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Real-time multi-task diffractive
deep neural networks
via hardware-software co-design

Yingjie Li, Ruiyang Chen, Berardi Sensale-Rodriguez, Weilu Gao"™ & Cunxi Yu™*

Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their
performance in resource-constrained environments. Recently, there are increasing efforts on optical
neural networks and optical computing based DNNs hardware, which bring significant advantages
for deep learning systems in terms of their power efficiency, parallelism and computational speed.
Among them, free-space diffractive deep neural networks (D*NNs) based on the light diffraction,
feature millions of neurons in each layer interconnected with neurons in neighboring layers. However,
due to the challenge of implementing reconfigurability, deploying different DNNs algorithms
requires re-building and duplicating the physical diffractive systems, which significantly degrades

the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-
software co-design method that enables first-of-its-like real-time multi-task learning in D22NNs

that automatically recognizes which task is being deployed in real-time. Our experimental results
demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and
quantify the robustness of proposed multi-task D?NN architecture under wide noise ranges of all
system components. In addition, we propose a domain-specific regularization algorithm for training
the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for
each task.

The past half-decade has seen unprecedented growth in machine learning with deep neural networks (DNNG).
Use of DNNs represents the state-of-the-art in many applications, including large-scale computer vision, natu-
ral language processing, and data mining tasks'~. DNNs have also impacted practical technologies such as
web search, autonomous vehicles, and financial analysis'. However, DNNs have substantial computational and
memory requirements, which greatly limit their training and deployment in resource-constrained (e.g., com-
putation, I/O, and memory bounded) environments. To address these challenges, there has been a significant
trend in building high-performance DNNs hardware platforms. While there has been significant progress in
advancing customized silicon DNN hardware (ASICs and FPGAs)** to improve computational throughput,
scalability, and efficiency, their performance (speed and energy efficiency) are fundamentally limited by the
underlying electronic components. Even with the recent progress of integrated analog signal processors in
accelerating DNNs systems which focus on accelerating matrix multiplication, such as Vector Matrix Multiply-
ing module (VMM)®, mixed-mode Multiplying- Accumulating unit (MAC)®, resistive random access memory
(RRAM) based MAC’~"3, etc., the parallelization are still highly limited. Moreover, they are plagued by the same
limitations of electronic components, with additional challenges in the manufacturing and implementation due
to issues with device variability'®!,

Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware,
which bring significant advantages for machine learning systems in terms of their power efficiency, parallelism
and computational speed*?*. Among them, free-space diffractive deep neural networks (D*NNs) , which is based
on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring
layers. This ultrahigh density and parallelism make this system possess fast and high throughput computing
capability. Note that the diffractive propagations controlled by such physical parameters are differentiable, which
means that such parameters can be optimized via conventional backpropagation algorithms'®'®!® using auto-
grad mechanism?*.

In terms of hardware performance/complexity, one of the significant advantages of D*NNs is that such a
platform can be scaled up to millions of artificial neurons. In contrast, the design and DNNs deployment com-
plexity on other optical architectures, e.g., integrated nantophotnics'*** and silicon photnics*), can dramatically
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increase. For example, Lin et al.'® experimentally demonstrated various complex functions with an all-optical

D?NNs. In conventional DNNs, forward prorogation are computed by generating the feature representation with
floating-point weights associated with each neural layer. In D°NNG, such floating-point weights are encoded in
the phase of each neuron of diffractive phase masks, which is acquired by and multiplied onto the light wave-
function as it propagates through the neuron. Similar to conventional DNNGs, the final output class is predicted
based on generating labels according to a given one-hot representation, e.g., the max operation over the output
signals of the last diffractive layer observed by detectors. Recently, D?°NNs have been further optimized with
advanced training algorithms, architectures, and energy efficiency aware training'®'*%, e.g, class-specific dif-
ferential detector mechanism improves the testing accuracy by 1-3%'%?® improves the robustness of D°NNs
inference with data augmentation in training.

However, due to the challenge of implementing reconfigurability in D°NNs (e.g., 3D printed terahertz
system'®), deploying a different DNNs algorithm requires re-building the entire D’NNs system. In this manner,
the hardware efficiency can be significantly degraded for multiple DNNGs tasks, especially when those tasks are
different but related. This has also been an important trend in conventional DNNs, which minimizes the total
number of neurons and computations used for multiple related tasks to improve hardware efficiency, namely
multi-task learning®. Note that, realizing different tasks directly from the input data features without sepa-
rate inputs or user indications is challenging even in conventional DNNs system. In this work, we present the
first-of-its-kind real-time multi-task D’°NNs architecture optimized in hardware-software co-design fashion,
which enables sharing partial feature representations (physical layers) for multiple related prediction tasks. More
importantly, our system can automatically recognize which task is being deployed and generate corresponding
predictions in real-time fashion, without any external inputs in addition to the input images. Moreover, we dem-
onstrate that the proposed hardware-software co-design approach is able to significantly reduce the complexity
of the hardware by further reusing the detectors and maintain the robustness under multiple system noises.
Finally, we propose an efficient domain-specific regularization algorithm for training multi-task D2NNs, which
offers flexible control to balance the prediction accuracy of each task (task accuracy trade-off) and prevent over-
fitting. The experimental results demonstrate that our multi-task D°NNs system can achieve the same accuracy
for both tasks compared to the original D*°NNs, with more than 75% improvements in hardware efficiency; and
the proposed architecture is practically noise resilient under detector Gaussian noise and fabrication variations,
where prediction performance degrades < 1% within the practical noise ranges.

Results and discussion
Figure 1 shows the proposed real-time multi-task diffractive deep neural network (D*NN) architecture. Spe-
cifically, in this work, our multi-task D°NN deploy image classification DNN algorithms with two tasks, i.e.,
classifying MNIST10 dataset and classifying Fashion-MNIST10 dataset. In a single-task D°NN architecture for
classification'®, the number of opto-electronic detectors positioned at the output of the system has to be equal to
the number of classes in the target dataset. The predicted classes are generated similarly as conventional DNNs
by selecting the index of the highest probability of the outputs (argmax), i.e., the highest energy value observed
by detectors. Moreover, due to the lack of flexibility and reconfigurability of the D’°NN layers, deploying DNNs
algorithms for N tasks requires physically designing N D*NN systems, which means N times of the D*NN layer
fabrications and the use of detectors. Our main goal is to improve the cost efficiency of hardware systems while
deploying multiple related ML tasks. Conceptually, the methodologies behind multi-task D2NN architecture and
conventional multi-task DNNs are the same, i.e., maximizing the shared knowledge or feature representations
in the network between the related tasks?.

Let the D’NN multi-task learning problem over an input space X, a collection of task spaces Y} v}, and
a large dataset including data points {x;, yil, AT yf\’ }1 € [D], where N is the number of tasks and D is the size of
the dataset for each task. The hypothesis for D°’NN multi-task learning remains the same as conventional DNNG,
which generally yields the following empirical minimization formulation:

N

: t share pt
D P o
T n=1
where L is a loss function that evaluates the overall performance of all tasks. The finalized multi-task D’NN will
deploy the mapping, f(x, 8197¢,0") : X — ", where 634" are shared parameters in the shared diffractive layers
between tasks and task-specific parameters 6" included in multi-task diffractive layers. Specifically, in this work,
we design and demonstrate the multi-task D*NN with a two-task D?NN architecture shown in Figure 1. Note that
the system includes four shared diffractive layers (§°"%"¢) and one multi-task diffractive layer for each of the two
tasks. The multi-task mapping function becomes f (x, 65"9"¢,12) : X — Y2, and can be then decomposed into:

f(x, eshare,gl,z) — det (fl <% _fshare(x’eshure)’91> +f2 (% _fshare(x’eshure)’92>) @)

fshare X = (SR_'_ j)€200><200’ flyfz . (m +fj)€200><200 — (%_’_ 3)6200X200 (3)

where f¥7¢ {1 and f2 produce mappings in complex number domain that represent light propagation in phase
modulated photonics. Specifically, the forward functionality of each diffractive layer and its dimensionality
R290>200 remains the same as'®. The output det € R€*!are the readings from C detectors, where C is the largest
number of classes among all tasks; for example, C = 10 for MNIST and Fashion-MNIST. The proposed multi-
task D®NN system is constructed by designing six phase modulators based on the optimized phase parameters
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Figure 1. Illustration of multi-task deep learning and multi-task D°NN architecture with two image
classification tasks deployed. The proposed multi-task D*NN architecture is formed by four shared diffractive
layers and two multi-task layers, where the feed-forward computations have been re-used into multi-task layers
using a beam splitter. With a novel training algorithm, the proposed architecture further reduces the hardware
complexity that utilizes only ten detectors for both classification tasks, i.e., twenty different classes.

Single-task system Multi-task system w 10 det-regions | Multi-task system w 20 det-regions
MINST E-MINST MINST F-MINST | MINST F-MINST
Diffractive layer cost 6 x 200 x 200 | 6 x 200 x 200 | (4 + 2 + 2)x200 x 200 (4 4+ 2+ 2)x200 x 200
Detector cost 10 10 10 10410
Accuracy 0.981 0.889 0.977 0.886 0.979 0.883
Acc-HW Product 1 1 1.99 x 1.99 x ~1x ~1x

Table 1. Hardware efficiency comparison between single-task and multi-task D? NN architectures. For the
multi-task D’NN comparison, we compare the hardware efficiency and prediction accuracy between a dual-
detection (20 detector regions) architecture and single-detection (10 detector regions). The efficiencies of
different D2NN architectures for MNIST and Fashion-MNIST tasks are evaluated using Accuracy-Hardware
product (a.k.a. Acc-HW), where hardware cost is estimated using the number of detectors.

in the four shared and two multi-task layers (Fig. 1), i.e., 0597, 012, The phase parameters are optimized with
backpropogation with gradient chain-rule applied on each phase modulation and adaptive momentum stochastic
gradient descent algorithm (Adam). The design of phase modulators can be done with 3D printing or lithogra-
phy to form a passive optical network that performs inference as the input light diffracts from the input plane
to the output. Alternatively, such diffractive layer models can also be implemented with spatial light modula-
tors (SLMs), which offers the flexibility of reconfiguring the layers with the cost of limiting the throughput and
increase of power consumption.

Table 1 presents the performance evaluation and comparisons of the proposed architecture with other options
of classifying both MNIST and Fashion-MNIST tasks. We compare our architecture with—(1) singe-task D2NN
architecture, which requires two stand-alone D*NN systems; (2) multi-task D’NN architecture with the same dif-
fractive architecture as Fig. 1 but with two separate detectors for reading and generating the classification results.
Specifically, we utilize Accuracy-Hardware product (a.k.a. Acc-HW) metric. Regarding the hardware cost, we esti-
mate the cost of the baseline and the proposed systems using the number of detectors. This is because the major
cost of the system comes from detectors in practice and the cost of 3D-printed masks is negligible compared
to detector cost. To evaluate the hardware efficiency improvements, we set single-task Acc-HW as the baseline,
and the improvements of the multi-task D’NN architectures using Eq. (4). We can see that our multi-task D2NN
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Figure 2. Modeling of ten classes for two different datasets with ten detectors. (a, b) One-hot encoding for
classes 0-9 of the first task (MNIST) represented using the energy value observed at the detectors. Final classes
are produced using the index of the lowest energy area, i.e., argmin(det). (c, d) One-hot encoding for classes
0-9 represented of the second task (e.g., Fashion-MNIST) using the energy value observed at the detectors.
Final classes are produced using the index of the highest energy area, i.e., argmax(det).

architecture gains 75% efficiency for MNIST task and 72% for Fashion-MNIST task, by introducing a novel
multi-task algorithm and modeling that detects 20 different classes (two sets) using only 10 detectors; and gains
over 55% and 50% compared to using an architecture that requires two separate sets of detectors.

AcCmuiti ) HWCosty11i
ACCsingle HWCOStsingle

Acc-HW Product =1 - ; HWCost = #Detectors. 4)

Figure 2 illustrates the proposed approach for producing the classes, which re-use the detectors for two
different tasks. Specifically, for the multi-task D?NN evaluated in this work, both MNIST and Fashion-MNIST
have ten classes. Thus, all the detectors used for one class can be fully re-utilized for the other. To enable an
efficient training process, we use one-hot encodings for representing the classes similarly as the conventional
multi-class classification ML models. The novel modeling introduced in this work that enables re-using the
detectors is—defining “1” differently in the one-hot representations. As shown in Fig. 2a,b, for the first task MNIST,
the one-hot encoding for classes 0-9 are presented, where each bounding box includes energy values observed
at the detectors. In which case, “1” in the one-hot encoding is defined as the lowest energy area, such that the
label can be generated as argmin(det)—the index of the lowest energy area. Similarly, Fig. 2¢,d are the one-hot
encodings for classes 0-9 of the second task Fashion-MNIST, where label is the index of the highest energy area,
i.e., argmax(det). Therefore, ten detectors can be used to generate the final outputs for two different tasks that
share the same number of classes, to gain extra 55% and 50% hardware efficiency of the proposed multi-task
D?NN (see Table 1).

Figure 3 includes visualizations of light propagations through multi-task D2NN and the results on the detec-
tors, where the input, internal results after each layer, and output are ordered from left to right. Figure 3a shows
one example for classifying MNIST sample, where the output class is correctly predicted (class 7) by returning
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Figure 3. Visualization of propagations through multi-task D> NN and the results on the detectors. (a) Forward
visualization of classifying MNIST10 sample with class = 6, where the 7th detector has the lowest energy value.
(b) Forward visualization of classifying Fashion-MNIST sample with class = 7, where the 8th detector has the
lowest energy value.

the index of the lowest energy detector. Figure 3a presents an example for classifying Fashion-MNIST sample,
where the output class is correctly predicted (class 8) by returning the index of the highest energy detector.

While building conventional multi-task DNN, it is well known that the robustness of the multi-task DNNs
degrades compared to single-task DNNs, for each individual task. Such concerns become more critical in the
proposed multi-task D*NN system due to the potential system noise introduced by the fabrication variations,
device variations, detector noise, etc. Thus, we comprehensively evaluate the noise impacts for our proposed
multi-task D®NN, by considering a wide range of Gaussian noise in detectors and device variations in phase
modulators. Details of noise modeling in the proposed systems are discussed in Section Methods (Egs. 8-10).
Figure 4 includes four sets of experimental results for evaluating the robustness of our system under system
noise. Specifically, Fig. 4a evaluates the prediction performance of both tasks under detector noise, where the
x-axis shows the o of a Gaussian noise vector S/N (Signal to Noise), and the y-axis shows the accuracy. Figure 4b
evaluates the accuracy impacts from device variations of phase modulators, where the x-axis shows the phase
variations of each optical neuron in the diffractive layer (note that phase value is € [0, 277]), and the y-axis shows
the accuracy. In practice, detector noise is mostly within 5%, and device variations are mostly up to 0.2 (80%
yield). We can see that the prediction performance of the proposed system is resilient to a realistic noise range
while considering only one type of noise. Moreover, in Fig. 4¢,d, we evaluate the noise impacts for MNIST and
Fashion-MNIST, respectively, under both detector noise and device variations. While the accuracy degradations
are much more noticeable when both noises become significantly, we observe that the overall performance deg-
radations remain < 1% within the practical noise ranges. In summary, the proposed architecture is practically
noise resilient.

In multi-task learning, it is often needed to adjust the weight or importance of different prediction tasks
according to the application scenarios. For example, one task could be required to have the highest possible
prediction performance while the performance of other tasks are secondary. To enable such biased multi-task
learning, the shared representations ¥4 need to carefully adjusted. Figure 5 demonstrates the ability to enable
such biased multi-task learning using loss regularization techniques. Specifically, we propose to adjust the per-
formance of different tasks using a novel domain-specific regularization function shown in Eq. (5), where 4; and
Az are used to adjust the task importance, with a modified L2 normalization applied on multi-task layers only. The
results with 100 trials of training (with different random seeds for initialization and slightly adjusted learning
rate) are included in Fig. 5a. We can see that loss regularization is sufficient to enable biased multi-task learning
in the proposed multi-task D2NN architecture, regardless of the initialization and training setups. Moreover,
Fig. 5b empirically demonstrates that with even with very large or small regularization factors, the proposed loss
regularization will unlikely overfit either of the tasks because of the adjusted L2 norm used in the loss function
(Eq. 6). Note that the adjusted L2 normalization only affects the gradients for ' and 2, where A1 is the weight
of this L2 normalization.

LEM0Y) =y L@+ o La@H6%) + i (01 + (0P))
~~ ~~ 2 5)
tl factor t2 factor

adjusted L2 norm

Methods

Multi-task D? NN architecture. Figure 1 shows the design of the multi-task D?NN architecture. Based
on the phase parameters §°7%"¢, 01, and 62, there several options to implement the diffractive layers to build the
multi-task D’D?NN system. For example, the passive diffractive layers can be manufactured using 3D print-
ing for long-wavelength light (e.g. terahertz) or lithography for short-wavelength light (e.g. near-infrared), and
active reconfigurable ones can be implemented using spatial light modulators. A 50-50 beam splitter is used to
split the output beam from the last shared diffractive layer into two ideally identical channels for multi-task lay-
ers. Coherent light source, such as laser diodes, is use in this system. At the output of two multi-task layers, the
electromagnetic vector fields are added together on the detector plane. The generated photocurrent correspond-
ing to the optical intensity of summed vector fields is measured and observed as output labels. Regarding the

Scientific Reports |

(2021) 11:11013 | https://doi.org/10.1038/s41598-021-90221-7 nature portfolio



www.nature.com/scientificreports/

0.978 0.888 0.978 0.888
>
TR g p R IAH Ak g t—-t\t_ -~ ok 0.886 @
5 09761 _o®eea® n 0.886 ¢ ..0.976- —e_ On 5
g N S 8 T 0.884 &
3 0.974 AR 0.884 < 5 0.9741 N -
Q & = ] > 0.882 W
<< .*;-; g < \\ =2
%5 0.972 0.882 £ 5 0.9721 AN * o880 =
0.970 MNIST Channel 0.880 = 0.970- MNIST Channel ‘@ 0.878 5
——- FasionMNIST Channel © ——- FasionMNIST Channel 0.876 *©
0.968 0.878 0.968
0% 5% 10% 15% 0.03 0.05 0.08 0.10 0.12
(a) Detector Noise -- Gaussian (b) Device Variations
Distribution o in S/N percentage

Practical Noise Range

QN2
LA

5 0.89 L7 ":':"lt"
z 097 s
z S 0.88
=1
7 0.97 :
; 0.97 S 0ss
% 097 o
5 0.96 ‘,’;; 0.87
S 096 0.00 2 0.00
g Lo S 0.86 .
: & 3 010
0.00
D D 010 o &
Sice ., 0.20 \ A SVice 0.20 6
(C) Picatio,y 030 040 (d) Fabrifation 0.30 040 &
Varj tion, 040 © Fatio, 040
09600 0.9625 0.9650 0.9675 0.9700 0.9725 0.9750 0.9775 0.865 0.870 0.875 0.880 0.885
Figure 4. Evaluations of robustness against system noise of the proposed multi-task D?NN, by considering a
wide range of Gaussian noise in detectors and device variations in phase modulators. Details of noise modeling
in the proposed systems are discussed in Section Methods (Eqs. 8-10). (a) Prediction performance evaluation
under Gaussian detector noise with o shown in S/N (Signal to Noise) € [0, 0.2]. (b) Prediction performance
evaluation under Gaussian device variations. (c) Evaluations of MNIST task accuracy under combined detector
noise and device variations. (d) Evaluations of Fashion-MNIST task accuracy under combined detector noise
and device variations.
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Figure 5. Evaluation of loss regularization for adjusting the performance of each task. (a) Testing accuracy
with different regularization factors. As % increases (decreases), the final performance of the multi-task D°NN
will be bias to Fashion-MNIST (MNIST). We include results of 100 different hyperparameters for training. (b)
Testing accuracy of both tasks during the training phase, where we can see that even the largest and smallest
regularization factors do not cause overfitting.
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real-time capability of the proposed system, the proposed architecture performs the same the system proposed
in'®, where computation is executed at the speed of light and the information is processed on each neuron/pixel
of the phase mask is highly parallel. Thus, the time of light flight is negligible and the determination factor for
system hardware performance is dependent on the performance of THz detectors. For a detector with opera-
tion bandwidth f, the corresponding latency is 1/f and the largest throughput is f frames/s/task. The minimum
power requirement for this system is determined by the number of detector, NEP (noise-equivalent-power), and
, if we assume the loss and energy consumption associated with phase masks is negligible. In practice, consid-
ering a room-temperature VDI detector (https://www.vadiodes.com/en/products/detectors?id=214) operating
at~ 0.3 THz , f =~ 40 GHz, and NEP = 2.1pW/ JHz, the latency of the system will be 25 ps, throughput is
4 x 100 fps/task (frame/second/task), with power consumption 0.42 uW. In addition to mitigate the large cost
of detectors, alternative materials can be used, such as graphene. For example, the specific detector performance
shown in?® is NEP =~ 80pW/ JHz,and f =~ 300 MHz. In which case, the system atency is ~ 30ns, such that
the throughput is 3 x 108 fps/task with the estimated minimum power 1.4 uW.

Training and inference of multi-task D2 NN. The proposed system has been implemented and evalu-
ated using Python (v3.7.6) and Pytorch (v1.6.0). The basic components in the multi-task D’NN PyTorch imple-
mentation includes (1) diffractive layer initialization and forward function, (2) beam splitter forward function,
(3) detector reading, and (4) final predicted class calculation. First, each layer is composed of one diffractive
layer that performs the same phase modulation as'®. To enable high-performance training and inference on GPU
core, we utilize for complex-to-complex Discrete Fourier Transform in PyTorch (torch.fft) and its inversion
(torch. ifft) to mathematically model the same modulation process as'®. Beam splitter that evenly splits the
light into transmitted light and reflected light is modeled as dividing the complex tensor produced by the shared
layers in half. The trainable parameters are the phase parameters in the diffractive layers that modulate the
incoming light. While all the forward function components are differentiable, the phase parameters can be sim-
ply optimized using automatic differentiation gradient mechanism (autograd). The detector has ten regions and
each detector returns the sum of all the pixels observed (Fig. 2). To enable training with two different one-hot
representations that allow the system to reuse ten detectors for twenty classes, the loss function is constructed
as follows:

L= ~MSELoss(LogSoftmax(f(@Sh“’e,01, XY, (label' + 1)%2)

one—hot encoding with one“0” and nine “1s”

+ J; -MSELoss (LogSoftmax(f(GShm, 6%, X2), label®)

one—hot encoding with one “1” and nine “0s” (6)
A2
+ Jia - =21.2(01,6%)
A
L2 norm on multi—task diffractive layers

The original labels label Land label? are represented in conventional one-hot encoding, i.e., one “1” with nine
of “0s”, and label' has been converted into an one-hot encoding with one “0” and nine “1s”. Note that LogSoftmax
function is only used for training the network, and the final predicted classes of the system are produced based
on the values obtained at the detectors. With loss function shown in Eq. (6) and the modified one-hot labeling
for task 1, the training process optimizes the model to (1) given an input image in class ¢ for task 1 (MNIST),
minimize the value observed at (c+1)th detector, as well as maximize the values observed at other detectors; (2)
given an input image in class ¢ for task 1 (Fashion-MNIST), maximize the value observed at (c+1)th detector, as
well as minimize the values observed at other detectors. Thus, the resulting multi-task model is able to automati-
cally differentiate which task the input image belongs to based on the sum of values observed in the ten detectors,
and then generate the predicted class using argmin (argmax) function for MNIST (Fashion-MNIST) task.
The gradient updates have been summerized in Eq. (7).

L
gshare _ gshare _ 5 n%(vel + V6?)
1

0 = 0! — Vo — 2nip,]10" + 62| )
6% =62 — nVo? — 2n1)10" + 67|

System noise modeling. We demonstrate that the proposed system is robust under the noise impacts
from the device variations of diffractive layers and the detector noise in our system. Specifically, to include the
noise attached to the detector, we generate a Gaussian noise mask A (a, i) € R2%0%2%0 with on the top of the
detector readings, i.e., each pixel observed at the detector will include a random Gaussian noise. As shown in
Fig. 4a, we evaluate our system under multiple Gaussian noises defined with different o with . = 0. We also
evaluated the impacts of i, while we do not observe any noticeable effects on the accuracy for both tasks. This
is because increasing u of a Gaussian noise tensor does not change the ranking of the values observed by the ten
detectors, such that it has no effect on the finalized classes generated with argmax or argmin. The forward
function for ith task with detector noise is shown in Eq. (8).
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¢’ = argmax/argmin(det(f (619, 6°, X')) + N(0,0)), i={1,2} (8)

We also considered the imperfection of the devices used in the system. With 3D printing or lithography
based techniques, the imperfection devices might not implement exactly the phase parameters optimized by the
training process. Specifically, we consider the imperfection of the devices that affect the phases randomly under
a Gaussian noise. As shown in Fig. 4b, the x-axis shows that the o of Gaussian noise that are added to the phase
parameters for inference testing. The forward function is described in Eq. (9). Beam splitter noise has also been
quantified, where we do not see direct impacts on both tasks (see Fig. 2 in supplementary file SLpdf).

ejs\}}are — (Gshare +N(U,0)) % 2
Oy = O +N(0,0) % 27, i={1,2} 9)
¢ = argmax/argmin(det(f (0547, 04, XA))), i = (1,2}

Finally, for results shown in Fig. 4c,d, we include both detector noise and device variations in our forward
function (Eq. 10):

9/5\};“72 — (eshare +N1(O’1,0)) % 27
Oy =@ +N'(@0) % 27, i=({12} (10)
¢ = argmax/argmin(det(f (0547, 04, Xi) + N2(02,0))), i={1,2}
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