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1. INTRODUCTION

The Delaunay triangulation is an unstructured simplicial mesh that is widely

studied in the field of computational geometry. Due to its many favorable prop-

erties, the Delaunay triangulation finds wide use as a mesh for multivariate inter-

polation in the fields of geographic information systems (GIS), civil engineering,

physics, and computer graphics. See Section 9.6 of [de Berg et al. 2008] for a brief

discussion of the usefulness of Delaunay triangulations. The viability of Delau-

nay triangulations as a means for interpolating arbitrary nonlinear functions in the

context of data science and machine learning has been explored by Omohundro

[1990] and more recently by Belkin et al. [2018]. Other recent works have shown
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Delaunay triangulations to be effective for interpolating real-world computer sys-

tem data [Chang et al. 2018a and Lux et al. 2018], outperforming several common

multivariate interpolation and approximation techniques.

In this work, the main problem of interest is the multivariate interpolation prob-

lem. Interpolation via meshes such as triangulations and other tessellations is a

classic practice. Delaunay triangulations are widely considered optimal simplicial

meshes for many meshing applications, including interpolation. See the first chap-

ter of Cheng et al. [2012] for an overview of Delaunay meshing applications and

theory, and see Rajan [1994] for specific theorems on the optimality of Delaunay

triangulations in arbitrary dimension.

In two dimensions, the Delaunay triangulation of n points can be efficiently

computed in O
(

n logn
)

time [Su et al. 1995]. After the Delaunay triangulation

has been computed, the cost of evaluating each interpolation point is reduced to

the cost of point location. In two dimensions, point location can be performed in

O
(

n
1

3

)

time [Mücke et al. 1999], so the total cost of interpolating at m points in

two dimensions is O
(

n logn + n
1

3m
)

. However, Klee [1980] showed that in Rd,

the worst case size of the Delaunay triangulation is Ω
(

n⌈d/2⌉
)

. In practice, the

size of Delaunay triangulations can grow much slower for favorable data sets. In

particular, for well-spaced point sets, the size of the Delaunay triangulation depends

only linearly on n [Sheehy et al. 2008] but may still depend exponentially on d, a

phenomenon often associated with the curse of dimensionality.

Despite the complexity of high-dimensional Delaunay triangulations, there are

currently a wide variety of algorithms for computing them. The first algorithm

capable of computing Delaunay triangulations in arbitrary dimension was proposed

independently by both Bowyer [1981] and Watson [1981]. Perhaps the most widely

used algorithm for computing Delaunay triangulations in arbitrary dimension is

the Quickhull algorithm proposed by Barber et al. [1996]. Quickhull is a time-

efficient algorithm running in Θ
(

n logn+ κ
)

time, where κ denotes the size of the

Delaunay triangulation. Quickhull also boasts a highly optimized numerically stable

implementation. An alternative to Quickhull is the graph based algorithm proposed

by Boissonnat et al. [2009]. An implementation of this algorithm, contained in

the Computational Geometry Algorithms Library (CGAL), stores the Delaunay

triangulation in a memory efficient graph structure, at the cost of a slightly greater

compute time. One final algorithm of interest is the DeWall algorithm, proposed

by Cignoni et al. [1998]. The DeWall algorithm, though not in widespread use,

features a unique divide-and-conquer paradigm, and was a major inspiration behind

this work.

Due to the exponential growth of Delaunay triangulations in high dimensions,

none of the above mentioned algorithms are intended to scale past six or seven

dimensions. In fact, this failure to scale to high dimensions is suffered by nearly

every mesh based approximation. Consequently, high-dimensional approximation

is generally dominated by mesh free methods such as multivariate polynomials, ra-

dial basis functions, low order splines, inverse distance weightings, kernel methods,
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and machine learning techniques such as support vector regressors and artificial

neural networks (see [Cheney et al. 2009]). By leveraging the sparse nature of the

interpolation problem, the DELAUNAYSPARSE package aims to add the high-

dimensional Delaunay mesh based interpolant to the numerical analyst’s toolbox.

The rest of this paper is organized as follows. Section 2 describes the Delau-

nay interpolant in greater detail and outlines a novel algorithm for computing it.

Section 3 details the computational aspects of the algorithm, with an emphasis on

numerical stability and efficiency. Section 4 describes the serial implementation of

the algorithm and its additional features. Section 5 describes the parallel imple-

mentation, which uses OpenMP in a shared memory paradigm. Section 6 contains

usage information and package organization details. Section 7 shows performance

statistics, demonstrating the scalability of the algorithm. For additional informa-

tion on the properties of Delaunay triangulations and algorithms for computing

them, two excellent references are [Aurenhammer et al. 2013] and [Cheng et al.

2012].

2. INTERPOLATION VIA THE DELAUNAY TRIANGULATION

Let P be a set of n > d data points in Rd. A d-dimensional triangulation

is defined as a mesh of d-simplices that (1) are disjoint except on their shared

boundaries, (2) whose set of vertices is P , and (3) whose union is the convex hull of

P , denoted CH(P ). The interpolation problem is: given values f(p) for all points

p ∈ P where f : Rd → Rl, find an approximation f̂ ≈ f such that f̂(p) = f(p) for

all p ∈ P , where f̂ has support in CH(P ).

Let T (P ) be a d-dimensional triangulation of P . To define an interpolant in

terms of T (P ), let q ∈ CH(P ) be an interpolation point, and let S be a simplex in

T (P ) with vertices s1, . . ., sd+1 such that q ∈ S. Then there exist weights w1, . . .,

wd+1 such that q =
∑d+1

i=1 wisi,
∑d+1

i=1 wi = 1, and wi ≥ 0 for i = 1, . . ., d+ 1, and

the interpolant f̂T is given by

f̂T (q) = w1f(s1) + w2f(s2) + . . .+ wd+1f(sd+1). (1)

In DELAUNAYSPARSE, the interpolant f̂DT is computed, whereDT (P ) denotes

a Delaunay triangulation of P . The Delaunay triangulation is often defined as the

geometric dual of the Voronoi diagram, also called the Dirichlet tessellation. Here

the following equivalent definition is preferred. For a d-simplex S, let BS denote

the open ball whose center and radius are given by the (d−1)-sphere circumscribing

S. Then a Delaunay triangulation DT (P ) of a finite set of points P ⊂ Rd is any

triangulation of P such that for each S ∈ DT (P ), BS satisfies BS∩P = ∅. Remarks

2.1–3 below describe several key properties of a Delaunay triangulation.

Remark 2.1. Given a set of d + 1 vertices in P that define a d-simplex S, the

condition that BS ∩P = ∅ is not only necessary, but also sufficient to conclude that

S ∈ DT (P ) for some Delaunay triangulation DT (P ).
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Remark 2.2. Let F be a facet of a simplex S ∈ DT (P ). Let H denote any

halfspace whose boundary is the hyperplane containing F . Let p1, . . ., pℓ be a

sequence of points that are in P ∩H . Define the open circumballs B1, . . ., Bℓ such

that each Bi circumscribes F and pi. Assume p1, . . ., pℓ satisfies pi ∈ Bi+1 for all

1 ≤ i < ℓ. Then B1 ∩H ⊂ B2 ∩H ⊂ · · · ⊂ Bℓ ∩H .

Remark 2.3. In randomly generated data, the cases where DT (P ) does not exist

or is not unique occur with probability zero. Therefore, for algorithmic analysis, it

is common to make the simplifying assumption that P is in general position, mean-

ingDT (P ) exists and is unique. Furthermore, note that the case whereDT (P ) does

not exist occurs only if all the points in P are contained in some lower-dimensional

linear manifold. In the context of interpolation, this corresponds to an over param-

eterization of the underlying function and can be resolved with dimension reduction

techniques. The case where DT (P ) is not unique can occur in real-world problems

and will be addressed in the implementation, discussed in Section 3.

Note that given a set of m interpolation points Q, at most m simplices in DT (P )

are needed to compute f̂DT (q) for all q ∈ Q. Therefore, for this particular problem,

it is possible to “cheat” the curse of dimensionality when m is significantly less than

the size of DT (P ). To do so, it suffices to compute a sparse subset of DT (P ) such

that Q is contained in the subset.

As previously mentioned, one of the major inspirations behind this work was the

DeWall algorithm proposed by Cignoni et al. [1998]. The DeWall algorithm features

a divide-and-conquer paradigm where construction of each Delaunay simplex is

carefully guided so as to construct a “wall” of simplices, bisecting the data set. Each

successive simplex is completed from a facet of a previously constructed simplex,

using the same methodology as the classic gift-wrapping approach (described in

Section 5.6 of [Cheng et al. 2012]).

The two key components of the DeWall and gift-wrapping algorithms that are

used in DELAUNAYSPARSE are the growth of the seed simplex and the completion

of an open Delaunay facet. After iteratively constructing a seed simplex, the idea

is to perform a visibility walk to the simplex containing each interpolation point,

as described by Devillers et al. [2001]. Since the complete triangulation is never

computed, each step of the walk is performed by completing the Delaunay facet

designated by the visibility walk protocol. Once each interpolation point q has

been located, each response value f̂DT (q) can be computed using (1). A detailed

description and analysis of this algorithm is in Section 3 of [Chang et al. 2018b].

Pseudocode for interpolating at a single point follows.

Algorithm 1

P contains n d-dimensional data points;

q ∈ CH(P ) is the interpolation point;

S denotes the current d-simplex;

F denotes the facet of S from which q is visible.

begin Grow an initial seed d-simplex S, as described in Section 3.1.
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while q 6∈ S do

Select the facet F of S from which q is visible as described in Section 3.2;

complete a new d-simplex S∗ from the facet F as described in Section 3.3;

update S ← S∗.

enddo

Since the loop has terminated, q ∈ S. Compute f̂DT (q) using (1).

The advantages of this technique are maximized when the interpolation points

are sparse with respect to the size of the triangulation. In both expectation and

practice, the number of simplices constructed during the walk to each interpolation

point is a polynomial function of d and often seemingly independent of n. Given

the exponential nature of the problem, this makes for an effective sparse solution,

particularly in high dimensions.

2.1 Relationship to Linear Programming

For those experienced in linear programming, Algorithm 1 may seem reminiscent

of the Dantzig simplex method for solving linear programs. In fact, computing

the Delaunay simplex containing an interpolation point can be connected to linear

programming.

Let P = {p1, . . ., pn}, and let

Ã =









−pT1 1
−pT2 1
...

...
−pTn 1









, b̃ =









‖p1‖22
‖p2‖22

...
‖pn‖22









, and c̃ =

[

−q
1

]

.

Consider the primal and dual linear programs

max
x̃

c̃T x̃ such that Ãx̃ ≤ b̃, x̃ free, min
ỹ

b̃T ỹ such that ÃT ỹ = c̃, ỹ ≥ 0.

For the primal problem, every extreme point of the feasible set satisfies x̃ =
(

−2ζ, η2−‖ζ‖22
)

where ζ and η are the circumsphere center and radius, respectively,

for a simplex in DT (P ) (not necessarily containing q). For the dual problem, every

extreme point of the feasible set contains a vector of weights expressing q as a convex

combination of d+1 vertices of a simplex (not necessarily Delaunay) containing q.

The optimal solution for both corresponds to a Delaunay simplex containing q. The

vertex set for a nondegenerate Delaunay simplex containing q is not immediately

given by the solution to the primal or dual problem. Rather, the vertices can be

inferred from a nondegenerate basic solution to the dual problem.

When P is in general position, DELAUNAYSPARSE can be interpreted as a dif-

ferent strategy for flipping through simplices than the Dantzig simplex algorithm.

For real-world data, which could be degenerate, finding a nondegenerate basic so-

lution is significantly harder than solving the linear program [Megiddo 1991]. By

favoring a geometric interpretation of the problem, DELAUNAYSPARSE is robust
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for degenerate input sets. DELAUNAYSPARSE also avoids significant computa-

tional expense and memory burden, which would be introduced through auxiliary

variables when reducing the primal problem to canonical form.

3. COMPUTATIONAL ASPECTS

In this section, the computational operations referenced in Algorithm 1 will be

fully detailed. These operations are the growth of the seed simplex, the visibility

walk, and flipping across a Delaunay facet. Due to floating point error, DELAU-

NAYSPARSE does not necessarily compute simplices from the true Delaunay trian-

gulation for nearly degenerate P . Instead, the computed simplices are elements of

DT (P̂ ), where P̂ ≈ P . The modifications needed to account for floating point error

are detailed in the remarks throughout this section, and bounds on the perturbation

between P and P̂ are given in Section 4.3.

3.1 Growing the Seed Simplex

The seed simplex is constructed through a greedy algorithm, as detailed in Section

3.1 of Chang et al. [2018b]. The initial vertex s1 is chosen to be the closest point

in the data set P to the interpolation point q, and ties are resolved by choosing the

point in P with the lowest index. The second vertex s2 ∈ P \ {s1} is chosen such

that

‖s2 − s1‖ = min
p∈P,

p 6=s1

‖p− s1‖.

Each subsequent vertex is chosen to minimize the radius of the minimum radius

circumsphere passing through the resulting vertex set.

For 2 ≤ j ≤ d and p ∈ P \ {s1, . . ., sj}, define the j × d matrix

A(j,p) =











(s2 − s1)
T

...
(sj − s1)

T

(p− s1)
T











and the j-vector

b(j,p) =
1

2









‖s2 − s1‖2
...

‖sj − s1‖2
‖p− s1‖2









.

If rank A(j,p) = j, then the minimum norm solution to the under determined

system

A(j,p)x = b(j,p) (2)

is x∗ = c − s1, where c denotes the center of the minimum radius circumsphere

about s1, . . ., sj , p. So, each subsequent vertex sj+1 is given by the p∗ ∈ P \ {s1,
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. . ., sj} such that solving (2) with A(j,p∗) and b(j,p
∗) produces the minimum 2-norm

solution x∗.

If rank A(j,p) < j, then s1, . . ., sj, p are not the vertices of a j-simplex, and

p cannot be a vertex of any d-simplex with vertices s1, . . ., sj . Hence, p can be

skipped and need not be considered again when constructing the seed simplex. Due

to memory constraints, there is no mechanism for marking a p that can be skipped,

and hence any such p could be revisited in the future, though it will always be

skipped.

If P is in general position, then there will always exist a unique point p∗ that

minimizes ‖x∗‖. However, if P lies in a (j − 1)-dimensional linear manifold where

j ≤ d, then any set of j+1 or more points in P will be affinely dependent. Therefore

rank A(j,p) < j for all p ∈ P \ {s1, . . ., sj}, and no solution p∗ can exist. Indeed,

DT (P ) does not exist as discussed in Remark 2.3. Furthermore, DT (P ) is not

unique if there exist d + 2 or more points in P that lie on the same circumball,

since there may be more than one p∗ ∈ P that minimize ‖x∗‖. For the purpose of

interpolation, all of these solutions are equally suitable, and the decision between

any number of such candidate solutions can be made arbitrarily. In particular,

these cases are resolved by choosing the candidate p∗ with the lowest index in P .

Pseudocode for this process follows.

Algorithm 2

P contains n d-dimensional data points;

q ∈ CH(P ) is the interpolation point;

{s1, . . ., sd+1} denote the vertices of the seed simplex.

begin

s1 ← arg min
p∈P ‖q − p‖;

s2 ← arg min
p∈P,

p 6=s1

‖s1 − p‖;
for j = 2, . . ., d do

initialize rmin ← ∞; p∗ ← null;

for all p ∈ P \ {s1, . . ., sj} do

Compute A(j,p) and b(j,p);

if rank A(j,p) < j then

Skip this point;

else if rank A(j,p) = j then

Compute the minimum norm solution x∗ to (2);

if ‖x∗‖ < rmin then

rmin ← ‖x∗‖;
p∗ ← p;

endif

endif

enddo

sj+1 ← p∗;

enddo
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if p∗ 6= null then

return {s1, . . ., sd+1};
else

return error (points in a lower-dimensional linear manifold);

endif

The dominant costs of the above algorithm are determining the rank of A(j,p) and

finding the minimum norm solution x∗ to (2). Both of these computations can be

done using a LQ factorization of A(j,p). Such a factorization has a computational

complexity of at most O
(

d3
)

(in the case where j = d).

Remark 3.1.1. To determine the rank of A(j,p) using a LQ factorization, consider

the final term on the diagonal of L, Ljj . From the construction of A(j,p), Ljj is the

exact distance from p to the (j−1)-dimensional linear manifold defined by {s1, . . .,
sj}. To allow for floating point error, p should be at least a distance of ε outside

of the manifold. Therefore A(j,p) is considered singular if |Ljj | < ε, where ε is a

scale/machine dependent constant.

Remark 3.1.2. In each iteration of the inner loop in Algorithm 2 (over all p ∈
P \{s1, . . ., sj}), a jth row is appended onto A(j−1,sj) to construct A(j,p). So, given

the LQ factorization of A(j−1,sj), it is possible to directly compute the minimum

norm solution to (2) in O
(

d2
)

time by using a rank-1 update. These updates are

always applied to the original LQ factorization of A(j−1,sj), which is full-rank by

construction. Therefore there is no risk of compounding numerical error, and the

complexity of the inner loop is O(nd2).

Remark 3.1.3. In practice, the check described in Remark 3.1.1 is sufficient to

avoid flat simplices. Furthermore, because the Euclidean distance from the (j− 1)-

dimensional linear manifold defined by {s1, . . ., sj} is used as the criterion for

singularity, the check in Remark 3.1.1 is amenable to backward stability in the

geometric sense. Specifically, no input point whose Euclidean distance from the

manifold is greater than ε is treated as affinely dependent. This is distinctly differ-

ent from approximating the distance to rank deficiency for the matrix A(j,p). Shroff

and Bischof [1992] provide an algorithm for approximating the latter after a rank-1

update at the cost of an additional linear solve. In order to save computational

expense (the check described in Remark 3.1.1 comes at no additional expense) and

guarantee backward stability in the geometric sense, the simpler check in Remark

3.1.1 is favored here. In pathological cases that are rare in practice, this could

result in a matrix A(j,p∗) that is nearly rank deficient in the matrix 2-norm.

Using the rank-1 update described in Remark 3.1.2, the total complexity of Al-

gorithm 2 (for growing a seed d-simplex) is reduced to O
(

nd3
)

.

3.2 The Visibility Walk

After constructing the seed simplex, DELAUNAYSPARSE advances on the sim-

plex containing an interpolation point q by following a visibility walk. A facet F
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of a simplex S is said to be visible to q if there exists a point ρ ∈ int S such that

the line segment drawn from ρ to q intersects F . A visibility walk is a sequence

of “flips” that always occur across a facet from which q is visible. Note that each

flip in a visibility walk is generally not unique, as it is possible for q to be visible

from multiple facets, and a flip across any visible facet constitutes a valid step in a

visibility walk. Edelsbrunner [1989] showed that in a Delaunay triangulation, every

visibility walk is acyclic and therefore must converge for any q ∈ CH(P ). The

mechanics of performing each flip in the visibility walk will be detailed in Section

3.3. In this section, the processes of identifying each visible facet and terminating

the visibility walk will be explored.

For a simplex S with vertices s1, . . ., sd+1, define the d× d matrix

A(S) = [ (s2 − s1) · · · (sd+1 − s1) ] .

Let xi denote the ith entry in the d-vector x, given by the solution to the linear

system

A(S)x = q − s1. (3).

Then the vector of affine weights w = [w1, . . ., wd+1]
T for generating q as a combi-

nation of s1, . . ., sd+1 is given by

w =











(

1−∑d
i=1 xi

)

x1
...
xd











.

If wi ≥ 0 for i = 1, . . ., d + 1, then q ∈ S and w contains the interpolation

weights in (1). If any wi < 0, then dropping the corresponding vertex si leaves

the vertices of a facet of S from which q is visible. If S is a valid Delaunay sim-

plex, A(S) is nonsingular and (3) can be solved via LU factorization. In practice,

DELAUNAYSPARSE solves (3) using a LQ factorization, which can be reused for

performing the “flip” operation, as described in Section 3.3.

Remark 3.2.1. To account for floating point errors, the condition that wi ≥ 0

for i = 1, . . ., d + 1 should be replaced with wi ≥ −ε, where ε is a scale/machine

dependent constant, similarly as in Remark 3.1.1.

The cost of a single LQ factorization for solving (3) is dominated by the cost of

performing a flip, as described in the next section, which requires up to n rank-

1 updates. However, the total length of the visibility walk (in number of flips)

will be important in determining the computational complexity of the DELAU-

NAYSPARSE algorithm. This length k can only be analytically bounded by the

total size of DT (P ). However, Bowyer [1981] claimed without proof that when

starting a visibility walk from the center of a Delaunay triangulation, k is O
(

n1/d
)

.

Mücke et al. [1999] proved that in up to three-dimensions, a stronger claim can

be made for some variations of the standard visibility walk. Chang et al. [2018b]
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showed empirically that for pseudo-randomly generated data points, when starting

from a simplex grown off the nearest data point to q, k tends to grow polynomially

with dimension and has no dependence on n for large values of n and d.

3.3 Flipping Across a Facet

Let F = CH({s1, . . ., sd}) be a facet of a previously constructed Delaunay

simplex from which the interpolation point q is visible. Let H(F ) denote the hy-

perplane containing F , and let Hq(F ) denote the open halfspace (with respect to

H(F )) that contains q. The goal of this section is to “flip toward” q, by constructing

a new Delaunay d-simplex with vertices s1, . . ., sd+1, where sd+1 ∈ P ∩Hq(F ).

Recall from Remark 2.1 that a d-simplex S is Delaunay if and only if BS ∩ P =

∅. Since at least one Delaunay simplex (of which F is a facet) has already been

constructed, DT (P ) exists. Therefore, if F is not a facet of CH(P ), there must

be at least one point p∗ ∈ P ∩ Hq(F ) such that the simplex S∗ with vertices {s1,
. . ., sd, p

∗} is Delaunay, satisfying BS∗ ∩ P = ∅. If no such p∗ exists, then it can

be inferred that q 6∈ CH(P ). So, to perform a “flip” to a new Delaunay simplex

closer to q, it suffices to check inside the circumball of the simplex with vertices s1,

. . ., sd, p, for each p ∈ P ∩Hq(F ). By exploiting the property described in Remark

2.2, this can be done in a single pass over P .

For a facet F with vertices s1, . . ., sd, let the (d− 1)× d matrix

A(F ) =







(s2 − s1)
T

...
(sd − s1)

T






.

To obtain a normal to H(F ), it suffices to take any nontrivial vector in the nullspace

of A(F ). Since F is a Delaunay facet, rank A(F ) = d − 1. Therefore, using a LQ

factorization with row pivoting, PA(F ) = LQ, the unit normal to H(F ) is given by

the last row of Q, vT = Qd·.

Given the normal vector v for H(F ), consider the function

σF (p) = sgn
(

(p− s1)
T v

)

. (4)

For each p ∈ P , p ∈ Hq(F ) if and only if σF (p) = σF (q).

Remark 3.3.1. To account for floating point errors, the additional condition that
∣

∣(p−s1)
T v

∣

∣ > ε should be imposed, where ε is a scale/machine dependent constant,

similarly as in Remarks 3.1.1 and 3.2.1. Note that similarly as in Remark 3.1.1,

this is a geometric distance threshold and does not guarantee that the resulting

matrix A(d,p) is far from singular for pathological point sets.

Consider now those p ∈ P \{s1, . . ., sd} such that σF (p) = σF (q), i.e., p ∈ Hq(F ).

Similarly as in Section 3.1, the center of the circumball about F and p is given by
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c = x∗+s1, and the radius of the circumball is given by ‖x∗‖, where x∗ is a solution

to the system

A(d,p)x = b(d,p). (5)

Since F is a valid Delaunay facet, the first d− 1 columns of A(d,p) must be linearly

independent. Furthermore, if the condition described in Remark 3.1.1 has been

satisfied, then it is safe to assume that A(d,p) is full-rank, and (5) has a unique

solution. Then p∗ is any point in P ∩Hq(F ) that satisfies B‖x∗‖(c)∩ P = ∅, where
B‖x∗‖(c) denotes the open ball centered at c with radius ‖x∗‖. Pseudocode for this
entire process follows.

Remark 3.3.2. If P is in general position, then p∗ is unique. If there exist d + 2

or more cospherical points in P , then p∗ may not be unique. However, any p∗ ∈
P ∩Hq(F ) that satisfies B‖x∗‖(c)∩P = ∅ can be chosen in union with {s1, . . ., sd}
to form the vertex set for a valid simplex in some Delaunay triangulation. Such

situations can be resolved by choosing the p∗ with the greatest index in P .

Algorithm 3

P contains n d-dimensional data points;

q ∈ CH(P ) is the interpolation point;

{s1, . . ., sd+1} denote the vertices of the new simplex;

F is the current Delaunay facet;

begin {s1, . . ., sd} are given by the vertices of F ;

Compute the LQ factorization PA(F ) = LQ and set vT ← Qd·;

Compute σF (q) using (4);

initialize rmin ← ∞; cmin ← ~0; p∗ ← null;

for all p ∈ P \ {s1, . . ., sd} do

if σF (p) 6= σF (q) or
∣

∣(p− s1)
T v

∣

∣ < ε then

Skip this point;

else if ‖p− cmin‖ < rmin then

Update A(d,p) and b(d,p) and compute x∗, the solution to (5);

rmin ← ‖x∗‖;
cmin ← x∗ + s1;

p∗ ← p;

endif

enddo

if p∗ = null then

return error, q 6∈ CH(P );

else

return sd+1 ← p∗;

endif

The dominant cost for Algorithm 3 is repeatedly solving (5). Since A(d,p) is

always full-rank, each instance of (5) could be solved using a LU factorization,

with computational complexity O
(

d3
)

. However, similarly as in Remark 3.1.2, a
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rank-1 update is applied to the LQ factorization of A(F ) instead, reducing the

complexity per iteration of the loop to O
(

d2
)

. So the worst-case complexity of

Algorithm 3 is O
(

nd2
)

. Note that Algorithm 3 is called once in each iteration of

the simplex walk. Therefore, from Section 3.1 and 3.2, the overall computational

complexity for locating a single interpolation point is O
(

nd3 + knd2
)

, where k is

the length of the visibility walk. Since k is typically much greater than d, this can

be simplified to O
(

knd2
)

.

4. SERIAL IMPLEMENTATION

The serial subroutine DELAUNAYSPARSES is implemented in ISO Fortran 2003.

For efficient numerically stable linear algebra, DELAUNAYSPARSES uses LAPACK

[Anderson et al. 1999].

4.1 Handling Multiple Interpolation Points

The serial subroutine DELAUNAYSPARSES performs interpolation at m points

Q = {q1, . . ., qm} using Algorithms 1–3, as described in Sections 2 and 3. By

default, DELAUNAYSPARSES will perform these interpolations sequentially with no

modification to Algorithms 1–3. However, an optional argument can be set to

“daisy chain” the visibility walks, i.e., for the ith interpolation point qi where

i > 1, the last constructed Delaunay simplex (typically the simplex containing

qi−1) is used as the first simplex for walking to qi, replacing Algorithm 2. In gen-

eral, this behavior can greatly increase the length of each visibility walk and is not

recommended. However, if the interpolation points Q are tightly clustered in a

relatively small region of DT (P ) or if the size of DT (P ) is relatively small, this

behavior can slightly improve performance by avoiding the expense of Algorithm 2.

Additionally, note that after computing the LU factorization of A(S) for solving

(3), it requires relatively little additional computation to check whether S contains

any future interpolation points. Thus if S is a simplex with vertices s1, . . ., sd+1

that has been constructed during the visibility walk to an interpolation point qi,

DELAUNAYSPARSES will check whether qj ∈ S, where i < j ≤ n and qj has not

already been found in some simplex of DT (P ), by solving

A(S)x = qj − s1, (6)

and using the same criterion described in Section 3.2. If any qj ∈ S, then s1, . . .,

sd+1 and the corresponding interpolation weights for (1) are saved, and qj is marked

as found and will not be considered again. Because of its cost effectiveness, this

behavior is always active during an execution of DELAUNAYSPARSES. However, it is

most effective for tightly clustered interpolation points.

4.2 Extrapolation

Often, it is reasonable to make predictions for extrapolation points that are

slightly outside CH(P ). In these cases, the most reasonable solution is to project

each extrapolation point onto CH(P ) and interpolate the projection, provided the
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residual is small. Let z be an extrapolation point, and let W be a d × n matrix

whose columns are points in P . Then the projection ẑ of z onto CH(P ) is given by

ẑ = Wx∗, where x∗ is the solution to the linearly constrained least squares problem

min
x∈Rn

‖Wx− z‖ subject to x ≥ 0 and

n
∑

i=1

xi = 1. (7)

Hanson et al. [1982] provide an efficient solution to (7) based on a slack variable

formulation. The most recent version of their subroutine DWNNLS is available in the

SLATEC software package, and included with the DELAUNAYSPARSE files.

Remark 4.2.1. Note that the visibility walk described in Section 3.2 is only guar-

anteed to converge for q ∈ CH(P ). In particular, if a projection ẑ is left within

floating point error of CH(P ), and the matrix A(S) for a nearby Delaunay simplex

has smallest singular value O(ε), then it is possible for a visibility walk to fail by

repeatedly calling for a flip that would lead outside of the convex hull. This is

an extremely rare situation. However, in these situations, DELAUNAYSPARSE will

first try to flip in other potential directions (i.e., by dropping different negatively

weighted vertices). Then, if no “good” direction can be found, the correct interpo-

lation weights must ultimately be computed by a second DWNNLS projection onto

the current simplex.

Given the above solution, the residual is given by r = ‖z − ẑ‖. When r is small

with respect to the scale of the data, it is reasonable to perform extrapolation at

z by interpolating at ẑ. However, when r is large it is impossible to make any

reasonable prediction for f(z). By default, when DELAUNAYSPARSES encounters an

extrapolation point z, it computes the projection ẑ and residual r using DWNNLS. If

r is smaller than some percentage of the diameter of P , DELAUNAYSPARSES resumes

interpolation using q = ẑ. If r is greater than that percentage of the diameter, the

extrapolation point z is skipped and an appropriate error is returned.

By default, the threshold for extrapolation is 10% of the diameter of P , but this

percentage can be adjusted using an optional input argument. Furthermore, setting

this optional value to 0% of the diameter of P will short-circuit the extrapolation

process, preventing ẑ and r from ever being computed and preventing any DWNNLS

work arrays from being allocated. Note that the time and space demands of DWNNLS

can be significantly greater than those of DELAUNAYSPARSES. So, for large problems

or in cases where computational resources are limited, it is often appropriate to

turn off extrapolation by setting the extrapolation threshold to 0% of the diameter

of P .

Remark 4.2.2. For similar reasons as in Remark 4.2.1, it is possible that for

poorly spaced data points P , DELAUNAYSPARSESmay incorrectly call for a projection

of an interpolation point that is within floating point error of the boundary of

CH(P ). After unnecessarily performing the projection and finding that r = 0,

such situations are easily detected retrospectively. However, if the extrapolation
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threshold is set to 0% of the data diameter, the projection will short circuit and an

interpolation point that is within ε of the convex hull CH(P ) could be incorrectly

skipped. The conditions that could lead to such an error are pathological, but

might still occur.

4.3 Data Scaling and Sensitivity Analysis

Recall from Remarks 3.1.1, 3.2.1, 3.3.1, and 4.2.1 that a small scale/machine de-

pendent constant ε > 0 is used to account for floating point error. Affine operations

do not affect the Delaunay triangulation or interpolation results, so to account for

scaling, DELAUNAYSPARSES rescales and shifts the data points P and the interpola-

tion points Q on input. First, the points in P are shifted so that their barycenter is

at the origin, then they are rescaled so that they are contained in the unit ball. This

ensures that ε can be chosen without accounting for data scale. The interpolation

points Q must then be shifted and scaled by the same amounts to maintain relative

positions.

After scaling, the default value ε can be chosen based only on machine precision.

By default, ε =
√
µ where µ denotes the unit round-off. This is the minimum

appropriate value of ε for most applications, and an optional argument can be used

to increase ε where appropriate.

The purpose of ε (as described in Remarks 3.1.1, 3.2.1, and 3.3.1) is to guarantee

robustness. Remarks 3.1.1 and 3.3.1 together guarantee that no simplex can be

constructed whose vertex set is nearly coplanar. Remark 3.2.1 guarantees that any

simplex that is within a small perturbation of containing the interpolation point will

be accepted. Together, these remarks guarantee that a nondegenerate simplex is

found such that the interpolation point is nearly contained in that simplex, even for

degenerate and nearly degenerate data sets. Considering these remarks along with

the standard floating point error, the computed Delaunay simplices are actually

elements of a perturbed triangulation, DT (P̂ ).

An appropriate value of ε should be larger than the backward error due to floating

point error (in practice
√
µ is enough). Since Remarks 3.1.1 and 3.3.1 use ε as

a geometric distance threshold, ‖pi − p̂i‖2 < ε for all p̂i ∈ P̂ corresponding to

pi ∈ P . These conditions can be interpreted as backward stability guarantees for

the rescaled problem.

4.4 Memory Usage

DELAUNAYSPARSES uses assumed-shape arrays where appropriate. To ensure ex-

pected behavior, the dimensions of each dummy array are checked against user-

specified values of d, n, and m on input. Due to the size of DT (P ) in high di-

mensions, the space complexity of any Delaunay triangulation algorithm is equally

as important as its time complexity. The computational operations described in

Section 3 do not require any work arrays larger than O
(

d2
)

, making DELAU-

NAYSPARSE a space efficient algorithm.
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However, to take full advantage of LAPACK code optimizations, one larger work

array is required. Therefore, DELAUNAYSPARSES uses one allocatable work array,

whose size is determined at runtime based on LAPACK queries. Other allocatable

work arrays of size O
(

nd
)

are required by DWNNLS for extrapolation, but are only

allocated if an extrapolation is performed.

4.5 The Cost of Robustness and Correctness

DELAUNAYSPARSES is designed to be robust for a wide variety of use cases and

usage errors. In particular, DELAUNAYSPARSES uses the diameter of P to judge

extrapolation residuals, as discussed in Section 4.2. Also, the minimum pairwise

distance between points in P is used to catch bad inputs, since after rescaling, any

two points that are closer than ε will be indistinguishable from the perspective

of DELAUNAYSPARSES and could cause hard to find bugs. The computation of the

diameter and minimum pairwise distance is performed while the points are being

rescaled, as discussed in Section 4.3. The computational complexity of these dis-

tance computations is O
(

n2d
)

. Recall that the computational complexity of the

DELAUNAYSPARSE algorithm is O
(

knd2
)

, where k is independent of n for uni-

formly spaced P . So the cost of interpolating at m points is O
(

knmd2
)

. Therefore

in situations where n2d is significantly larger than knmd2, the complexity of DELAU-

NAYSPARSES can be dominated by nonessential distance computations, used only

for robustness and extrapolation checks.

Since these computations are not necessary for the DELAUNAYSPARSE algo-

rithm, it is possible to “turn off” exact extrapolation and error checking by setting

an optional input argument. When d is relatively small and m < n, this can greatly

improve the time complexity of the algorithm. However, doing so uses a diameter

approximation of twice the distance from the barycenter of P to the farthest point,

which could be off by up to a factor of two. Additionally, it will be possible for

duplicate points to go undetected, causing difficult to find bugs and irregularities

in results. For this reason, it is recommended that users only switch off these com-

putations once they have already carefully cleaned their data of duplicate points

and when the extrapolation cutoff is flexible.

5. PARALLEL IMPLEMENTATION

The parallel subroutine DELAUNAYSPARSEP is based on the serial subroutine DE-

LAUNAYSPARSES and shares the implementation details discussed in Sections 4.1–5.

DELAUNAYSPARSEP uses OpenMP 4.5 [OpenMP ARB, 2015] to implement a shared

memory paradigm. It is also possible to achieve distributed parallelism by breaking

up the interpolation points Q into β batches Q = Q1 ∪ . . . ∪Qβ , then distributing

these batches Qi across available nodes (along with copies of the data points P ).

Each batch can then be evaluated independently on its corresponding node.

Remark 5.1. Recall from Section 4.1 that code optimizations for handling multi-

ple interpolation points are most effective when the points are clustered in DT (P ).
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Therefore, optimal distributed memory performance is achieved when each Qi rep-

resents a cluster of interpolation points from Q. Note that clustering is an open

problem, and the above described distributed memory parallelism can be imple-

mented trivially using separate calls to DELAUNAYSPARSES or DELAUNAYSPARSEP.

Therefore, a distributed implementation with clustering of Q is not provided, and

left entirely to the user.

For the OpenMP shared memory implementation, two levels of parallelism are

targeted. The first level of parallelism is the loop over all m interpolation points Q.

The second level of parallelism applies to the various loops over all n data points

P and the loop over all unresolved interpolation points, as computed by (6) and

described in Section 4.1. The details for exploiting the first and second levels of

parallelism are given in Sections 5.1 and 5.2, respectively. There is also a loop

over the n data points for computing the scale factor (as discussed in Section 4.3)

and a pair of nested loops over the n data points for computing the diameter and

minimum pairwise distance of P (as discussed in Section 4.5). These loops can be

parallelized independently of either level of parallelism using a static scheduler.

If m is small with respect to the number of available processors, level one paral-

lelism will not saturate the available computational resources. In the extreme case

where m = 1, level one parallelism is not available. However, when available, level

one parallelism is significantly more efficient than level two parallelism. Therefore,

the default behavior for DELAUNAYSPARSEP is to exploit level one parallelism when-

ever it is available (if m > 1), and to exploit level two parallelism otherwise (if

m = 1). If this is not the desired behavior, the type of parallelism can be set manu-

ally via an optional argument, and for advanced users, both levels can be activated

at the same time resulting in nested parallelism.

Remark 5.2. In order for OpenMP to apply nested parallelism, the environment

variable OMP NESTED must be set to TRUE. Furthermore, note that if a team of t1
threads is deployed at the first level and a team of t2 threads is deployed at the

second level, then a total of t1 · t2 threads could be active at any time. t1 and t2
can be set by assigning the environment variable OMP NUM THREADS=t1,t2.

5.1 Level 1 Parallelism

The first level of parallelism is the loop over m interpolation points in Q: for all

q ∈ Q do, from Algorithm 1. Since the variation in the length k of each visibility

walk could be large, DELAUNAYSPARSEP uses a dynamic scheduler with a chunk size

of one to parallelize this Q loop. The only dependencies between iterations of the

Q loop occur when implementing the code optimizations described in Section 4.1.

First, when “checking ahead” for future interpolation points qj ∈ Q, there is a

possible race condition since another thread could already be performing a visibil-

ity walk toward qj . Since these dependencies are minimal, an OpenMP CRITICAL

lock is used with minimal modification to the serial code to ensure safe sequentially
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consistent memory accesses. Once any thread of DELAUNAYSPARSEP has begun con-

structing the first simplex in the walk toward qj , no other threads will continue to

test qj when “checking ahead.” Additionally, if daisy chaining is activated, each

thread in the team must maintain a private copy of the seed simplex. Therefore,

only previously constructed simplices of the active thread are considered for seeding

future visibility walks.

Other than the minor issues discussed above, level one parallelism is dependency

free and dynamically load balanced. Therefore, under ideal conditions, DELAU-

NAYSPARSEP is capable of weak scaling with respect to the problem dimension m,

with negligible overhead.

5.2 Level 2 Parallelism

The second level of parallelism applies primarily to the various loops over n data

points in P : for all p ∈ P \{s1, . . ., sj(sd)}, as appear in Algorithms 2 and 3. Note

that these P loops are not totally free of dependencies. Therefore, to parallelize

the P loops, private copies of certain variables (such as rmin and p∗) must be

maintained. Then, after completing these loops in parallel and producing private

solutions, a reduction can be done to determine the global solutions. Note that

this will result in some redundant computations. There is relatively little room

for performance variation between iterations of the P loops, so DELAUNAYSPARSEP

parallelizes them with a static scheduler and a fixed chunk size of ⌈n/t2⌉, where t2
denotes the number of threads in each level two team.

The one exception to the above methodology is the loop over all future interpo-

lation points, as described in Section 4.1. This loop is dependency free and can be

parallelized using a static scheduler with a fixed chunk size of ⌈(m− i)/t2⌉, where i
is the index of the current interpolation point. However, if level one parallelism is

active, parallelizing this loop results in significant conflict. Therefore, in the case of

nested (level one and two) parallelism, this loop executes serially within each level

one thread.

Remark 5.2.1 There is no true dependency between iterations of the above loop

over remaining interpolation points. However, the OpenMP CRITICAL directive

used in Section 5.1 locks code segments, as opposed to variable addresses and cannot

distinguish between loop iterations, inducing a “false” conflict. As mentioned above,

when level one parallelism is available, it is recommended that all available threads

be devoted to level one parallelism. Therefore, in the recommended use case, this

loop would not offer significant parallelism, and serializing it is no significant loss.

Due to interloop dependencies, exploiting level two parallelism can significantly

increase the total number of computations performed by DELAUNAYSPARSE.

Furthermore, there are significant regions of serial code separating each level two

parallel block. So, the parallel efficiency of DELAUNAYSPARSEP with level two paral-

lelism can be poor.
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6. ORGANIZATION AND USAGE INFORMATION

The physical organization of the DELAUNAYSPARSE package is described in its

included README file. Most notably, DELAUNAYSPARSE is distributed with a

copy of the REAL PRECISION module (from HOMPACK90, ACM TOMS Algo-

rithm 777), for approximately 64-bit arithmetic on all known machines. For com-

pleteness, all required LAPACK and BLAS subroutines are included, along with

DWNNLS and all its dependencies from the SLATEC library. The included copies of

the SLATEC subroutines have been updated in accordance with the Fortran 2003

standard. Additionally, legacy implementations for two of DWNNLS’s BLAS depen-

dencies (DROTM and DROTMG) have been included under different names. Finally,

sample main programs for the serial and parallel versions illustrating the use of the

optional arguments have been included. Sample data sets for these main programs

are real data sets (with points not in general position) from the VarSys project on

high performance computing system performance variability [Cameron et al. 2019].

The master module DELSPARSE MOD includes the REAL PRECISION mod-

ule and interface blocks for both DELAUNAYSPARSES and DELAUNAYSPARSEP, as well

as an interface block for the updated subroutine DWNNLS, which may be of separate

interest. Note that by default, DELAUNAYSPARSES and DELAUNAYSPARSEP do not

actually compute the Delaunay interpolant, but return the containing simplex and

weights for computing (1). This behavior was chosen to accommodate a wide vari-

ety of use cases, including those where the function values f(x) cannot be expressed

as real-valued vectors (e.g., when f(x) is a function g(ω;x) parameterized by x).

When the values f(x) can be expressed as real-valued vectors, an optional input

argument can be supplied with the response values, and then an optional output

argument must appear to collect interpolation results. Additionally, recall that P

and Q are shifted and rescaled on input. So, if the original P and Q are needed,

copies should be made prior to execution.

7. PERFORMANCE

This section summarizes previous results about the approximation accuracy of

Delaunay interpolation and presents new results on the runtime performance of the

DELAUNAYSPARSE software package.

7.1 Approximation Accuracy

The approximation accuracy of the Delaunay interpolant and other simplicial

interpolation schemes is analyzed in Belkin et al. [2018], Liu and Yin [2019], Lux

et al. [2019], and Regis [2014]. In particular, Lux et al. [2019] gives an error bound

when using T (P ) to interpolate a once differentiable scalar function g with γ-

Lipschitz continuous gradient in the 2-norm. Consider an interpolation point q0 ∈
Rd, whose containing simplex is S0 ∈ T (P ). Suppose S0 contains p0 in its vertex

set, has a maximum edge length of ξ, and has a barycentric transformation matrix

whose smallest singular value is λd. Then

|g(q0)− ĝT (q0)| ≤
γ‖q0 − p0‖22

2
+

√
dγξ2

2λd
‖q0 − p0‖2.
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Since the Delaunay property tends to minimize circumball radii [Rajan 1994], it

follows that DT (P ) is optimal for interpolation in comparison with other triangu-

lations when λd is bounded away from zero.

Lux et al. [2019] provides a detailed comparison between Delaunay interpolation

and other approximation techniques for a wide variety of high-dimensional data

science problems. The approximation accuracy of the Delaunay interpolant has also

been empirically evaluated for interpolating computer system performance data by

Chang et al. [2018a] and Lux et al. [2018].

7.2 Runtime Performance

This section will focus on the runtime performance of DELAUNAYSPARSES and DE-

LAUNAYSPARSEP. For reference, first consider Table I, which presents performance

data (as reported by Boissonnat et al. [2009]) in up to six dimensions for computing

the complete Delaunay triangulation of uniform randomly distributed data points

in the unit cube using Quickhull [Barber et al. 1996] and the graph based algorithm

proposed by Boissonnat et al. [2009]. Boissonnat et al. gathered this data using

a 2.6 GHz Intel processor with 6MB of level 2 cache and 4 GB of DDR2 RAM.

The purpose of including Table I is not for direct comparison, as the problem of

computing the complete Delaunay triangulation is significantly harder than that

of locating a single interpolation point. Indeed, recall that standard Delaunay tri-

angulation algorithms are not capable of scaling past six or seven dimensions for

sufficiently large problems. Rather, this data is intended to clarify the issues ad-

dressed by DELAUNAYSPARSE, and inform users on when DELAUNAYSPARSE

is an appropriate choice over algorithms that compute the complete Delaunay tri-

angulation.

Table I. Time and space requirements (as reported in Boissonnat et al. [2009]) for computing the
complete Delaunay triangulation using Quickhull and the Delaunay Graph algorithm. Entries
containing the word “swap” indicate that the process exceeded RAM limitations.

Problem Sizes (d & n): Algorithms:

Quickhull Delaunay Graph

5 dimensions, 2,000 points time 3.2 sec. 58 sec.
space 52 MB 10.1 MB

5 dimensions, 32,000 points time 76 sec. 1463.46 sec.
space 973 MB 106 MB

6 dimensions, 32,000 points time swap 28,296 sec.
space swap 267 MB

To test the performance of DELAUNAYSPARSES, runtimes have been gathered on

AMD CPUs @2.3 GHz. Table II presents runtimes for interpolating at a single

interpolation point (the center of the unit hypercube) using DELAUNAYSPARSES, for

various problem sizes (n) and dimensions (d) with uniform randomly distributed

data in the unit hypercube. To account for performance variance, each runtime

represents an average over 20 independent runs of DELAUNAYSPARSES, each with a
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different data set of the same size and dimension. Note that in the higher dimen-

sions, the data points (P ) are extremely sparse, even for large values of n. For such

problems, it is typical to employ some intelligent experimental design. Therefore, in

the higher dimensions, the uniform randomly spaced data used for testing becomes

increasingly unrepresentative of real-world data. However, this data is sufficient for

discussing how the runtime of DELAUNAYSPARSES scales with n and d and is compa-

rable to the data used to generate Table I. Since extrapolation presents additional

computational complexities, any data set that does not contain the interpolation

point (q = [0.5, 0.5, . . ., 0.5]T ) in its convex hull is discarded and regenerated (an

unlikely occurrence for the problem sizes shown). Note that the distance computa-

tions discussed in Section 4.5 cause an overall computational complexity of O
(

n2
)

in the lower dimensions. However, in higher dimensions, the cost of the DELAU-

NAYSPARSE algorithm dominates, and the runtimes approach linear growth with

respect to the number of data points n, as predicted in Section 3.

Table II. Serial runtimes (in seconds) for computing the Delaunay interpolant at a single interpola-
tion point. Values shown represent the average over 20 independent trials with n pseudo-randomly
generated data points in the d-dimensional unit hypercube.

Problem dimension (d)

Problem size (n) 2 8 32 64 128

250 0.005 0.013 0.150 3.404 27.078

500 0.021 0.042 0.325 6.479 59.511

1000 0.083 0.152 0.791 14.020 124.320

2000 0.344 0.583 2.230 28.984 242.066

4000 1.314 2.284 7.165 62.494 502.620

8000 5.580 9.027 26.210 151.177 905.711

16,000 22.086 35.725 109.448 386.596 2190.362

32,000 82.915 145.115 421.934 1097.060 5024.675

In general, users should expect these costs to grow linearly with m, the number

of interpolation points. However, in the case where all the interpolation points

are tightly clustered, the cost for interpolating at m points can be bounded by a

constant times the cost for interpolating at a single point. See Tables 2 and 3 in

Chang et al. [2018b]. The improved scaling for clustered interpolation points is

directly caused by the code optimizations introduced in Section 4.1.

To compare the performance of DELAUNAYSPARSEP at all levels of parallelism

against the performance of DELAUNAYSPARSES, runtimes have been gathered over a

cluster of eight NUMA nodes with four AMD cores per node @2.3 GHz (each core

identical to when timing DELUNAYSPARSES). Figures 1–3 plot the average elapsed

wallclock time (in seconds) for 20 independent runs of DELAUNAYSPARSEP against the

number of cores used by OpenMP. The data for these experiments was generated

using a randomized Latin hypercube design, as described in Amos et al. [2014].
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Then the interpolation points were generated from random convex combinations of

d+ 1 randomly selected points from the design.

Figure 1 presents runtimes and parallel speedup factors for interpolating at 1024

points in a 10-dimensional design with 1000 data points, reflecting workloads where

m is large. Figure 2 presents runtimes and parallel speedup factors for interpolating

at 64 points in a 10-dimensional design with 20,000 data points, reflecting work-

loads where n is large. Figure 3 presents runtimes and parallel speedup factors for

interpolating at 64 points in a 50-dimensional design with 500 data points, reflect-

ing workloads where d is large. For nested parallel runs with four, eight, 32 total

active cores, the number of level one (two) threads is two, four, eight (two, four,

four), respectively.
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Fig. 1. Average time to compute the Delaunay interpolant (left) and average parallel speedup
factor (right), for a 10-dimensional problem, with n = 1000 and m = 1024.
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Fig. 2. Average time to compute the Delaunay interpolant (left) and average parallel speedup
factor (right), for a 10-dimensional problem, with n = 20, 000 and m = 64.
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Fig. 3. Average time to compute the Delaunay interpolant (left) and average parallel speedup
factor (right), for a 50-dimensional problem, with n = 500 and m = 64.

In all three figures, level one parallelism achieves the best parallel speedup factors,

as expected. In particular, for the most expensive problem (Figure 3), level one

parallelism hugs tightly against the strong scaling roofline. It is somewhat surprising

to observe that level one parallelism did not scale to more than 12 processors for

the problem size used in Figure 1 (d = 10, n = 1000, m = 1024), given that the

opportunities for level one parallelism are maximized for large values of m. In

fact, when the cost of performing each individual flip is relatively small (when d

and n are small), the number of interpolation points (m) is relatively large, and

the thread count per contention group is relatively high, level one threads can be

blocked to the point of serialization by CRITICAL locks during the loop to “check

ahead,” as described in Section 5.1. This presents a trade-off since checking ahead

does not result in significant conflict for relatively large values of n and d and could

offer significant performance benefits when Q is clustered (as shown in Chang et

al. [2018b]). In the cases where the cost of each flip is small, it is recommended

that users partition the interpolation points into β batches, Q = Q1 ∪ . . . ∪ Qβ .

Then each Qi can be handled by a separate call to DELAUNAYSPARSEPwith level one

parallelism and an appropriate thread count. For example, in the case of Figure

1, for optimal performance over 32 active cores, DELAUNAYSPARSEP could be called

four times (β = 4), with 8 threads and 256 interpolation points per call. In general,

the optimal choices for β, the thread count per batch, and the physical partition

are highly problem dependent and beyond the scope of this work.

Level two parallelism provides some performance improvements for large values of

n (although less than level one), but does not appear to scale well to large numbers

of processors. This is due to the redundant computations that are introduced with

each additional level two thread. As a usage example, a user might prefer level two

parallelism in a hybrid distributed/shared memory setting. First, the interpolation

points (Q) could be broken up into extremely small batches and distributed across

a large number of nodes, as suggested in Section 5. Then level two parallelism
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could be applied within each individual node, which may offer a limited number of

shared memory processors.

In most cases, nested parallelism seems to offer a parallel speedup factor between

that of level one and level two parallelism. Nested parallelism has a relatively

limited usage case, providing a middle ground when there are multiple interpola-

tion points (so that level one parallelism is available), but there are not enough

interpolation points to fully saturate the system, making pure level one parallelism

inefficient.
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