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ABSTRACT

Nowadays, from companies to academics, researchers across the
world are interested in developing recurrent neural networks due
to their incredible feats in various applications, such as speech
recognition, video detection, prediction, and machine translation.
However, the advantages of recurrent neural networks accompa-
nied by high computational and power demands, which are a major
desipn constraint for electronic devices with limited resources used
in such network implementations. Optimizing the recurrent neural
networks, such as model compression, is crucial to ensure the broad
deployment of recurrent neural networks and promote recurrent
neural networks for implementing most resource-constrained sce-
narios. Among many techniques, tensor train (T'T) decomposition
is considered an up-and-coming technology. Although our previous
efforts have achieved 1) expanding the limits of many multiplica-
tions eliminating all redundant computations; and 2) decomposing
into multistage processing to reduce memory traffic, this work still
faces some limitations. In particular, current TT decomposition on
recurrent neural networks leads to a complex computation sensitive
to the quality of training datasets. In this paper, we mvestigate a
new method for TT decomposition on recurrent neural networks
for constructing an efficient model within imbalance datasets to
overcome this issue. Experimental results show that the proposed
new training method can achieve significant improvements m ac-
curacy, precision, recall, F1-score, False Negative Rate (FNR), and
False Omission Rate (FOR).
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1 INTRODUCTION

Deep learning research in advancing sequence modeling has been
drawing more attention from both academia and industry [2, 9,
21]. Among various research efforts, Long Short-Term Memory
(LSTM) is considered as a promising recurrent neural network that
employs gates to control information flow in recurrent computa-
tions [4, 7, 23]. The LSTM model provides a powerful tool in various
tasks such as machine translation, language modeling, health in-
formation, time series prediction, and speech [1, 8, 12, 14, 22, 24].
However, current LSTM can not efficiently be employed in resource-
constrained applications due to its large model size.

To address this issue, model pruning and compression techniques
have been developed to construct compact LSTM models, and its
efficient hardware accelerators [3, 5, 10, 17, 19, 26—-29]. Among
these compression technologies, tensor train (TT) decomposition is
an attractive mathematical tool to decompose a large-scale tensor to
a group of smaller tensor cores with an efficient compression of any
tensor formats. However, current TT decomposition methods still
face two challenging limitations: 1) TT-decomposition increases
the number of possible layer-wise quantization schemes since it
decomposes one large tensor to multiple small tensor cores; 2) some
limit memory devices such as FPGA can not adopt and perform
efficient LSTMs on-chip. The current TT-decomposition on LSTM
also faces an additional challenge to train an efficient LSTM model



from an imbalanced dataset with an insufficient number of images
on certain categories in real-world applications. Consequently, the
performance of TT-decomposition enhanced LSTM is significantly
reduced.

A novel approach to construct an optimization LSTM that per-
forms accurate prediction for an imbalance dataset within a high-
performance LSTM hardware accelerator is developed in this paper
to overcome these issues. Specifically, the main technical contribu-
tions are as follows:

o In this paper, we have developed a novel approach named
Focal Loss-Tensor-Train LSTM that can train an efficient
LSTM model within an imbalance dataset. Compared with
prior TT-based LSTMs, our proposed TT-LSTMs achieve an
improvement in model performance.

e At the hardware design level, we have developed a novel ar-
chitecture of the hardware accelerator based on our proposed
FL-TT-LSTM to maximize the parallelism and the processing
throughput of our FL-TT-LSTM accelerator.

The remainder of this paper is organized as follows: Section 2
introduces the related background. Section 3 proposes the new
training method for improving its performance on imbalanced
datasets. Section 4 shows experimental results using the proposed
method to analyze software and hardware performance. Finally,
Section 5 concludes the manuscript.

2 RELATED WORK
2.1 Long Short Term Memory (LSTM) networks

Long short-term memory(LSTM) is an artificial circulation neural
network designed for time series prediction in deep learning with-
out losing effectiveness with long delay [20]. LSTM can process
and predict important events with very long intervals and delays
in time series. Recent research efforts apply LSTM in human action
recognition from video sequences. An LSTM unit consists of an in-
put gate, an output gate, a forget gate, and a cell, as shown in Fig. 1.
The cell stores the value for an indefinite length of time, and the
three gates regulate the flow of information into and out of the cell.
The forget gate in the LSTM unit is controlled by a neuron. It can
decide the retaining or discarding of information to store historical
information. The input gate is generated by the current neuron and
the previous memory unit, which can determine whether to update
the historical information to the LSTM block. The activation of each
gate and the current cell status updated over time are calculated as
follows:

iy =o(W; - [hi—1,x¢] + b))

fe=0(Wy - [he1,x:] +by)

cr = fr ©cp1 + iy © tanh(We - [hy—1,x¢] + be) 1)
0r = oc(Wo - [hy—1,%:] + bo)

h; = 0; © tanh(c;)

where o, tanh and © are the sigmoid function, hyperbolic function,
and element-wise product, respectively. The f, i, ¢, 0 and h denote
the forget gate, input gate, cell status, output gates, and hidden
node. Additionally, W and b represent the weight and bias.
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Figure 1: Architecture of the LSTM model used in this paper
and LSTM unit structure

2.2 Tensor Decomposition

Novikov et al. [18] proposes the first Tensorizing Neural Networks.
The weight of layers could determine the number of neural network
parameters and Tensor Neural Network stores the weights in tensor
format. Therefore, compressing the model by tensor decomposition
will save the storage space and boost the calculation speed. Garipov
et al. [6] rehearse the tensor train based training method with
convolutional and FC layers. The size of their model has been cut
down more than a dozen or even dozens of times based on different
TT - ranks for less than 0.1 percent accuracy rate dropped. Tjandra
et al. [25] have introduced tensor-train on RNN. Subsequently, Ye
et al. [28] make the model more competitive by using the block-
term decomposition method. He et al. [11] extend the tensor train
method to the LSTM network that can share parameters and time
calculation to perform the depth calculation of sequential tasks.
Remarkable results are also presented in the language modeling
task [16].

Herein, we define boldface letters a, A and A as vector, matrix,
and tensor, respectively. Tensor-Train Decomposition: Given a d-
dimensional tensor A € R™MXMX--XNd yith a size of ny X 1y X ...X
ng, it can be decomposed as:

Fo T
A, - ,ig) = Z Gi(ko, it k1) - Galkg_1,ig. ka), (2)
ko.k1,+-ka

where the group of G € R*1*X"% js a group of TT-cores and
the sequence {rk}Z:O is defined as the TT-ranks. Parameters rg
and ry; are set to 1. Once a large tensor A is decomposed to the
TT-format, the storage complexity is bounded by dnr?, where r =
max{rk}Z:O, n= max{nk}zzl.

3 PROPOSED FOCAL LOSS ENHANCED
TENSOR-TRAIN BASED INFERENCE

3.1 Tensor-Trained LSTM (TT-LSTM)

In LSTM structure, the linear layer is a basic element that outputs
y € RM which can be obtained by:

y=Wx, (3)
where W € RM*N s the weight matrix, x € RV is the input vector.
Tensorization Herein, we present a tensorization for the 2-D
weight matrix to perform TT-decomposition in the linear layer.
Given a weight matrix W, it can be tensorized to a weight tensor



Traditional TT-decomposition
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Figure 2: TT decomposition method for representing the ma-
trix with reshaped tensor.

W e R(mixm)x--X(maxna) by reshaping dimensions and trans-
posing orders. Similar to the decomposition of weight matrix, input
vector x and the output vector y also can be reshaped by factor-
ization M = ]_[Ig:1 mg, N = ]_[Z=l ng to a new form of the input
tensor X € R™>""XMd and the output tensor Y € R™M>""XMd _re-
spectively.

Weights Decomposition In previous steps, all variables are per-
formed tensorization. Consequently, all weights ‘W are stored into
small-size tensors that can be defined by TT-format (2) in element-
wise form. ‘W is decomposed as

ro,r1, " 5rd

Z Gi(ko, i1, ji, k1) - -+

kO;kly""kd )
Ga(kg-1.ig: Ja: ka)-
With one dimension more than the standard TT-cores in (2), here
each G| € R7k-1XMXMikXTk i5 3 4-dimensional tensor, since there
are factorized dimensions ny and my in the tensorized “W.
TT-LSTM The TT-based LSTM is built by decomposing the input-
to-hidden layer into smaller TT-format using Tensor Train Layer
(TTL) method, as in [27]. Specifically, with input-to-hidden weight
matrix W € RM*N hidden-to-hidden weight matrix U € RMXM
and bias vector b € RM | the TT-LSTM can be represented as
ir :O'(TTL(Wl‘, xt) + Ul‘htfl + bl)
ft ZG(TTL(Wf, xt) + Ufht—l + bf)
¢t =fr Ocr1+
i © tanh(TTL(Wc,xt) + Ucht—l + bc)
ot =0(TTL(Wp, xt) + Upht—1 + bo)
ht =o; © tanh(cy),

(W((il’jl)5 Tt (ld’]d)) =

where o, tanh and © are the sigmoid function, hyperbolic function,
and element-wise product, respectively. The formulated TT-LSTM
has the compression ratio (CR) given by
MN + M?
CR= — ; (6)
Xjey MiNgTk-1Tk + M?

where M = ]—[z=1 mg, N = nZ=1 ng. In Fig. 2, we present an exam-
ple to store a 5 X 12 weight matrix in the TT format. The given A
matrix and its reshaped 3-dimensional tensor A(iy, iz, i3), can be
decomposed and stored as three tensor cores G1, G2, G3. Compared
with traditional methods, our TT-decomposition can significantly
reduce the number of parameters in computation.
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Figure 3: (a) The training accuracy comparison between FL
and CE within different epochs, and (b) Demonstration of
reduction in the model loss due to the addition of new factor
(1 - p¢)Y and increasing of y. As shown in this experiment,
the FL model can provide more accurate training compared
to the CE model.

3.2 Focal Loss Enhanced Tensor-Trained LSTM
(FL-TT-LSTM)

A common method of loss function Cross Entropy (CE), which is

widely used in most ML systems [13]. The traditional Cross Entropy

(CE) loss given by (7), assigns a small weight to samples that are

easy to be classified, and greater weight to more complex samples

that are difficult to distinguish. Cross entropy function:

CE(pr) = —log(p:) ™)

where

ify=1
pt= {p J .
1-p otherwise

and p is the model estimation probability for the class with the label
y = 1. When the confidence is greater than 0.5, the value of the loss
is not small. If there are many negative samples, the accumulation
of these large losses will have an impact on class training with
small samples. A simple approach is to assign different weights
a to different classes, i.e., a-balanced cross entropy. In practice, a
belongs to a default hyper-parameter, and the larger the sample
number of the category, the smaller the setting of a.

CE(pr) = —arlog(pr) ®)
The a-balanced cross entropy only balances the weights accord-
ing to the number of positive and negative samples, without consid-
ering the difficulty of the samples. Therefore, the weight of easily
classified samples is reduced so that the model is more focused on
the samples that are difficult to classify during training.
Thus, the cross entropy needs to be redefined by adding a modu-
lating factor (1 — p;)¥ with a tunable focusing parameter y > 0.
Consequently, the new loss function named Focal Loss as:

FL(pt) = —(1 = pr)¥log(pr) )
In some practices, we use an a-balanced variant of the focal loss:
FL(pt) = —ar (1= pr)¥log(pe) (10)

By conducting experiments on different tasks, the focal loss with
a-balanced achieves better performance. To test the FL method to
obtain its performance compared to the CE loss function, we present
a loss comparison between FL and CE within the same dataset, see



Fig. 3. This experiment shows that the proposed FL applied to LSTM
provides a high accuracy training that outperforms the traditional
training method. We implement the proposed FL-TT-LSTM in the
TensorFlow-Keras framework. Tensorflow framework is known as
a flexible and powerful framework to support machine learning
development, and Keras is a high-level API that can call Tensorflow
as a backend. The details of the method to construct a new training
method for FL-TT-LSTM can be found in Algorithm 1.

Algorithm 1 Focal-Loss implementation in TT-LSTM

Input: Weight ‘W, Train Dataset T, # Batches N
Hyparameters: Batch size B, Learning Rate 7, training iterations
Epochs

Output: W;

‘W = initialization(‘W)
CE = ~log(p1)
for i in range (Epochs) do
for j in range (N) do
MiniBatch =T[j X B: (j+1) X B]
Gs, bias, recurrent_kernel = W|[0], W[1], W|[2]
res = MiniBatch
for G in Gs do
res = Reshape(res) - Reshape(G)
end for
preds = Dense(LSTM(res + h - recurrent_kernel + bias))
pr =Pred_Judgment(labels, preds)
FL = a(1 - pt)YCE(py)
VFL(‘W;_1) = Backward(FL, MiniBatch)
Wi = Wiet - n(FVFL(Wi-1))
end for
end for

3.3 Overall Architecture of FPGA Accelerator
for FL-TT-LSTM

In Fig. 4, we present our proposed overall architecture of FPGA Ac-
celerator for FL-TT-LSTM. The architecture consists of computation
kernel, registers, and BRAM. Due to the algorithm, unlike the tradi-
tional gigantic weight matrices requiring massive exterior storage,
the FL-TT-LSTM Core weight is able to fit in the onboard BRAM
and access via DMA and bus line results in a massive transmitting
speed improvement. A PE (processing element) array is combined
with the DSP as the multiply-accumulate (MAC), fulfilling a large
matrix multiplication in the LSTM algorithm. Attributed to the
FL-TT-LSTM, the parameters of the LSTM are reduced significantly,
leading to greater resource efficiency of the logic component. In
Fig. 4, the inference routing component is in charge of all the algo-
rithm scheduling, the basic matrix multiplication, address update,
and activation process. With a relatively smaller scale of computa-
tion in each row of the weight matrices, the flexibility of pipelining
is foreseeable with better FPGA chips. On the other hand, with the
strength of the FT-TT-LSTM, implementing on a low power edge
computing device is also a rewarding possibility.

TT-RNN Core Weightin BRAM
Cores0 Cores1 Cores2

Cores N

Registers PE
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Figure 4: Architecture of FPGA Accelerator for FL-TT-LSTM

4 EXPERIMENT AND RESULTS

In this study, we propose the FL-TT-LSTM network to conduct the
classification of the imbalanced UCF11 dataset compared with TT-
LSTM model with cross entropy (CE) loss function. We show that
the network of FL-TT-LSTM still has superior performance even in
extreme imbalance. It is proved that Focal loss(FL) can improve the
classification effect of the imbalanced dataset by comparing it with
state-of-the-art methods.

4.1 Experimental Setup

We built a TT-LSTM with Cross Entropy(CE) loss as the bench-
mark, and the architecture is the same as the TT-LSTM [27] in
Fig. 1. The second model where the Focal Loss (FL) is used to sub-
stitute the CE loss termed as FL-TT-LSTM. Both the TT-LSTM and
the FL-TT-LSTM model are deployed in Keras, running in the same
environment to ensure the validity of the comparison. In the follow-
ing experiment, we set the epoch to 300. Both the TT-LSTM and the
FL-TT-LSTM network have the same input: the concatenation of
flattened frames that we sampled from every video clip. The input di-
mension is 159 X 128 X 3 = 61056, factorized as 16 X 8 X 9 X 53, the
hidden layer as 4 X 4 X 4 X 6 = 384 and the ranks are [1,4,4,4, 1].
The computer configuration is AMD Ryzen 7 3700x + GTX1660s.
By observing the curve in Fig. 3a), the overall classification accu-
racy of FL-TT-LSTM shows a good performance across the training
process.

4.2 Comparison to State-of-the-Art in UCF11
Dataset

UCF YouTube Action Dataset (UCF11) [15], as a human action video
dataset, contains 1600 video clips, and the resolution is 320 x 240.
It is divided into 11 Action categories, such as swinging, riding a
horse, playing basketball, and so on and its content is more con-
sistent with the display, such as the lighting level, camera shake,
background clutter, etc. We sample 6 frames from every video clips
and generate a series of RGB frames with the size of 159 X 128 from
each clip.

In this experiment, we analyzed the impact of imbalance ratio and
critical parameters y and a for FL on the classification task of the
proposed TT-LSTM with CE and TT-LSTM network with FL. The
Imbalance Ratio (IR) is defined as:



Table 3: Implementation speedup comparison with the base-
line LSTM

LSTM Ours
Platform XCKUsP XCKUsP
Frequency(MHz) 200 200
Parameters 94.38M 0.60M
Matrix Compression 1 28K
Rate
Accuracy 79.9% 90.6%
Throughput (GOPS) 86.6 175.6
Power(W) 29.3 18.6
Power Efficien
S & 2.96 9.44

5 CONCLUSION

This paper develops a new method to construct an efficient LSTM
inference accelerator utilizing an FPGA board. Through our pro-
posed the new method, the proposed FL-TT-LSTM accelerator, can
achieve 90.6% in accuracy compared to state-of-the-art 79.6%. On
the heaviest imbalanced dataset, the proposed FL-TT-LSTM can
achieve 42.0% in accuracy, 57.8% in precision, 54.7% in recall, 46.2%
in Fl-score, 0.0492 in FOR, and 0.452% in FNR. In the hardware
aspect, our proposed FL-TT-LSTM accelerator can achieve 18.6W
power consumption and 9.44 power efficiency (GOPS/W) on differ-
ent workloads in general. Compared to baseline-LSTM, it achieves
2,03 higher throughput, 10.7% accuracy increase, 3.2 power effi-
ciency, and 1.58x power reduction. Our experimental results show
that the proposed method enables the LSTM can achieve a remark-
able improvement in the imbalance dataset with significant advan-
tages in hardware over state-of-the-art solutions.

ACKNOWLEDGMENT

Research was sponsored by the Army Research Office and was
accomplished under Grant Number W911NF-20-1-0174. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation herein. This project was also partially supported
by National Science Foundation under Grant CCF-1955%09.

REFERENCES

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv. 1402.0473 (2014).

[2] Y. Bai, D. Fan, and M. Lin. 2018. Stochastic-Based Synapse and Soft-Limiting

Neuron with Spintronic Devices for Low Power and Robust Artificial Neural

Networks. [EEE Transactions on Multi-Scale Computing Systems 4, 3 (2018), 463—

476. https://doi.org/10.1109/TMSCS.2017.2787109

Yuxuan Cai, Hongjia Li, Geng Yuan, Wei Niu, Yanyu Li, Xulong Tang, Bin Ren,

and Yanzhi Wang, 2020. YOLObile: Real-Time Object Detection onMobile Devices

via Compression-Compilation Co-Design, arXiv preprint arXiv:2009.05687 (2020).

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv preprint arXiv 14091259 (2014).

3

flead}

[4

flaas’

[5] CaiwenDing, SiyuLiao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo, Chao Wang,

Xuehai Qian, Yu Bai, Geng Yuan, Xiaolong Ma, Yipeng Zhang, Jian Tang, Qinru

Qiu, Xue Lin, and Bo Yuan. 2017. CirCNN: Accelerating and Compressing Deep

Neural Networks Using Block-CirculantWeight Matrices. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Microqrehitecture (Cambridge,

Massachusetts) (MICRO-50"17). Association for Computing Machinery, New York,

NY, USA, 395-408. https://doiorg/10.1145/3123939.3124552

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov.

2016. Ultimate tensorization: compressing convolutional and fc layers alike.

arXiv preprint arXivi611.03214 (2016).

Tian Guo, Tao Lin, and Nino Antulov-Fantulin. 2019. Exploring interpretable

LSTM neural networks over multi-variable data. In Infernafional Conference on

Machine Learning. PMLR, 2494-2504.

Tian Guo, Zhao Xu, ¥in Yao, Haifeng Chen, Karl Aberer, and Koichi Funaya. 2016,

Robust online time series prediction with recurrent neural networks. In 2016

IEEE International Conference on Data Science and Advanced Analytics (DSAA).

Ieee, 816—-825.

Tanhui Guo, Siming Han, Chuanhe Shen, Ying Li, Kijie Tin, and Tu Bai. 2018, An

Adaptive SVR for High-Frequency Stock Price Forecasting. [EEE Access 6 (2018),

11397-11404. https://doi.org/10.1109/ACCESS.2018.2806180

[10] Yiwen Gue, Anbang Yao, and Yurong Chen. 2016. Dynamic network surgery for
efficient dnns. arXiv pregrint arXiv 160804493 (2016).

[11] Zhen He, Shaobing Gao, Liang Xiao, Daxue Liu, Hangen He, and David Barber.
2017. Wider and deeper, cheaper and faster: Tensorized Istms for sequence
learning. arXiv preprint arXiv:1711.01577 (2017).

[12] Nan Rosemary Ke, Konrad Zotna, Alessandro Sordoni, Zhouhan Lin, Adam
Trischler, Yoshua Bengio, Joelle Pineaw, Laurent Charlin, and Christopher Pal.
2018. Focused hierarchical rnns for conditional sequence processing. In Interna-
tional Conference on Machine Learning. PMLR, 2554-2563.

[13] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE infernational
canference on computer vision. 29802988,

[14] Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzel. 2015.
Learning to diagnose with LSTM recurrent neural networks. arXiv preprint
arXiv1511.03677 (2015).

[15] Jingen Liu, Jiebo Luo, and Mubarak Shah. 2009. Recognizing realistic actions
from videos “in the wild® In 2009 IEEE Conference on Computer Vision and Patlern
Recognition. IEEE, 1996—2003.

[16] Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Dawei Song,
and Ming Zhou. 2019. A tensorized transformer for language modeling. arXiv
preprint arkiviI906 09777 (2019).

[17] Chuhan Min, Aosen Wang, Yiran Chen, Wenyao Xu, and Xin Chen. 2018. 2pf-
pee: Two-phase filter pruning based on conditional entropy. arXiv preprint
arXiv.1809.02220 (2018).

[18] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov.
2015. Tensorizing neural networks. arXiv preprint arXiv1509.06559 (2015).

[19] Yu Pan etal. 2019. Compressing recurrent neural networks with tensor ring for
action recognition. In A4 A] Vol. 33. 4683-4690.

[20] Hasim Sak, Andrew W Senior, and Frangoise Beaufays. 2014. Long short-term
memory recurrent neural network architectures for large scale acoustic modeling.
(2014).

[21] A. Samiee, P. Borulkar, R. F. DeMara, P. Zhao, and Y. Bai. 2019. Low-Energy
Acceleration of Binarized Convolutional Neural Networks using a Spin Hall Effect
based Logic-in-Memory Architecture. [EEE Transactions on Emerging Topics in
Computing (2019, 1-1. hitps://doi.org/10.1109/TETC.2019.2915559

[22] Ashkan Samiee Vinjie Huang, and Tu Bai, 2018 FRLDM: Empowering K-nearest
Neighbor (KNN) through FPGA-based Reduced-rank Local Distance Metric. In
2018 IEEE International Conference on Big Data (Big Data). 4742-4746. htips:
f{doi.org/10.1109/BigData. 2018.8622087

[23] Jurgen Schmidhuber and Sepp Hochreiter, 1997, Long short-term memory. Neural
Comput 9, 8 (1997), 1735-1780.

[24] IlyaSutskever, Oriol Vinyals, and Quoc 'V Le. 2014, Sequence to sequence learning
with neural networks. arXiv preprint arXiv.1409.3215 (2014).

[25] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. 2017. Compressing
recurrent neural network with tensor train. In 2017 International Joint Conference
an Neural Networks (IFCNN). IEEE, 4451-4458.

[26] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. arXiv preprint arXiv:1608 03665
(2016).

[27] Yinchong Yang et al. 2017. Tensor-train recurrent neural networks for video
classification. In JCML. 3891-3900.

[28] Jinmian Ye et al. 2018. Learning compact recurrent neural networks with block-
term tensor decompeosition. In CVFPR. 9378-9387.

[29] Miao Yin, Siyu Liao, Xiao-Yang Liu, Xiaodong Wang, and Bo Yuan. 2020. Com-
pressing recurrent neural networks using hierarchical tucker tensor decomposi-
tion. arXiv preprint arXiv:2005.04365 (2020).

6

=

[7

=

[8

=

[9

—



	LSTM_Focal_loss_GLSVLSI2021_页面_1
	LSTM_Focal_loss_GLSVLSI2021_页面_2
	LSTM_Focal_loss_GLSVLSI2021_页面_3
	LSTM_Focal_loss_GLSVLSI2021_页面_4
	LSTM_Focal_loss_GLSVLSI2021_页面_6

