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Abstract—Diffractive Deep Neural Network (D2NN) can work as a
neural network with the diffraction of light and have demonstrated
orders of magnitude performance improvements in computation speed
and energy efficiency [1], [2]. As a result, there have been increasing
interests in applying D2NNs into security-sensitive applications, such as
security gate sensing, drug detection, etc. However, the comprehensive
vulnerability and robustness of optical neural networks have never been
studied. In this work, we develop the first adversarial attack formulations
over optical physical meanings, and provide comprehensive analysis of
adversarial robustness of D2NNs under practical adversarial threats
over optical domains, i.e. Phase attack, Amplitude attack, and Complex-
domain attack, which can be realized in D2NN system using amplitude
and phase modulators. We demonstrate that the proposed Complex
Fast Gradient Sign Method (Complex-FGSM) can successfully generate
minimal-changed (small epsilon) physically feasible adversarial examples
targeting pre-trained D2NNs model on MNIST-10 dataset, which bring
down its accuracy to ≤ 20% from 95.4%.

Index Terms—Optical neural networks, security, adversarial learning

I. INTRODUCTION AND MOTIVATION

Nowadays, there have been increasing efforts in leveraging op-
tics to overcome defeats of conventional Neural networks, which
will bring significant advantages in power efficiency, parallelism,
and computational speed [1]–[4]. Diffractive Deep Neural Networks
(D2NNs) utilize the diffraction of light in complex domain to form an
optical feed-forward network similar to conventional neural network
[1]. The forward function in D2NN is based on free-space light propa-
gation, featuring millions of neurons in each layer interconnected with
neurons in neighboring layers, making the system able to complete
parallel tasks in the speed of light [1] [2]. Moreover, physical
parameters in diffractive propagation are differentiable such that
they can be effectively optimized via conventional backpropagation
algorithms using autograd mechanism [1] [2]. Increasing efforts
are devoted to applying such networks in real-world scenarios such as
medical sensing, security screening, drug detection, and autonomous
driving, which are usually highly sensitive to the security threats
[5]. However, very few researches have been conducted in studying
comprehensive vulnerability and robustness of neural networks in
optical domain (complex tensor domain).

As deep neural networks have been widely used in real-world
applications, security and integrity of the applications pose great
concern. In some cases, adversaries can be dangerous as it may
be imperceptible to human eyes but can force a trained model to
produce incorrect outputs [6]. Specifically, with limited exploration of
adversarial attack in optical domains under domain-specific physical
meanings, the adversarial threats in optical neural networks remain
unknown. Thus, this work introduces three attack modes under phys-
ical meanings over optical domain, including a) Amplitude attack, in
which only the real part in perturbation will be applied to the Real
part of the input, b) Phase attack, in which only the Imaginary part
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Fig. 1: Illustration of D2NNs system, training, and adversarial
attack using C-FGSM – Note that in training phase, the optical phase
encoded by phase modulators are trainable parameters θ optimized
through gradient descent. The adversarial examples are generated
with C-FGSM according to the loss function L. An inference example
with original MNIST image (bottom left) shows input and output
observed by detector, where class 7 is generated. An adversarial
example (bottom right) is however misclassified to 3.

in perturbation will be applied into the input, c) Complex-domain
attack, where the perturbation noise is a complex tensor that will
be applied to the input data. Note that in D2NNs, the image is
encoded using light source, where the original image is encoded using
Amplitude (real part), and Phase remains zero (imaginary), such that
the inputs are complex tensors. For the attack algorithm, we modify
the Fast Gradient Sign Method (FGSM) in complex domain, namely
Complex-FGSM (C-FGSM). Moreover, we explore the effectiveness
of C-FGSM by adjusting the hyperparameter epsilon that describes
how much the original data is modified. This is believed to be the
first work on adversarial robustness of optical neural networks under
physical meanings.

II. METHODS AND RESULTS

Our experiment setup is shown in Figure 1. The original MNIST
images with size of 28×28 are first expanded to 200×200 to fit our
Spatial Light Modulator (SLM) based optical system setup. Three
layers are implemented in the model. Each layer is composed of a
diffractive layer and a phase modulator. The diffractive layer is used
to diffract light so that each pixel in the layer can work as a neuron in
conventional neural network, i.e., each diffraction layer mimics one
conventional linear neural layer. The phase information encoded by978-1-6654-3274-0/21/$31.00 ©2021 IEEE



the phase modulator is a trainable parameter in our model and can
be configured by the voltage applied to each pixel of the modulator
(HDMI control shown in Figure 1). The forward function is described
as follows:

F = LogSoftmax(det(f( #»x , θ))

f :X → (<+ i=)∈200×200 (1)

where the function f is the map for the model, the vector #»x is
the original input image whose size is 200×200 in complex domain
with the imaginary part initialized as all zeros for original MNIST
data, where < represents the real part and = represents the imaginary
part in the complex domain. The D2NNs parameters θ = {θ0, θ1, θ2}
describe the encoded phase parameters of the three diffractive layers
with the size of 200 × 200. The detector det is used to capture the
output of the diffractive layers, which will be used to produce the
prediction result F . There are 10 separate regions on the detector
representing label 0 to 9 as shown in Figure 1. The loss function is
implemented with L2-norm.

The adversarial perturbations are generated by C-FGSM with
hyperparameter epsilon which is used to control the size of the
perturbation noise w.r.t the original images. Considering the physical
meaning in optical systems, clamp functions are needed to make
sure adversarial examples are physically feasible. First, in an optical
system, we use laser as the light source, which requires all pixels in
the input image to be bounded to a certain amplitude range. Thus,
the real part will be clamped into [0, 1] after normalization. Second,
since the working range of the Spatial Light Modulator (SLM) in
our system is [0, π], the imaginary part will be clamped into [0,
π]. Future works will focus on adversarial countermeasures and
adversarial example fabrications.
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Fig. 2: Evaluation of proposed C-FGSM on attacking pre-trained
D2NNs (acc=95.4%) using MNIST-10 dataset.

TABLE I: Accuracy under three attack modes with large epsilons.

Epsilon Phase attack Amplitude attack Complex attack
1.0 28.0% 50.4% 60.8%
2.0 51.3% 50.4% 63.0%
3.0 57.5% 50.4% 63.6%
4.0 58.1% 50.4% 63.7%

Figure 2 shows the effectiveness of our attack with C-FGSM under
different attack modes. As we can see from Figure 2, for all three
attack modes, the model can be attacked efficiently when epsilon is
≤ 0.2. For example, when the epsilon is 0.1, the attacks will degrade
the accuracy by 75% from 95.4% under all three attack modes. The
most effective attack mode is Complex-domain attack and the least
effective mode is Phase attack. For Complex-domain attack, it will
attack both real and imaginary part, which decreases the accuracy
very efficiently. For Phase attack, since the phase for all original

input image are identical (all zeros), it is not an ’authentic’ feature
in objects. The ’featured’ phase for all images are generated from
the model. As a result, the attack posed on phase will be the least
effective. However, when the epsilon is large enough (≥ 0.25), the
accuracy under Complex-domain attack will increase as the epsilon
increases. The similar observation will be found when epsilon is
larger than 0.3 under Amplitude attack and when epsilon is larger
than 0.5 under Phase attack.

The observations are mainly caused by the clamping and formula-
tions of different attack modes. In Complex-domain attack, we apply
both real part and imaginary part perturbation to the original data.
While in Amplitude and Phase attack, the corresponding perturbation
part only consists of either amplitude or phase perturbation. As a
result, Complex-domain adversarial example includes twice of the
perturbation than other two attacks, i.e., the input images under
Complex-domain attack will be perturbed and clamped twice, for
real part and imaginary part separately. When epsilon is too large
(≥ 0.25), more data in the original image will be clamped, which
means more parts of our attack with the sign of the gradient will
be ineffective (Table I). As a result, our attack with gradient sign
intended to decrease the accuracy will be less powerful. Table I
included the accuracy of the model under different attacks with large
epsilon (≥ 1.0). The accuracy for Complex-domain attack will always
stay the same (63.7%) when epsilon is larger than 3.14 (π); the
accuracy under Amplitude attack will stay the same (50.4%) when
epsilon is larger than 1; the accuracy under Phase attack will stay
the same (58.1%) after 3.14. This is because when epsilon is greater
than 1.0 or π, the adversarial example of the real part will binarized
real tensor (0 or 1) or ”binarized” phase tensor (0 or π), respectively.
Then, the adversarial image dataset after perturbation and clamp will
remain the same no matter how much epsilon increases.

To implement our attack in real-world application, we can apply
some defeats (gray points) according to the perturbation onto the
input image to realize Amplitude attack, apply a thin transparent
film designed with different thickness to modify the phase of input
images according to the perturbation on the input image to realize
Phase attack. For Complex-domain attack, we will combine defeats
and transparent film together to create the adversarial image. Since
our effective epsilon is very small (≤ 0.2), the defeats and film will
be imperceptible to human eyes but it can confuse the model and
degrade the accuracy efficiently.
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