 − ∥∇∆(φn
− φn−1)∥2

0)
≤ C(M)∆t∥∇φ

n
∥

2
0 ≤ C(M)∆t(∥∇φn

∥
2
0 + ∥∇φn−1

∥
2
0). (A.11)

We conclude the proof by taking the sum of (A.11) for the indices from 0 to n and using the discrete Gronwall
lemma 2.4. □

Theorem 2.20. Suppose φin ∈ H 4(Ω ), and the conditions for Lemmas 2.1 and 2.2 hold. The following inequality
holds for all n with the scheme (2.65),

1
2
∥∆φn+1

∥
2
0 +

1
2
∥∆(2φn+1

− φn)∥2
0 +

1
2
∥∆(φn+1

− φn)∥2
0 + λ∆t∥∇∆φn+1

∥
2
0

+
3∆t

2
∥∆2φn+1

∥
2
0 +

∆t
2

∥∆2(φn+1
− φn)∥2

0 + λ∆t
n∑

k=0

∥∇∆φk+1
∥

2
0 ≤ Ĉ6,

where Ĉ6 = ∥∆φ0
∥

2
0 +

3∆t
2 ∥∆2φ0

∥
2
0 + λ∆t∥∇∆φ0

∥
2
0 + C(M)T .
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W

T
t

T

Proof. Multiplying (2.65a) by 2∆t∆2(2φn+1
− φn) and combining (2.65a) with (2.65b), we obtain

1
2

(
∥∆φn+1

∥
2
0 − ∥∆φn

∥
2
0 + ∥∆(2φn+1

− φn)∥2
0 − ∥∆(2φn

− φn−1)∥2
0 + ∥∆(φn+1

− 2φn
+ φn−1)∥2

0

)
+ 2∥∆(φn+1

− φn)∥2
0 +

1
2

(
∥∆(φn+1

− φn)∥2
0 − ∥∆(φn

− φn−1)∥2
0 + ∥∆(φn+1

− 2φn
+ φn−1)∥2

0

)
+ 2∆t∥∆2φn+1

∥
2
0 + ∆t

(
∥∆2φn+1

∥
2
0 − ∥∆2φn

∥
2
0 + ∥∆2(φn+1

− φn)∥2
0

)
+ 2λ∆t∥∇∆φn+1

∥
2
0 + λ∆t

(
∥∇∆φn+1

∥
2
0 − ∥∇∆φn

∥
2
0 + ∥∇∆(φn+1

− φn)∥2
0

)
= 2|ξ n+1

2A
|
2
∆t(∆h(φ

n
),∆2φn+1) + 2|ξ n+1

2A
|
2
∆t(∆h(φ

n
),∆2(φn+1

− φn))

≤
∆t
2

∥∆2φn+1
∥

2
0 +

∆t
2

∥∆2(φn+1
− φn)∥2

0 + 4|ξ n+1
2A

|
4
∆t∥∆h(φ

n
)∥2

0. (A.12)

According to (2.18), for any ε > 0, there exists a constant C(ε,M) depending on ε such that

4|ξ n+1
2A

|
4
∆t∥∆h(φ

n
)∥2

0 ≤ C(M)∆t(1 + ∥∆2φ
n
∥

2σ
0 ) ≤ ε∆t∥∆2φ

n
∥

2
0 + C(ε,M)∆t.

By the triangle inequality, we have

∥∆2φ
n
∥

2
0 ≤ 2∥∆2φn

∥
2
0 + 2∥∆2(φn

− φn−1)∥2
0.

Combining the above inequalities with (A.12) and choosing ε =
1
4 , we have

1
2

(
∥∆φn+1

∥
2
0 − ∥∆φn

∥
2
0 + ∥∆(2φn+1

− φn)∥2
0 − ∥∆(2φn

− φn−1)∥2
0 + ∥∆(φn+1

− 2φn
+ φn−1)∥2

0

)
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− φn)∥2
0 +

1
2

(
∥∆(φn+1

− φn)∥2
0 − ∥∆(φn

− φn−1)∥2
0 + ∥∆(φn+1

− 2φn
+ φn−1)∥2

0

)
+ ∆t∥∆2φn+1

∥
2
0 +

3∆t
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(
∥∆2φn+1

∥
2
0 − ∥∆2φn

∥
2
0

)
+

∆t
2

(
∥∆2(φn+1

− φn)∥ − ∥∆2(φn
− φn−1)∥2

0

)
+ 2λ∆t∥∇∆φn+1

∥
2
0 + λ∆t

(
∥∇∆φn+1

∥
2
0 − ∥∇∆φn

∥
2
0 + ∥∇∆(φn+1

− φn)∥2
0

)
≤ C(M)∆t. (A.13)

e conclude the proof by taking the sum of this inequality for the indices from 0 to n. □

heorem 2.23. Suppose φin ∈ H 3(Ω ) and the condition (2.14) holds. The following inequality holds for all n with
he scheme (2.70),

∥∇φn+1
∥

2
0 + ∥∇(2φn+1

− φn)∥2
0 +

1
2
∥∇(φn+1

− φn)∥2
0 +

λ

2
(∥φn+1

∥
2
0 + ∥2φn+1

− φn
∥

2
0)

+ λ∆t∥∆φn+1
∥

2
0 +

3∆t
2

∥∇∆φn+1
∥

2
0 +

∆t
2

∥∇∆(φn+1
− φn)∥2

0 + ∆t
n∑

k=0

∥∇µk+1
∥

2
0 ≤ Ĉ5,

where Ĉ5 is given in Theorem 2.19.

Proof. By Lemma 2.22, ξ̂ n
2B

satisfies the conditions
⏐⏐⏐̂ξ n

2B

⏐⏐⏐ ≤
3M√

C0
and

⏐⏐⏐̂ξ n
2B

⏐⏐⏐ ≤
C(M)
∥φ∥1

. In parallel to the proof of

Theorem 2.19, we take the same steps therein but replace ξ n+1
2A

by ξ̂ n
2B

. □

heorem 2.24. Suppose φ0
∈ H 4(Ω ), and the conditions for Lemmas 2.1 and 2.2 hold. Then the following

inequality holds with the scheme (2.70),

1
2
∥∆φn+1

∥
2
0 +

1
2
∥∆(2φn+1

− φn)∥2
0 +

1
2
∥∆(φn+1

− φn)∥2
0 + λ∆t∥∇∆φn+1

∥
2
0

+
3∆t

2
∥∆2φn+1

∥
2
0 +

∆t
2

∥∆2(φn+1
− φn)∥2

0 + λ∆t
n∑

k=0

∥∇∆φk+1
∥

2
0 ≤ Ĉ6,

where Ĉ6 is given in Theorem 2.20.

Proof. The proof is essentially the same as for Theorem 2.20. One can refer to the proof of Theorem 2.20. □
29
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w

P

T
w

Theorem 2.25. Suppose the condition (2.76), and the conditions for Theorems 2.23 and 2.24 hold. The following
inequality holds for sufficiently small ∆t ,

1
2

(
∥∇en+1

φ ∥
2
0 + ∥∇(2en+1

φ − en
φ)∥2

0

)
+
λ

2

(
∥en+1
φ ∥

2
0 + ∥2en+1

φ − en
φ∥

2
0

)
+

∆t
2

∥∇en+1
µ ∥

2
0 + |en+1

R |
2

≤ Ĉ7∆t4,

here Ĉ7 = C exp(∆t
∑n+1

k=0
rk+1/2

1−rk+1/2∆t
)
∫ tn+1

0

(
∥φt (s)∥4

1 + ∥φt (s)∥2
1 + ∥φt t (s)∥2

1 + ∥φt t t (s)∥2
−1

)
ds, r k+1/2

= 1 +

∥∇µk+1/2
∥

2
0, and the constant C depends on T , φin , Ω , ∥φ∥L∞(0,T ;W 3,∞(Ω)), ∥φt∥L∞(0,T ;L2(Ω)) and ∥µ∥L∞(0,T ;H1(Ω)).

roof. By subtracting (2.79) from (2.70), we have

3en+1
φ − 4en

φ + en−1
φ

2∆t
= ∆en+1

µ −
1
∆t

T n+1
φ2B

, (A.14a)
en+1
µ = −∆en+1

φ + λen+1
φ + An+1

5 , (A.14b)
en+1

R − en
R

∆t
= −

1
2

An+1
6 −

1
∆t

T n+1
R2B

, (A.14c)

where

An+1
5 = |̂ξ n

2B
|
2h(φ

n
) −

R(tn+1)2

E[φ(tn+1)]
h(φ(tn+1))

=
(R

n
)2

− R(tn)2

E[φ
n
]

h(φ
n
) +

R(tn)2
− R(tn+1)2

E[φ
n
]

h(φ
n
) + R(tn+1)2

(
h(φ

n
)

E[φ
n
]

−
h(φ(tn))
E[φ(tn)]

)
+ R(tn+1)2

(
h(φ(tn))
E[φ(tn)]

−
h(φ(tn+1))
E[φ(tn+1)]

)
,

An+1
6 =

ξ n+1
2B√

E[φ̃n+1/2]

∫
Ω

|∇µn+1/2
|
2
dx −

R(tn+1)√
E[φ(tn+1)]

1√
E[φ(tn+1/2)]

∫
Ω

|∇µ(tn+1/2)|
2
dx

=
en+1

R√
E[φ̃n+1/2]E[φn+1]

∫
Ω

|∇µn+1/2
|
2
dx +

R(tn+1)√
E[φ̃n+1/2]E[φn+1]

∫
Ω

(|∇µn+1/2
|
2
− |∇µ(tn+1/2)|

2
)dx

+
R(tn+1)√
E[φn+1]

(
1√

E[φ̃n+1/2]
−

1√
E[φ(tn+1/2)]

)∫
Ω

|∇µ(tn+1/2)|
2
dx

+
R(tn+1)√

E[φ(tn+1/2)]

(
1√

E[φn+1]
−

1√
E[φ(tn+1)]

)∫
Ω

|∇µ(tn+1/2)|
2
dx.

aking the inner product of (A.14a) with 2∆ten+1
µ and (A.14b) with 3en+1

φ − 4en
φ + en−1

φ , and multiplying (A.14c)
ith 2∆ten+1

R , we get the following:

1
2

(∥∇en+1
φ ∥

2
0 − ∥∇en

φ∥
2
0 + ∥∇(2en+1

φ − en
φ)∥2

0 − ∥∇(2en
φ − en−1

φ )∥2
0) + 2∆t∥∇en+1

µ ∥
2
0 +

λ

2
(∥en+1

φ ∥
2
0 − ∥en

φ∥
2
0

+ ∥2en+1
φ − en

φ∥
2
0 − ∥2en

φ − en−1
φ ∥

2
0) ≤ −(An+1

5 , 3en+1
φ − 4en

φ + en−1
φ ) − 2(T n+1

φ2B
, en+1
µ ), (A.15a)

|en+1
R |

2
− |en

R|
2
+ |en+1

R − en
R|

2
= −∆t An+1

6 en+1
R − 2en+1

R T n+1
R2B

. (A.15b)

The terms on the right hand side of (A.15a) can be treated as follows.

en
R(R

n
+ R(tn))

(
h(φn)

E[φn]
, 3en+1

φ − 4en
φ + en−1

φ

)
= en

R(R
n

+ R(tn))

(
h(φn)

E[φn]
, 2∆t∆en+1

µ − 2T n+1
φ2B

)
≤ Cen

R

(
∆t∥∇en+1

µ ∥0 + ∥(−∆)−1/2T n+1
φ2B

∥0

) ∇h(φn)

E[φn]


0

≤
∆t
5

∥∇en+1
µ ∥

2
0 + C∆t |en

R |
2
+ C∆t4

∫ tn+1

tn−1
∥φt t t (s)∥2

−1ds,

(R(tn)2
− R(tn+1)2)

(
h(φn)

E[φn]
, 3en+1

φ − 4en
φ + en−1

φ

)
≤

∆t
5

∥∇en+1
µ ∥

2
0 + C∆t |R(tn) − R(tn+1)|

2

+ C∆t4
∫ tn+1

tn−1
∥φt t t (s)∥2

−1ds,

R(tn+1)2

(
h(φn)

n −
h(φ(tn))

n
, 3en+1

φ − 4en
φ + en−1

φ

)
≤

∆t
∥∇en+1

µ ∥
2
0 + C∆t

∇h(φn)
n −

∇h(φ(tn))
n

2

0
E[φ ] E[φ(t )] 5 E[φ ] E[φ(t )]
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F

+ C∆t4
∫ tn+1

tn−1
∥φt t t (s)∥2

−1ds,

R(tn+1)2

(
h(φ(tn))
E[φ(tn)]

−
h(φ(tn+1))
E[φ(tn+1)]

, 3en+1
φ − 4en

φ + en−1
φ

)
≤

∆t
5

∥∇en+1
µ ∥

2
0 + C∆t2

∫ tn+1

tn−1
∥φt t t (s)∥2

−1ds

+ C∆t
∇h(φ(tn))

E[φ(tn)]
−

∇h(φ(tn+1))
E[φ(tn+1)]

2

0
,

−2(T n+1
φ2B

, en+1
µ ) ≤

∆t
5

∥∇en+1
µ ∥

2
0 +

C
∆t

∥(−∆)−1/2T n+1
φ2B

∥
2
0 ≤

∆t
5

∥∇en+1
µ ∥

2
0 + C∆t4

∫ tn+1

tn−1
∥φt t t (s)∥2

−1ds.

Next, the right-hand side terms of (A.15b) can be treated as follows.

− 2en+1
R T n+1

R2B
≤ ∆t |en+1

R |
2
+

C
∆t

|T n+1
R2B

|
2

≤ ∆t |en+1
R |

2
+ C∆t4

∫ tn+1
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⏐⏐⏐⏐d3 R(s)
dt3

⏐⏐⏐⏐2 ds,

−
∆t |en+1

R |
2√

E[φ̃n+1/2]E[φn+1]

∫
Ω

|∇µn+1/2
|
2
dx ≤ C∆t∥∇µn+1/2

∥
2
0|e

n+1
R |

2
,

−
∆ten+1

R R(tn+1)√
E[φ̃n+1/2]E[φn+1]

∫
Ω

(|∇µn+1/2
|
2
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2
)dx ≤ C∆ten+1

R ∥∇en+1/2
µ ∥0∥∇µ
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+ ∇µ(tn+1/2)∥0

≤ C∆t(∥∇µn+1/2
∥

2
0 + 1)|en+1

R |
2
+

∆t
2

(∥∇en+1
µ ∥

2
0 + ∥∇en

µ∥
2
0),

−
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R√
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(
1√

E[φ̃n+1/2]
−

1√
E[φ(tn+1/2)]

)∫
Ω
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2
dx

≤ C∆ten+1
R

⏐⏐⏐⏐⏐ 1√
E[φ̃n+1/2]

−
1√

E[φ(tn+1/2)]
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R |

2
+ C∆t

⏐⏐⏐⏐⏐ 1√
E[φ̃n+1/2]

−
1√
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2

,
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E[φn+1]
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2
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⏐⏐⏐⏐⏐ 1√
E[φn+1]

−
1√

E[φ(tn+1)]

⏐⏐⏐⏐⏐
2

.

or the term ∇h(φn )
E[φn ]

−
∇h(φ(tn ))
E[φ(tn )]

, we rewrite it into

∇h(φ
n
)

E[φ
n
]

−
∇h(φ(tn))
E[φ(tn)]

=
∇h(φ

n
) − ∇h(φ(tn))

E[φ
n
]
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∇h(φ(tn))

(
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n
]
)

E[φ
n
]E[φ(tn)]

In light of the Hölder’s inequality and Sobolev embedding theorem, we have

∥∇h(φ
n
) − ∇h(φ(tn))∥0 ≤∥(h′(φ

n
) − h′(φ(tn)))∇φ(tn)∥0 + ∥h′(φ

n
)∇en

φ∥0
≤C∥∇φ(tn)en

φ∥0 + C∥∇en
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φ∥0)
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φ∥0 ≤ C(∥∇en
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φ∥0).

According to the definition of E[φ], we have

E[φ
n
] − E[φ(tn)] =

1
2

∫
Ω

(∇φ
n
+ ∇φ(tn))∇en

φdx +
λ

2

∫
Ω

(φ
n
+ φ(tn))en

φdx +

∫
Ω
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n
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Then, we have∇h(φ
n
)

E[φ
n
]

−
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2
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=
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Similarly,∇h(φ(tn))
−

∇h(φ(tn+1))
n+1

2
≤C∥∇h(φ(tn)) − ∇h(φ(tn+1))∥2

0 + C∥∇h(φ(tn+1))∥2
0
⏐⏐E[φ(tn+1)] − E[φ(tn)]

⏐⏐2

E[φ(tn)] E[φ(t )] 0
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By combining the above inequalities with (A.15a) and (A.15b), we have
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Summing up (A.19) for the indices from 0 to n, we get
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φ ∥
2
0 + ∥∇(2en+1
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λ

2
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(1 + ∥∇µk+1/2
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2
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φ ∥
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R |
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φ ∥
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)
+ C∆t4. (A.20)

Based on Theorem 2.23 and the triangle inequality ∥∇µk+1/2
∥

2
0 ≤

1
2 (∥∇µk

∥
2
0 + ∥∇µk+1

∥
2
0), we have

∆t
n+1∑
k=0

∥∇µk+1/2
∥

2
0 ≤ Ĉ5.

We then use the discrete Gronwall lemma 2.3 to finish the proof. □
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