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ABSTRACT

To tackle the involved complexity, Electronic Design Automation

(EDA) tools are broken in well-defined steps, each operating at

different abstraction levels. Higher levels of abstraction shorten the

flow run-time while sacrificing correlation with the physical circuit

implementation. Bridging this gap between Logic Synthesis tool

and Physical Design (PnR) tools is key to improve Quality of Results

(QoR), while possibly shorting the time-to-market. To address this

problem, in this work, we formalize logic paths as sentences, with

the gates being a bag of words. Thus, we show howword embedding

can be leveraged to represent generic paths and predict if a given

path is likely to be critical post-PnR. We present the effectiveness

of our approach, with accuracy over than 90% for our test-cases.

Finally, we give a step further and introduce an intelligent and non-

intrusive flow that uses this information to guide optimization. Our

flow presents up to 15.53% area delay product (ADP) and 18.56%

power delay product (PDP), compared to a standard flow.
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1 INTRODUCTION

As the technology evolved, Integrated Circuits (ICs) had their num-

ber of transistor doubling every two years, according to Moore’s

Law [14]. To keep peace with such a rocket in integration, Electronic

Design Automation (EDA) tools play a crucial role in automating

the design of ICs, composed of billions of transistors. To make it

possible, the EDA flow is decoupled in well-defined steps, as follows

[12]: (i) High-level synthesis, (ii) logic synthesis, and (iii) physical
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design. To make it practical and affordable in run-time, every step

operates at a different abstraction level, omitting some informa-

tion handled by the following steps. For instance, logic synthesis

abstracts some of the physical information while performing logic

optimization, which leads to a miss-correlation with the physical

layout generated at the end of the flow, impacting the quality of

the final IC [21]. On the other hand, physical design has detailed in-

formation about all the aspects of the final IC. However, it does not

support aggressive logic optimizations. Thus, common issues that

are only found after physical design cause many iterations looping

back to the front-end flow to run more aggressive optimizations

and achieve design closure.

In this context, there is a great need to bridge the gap between

steps, improving their correlation, and leading to (i) designs with

better Power-Performance-Area (PPA), and (ii) achieving faster de-

sign closure. This paper explores the recent advances in Machine

Learning (ML) to bridge logic synthesis and physical design. More

specifically, we propose a comprehensive method to embed generic

logic paths into a low-dimensional space of representation, being so

capable of not only predict post Place-and-Route (PnR) critical paths

before technology mapping, but also making use of such informa-

tion to guide the optimization algorithms throughout the entire flow.

We showcase the benefits of such an approach over an Advanced

Encryption Standard (AES) core, where we improve PPA metrics

over a standard-commercial flow. While other academic works ap-

ply ML for either logic synthesis or physical designs, for the best

of our knowledge, that is the first work that systemically guides

optimization algorithms, since the first steps of logic synthesis, to

improve post-PnR predicted critical paths.

Themain contributions of this paper are as follows:1)we propose

a path embedding method that allows a CNN to take (i) a logic

path in terms of generic gates, and (ii) the target cycle time (CT) the

circuit should operate, and classify the path as being critical or not.

2) we evaluate the power of the proposed embedding method by

building a simple CNNmodel that reaches over 95% of accuracy in

fairly complex, and never seen, designs. 3) we then close the loop,

and introduce a flow that makes use of the proposed embedding

method along with the CNN model. The proposed flow is non-

intrusive and can be easily employed in any conventional EDA flow.

It guides the logic synthesis front-end to optimize the critical paths

since the generic synthesis. 4) we demonstrate improvements of up

to 15.53% area delay product (ADP) and 18.56% power delay product

(PDP) when applying the proposed flow, compared to a standard
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commercial flow. 5) we make available all the Python source code

along with the data-sets publicly available1.

2 BACKGROUND

Convolutional Neural Networks (CNNs) have been successfully

applied in many domains where the data can be represented in a

grid-like fashion [10]. Logic paths are a good fit for CNNs, as it

can be seen as a 1-Dimensional grid. Furthermore, the convolution

operation is usually meaningful when there is a sense of spatial

correlation. In a logic path, the context where the logic gates appear

has an important role. As we are interested in predicting critical

paths, our CNN works as a binary-classifier, and predicts if a path is

likely to be critical or not, given a target timing constraint. Common

metrics to evaluate a binary-classifier are: (i) its (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝)), (ii)
its 𝑟𝑒𝑐𝑎𝑙𝑙 (𝑟 ), and (iii) its 𝐹1 score. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 indicates the total of
true positives divided by the sum of true positive and false positives,

i.e., the proportion of paths predicted to be critical and are critical.

The 𝑟𝑒𝑐𝑎𝑙𝑙 component can be calculated by the total of true positives
divided by the sum of true positive and false negatives, i.e., the

proportion of the paths that are critical andwere correctly predicted.

Finally, the 𝐹1𝑠𝑐𝑜𝑟𝑒 is the harmonic mean of precision and recall.
Logic Synthesis and Physical Design: Logic synthesis is divided

into two major steps: technology-independent and technology-

dependent. In this work, we handle networks at the technology-

independent level. Hence, the tool represents the circuit as a Di-

rected Acyclic Graph (DAG), where each vertex corresponds to a

Boolean primitive. Common DAGs for technology-independent

manipulation include And-Inverter Graph (AIG) [20], or Majority-

Inverter Graph (MIG) [1]. In our case, we adopted a commercial tool

that used as basic functions: not, and2, nand2, or2, nor2, complex2,

and flip-flops. After generic optimization, the circuit goes through

technology-mapping, and then physical design, which delivers the

final circuit implementation. Technology mapping and physical

design are out of this work scope, and we refer the reader to [4, 12]

for further details. Here, we note that: (i) the input graph coming

from the logic synthesis tool plays a key role in the physical design

flow, and (ii) physical design tools have limited optimization ca-

pabilities, being usually limited to gate sizing and buffering. Thus,

if the designer cannot attain the design constraints, he needs to

re-run the circuit throughout the entire flow, manually tuning the

many steps to optimize the paths that failed to achieve timing clo-

sure. Unfortunately, running a circuit throughout the EDA flow is a

time-consuming task; hence, optimizing the right paths in the early

stages is highly beneficial.

Fig. 1 shows a motivational example of how the different lev-

els of abstractions on the tool make predicting critical paths in a

generic netlist challenging. The blue dots represent a path, where

the 𝑋 coordinate is the path delay post-generic synthesis, and the

𝑌 coordinate is the same path delay post-PnR. The horizontal green

line represents the target cycle time we aim the circuit to meet. On

the other hand, the horizontal violet line delimits points within 10%

of the target cycle time, i.e., sensitive paths that may violate the

timing constraint. The red line is the identity function, and if the

path delay were not changing from generic synthesis to physical

design, all the paths (blue dots) would be on the top of the line. In

the Figure, it is possible to note that paths in the range of 85 ps to

1https://github.com/mtmoreira/pathAnalyzer

140 ps vary a lot, making it hard to predict if a path will become

critical or not.
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Figure 1: The 𝑋 axis represents the generic synthesis delay,

whereas the 𝑌 axis denotes the picture legend delay for the
different lines. This plot presents that relying on generic

synthesis delay is not reliable as logic path delays change

significantly post-PnR .

3 RELATEDWORKS

This section starts by discussing proposed Embedding approaches

related to our work. We then present related works applying ML in

the EDA context, for both Logic Synthesis and Physical Design.

3.1 Embedding Approaches

Circuits do not have a straight representation in a vector space,

which is necessary to make it applicable in ML, as it enables mathe-

matical operations ubiquitous to ML. Thus, to embed logical paths

in a low-dimensional space, we borrow concepts from Natural Lan-

guage Processing (NLP). More specifically, we note that a logic path

is a chain of logic gates, in the same way that a phrase is a chain

of words. Word embedding aims to represent words in a multi-

dimensional space onto a continuous vector space, composed of

real numbers [13]. Words with a similar meaning in context are em-

bedded close, i.e., are encoded with similar vectors. The embedding

values are trainable and capture the relationship between words.

We note that in the same way in which words have a different

meaning depending upon the context they appear in, the delay of

the logic path also depends on the path structure and on the context

the gates appear.

3.2 Machine Learning in EDA

On the Logic Synthesis side, Haaswijk et al. [6] apply Reinforce-

ment Learning during technology-independent optimization. The

optimization problem is formulated as a single-player game com-

posed of a set of states and moves. States correspond to the logic

network, whereas moves correspond to transformations in the

network. Results show the capability of the model to find the op-

timal size implementation of all 3-input functions. Yu et al. [21]

proposes a CNN-based approach to generate ASIC design-specific

logic-synthesis flows autonomously in the ABC environment [20],

showing that different flows may lead to circuit delay and area

variations of up to 40% and 90%, respectively. The proposed CNN

model is capable of autonomously providing flows with good and

bad Quality-of-Results (QoR). Recently, in [15] the authors propose

a technology-independent optimization framework that uses differ-

ent technology-independent representations. The idea is to leverage
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optimization opportunities enabled by different logic representa-

tions. Thus, the authors propose to represent sub-networks with a

Karnaugh-map image. Sub-networks may be optimized with either

AIGs or MIGs. The authors present QoR improvements compared

to the state-of-the-art open-source framework ABC [20].

According to [8] prominent application of ML in the physical

design includes removing unnecessary design margins through

correlation mechanisms and achieving fast design convergence by

predicting outcomes of the physical design flow. [9] proposed a ma-

chine learning approach to estimate wire delay/slew and avoid call-

ing a timing analysis tool multiple times during the physical design

gate sizing optimization. In [7] the authors present a deep learning

approach capable of correlating timing information between dif-

ferent tools. The idea is that the designer may use more than one

timing analysis tool to check if the design is over(under)constrained,

and tools from different vendors may diverge in the timing results.

In [3], the authors propose an ML approach to predict detailed-

routing Design Rule Check (DRC) violation, and then estimates

detailed placement to reduce these violations. [22] propose a model

based on Generative Adversarial Networks (GANs) to forecast rout-

ing congestion after design placement for FPGAs. The model input

is a post-placement image and outputs a congestion heat map pre-

dicted by the model. [11] casts analytical placement as a neural

network training problem. They propose DREAMPlace, which is

accelerated by GPU and achieves a 30x speedup in global placement

without QoR degradation.

Even though machine learning has been applied in both domains

independently, there are still missing approaches that try to fill

the gap between logic synthesis and physical design, which is the

primary motivation of this work. In this sense, this work aims

to predict the outcomes of PnR early in the logic synthesis flow,

removing unnecessary margins and guiding optimization. In this

sense, our approach differs from Static Timing Analysis (STA) as it

does not rely on high-level models to estimate timing but on how

the structure of the path is going to change through the flow to

predict how critical a path is. Also, it is not called many times in

the optimization loop, such as STA.

4 PROPOSED APPROACH FOR LOGIC PATH
EMBEDDING

This section starts by introducing the proposed path embedding

approach. We discuss the feature selection, data labeling, and the

embedding itself. Then, we give one step further and present a flow

to close the loop and make practical use of our classifier. We discuss

the proposed flow and show how it fits any conventional EDA flow

without being intrusive.

4.1 Feature Selection and Data Labeling

To define the features to be used, we focused on the information

available in a generic netlist. Therefore, we have set up different

strategies that take into account different metrics available after

generic synthesis, namely: (i) the gate logic function; (ii) the input

transition direction; (iii) the cell fanout; (iv) the cell load; (v) the cell

delay; and (vi) the target cycle time. We combined these metrics in

different ways to test the classifier accuracy. Since we do not aim

to predict the exact path delay but rather classify if a path is likely

to be critical post PnR, we can focus only on the most important

features. Our experiments show that three features are sufficient

to achieve good precision. Hence, we embed the gates with the

design target cycle time, the gate logic function, and the gate load.

The gate logic function plays an important role, as it defines the

transistors’ arrangement to implement a given Boolean function,

i.e., transistors sizing and the stack of transistors, which dominates

the gate delay [17]. The gate load, on the other hand, gives a flavor

about the path surrounding. It enables the model to estimate the

logic being driven by a given gate and accounts for the tool’s wire

load model. The slew rate in the input and the pair of input-output

being excited have a much more reduced effect in the delay of a

gate. Also, the direction of the input transition has shown to have

a low impact on our model.

Data Labeling: To label our data, we have two main steps. After

generic synthesis, for each pair of start-point/end-point, we collect

all the gates composing the path. In the sequence, we proceed

throughout the complete flow without any extra constraints. At the

end of the entire flow, we can check the logic path’s actual delay,

post-physical design, with more accurate wire-models and with

a delay precisely computed by the Static Timing Analysis (STA)

tool. Note that, even though the paths structure changes during

the implementation flow, the start-point and end-point have their

names preserved. Therefore, we can match a generic path by the

start-point/end-point name after PnR and capture how its structure

and delay changed. If this delay satisfies a criticality definition, we

label this path as critical (1). Otherwise, we mark it as non-critical

(0). In our setup, we define that any logic path that at the end of

the implementation flow has its delay larger or equal to 90% of the

target cycle time will be considered a critical path.

4.2 Path Embedding

Although the target cycle time and output load are numerical val-

ues, the gate function is not. Thus, we need to represent the logic

function as a value and embed it along with the other features to

represent a path. That is the first contribution of this paper. As for

the cell name, we tried two different encodings. The first, using the

embed layer of tensor flow, and the second on with a custom em-

bedding where the values try to approximate the logic cell logical

effort [19]. Our method has shown to be more stable, with constant

accuracy. We believe that it also represents the gates’ logical effort,

which, along with the other features, makes our embedding robust.

Hence, we map cell functions with values monotonically growing

according to the complexity of the function. We define that a not

has a value of 1.0, nand2 and nor2 have a value of 2.0, and2 and

or2 have a value of 3.0, complex2 has a value of 4.0 and a flop

has a value of 5.0. That allows us to represent logic gates with

low-dimensional numerical features, giving us a stable classifica-

tion accuracy. To guide the reader through our embedding, let’s

consider the circuit extracted from a generic synthesis in Fig. 2.

As the figure shows, this circuit has three start-points (g0, g1,

and g2) and two end-points (g10 and g11), and a total of 7 valid

structural paths. Table 1 shows the delays and output loads for each

gate. These values were collected with the STA tool available in the

adopted flow after generic synthesis. The paths delay along with

the gates composing each path is presented in Table 2.

First, we collect the critical path for each pair of start-point/end-

point. This information gives us a good representation of the circuit
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Figure 2: Example circuit fragment with generic gates not, nand2, nor2, and2, or2, complex2, and d_flop.

Table 1: Output loads and delays of gates of example circuit

fragment in Fig. 2 in load and time units.

Gate Function Output Load Delay (𝑝𝑠)
g0 d_flop 5 35

g1 d_flop 10 40

g2 d_flop 3 30

g3 not 4 7

g4 and2 5 20

g5 not 2 5

g6 or2 6 22

g7 complex2 4 27

g8 nand2 3 15

g9 nor2 4 17

g10 d_flop 4 32

g11 d_flop 5 35

Table 2: Logic paths of example circuit fragment in Fig. 2. ID

is the index of the path, SP is its startpoint, EP is its endpoint,

Gates is a list of the gates in it and Delay is the total path

delay in time units. Endpoints are removed from gate lists,

as they do not add to path delay.

ID SP EP Gates Delay (𝑝𝑠)
0 g0 g10 g0, g5, g9 57

1 g0 g10 g0, g4, g7, g8, g9 114

2 g1 g10 g1, g4, g7, g8, g9 119

3 g1 g10 g1, g6, g7, g8, g9 121

4 g2 g10 g2, g3, g6, g7, g8, g9 118

5 g2 g10 g2, g3, g8, g9 69

6 g2 g11 g2, g3 37

logic structure, with its worst paths at generic synthesis time. For

example, for the pair g0 and g10, path 1 is the critical, as it has a

delay of 110, while path 0 has a delay of 55.

Next, to embed these paths as numerical features, we define them

as a vector of gates, where each gate is a vector of floating-point

numbers encoding the gate features. To prevent biasing the model,

we normalize the output load and the target cycle time.

In simple terms, a path is modeled as a matrix with L rows and 3

columns. In this matrix, L is the path’s size (or the number of gates

in the path). Each row of the matrix represents a logic gate, and

the columns are the target cycle time, the name of the logic gate,

and its output load, respectively. The target cycle time is repeated

for every gate to model its relationship with the total budget for

the path’s delay. Because all features must be of the same size, the

definition of the size L of a path is given by the largest structural

path in the data-set. We pad paths with the number of logic gates

smaller than L with a vector of 0s, eliminating the effect of cells

in that position in the overall model. To enable homogeneously

0.125 3.0 0.3

0.125 1.0 0.4

0.125 2.0 0.6

0.125 4.0 0.4

0.125 2.0 0.3

0.125 2.0 0.4

(a) a

0.125 5.0 0.3

0.125 1.0 0.4

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

(b) b

Figure 3: Embedding example for paths 4 (a) and 6 (b), from

the circuit fragment in Fig. 2.

data-set, we borrowed NLP concepts and added the padding in the

tail of our matrix.

In our example, the largest path has 6 gates. Let us assume

that this circuit has a target cycle time of 125, and the gates name

modeled by the approximation of their logic effort, as previously

discussed. Using the load information from Table 1, we can build

the features for path 4, showed in Fig. 3(a), and path 6, showed in

Fig. 3(b).

Note that we ignored setup time in flip-flops in this example for

the sake of simplicity. However, this information is automatically

accounted for by EDA tools when exporting logic path information.

Also, although the example only presents paths with start-points

and end-points as flops, our strategy captures paths from in2out,

in2reg, reg2reg, and reg2out.

4.3 Architecture and Hyper-parameters

The CNN input layer comprises 𝐿 neurons, with 𝐿 being the path
length available on the data-set. Each neuron has a width of three

to represent the gate features. The input layer is then connected

to a 3x3 convolutional filter, which aims to relate each gate delay

and output load with the specified target time and its neighboring

gates. The number of filters in the convolutional layer is 32, and

the filter stride is 1, as we do not exceed the path length. Finally,

the convolutional layer is connected to a single output neuron. All

the activation functions are sigmoids. The number of convolutional

filters and the CNN architecturewas defined by performingmultiple

rounds of training and testing. We apply Adam optimizer and a

cross-entropy loss function for training.

4.4 Binary Classifier Results and Discussion

4.4.1 Methodology. To train our model, we choose an open-

source RISC-V core2. We decide to train our model over a RISC-V

processor mainly for two reasons. First, it is an open-source hard-

ware Instruction Set Architecture (ISA), with high adoption in the

2https://github.com/cliffordwolf/picorv32.git
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industry. Second, it is a well-balanced circuit, i.e., it has significant

portions of arithmetic and control logic.

Dataset Generation: to generate our data-set, we run a standard

EDA flow and set the target cycle time ranging from 400 ps to

1000 ps, in steps of 100 ps. That is to ensure we collect paths under

different scenarios, i.e., with cycle times the tool cannot meet, with

tight cycle times, and with relaxed cycle times. These constraints

have a great impact on how the tool structures the logic paths. Our

data-set samples the worst path for each-endpoint, so that we have

all the in2out, in2reg, reg2reg, and reg2out pairs of paths, collected

after the generic synthesis. The labels are created according to the

path delays collected after the PnR flow. Fig. 4 shows the distribution

of path size during synthesis generic, as box plots on the y axis,

for each criticality, on the x-axis. Criticality is defined as explained

in section 4.1. This plot presents two interesting insights: (i) for

each critical point, we have a good variety of paths with distinct

lengths; and (ii) we can see that paths from basically any length

may become critical. It also shows our data-set is well balanced,

as we have a wide range of path lengths for the different critical

points.
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Figure 4: Criticality distribution per path length: The 𝑥 axis
presents the criticality of a given path, whereas the 𝑦 axis
shows the path length. It is possible to see there is a good

distribution of path lengths for the different critical regions.

4.4.2 Binary Classifier Discussion. We train ourmodel for 10 epochs

over the paths extracted from the RISC-V core. First, we shuffle the

data-set, and randomly select 70% of the paths for training, with the

remaining 30% of paths for validation. As for the model testing, we

extract the in2out, in2reg, reg2reg, and reg2out pairs of paths for two

designs. The first is an AES cryptography core, a widely adopted

module in circuit design, with fair portions of arithmetic and con-

trol logic. The second is the exponential module in the NVIDIA

Deep Learning Accelerator (NVDLA) [16]. Both circuits operate in a

frequency range similar to the RISC-V core and allow us to verify

the generality of the method.

Classifier Accuracy: first, let us present the classifier results while

classifying the paths of an AES targeting a cycle time of 350 ps.

Our binary classifier model presents an 𝐹1 score of 0.952, where
the components 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑝) is equal to 0.996, and the component
𝑟𝑒𝑐𝑎𝑙𝑙 (𝑟 ) is 0.911. Table 3 presents the classifier confusion matrix.
As for the NVDLA module, we achieve an F1 of 93.46%, with 𝑝 =
96.56%, and 𝑟 = 90.50%. Even though we present results for a single
cycle time, these metrics remain similar while applying a different

timing constraint.

Note that we have such a large amount of positive samples

because we are pushing the tool to its limit. If the tool can easily

meet the constraints, then the proposed method is not required, as

no further optimizations are needed to achieve design closure.
Predicted Positive Predicted Negative

Actual Positive 5,570 539

Actual Negative 17 1,192

Table 3: AES Confusion Matrix.

5 CLOSING THE LOOPWITH EASY OPT

In this section, we introduce an intelligent flow that makes use

of the information given by the classifier, forcing the entire flow

to perform aggressive optimization in the paths predicted to be

critical by our model. Fig. 5 presents an overview of our proposed

system. As the diagram shows, the first step is to perform a generic

synthesis and generate a report of the critical paths between each

start-point and end-point pair and their target cycle times. That

is done with a custom TCL script. This information is the input

of our Path Embedding tool, which transforms information about

these paths into numerical features. The generated features are the

input to a CNN-based binary classifier model that will decide what

paths will become critical to the circuit being implemented. With

this information, we generate a constraint file indicating to the

tool which paths are critical and should be more heavily optimized.

This constraint file is then read, and the system continues, as in

a traditional EDA flow. Note that the extra step added in the flow

has a negligible impact over the flow run-time. Path extraction can

be performed quickly, and path embedding, as well as the model

inference, are instantaneously computed.

The constraint file feeds back to guide the flow from technology

mapping until its end and aims to automatize amanual when design-

closure is not achieved. We have chosen to constraint the paths

with the command "set_max_delay", with the flags -from the start

point and -to the end-point. The max delay value is set to 0.

Generic Synthesis

Post tech-mapping
Optimizations

Tech mapping

Floorplanning

Routing

Placement

Clock-tree
Synthesis

RTL Input

Placed and
Routed Circuit

Design
Paths

Constraint
File

CNN ModelCCCCCC

N Paths

Path Embedding

Target
Cycle Time

EaSy Opt�

Logic Synthesis

Physical Design

Figure 5: EaSy Opt System Overview. Standard flow follows

the top-down dark arrows. Our system is interfacedwith the

standard flow as indicated by the red arrows.

5.1 Improving QoR by Predicting and
Constraining Critical Paths

This section presents the QoR improvements achieved while ap-

plying the proposed EaSyOpt flow to design the AES core while
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Table 4: Post PnR results comparison while designing an AES core for different cycle times (CT). Area is given in 𝜇𝑚2, achieved

CT is given in𝑛𝑠, and power dissipation in𝑚𝑊 . ADP stands forAreaDelay Product, whereas PDP stands for Power Delay Product

Target CT

(ps)

Standard Flow EaSy Opt ADP

Improvement

EDP

ImprovementArea (𝜇𝑚2) Achieved CT (𝑛𝑠) Power (mW) ADP PDP Area (𝜇𝑚2) Achieved CT (𝑛𝑠) Power (𝑚𝑊 ) ADP PDP

225 26,968.80 479.39 10.42 1.29E+07 5.00E+03 27,839.16 448.36 10.51 1.25E+07 4.71E+03 3.45% 5.66%

275 26,354.10 489.38 8.66 1.29E+07 4.24E+03 27,894.45 435.64 8.62 1.22E+07 3.76E+03 5.78% 11.39%

325 26,108.69 505.35 7.24 1.32E+07 3.66E+03 26,768.18 443.38 7.05 1.19E+07 3.13E+03 10.05% 14.57%

350 26,000.02 513.21 6.65 1.33E+07 3.41E+03 25,997.89 433.60 6.41 1.13E+07 2.78E+03 15.53% 18.56%

using an industrial EDA standard tool-chain. We show standard

metrics for evaluating circuit design QoR, such as (i) circuit area;

(ii) achieved CT; and (iii) power dissipation. To select the cycle

time constraint used in both the reference and propose flow, we

run the standard flow using a wide range of different cycle times

to understand which CTs the tool can meet with ease. Then, we

select some points below this cycle time to show the benefits of our

method.

Table 4 depicts the achieved results when applying the EaSy

Opt flow. Red data indicates a worse result, whereas blue denotes

an improvement. It is possible to notice that the proposed flow

achieves better performance than the standard flow for all the cases

and better power dissipation in most cases. As one would expect,

both improvements come at the price of area degradation. That

is expected as area and performance are opposite goals, and most

of the techniques that lead to performance improvements come

at an area cost. Thus, Area Delay Product (ADP) and Power Delay

Product (PDP) capture this trade-off. [18]. In this sense, we improve

ADP up to 15.53% and PDP up to 18.56% compared to the standard

flow. Note that achieving such improvements in the figures of merit

is significant and non-trivial. Any gains over a state-of-the-art

industrial flow are considered significant [2, 5].

6 CONCLUSION

This paper investigates how to represent generic logic paths as ten-

sors to predict their post-PnR criticality. We show that post-generic

synthesis features are limited, but sufficient. Then, we propose an

analogy of cells as words and paths as phrases to embed logic paths

into tensors. The proposed embedding achieves over than 90% of

accuracy in two complex designs. To show the implications of our

approach, we give one step further and introduce the EaSyOpt, a

portable and non-intrusive flow that uses our CNN structure to

guide the whole EDA flow. EaSyOpt is highly portable among dif-

ferent vendors and presents ADP and PDP improvements of up to

15.53% and 18.56%, respectively. It also improves performance for

all the cases, which is the main focus of our flow. By doing so, we

expect to achieve design closure faster, likely shortening the time-

to-market. Future works include investigating a minimalist data-set

generation to achieve generalization and further exploration of

different optimization commands as well as other techniques to

classify critical paths.
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