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1. INTRODUCTION

Consider the problem of minimizing an objective function f : IRp → IR, subject to

simple bound constraints x ∈ B = {x ∈ IRp | ℓ ≤ x ≤ u}, where ℓ, u ∈ IRp, ℓ < u.

The algorithm described herein (QNSTOP) was studied by Castle [2012] in the

setting of stochastic search, i.e., f(x) cannot be computed and must be estimated

via random sampling. Its utility for global optimization of noisy deterministic

functions, i.e., f(x) can be computed but f has large local total variation, was

subsequently studied by Easterling et al. [2014].

QNSTOP was inspired by a connection, first noted by Trosset [2003], between

ridge analysis, a popular technique in response surface methodology, and trust

region methods for numerical optimization. It is quasi-Newton in the sense that it

constructs local quadratic models of the objective function that are not derived from

Taylor polynomials and derivatives. It was conceived for optimization problems in

which evaluation of the objective function is stochastic rather than deterministic.

Attempts to incorporate trust-region methods into response surface methodology

have been relatively rare and have lacked corresponding convergence theory. Castle

[2012] adapted standard convergence theory for stochastic approximation to ensure

convergence under certain conditions. This convergence theory motivated a novel

constrained variation of the SR1 Hessian update and a novel strategy for updating

the trust region that is qualitatively different from the standard one. Both ideas

are described in detail in Section 3.

Although QNSTOP was conceived as a method for stochastic search, it has two

features that make it attractive for globally optimizing noisy deterministic objec-

tives. First, because QNSTOP smooths (by regression) observed responses to con-

struct semilocal approximations, it automatically filters high-frequency oscillations

in the objective. Second, QNSTOP uses space-filling designs in ellipsoidal trust

regions to obtain semilocal information about the objective. In so doing, QN-

STOP may serendipitously discover unexpectedly small objective values within the

semilocal trust region Ek(τk).

An early version of Castle’s algorithm for stochastic search was named QNSTOP

and was implemented in Matlab. Positing that global optimization of noisy deter-

ministic objective functions had some similarities to stochastic search, the original

QNSTOP code was converted to Fortran 2003 and used for deterministic global

optimization. Computational experience and considerations of numerical stability,

efficiency, and convergence rate led to major modifications in the linear algebra,

trust region update strategy, Hessian update, and start phase, resulting in two dis-

tinct versions of QNSTOP: one for stochastic search that relies on the convergence

theory of Castle [2012], and one for deterministic global optimization problems that

is based on the aforementioned considerations. Easterling et al. [2014] described the

deterministic global variant of QNSTOP and presented results for several determin-

istic global optimization problems, but did not address QNSTOP parallelization or

present the stochastic search variant of QNSTOP. Because these variants of QN-

STOP have a common ancestry, and some calculations in common, QNSTOP is
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viewed as a family of algorithms, with the variant being selected by a switch in

a single Fortran subroutine. The short conference paper by Amos et al. [2014]

gave an abbreviated description of QNSTOP with some performance results. The

present paper contains the first complete description of the full (stochastic and

global deterministic options) QNSTOP code.

The following sections provide background, discuss varying philosophies of

stochastic search, describe QNSTOP in detail, provide some performance data on

difficult systems biology problems, and conclude with some general observations.

2. OPTIMIZATION IN THE PRESENCE OF RANDOM NOISE

QNSTOP was conceived for optimization problems in which evaluation of the ob-

jective function is corrupted by the presence of random noise. To distinguish be-

tween the presence and absence of random noise, researchers in numerical optimiza-

tion often distinguish stochastic optimization from deterministic optimization. The

acronym QNSTOP uses the former phrase in this relatively narrow sense. Other

communities use it more generally. For example, Powell [2019] identified 15 dis-

tinct stochastic optimization communities, including stochastic search, which he

proposed as one of four meta-classes for stochastic optimization. In his taxon-

omy, stochastic approximation, response surface methodology, and QNSTOP are

all examples of stochastic search. Note that stochastic search may also involve

probabilistic constraints, which are not considered here.

Other approaches are possible. One might generate a very large number of re-

alizations and create a discrete approximation of the original problem, then apply

deterministic algorithms. This approach, sometimes called sample path optimiza-

tion, can be highly effective on some problems but relies on information that is not

likely to be available for the problems of interest here. Similarly, techniques for

stochastic programming, which generate large deterministic problems from multiple

scenarios, seem ill-suited for the problem types considered here. Spall [2003, Sec-

tion 15.4] discusses sample path optimization; Birge and Louveaux [2011] provide

a comprehensive account of stochastic programming.

2.1 Mathematical Formulation

To illustrate the phenomenon of random noise, suppose that one seeks to minimize

µ : IRp → IR. Given x ∈ IRp, one would like to observe µ(x); instead, one observes

µ(x) + ǫx, where ǫx is a random variable. This is the case of additive random

noise. In this case, the underlying objective function µ is often called the regression

function (in the stochastic approximation literature) or the response surface (in the

response surface methodology literature).

Most formulations of optimization in the presence of random noise impose vari-

ous assumptions on the ǫx. The assumption E(ǫx) = 0, from which it follows that

the expected value of an observation is the true value of the objective function,

is inevitable. One might also assume that ǫx ∼ Normal(0, σ2
x) (normality), that
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Var(ǫx) = σ2
x does not depend on x (homoscedasticity), and that the ǫx are in-

dependent (white noise). The preceding set of assumptions is referred to as the

standard example.

Random noise may not be additive. Because there is no elegant way to catalog

the many random mechanisms by which a deterministic objective function might be

corrupted, the concept of optimizing in the presence of random noise is somewhat

elusive. The usual approach is to begin with what one observes, not with what one

seeks to optimize. Given x ∈ IRp, suppose that one observes a random variable Yx.

One then defines the objective function to be µ(x) = E(Yx). However, there are

a number of meaningful problems that are more naturally expressed in a slightly

different setting.

Let

P = {P (·;x) | x ∈ C ⊆ IRp}

denote a family of probability distributions indexed by x. Assume that the P (·;x)

are completely unknown or analytically intractable, but that one can sample from

any specified P (·;x). The first case might arise as one varies the prescribed op-

erating characteristics of a manufacturing facility in search of an optimum. This

is a typical concern of response surface methodology. In this case, observations

are generated by a physical process for which a formal mathematical description

is not available. The second case might arise when one is tuning the parameters

of a simulated stochastic process, searching for settings that produce simulated

data sets that resemble an actual data set. This is a useful approach to param-

eter estimation when the statistical model is defined implicitly, i.e., in terms of

a generating stochastic mechanism rather than by specifying a parametric family

of probability distributions. See, for example, Atkinson et al. [1983], Diggle and

Gratton [1984], and Thompson [2000]. In none of these cases can one manipulate

the P (·;x) as mathematical objects; instead one must rely on random sampling to

obtain information about them.

Now let T : P → IR and let f(x) = T (P (·;x)). One seeks local solutions of

min
P∈P

T (P ), (1)

or, equivalently, of

min
x∈C

f(x). (2)

Additional smoothness assumptions are imposed on T or f , as needed.

As stated, Problems (1) and (2) are unambiguous, deterministic optimization

problems. They become stochastic when one cannot manipulate the P (·;x) as

mathematical objects. When one must estimate f(x) = T (P (·;x)) from a random

sample

ω1(x), . . . , ωn(x) ∼ P (·;x), (3)

then function evaluation is random and Problems (1) and (2) necessitate optimiza-

tion in the presence of random noise.
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Given an independent and identically distributed random sample (3), let

P̂n(·;x) =

n∑

i=1

1

n
δωi(x) (4)

denote the empirical distribution of the sample, i.e., the discrete probability distri-

bution that assigns probability 1/n to each ωi(x), where

δt(s) = χ{t}(s) =

{
1, s = t,
0, s 6= t.

In the case of univariate probability distributions, the empirical distribution is

usually identified as the empirical cumulative distribution function (cdf), i.e., the

function (of y)

P̂n (ω(x) ≤ y;x) =
#{ωi(x) ≤ y}

n
.

Let Tn(ω1(x), . . . , ωn(x)) denote a statistic, i.e., a real-valued quantity calculated

from the sample. Then von Mises [1947] observed that many useful statistics are

of the form

Tn (ω1(x), . . . , ωn(x)) = T
(
P̂n(·;x)

)
,

in which context T is often called a statistical functional.

In what follows, the univariate probability distributions P (·;x) and P̂n(·;x) are

identified with their corresponding cumulative distribution functions. Let

Dn = sup
y

∣∣∣P̂n (ω(x) ≤ y;x)− P (ω(x) ≤ y;x)
∣∣∣ .

The Glivenko-Cantelli Theorem states that P (Dn → 0) = 1; hence, if T is contin-

uous in a suitable sense, then one should find that

T
(
P̂n (·;x)

)
P
→ T (P (·;x)) .

This says that one can consistently estimate f(x) = T (P (·;x)) by sampling from

P (·;x). In fact, one can usually say considerably more. The theory of statistical

functionals is primarily concerned with connecting the differentiability of T to the

asymptotic normality of T (P̂n(·;x)). See, for example, Fernholz [1983].

2.2 Stochastic Approximation Versus Response Surface Methodology

QNSTOP borrows ideas from two standard approaches to optimization in the pres-

ence of random noise, stochastic approximation (SA) and response surface method-

ology (RSM). Both SA and RSM originated in the early 1950s. For SA, seminal

papers include Robbins andMonro [1951], Kiefer andWolfowitz [1952], Blum [1954],

and Dvoretsky [1956]. See Kushner and Yin [1997], Spall [2003], and Marti [2005]
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for modern surveys. For RSM, the seminal paper is Box and Wilson [1951]. See

Myers and Montgomery [1995] for a modern survey.

Both SA and RSM evolved from attempts to adapt the method of steepest de-

scent for numerical optimization. Both approaches construct local models (typically

linear, but occasionally quadratic) of the objective function. Because the objective

function cannot be manipulated directly, derivatives are not available and cannot

be used to construct the local models. SA constructs local models from estimated

derivatives, obtained by finite differencing. RSM constructs local models directly,

from designed regression experiments.

In numerical optimization, the magnitude of the differences used in finite dif-

ferencing schemes is extremely small. When function evaluation is corrupted by

random noise, trends in the objective function cannot be detected with such small

differences. Furthermore, once a descent direction has been estimated, line searches

cannot reliably determine an optimal step length. As a result, SA relies on predeter-

mined decreasing sequences of differences and step length multipliers. Convergence

to a local solution is guaranteed by controlling the behavior of these sequences. Tra-

ditionally, the differences are O(1/k3) and the step length multipliers are O(1/k),

where k is the iteration counter.

SA relies on averaging. The models constructed for individual iterations may be

quite crude (Spall’s simultaneous perturbation stochastic approximation algorithm

estimates a gradient from just two function evaluations); SA succeeds by taking a

large number of steps. For fixed budgets, it may be better to choose n = 1 in (3)

and take a great many steps than to choose n ≫ 1 and settle for fewer steps of

higher quality. One of the most significant advances in SA is due to Polyak and

Juditsky [1992], who demonstrated that convergence could by accelerated by using

larger step length multipliers and averaging the sequence of iterates.

In contrast, RSM typically takes a small number of carefully chosen steps.

Whereas SA has produced a huge literature on asymptotic convergence theory,

RSM has produced a huge literature on experimental design. There is virtually no

overlap between the SA and RSM literatures.

2.3 Trust­Region Methods in Response Surface Methodology

As described by Conn et al. [2000], trust-region methods are widely used in de-

terministic optimization. In their seminal work on RSM, Box and Wilson [1951]

recommended use of a primitive trust region. Trosset [2003] noted the essential

equivalence of pioneering work in trust-region methods by Marquardt [1963] and in

ridge analysis by Draper [1963], but attempts to incorporate modern trust-region

methods into RSM have been infrequent.

QNSTOP is distinct from, but closely related to, (at least) three previous trust-

region methods for stochastic search. First, Lawera and Thompson [1993] described

a response surface method based on ideas in [Box and Hunter 1957]. Significant in-

novations include adaptive experimental designs and quasi-trust region step length

control.
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Second, Deng and Ferris [2006] proposed three novel modifications to Powell’s

[2002] UOBYQA (unconstrained optimization by quadratic approximation) algo-

rithm for numerical optimization, endeavoring to adapt it for stochastic search.

Their algorithm observes the response at each design site multiple times and inter-

polates the mean responses. A heuristic is used to determine how many observations

should be taken at each design site so that the quadratic model and the constrained

minimizer are stable. The constrained minimizer of the quadratic model is com-

puted in the same way as in UOBYQA; however, a novel heuristic is used to decide

whether to update the current iterate with the minimizer or leave it unchanged.

They also describe termination criteria specific to the stochastic setting based upon

having similar mean responses amongst a large portion of sites on the boundary of

the trust region.

Finally, Chang, Hong, and Wan [2007] and Chang and Wan [2009] proposed the

STRONG and STRONG-X algorithms. STRONG assumes normally distributed

function evaluation errors, while STRONG-X relaxes this assumption to additive

errors with bounded variance. Both algorithms adapt the standard two-phase RSM

approach and utilize trust regions to control progress. The first phase constructs a

linear model fit partially by least squares to multiple observations at design sites

in an appropriate design (the authors recommend a fractional factorial or factorial

design plus the current iterate). A line search is used in the direction of negative

gradient within the trust region to choose the subsequent iterate. The second phase

constructs a quadratic model by least squares. If sufficient progress is made, the

algorithm steps to the Cauchy point, i.e., the minimizer of the quadratic in the

direction of steepest descent subject to the trust region constraint. Heuristics are

used to determine whether sufficient progress was obtained in each phase.

What distinguishes the above methods from the trust-region methods for

derivative-free optimization (DFO) pioneered by Conn et al. [1997] is the effort to

address the difficulties posed by the presence of random noise. DFO and UOBYQA

interpolate observed function values, which seems unappetizing in the presence of

random noise. Each of the above methods attempts to smooth the noise: Deng

and Ferris observe multiple function values at each design site and interpolate the

mean responses, whereas the other methods (and QNSTOP) smooth by regression.

Simulation experiments performed by Castle [2012, Section 5.2] indicate that the

latter approach is superior, or—more precisely—that “it might be beneficial to ob-

serve the objective at an unobserved design site rather than observing replications

at a particular design site.”

2.4 Optimization of Noisy Deterministic Functions

Besides the myriad instances where the objective function f(x) is a random variable,

there are optimization problems where the function f(x) is deterministic but has

very large local total variation, making f(x) appear to be stochastic as x changes

slightly. Large-scale scientific computations involving iterative adaptive algorithms

often exhibit this latter type of behavior, e.g., the biomechanics gait model in

[Easterling et al. 2014].
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The high-frequency oscillations in noisy deterministic functions mean that deriva-

tive information is rarely useful, and that local comparisons of individual function

values may fail to capture semilocal trends. When optimizing a noisy deterministic

function, the need to filter these oscillations is not unlike the need to smooth random

noise in stochastic search. Indeed, SA, which relies on coarse finite-differencing, is

often recommended for optimizing noisy deterministic functions. Spall’s Simulta-

neous Perturbation Stochastic Approximation (SPSA) algorithm [Spall 1987, 1992,

1998], which constructs gradient estimates from just two function evaluations, has

been widely used for this purpose. Kelley’s implicit filtering algorithm [Gilmore

and Kelley 1995], which relies on coarse stencil-based finite differencing to con-

struct descent directions, is predicated on the same reasoning. Alternatively, one

might attempt to filter high-frequency oscillations by RSM.

Both SA and RSM attempt to find local minimizers of an objective function.

However successful they may be in filtering noise and identifying underlying trend,

they are not designed to find the global minimizer of the underlying trend. If global

optimization is desired, then SA or RSM can be used in conjunction with a sensible

multistart strategy, e.g., by generating initial starting points via Latin hypercube

(LHC) sampling. Easterling et al. [2014] found QNSTOP with an LHC multistart

strategy to be highly effective on certain types of global optimization problems.

However, as described in Section 3, effective global optimization of noisy determin-

istic functions calls for different parameter settings than effective local optimization

in the presence of random noise. Section 5 reports QNSTOP performance results

for a noisy deterministic optimization problem from computational biology. (Ex-

amples of other types of problems to which QNSTOP is applicable are given in a

supplementary file, along with the algorithm code.)

3. QUASI­NEWTON METHODS FOR STOCHASTIC SEARCH

Quasi-Newton methods attempt to approximate second-order information about

the objective function without recourse to second-order derivatives. The rationale

for using quasi-Newton methods in stochastic search is the same as for numerical

optimization: if second-order information exists and can be reliably extracted from

data samples, then it is computationally advantageous to exploit it. If second-order

information does not exist or cannot be reliably approximated, then the algorithm

degenerates to a first-order method based on first-order (gradient) approximations.

Both RSM and SA mimic the method of steepest descent, but numerical opti-

mization has advanced dramatically since the 1950s and the method of steepest

descent is no longer the state of the art. The class of QNSTOP algorithms syn-

thesizes ideas from RSM (semilocal approximations constructed from designed ex-

periments by regression, confidence sets for constrained minimizers, ridge analysis)

and SA (convergence analysis), combining them with ideas from modern numerical

optimization (trust regions, secant updates).

QNSTOP was originally developed for stochastic search; however, with signif-

icant modification to certain steps, QNSTOP can also be used for deterministic

global optimization. Both uses supported by the code are described simultaneously
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in what follows, repeating, for completeness and clarity here, the details of the

deterministic global optimization variant from [Easterling et al. 2014]. In iteration

k, QNSTOP methods compute the gradient vector ĝk and Hessian matrix Ĥk of a

quadratic model

m̂k(X −Xk) = f̂k + ĝTk (X −Xk) +
1

2
(X −Xk)

T Ĥk (X −Xk) , (5)

of the objective function f centered at Xk, where f̂k is generally not f(Xk).

In the unconstrained context, QNSTOP methods progress by

Xk+1 = Xk −
[
Ĥk + µkWk

]−1

ĝk, (6)

where µk is the Lagrange multiplier of a trust region subproblem and Wk is a

scaling matrix. In the case where the feasible set Θ is a closed convex subset of

IRp, consider an algorithm of the form

Xk+1 =

(
Xk −

[
Ĥk + µkWk

]−1

ĝk

)

Θ

,

where (·)Θ denotes projection onto Θ.

3.1 Estimating the Gradient

Following a response surface methodology approach, QNSTOP designs regression

experiments in a region of interest containing the current iterate. QNSTOP uses

an ellipsoidal design region centered at the current iterate Xk ∈ IRp. Let

Wγ =
{
W ∈ Rp×p : W = WT , det(W ) = 1, γ−1Ip � W � γIp

}

for some γ ≥ 1 where Ip is the p × p identity matrix. A typical value for γ is 20.

The elements of the set Wγ are valid scaling matrices that control the shape of

the ellipsoidal design regions with eccentricity constrained by γ. Let the ellipsoidal

design regions

Ek(τk) =
{
X ∈ IRp : (X −Xk)

T
Wk (X −Xk) ≤ τ2k

}

where Wk ∈ Wγ . In the deterministic case τk = τ0 > 0 is fixed if there is no gain,

otherwise for gain ζ > 0 (an input parameter)

τk =
ζ

ζ + k
τ0.

In the stochastic case, the convergence theory [Castle 2012] requires that τk be

decayed according to the formula τk = a(k + 1)−b, where a > 0 and b ∈ (0, 0.5).
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In each iteration, QNSTOP methods choose a set of Nk design sites {Xk1, . . .,

XkNk
} ⊂ Ek(τk) ∩ Θ. In this implementation N = Nk is fixed for each k = 1, 2,

. . . and Xk1, . . ., XkN ∈ Ek(τk) ∩Θ are uniformly sampled in each iteration.

Let Yk = (yk1,. . .,ykN )T denote the N -vector of responses where yki = F (Xki) +

noise. The response surface is modeled by the linear model yki = f̂k +XT
kiĝk + ǫki

where ǫki accounts for lack of fit. Let X̄k = N−1
∑N

i=1 Xki. The least squares

estimate of the gradient ĝk, ignoring the estimate for f̂k, is obtained by observing

the responses and solving (
DT

k Dk

)
ĝk = DT

k Yk (7)

where

Dk =




(
Xk1 − X̄k

)T
...(

XkN − X̄k

)T


 .

3.2 Updating the Model Hessian Matrix

In the stochastic context, QNSTOP methods constrain the Hessian matrix update

to satisfy

−ηIp � Ĥk − Ĥk−1 � ηIp (8)

for some η ≥ 0. Conceptually, this prevents the quadratic model from changing

drastically from one iteration to the next. A variation of the SR1 (symmetric, rank

one) update Ĥk that satisfies this constraint is computed as the solution to the

problem

min
H∈Rp×p

∥∥H
(
Xk −Xk−1

)
−
(
ĝk − ĝk−1

)∥∥2

subject to H = HT , rank
(
H − Ĥk−1

)
= 1, −ηIp � H − Ĥk−1 � ηIp.

This problem has an easily computed explicit solution. However, the constraint (8)

is simply relaxed in the deterministic case and the BFGS update is used, i.e., with

the Hessian matrix updated according to

Ĥk = Ĥk−1 −
Ĥk−1sks

T
k Ĥk−1

sTk Ĥk−1sk
+

νk ν
T
k

νTk sk
,

where sk = Xk −Xk−1, νk = ĝk − ĝk−1.

3.3 Step Length Control

QNSTOP methods utilize an ellipsoidal trust region concentric with the design

region for controlling step length. In the deterministic case, the trust region ellip-

soid radius ρk is taken equal to the design ellipsoid radius τk, and the following

optimization problem is solved:

min
X∈Ek(ρk)

ĝTk (X −Xk) +
1

2
(X −Xk)

T Ĥk (X −Xk) . (9)
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The solution to (9) is on the arc

X(µ) = Xk −
[
Ĥk + µWk

]−1

ĝk. (10)

It remains to estimate µk such that X(µk) solves (9). Using Lemma 6.4.1 from

[Dennis and Schnabel 1983] and a little manipulation, it can be established that

there is a unique µk ≥ 0 such that ‖X(µk)−Xk‖Wk
= ρk, unless ‖X(0)−Xk‖Wk

≤

ρk in which case µk = 0. Estimating µk is difficult, but well understood. Chapter

7 in [Conn, Gould, and Toint 2000] is a comprehensive treatment. In particular,

Algorithm 7.3.6 in [Conn, Gould, and Toint 2000] is robust and easily implemented.

In the stochastic case, the trust region ellipsoid radius ρk is different from the

design ellipsoid radius τk, but rather than updating the trust region radius ρk
and then solving for the Lagrange multiplier µk from (10), µk is directly updated,

thereby defining the trust region radius implicitly rather than explicitly. Specif-

ically, fix c ≥ 0 and d > ηγ (γ from Wγ in Section 3.1 and η from Equation

(8)), set µk = d(c + k + 1), and solve (6) to obtain Xk+1, the next iterate. Then

ρk = ‖Xk+1 −Xk‖Wk
is indirectly defined by µk. This strategy is dictated by the

convergence theory of Castle [2012] that requires control of the Lagrange multipli-

ers.

3.4 Updating the Experimental Design Region

The QNSTOP approach to constructing the ellipsoidal design regions is now de-

scribed. To motivate the approach, consider the standard example (Section 2.1)

with µ quadratic and the problem of minimizing µ subject to an ellipsoidal con-

straint. If a quadratic model is estimated by least squares regression, then the

method of Stablein et al. [1983] can be used to derive a nonlinear inequality that

characterizes a confidence set for the constrained minimizer of µ. The confidence

set itself is intractable, but a convenient ellipsoidal approximation of it is available.

QNSTOP mimics the construction described above to construct a new ellipsoid

from an ellipsoidal trust region subproblem. Because QNSTOP constructs a lin-

ear model by least squares regression, then updates the model Hessian matrix by

a secant update, the interpretation of the ellipsoid as a confidence set is some-

what more tenuous. Regardless, the approximation for the covariance matrix of

∇m̂k(Xk+1 −Xk),

Vk = 4σ2(DT
k Dk)

−1, (11)

is computed, where σ2 is the ordinary least squares estimate of the variance. Then

Ek+1(χp,1−α) =
{
X ∈ IRp : (X −Xk+1)

TWk+1(X −Xk+1) ≤ χ2
p,1−α

}
,

where

Wk+1 =
(
Ĥk + µkWk

)T

V −1
k

(
Ĥk + µkWk

)
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and χ2
p,1−α is the 1 − α quantile of a chi-squared distribution with p degrees of

freedom.

Castle [2012] discovered that strict use of the above updates for Wk+1 can lead to

degenerate ellipsoids. To ensure useful design ellipsoids and guarantee convergence

[Castle 2012], the constraints γ−1Ip � Wk+1 � γIp and det(Wk+1) = 1 are enforced

by modifying the eigenvalues—hence, the definition of Wγ ∋ Wk+1.

3.5 Algorithm Summary

The Fortran code takes as optional arguments all the parameters mentioned above,

as well as a few more not mentioned (e.g., one can bound the eccentricity of Vk in

(11)). The only required arguments are those defining the problem and a mode—

global deterministic or stochastic. Optional arguments not defined default to rea-

sonable values. In both modes, it is generally desirable to run QNSTOP from

multiple start points, and the code provides several different ways to acquire these

start points. The algorithm described below is repeated for each start point.

Step 0 (initialization): Given a function evaluation budget B̃ per start point and

operating mode (deterministic or stochastic), set values for τ0 > 0, µ0 > 0, γ ≥ 1,

η ≥ 0, ζ ≥ 0, N , X0, k : = 0, W0 : = Ĥ0 : = Ip.

Step 1 (regression experiment): Depending on the mode, compute τk. Uni-

formly sample {Xk1, . . ., XkN} ⊂ Ek(τk) ∩ Θ. Observe the response vector

Yk = (yk1, . . ., ykN )T . Compute ĝk by solving (7).

Step 2 (secant update): If k > 0, compute the model Hessian matrix Ĥk using

BFGS (deterministic) or SR1 variant (stochastic) update.

Step 3 (update iterate): Compute µk depending on the mode as described in

Section 3.3, solve [Ĥk + µkWk]sk = −ĝk, and compute Xk+1 =
(
Xk + sk

)
Θ
.

Step 4 (update subsequent design ellipsoid): Compute Wk+1 ∈ Wγ using the

approach described in Section 3.4.

Step 5: If (k + 2)(N + 1) + 1 < B̃ then increment k by 1 and go to Step 1.

Otherwise, the algorithm terminates. (f is also observed at each ellipsoid center

Xk.)

As a practical matter to deal with variable scaling, the feasible set (box) Θ =

B = {x ∈ IRp | ℓ <
= x <

= u} is mapped to the unit hypercube [0, 1]p internally by the

code, and the algorithm effectively operates on [0, 1]p. All input and output is in

the original problem coordinate system.

Other practical issues concern rare exceptional situations. For certain problems

and unfortunate choices of the parameters γ and η in stochastic mode, the initial

step X1 − X0 may be unreasonably large, even going far outside the feasible box

Θ. Theoretically, and in computational practice, the algorithm does recover from

an unreasonable initial step, but wastes considerable effort doing so. Hence, the

initial step in stochastic mode is chosen the same as that for global deterministic

mode, and subsequent steps by updating µk as described in Section 3.3. Given user
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choices for γ and η, this initial step determines µ0, from which appropriate values

for the constants c and d are backed out (rather than being input values or fixed

in the code).

Another rare possibility is σ2 ≈ 0 in the calculation of Vk, in which case the

update of Wk using V −1
k should be omitted, i.e., take Wk+1 = Wk. Similarly in the

global deterministic mode, if νtksk ≈ 0 or sk ≈ 0, skip the BFGS update of Ĥk−1

and take Ĥk = Ĥk−1.

Figure 1 shows a typical progression of QNSTOP over 20 iterations, from a dif-

ficult (deterministic, with severe numerical noise) biomechanics problem described

in [Radcliffe et al. 2010, Easterling et al. 2014]. (Data from a high-dimensional

stochastic problem where the randomness is not additive [Chen et al. 2019] is sim-

ilar.) The solid line represents the lowest value found among 200 design sites for

that iteration, while the dotted line represents the corresponding minimum found

by the minimizer of the quadratic model. Note that while at times the model will

give an imperfect minimum, the overall downward trend is significant.
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Fig. 1. A typical QNSTOP progression.

3.6 Convergence Theory in the Stochastic Case

Conventional trust-region methods for numerical optimization adjust the size of the

trust region according to how successfully the model function predicts decrease in

the objective function. Carter [1981] showed that exact information is not needed

to ensure global convergence, but it is not clear how to extend Carter’s proof tech-

niques to the case of random noise. Instead, Castle [2012, Chapter 4] extended

Fabian’s [1971] convergence analysis of stochastic approximation to a particular

subclass of QNSTOP algorithms. Doing so leads to QNSTOP algorithms that, like

SA, rely on predefined sequences for steplength control. Like SA, the necessary

assumptions are somewhat restrictive and do not include a number of interesting

problems on which QNSTOP performs well in practice. Nevertheless, the theory

proved valuable because it directly influenced algorithm design and led to more

effective algorithms. In particular, it motivated two novel features of QNSTOP:
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the constrained SR1 Hessian update, and the strategy of updating the Lagrange

multipliers that determine the trust regions rather than directly updating the trust

regions.

Castle’s convergence analysis of QNSTOP requires certain conditions on the vari-

ous QNSTOP parameters (stated earlier in this section in reference to the “stochas-

tic case”) and the following assumptions from stochastic approximation. Using the

notation in Sections 2 and 3, assume

(1) the decaying τk and increasing µk have the earlier stated forms for the stochas-

tic case;

(2) the gradient estimate ĝk used in the quadratic model m̂k is independent of the

gradient estimate ǧk used to construct Ĥk (achieved by having two observed

responses at each design site Xki — ĝk = ǧk has been used in practice with no

apparent ill effects);

(3) for each k and design points {Xk1, . . ., XkN} ⊂ Ek(τk) ∩Θ, the scaled design

matrix

1

2τkγ1/2




(
Xk1 − X̄k

)T
...(

XkN − X̄k

)T




has singular values bounded below by Π > 0;

(4) f(x) = T
(
P (·;x)

)
with observations f̂n(x) = T

(
P̂n(·;x)

)
= T

(
P (·;x)

)
+ ǫx;

(5) the objective function f is twice continuously differentiable, bounded from

below, and ‖∇2f(x)‖ ≤ L < ∞ for some L and all x ∈ IRp;

(6) the observed errors have zero mean and finite variance, i.e., E[ǫx] = 0 and

E[ǫ2x] ≤ cǫ;

(7) the objective function has a unique minimizer θ∗,

inf
‖x−θ∗‖>φ

‖∇f(x)‖ > 0

(‖∇f(x)‖ → 0 only at θ∗), and

inf
‖x−θ∗‖>φ

(
f(x)− f(θ∗)

)
> 0

(f(x) → f(θ∗) only at θ∗) for all φ > 0.

Then the iterates Xk generated by QNSTOP converge almost surely to the unique

minimizer θ∗ of f .

The multivariate Kiefer-Wolfowitz algorithm for stochastic approximation is

θk+1 = θk −
bk
2ck




f̂1(θk + cke1)− f̂1(θk − cke1)
...

f̂1(θk + ckep)− f̂1(θk − ckep)


 ,
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where e1, . . ., ep are unit vectors in the coordinate directions, ck > 0 controls the

width of the finite differencing interval, and bk > 0 controls step length. Choosing

µk = 1/bk, η = 0 (entailing Ĥk = Ĥ0), γ = 1 (entailing Wk = Ip, which results

in spherical experimental regions), and N = 2p design sites at θk ± ckei yields

Kiefer-Wolfowitz as a special case of QNSTOP. Allowing γ > 1 and placing the

2p design sites at the endpoints of the resulting ellipsoid’s axes permits simulation

experiments that investigate the value of replacing spherical design regions with

elliptical regions that adapt to the contours of the objective function. Allowing η >

0 permits simulation experiments that investigate the value of using (some) second-

order information. Castle’s [2012, Chapter 5] simulation experiments suggest that

both innovations have virtue.

Castle’s [2012, Chapter 4] convergence analysis assumes that all observed function

values are independent, foreclosing the possibility of storing function values and

reusing them in subsequent iterations. In practice, this technique can be highly

effective. Furthermore, Assumption (2) requires that gradients and Hessians be

estimated independently. In practice, using the same observed function values to

estimate both gradients and Hessians appears to be equally effective. Finally, note

that Castle’s convergence analysis only concerns the case of optimization in the

presence of random noise. For global optimization of noisy deterministic functions,

QNSTOP should be regarded as a (highly effective) heuristic search strategy.

3.6.1 Outline of QNSTOP Convergence Proof

Castle’s [2012] convergence analysis of QNSTOP mimics Fabian’s [1971] conver-

gence analysis of generalized Kiefer-Wolfowitz algorithms for stochastic approxi-

mation. Both analyses use technical arguments to establish that a subsequence of

{‖∇f(Xk)‖} converges to 0 almost surely, from which if follows immediately that

Xk converges to θ∗ almost surely.

Castle [2012] studied algorithms of the form Xk+1 = Xk − Bkgk, where gk esti-

mates ∇f(Xk) and Bk is a symmetric and positive definite matrix-valued measur-

able function with eigenvalues in [mk,Mk]. Write

Xk+1 = Xk −Bk∇f (Xk) +Bkβk +Bkδk,

where βk = ∇f(Xk) − E[gk|X0, . . . , Xk] denotes “systematic error” and δk =

E[gk|X0, . . . , Xk] − gk denotes “stochastic error”. Suppose that these errors are

bounded in such a way that ‖βk‖ ≤ cβτk and E[‖δk‖
2|X0, . . . , Xk] ≤ cδ/τ

2
k , with

τk → 0. Suppose, moreover, that the bounds on the eigenvalues of Bk satisfy

(τk +Mk)Mk/mk → 0,
∞∑

k=0

mk = ∞,
∞∑

k=0

Mkτk < ∞, and
∞∑

k=0

M2
k/τ

2
k < ∞.

Castle [2012] then deduced the inequalities

E [uk | X0, . . . , Xk]
T ∇f (Xk) ≥ akD

2
k − bk − ckDk
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and

E
[
‖uk‖

2 | X0, . . . , Xk

]
≤ bk + ckDk + dkD

2
k,

where uk = Bkgk, Dk = ‖∇f(Xk)‖, ak = mk, bk = 2cδM
2
k/τ

2
k + 4c2βτ

2
kM

2
k , ck =

cβτkMk, and dk = 4M2
k . It then follows from Fabian’s [2012] Lemma 3.3 that

Dk → 0 almost surely.

In contrast to stochastic approximation, QNSTOP obtains the gradient estimates

gk by regression. Following the proof technique for Theorem 2.13 in [Conn et al.,

2009, Errata], Castle [2012] assumed that the designs of these regression exper-

iments are Π-poised, i.e., after centering the design and scaling it so that each

design site lies in the unit ball, the smallest singular value of the design matrix

is at least Π > 0. It then follows that both the systematic and stochastic errors

described above are suitably bounded.

Finally, Castle’s [2012] implementation of QNSTOP sets Bk = (Hk+µkWk)
−1 in

such a way that the eigenvalues of Bk are bounded below by mk and above by Mk.

Critical to this construction was the specification that µk = d(c+ k + 1), meaning

that the Lagrange multipliers of the trust region subproblems are predetermined

by a gain sequence. Thus, the convergence analysis of QNSTOP led directly to a

novel implementation of the trust-region framework.

A subtle assumption of Castle’s [2012] convergence analysis is that E[Bkgk |

X0, . . . , Xk] = BkE[gk | X0, . . . , Xk]. Because Bk depends on Hk, which is con-

structed from gk via a secant update, this equation can only be ensured by per-

forming two independent regression experiments, one for the purpose of forming

gk, the other for the purpose of forming Hk. In practice, however, QNSTOP seems

to perform just as well when a single experiment is used to form both gk and Hk.

4. PARALLEL IMPLEMENTATION

QNSTOP, unlike, say, the massively parallel direct search code VTDIRECT95

[Jones et al. 1993, Jones 2001, Deng and Ferris 2007, He et al. 2009], requires

no exotic data structures or sophisticated communication management. There are

just three potentially significant sources of parallelism: the individual function eval-

uations f(Xki), the loop (i = 1, . . ., N) over the samples in an experimental design,

and the loop over the start points (of size NSTART). These three levels are nested.

If each evaluation f(Xki) were a large-scale parallel simulation using MPI, then a

master-slave paradigm with the master farming out points Xki to the slaves for

evaluation is a reasonable approach entirely based on MPI. If the distributed mem-

ory nodes are multicore, then a mixed programming model makes sense, but the

shared memory (OpenMP) component would be within the function evaluations,

not at the level of the two outer loops. On a large shared memory machine, there

will be ample parallelism at the two outer loops, motivating an OpenMP approach.

Due to the exception handling limitations of OpenMP threads, the logical flow

of the parallel driver subroutine QNSTOPP is significantly different from that of the

serial (without OpenMP directives) driver subroutine QNSTOPS. Consequently, the
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serial version QNSTOPS execution is more efficient than the parallel version QNSTOPP

execution with a single thread. This is the justification for providing both serial

and parallel subroutines, even though in principle the OpenMP code QNSTOPP can

be run serially.

The parallel (OpenMP) implementation of QNSTOP has four choices for paral-

lelization, controlled by an optional argument to the Fortran subroutine QNSTOPP:

(1) serial (no parallelization at all, the default), (2) parallelize only the outer loop

over the start points, (3) parallelize only the second outermost loop over the ex-

perimental design samples, or (4) do both (2) and (3). The choice (4), because

of nesting, could generate a very large number of threads, so should be used with

care. Figures 2–4 show speedup results for a eukaryotic cell cycle model problem

[Oguz et al. 2013] from the systems biology literature. The model is a system of

26 stiff ODEs with 149 parameters. There is experimental data on 119 mutants,

each of which corresponds to a modification of the base (or “wild type”) system

of ODEs, and the optimization problem is to estimate the 149 parameters so as

to best fit the experimental data for all the mutants. Each mutant is classified as

“viable”, “inviable”, or “neither”, and the objective function value at a particular

149-dimensional parameter vector is simply the (negative) count of how many mu-

tants’ behavior is matched by the model. One objective function evaluation f(X)

on a single PowerPC G4 processor typically takes about 15 s, but can take an order

of magnitude more depending on the parameter vector, due to the different ODE

trajectories (being tracked with LSODAR).

The optional argument OMP, referenced in Figs. 2–4, defining the parallel de-

composition has the values 1, 2, 3 corresponding to dynamically scheduled loop

parallelization over the start points, design ellipsoid sample points, or both, re-

spectively. For these experiments, the number of start points is NSTART = 64 and

the number of design ellipsoid sample points (at which the objective function is

observed) is N = 256. Each data point represents the mean of three runs (for which

the variance is so small that the point is shown without error bars) or five runs

(point shown with error bars). It is not surprising that OpenMP nesting (OMP = 3)

performs significantly better than no nesting, since there are fewer threads (square

root of the total number of threads) at each level of parallelism. The speedup plots

(Figs. 2–4) are consistent with Amdahl’s Law, and show the limitations of coarse

grained parallelization (even with dynamic loop scheduling) when there is limited

problem parallelism and the function evaluation times are highly variable (typical

of optimization problems with black box simulation function values).

5. PERFORMANCE

Easterling et al. [2014] reported performance data only for the deterministic global

optimization variant of QNSTOP, including the best-known result for a biomechan-

ics problem. New results for both variants of QNSTOP applied to a systems biology

problem are reported here, including the best-known result for this problem.

The systems biology literature on cell cycle models contains a parameter vector

X0 (called the TL set) obtained by biochemistry knowledge and manual twiddling,
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Fig. 2. Speedup of the parallel QNSTOPP over the serial QNSTOPS for the cell cycle
problem with OMP = 1 (parallel loop over start points). The mean speedup is plotted with
error bars at one standard deviation.
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Fig. 3. Speedup of the parallel QNSTOPP over the serial QNSTOPS for the cell cycle
problem with OMP = 2 (parallel loop over design ellipsoid sample points). The mean
speedup is plotted with error bars at one standard deviation.
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Fig. 4. Speedup of the parallel QNSTOPP over the serial QNSTOPS for the cell cycle
problem with OMP = 3 (both OMP = 1 and OMP = 2, nesting). The mean speedup is
plotted with error bars at one standard deviation.
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Deterministic
N=225, TAU=10.0, GAIN=5.0
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Fig. 5. Execution traces of QNSTOP in deterministic mode for three start points in the
±20% box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −98). Another run with TAU = 2.2
(scaled from TAU = 10.0 for the ±90% box) yielded a best value of −97.

considered in the ballpark of the correct values. Searches for the optimal parameter

vector generally are conducted in a box defined by X0 plus or minus some percent

of X0, say 20%, 40%, 90% defining the boxes [0.8X0, 1.2X0], [0.6X0, 1.4X0],

[0.1X0, 1.9X0], respectively. For the particular model known as “Oak’s determin-

istic model” [Oguz et al. 2013], the best-known value of f(X) is −110 (obtained

using LSODAR, or −111 obtained using a less accurate fixed step Euler method as

done by Oguz et al. [2013]), where f(X0) = −73. Using NSTART = 84 and N = 225

(from the statistical rule of thumb that at least 1.5p data points are needed to

estimate p parameters, and the model gradient ĝk here has dimension p = 149),

Figs. 5–7 show the iteration histories for three start points (out of 84) for each of

the three ±20%, ±40%, ±90% boxes, running QNSTOP in deterministic global op-

timization mode with the other relevant algorithm parameters shown in the figure

legends. These legends list the subroutine QNSTOP[P|S] arguments: N is the number

of design ellipsoid sample points; TAU is the initial ellipsoid radius τ0; GAIN is the

gain ζ (cf. §3.1); [LB, UB] is the feasible box; SWITCH controls how start points are

provided, with values 1, 2, 3, 4 corresponding to a single start point XI, a given

list of start points, an automatically generated Latin hypercube design (containing

XI) of start points, adaptive generation of a sequence of start points (beginning

with XI) by a user provided procedure, respectively; NSTART is the number of start

points (for SWITCH = 3 or 4); XI is the initial specified start point.

The trajectories for all start points are similar to the general downward trend of

the three start point trajectories shown. The best values found for f(X) during the

three runs for the ±20%, ±40%, ±90% boxes were −98, −105, −112, respectively,

improving on the best-known value in the literature. For the runs depicted in



20 • Amos et al.

Deterministic
N=225, TAU=10.0, GAIN=5.0

LB�UB=H1±0.4L TL_Set
SWITCH=3, NSTART=84

FMIN=-105.0
Solid: XI=TL_Set

Dotted: Point obtaining FMIN
Dashed: First point in LHS

0 10 20 30 40 50

-100

-90

-80

-70

-60

-50

k

fH
X k
L

Fig. 6. Execution traces of QNSTOP in deterministic mode for three start points in the
±40% box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −105). Another run with TAU = 4.4

(scaled from TAU = 10.0 for the ±90% box) yielded a best value of −104.

Deterministic
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Dashed: First point in LHS
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Fig. 7. Execution traces of QNSTOP in deterministic mode for three start points in the
±90% box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −112).

Figs. 5–7, Table I gives the statistics for the best f(X) value found with each of

the 84 starting points. The global deterministic (stochastic) mode is denoted by

‘G’ (‘S’).

Figure 8 shows a trace plot for the stochastic mode (S) for the ±90% box similar

to Fig. 7 for the global deterministic mode (G), and the statistics for that stochastic
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Table I. Statistics for Best f(X) Value Found with Each of the 84 Starting Points, for Each
of the ±20%, ±40%, ±90% Boxes.

box min median max σ̄ mode

±20% −98 −92 −88 1.97 G

±40% −105 −100 −95 2.19 G

±90% −112 −105 −55 7.42 G

±90% −109 −101 −55 18.88 S

Stochastic
N=225, TAU=10.0, GAIN=5.0, ETA=0.7

LB�UB=H1±0.9L TL_Set
SWITCH=3, NSTART=84
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Fig. 8. Execution traces of QNSTOP in stochastic mode for three start points in the ±90%
box. One trace starts at the center of the box (where f(X) = −73) and another trace
contains the best point of the entire run (where f(X) = −109).

mode run are included in Table I. Execution traces and statistics for the stochastic

mode for the ±20% and ±40% boxes are what would be expected for these smaller

boxes, and thus are omitted. Since the stochastic mode has to protect against

unknown random fluctuations, the convergence is much slower than for the global

deterministic mode (for this deterministic cell cycle problem). Castle [2012] reports

results for QNSTOP in stochastic mode applied to a truly stochastic tumor growth

model.

Comparison of QNSTOP to other algorithms, both deterministic and nonde-

terministic, is not done here since that has already been done in the literature

[Easterling et al. 2014] for some very hard “noisy” scientific optimization problems.

Parametric studies (e.g., [Amos et al. 2014]) are not included here, because they

are generally not useful. All the algorithm parameters (N, TAU, GAIN, ETA, etc.) are

optional arguments, which if omitted default to reasonable values. Changing these

values by, say, 50%, makes little difference in performance, but changing them by

an order of magnitude can (depending on the problem) make a huge difference.
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6. CONCLUSION

The current version of QNSTOP reflects computational experience since 2010 on

a wide variety of optimization problems, including both local optimization in the

presence of random noise and global optimization of noisy deterministic functions.

The stochastic mode (‘S’) of QNSTOP has been quite successful [Castle 2012; Amos

et al. 2014; Chen et al. 2019] on true stochastic search problems for which the

probability distributions of observations of f(X) are either unknown or analytically

intractable. The deterministic mode (‘G’) of QNSTOP is definitely competitive for

global optimization, as reported in [Radcliffe et al. 2010] and [Easterling et al. 2014].

There are multiple levels of parallelism in QNSTOP, which can be easily ex-

ploited, but because in typical engineering and science applications the function

evaluation time has a large variance, load balancing becomes difficult. The paral-

lel results here reflect this situation. If the function evaluations f(X) themselves

were parallelized, then the load balancing and overall parallel efficiency could be

excellent.
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