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Single-crystal GaAs thin-film structures grown by molecu-
lar beam epitaxy (MBE) are often considered to be among 
the purest materials that can be made in the laboratory. 

Being nearly defect free, these structures provide an exceptional 
platform for exploring a diverse range of physical sciences, with 
extensive electronic and photonic applications. The highlight 
of ultra-high-quality GaAs films, however, is their utilization in 
the investigation of electron–electron interaction phenomena. 
Typically this is achieved by studying the low-temperature mag-
netotransport of two-dimensional (2D) electron systems (2DESs) 
hosted in modulation-doped GaAs quantum wells, where the elec-
trons are spatially separated from the dopants to reduce scattering 
between the electrons and the intentional impurities. A magnetic 
field applied perpendicular to the 2DES enhances the relative scale 
of Coulomb energy in the system by quenching the Fermi energy 
via Landau quantization. A plethora of many-body phases have 
materialized in GaAs 2DESs using this framework; the discovery 
of the odd-denominnator1 and even-denominator2 fractional quan-
tum Hall (FQH) effects as well as the observation of Wigner solid3–6, 
stripe or nematic7,8 and bubble phases9 are some notable examples 
(for reviews, see the literature10,11).

Naturally, these fascinating phases only started to emerge in exper-
iments as sample quality increasingly improved. For example, after 
the first observation of the FQH effect1, it took about two decades of 
growth condition improvements to realize stripe or nematic phases 
in GaAs 2DESs7,8. These developments continue to motivate the 
community to search for methods to produce ever-better-quality 
samples, as it is stimulating to anticipate what other physics is yet 
to be uncovered. Indeed, these efforts have extended to several 
other material systems with varying electronic properties, and 
numerous many-body phases have been observed in the magneto-
transport/capacitance features of 2DESs hosted in AlAs12–17, Si18,19, 
graphene20–24, ZnO25,26, Ge27,28 and WSe2 (ref. 29). While each and 
every one of these systems provides the opportunity to study exqui-
site interaction-driven physics in different perspectives, GaAs-based 
2DESs remain important; see the literature for examples30,31.

A useful metric to quantify the quality of a 2DES is the electron 
mobility because it is straightforward to measure and is inversely 
proportional to the average electron scattering rate in the 2DES. 
High mobility values in 2DESs imply that electrons are less likely 
to scatter over prolonged trajectories in such samples, making them 
valuable platforms to study delicate many-body electron phases as 
well as ballistic or phase-coherent transport. After decades of devel-
opment, electron mobility values as high as μ ≈ 35 × 106 cm2 V–1 s–1 
have been observed in GaAs 2DESs with densities near n ≈ 
3 × 1011 cm–2 (refs. 32–35). However, despite subsequent efforts, the 
mobility of modern state-of-the-art GaAs 2DESs has been in a stale-
mate for more than a decade now. Here we present a breakthrough 
in the MBE crystal growth of ultra-high-quality GaAs 2DESs that 
enhances the mobility to μ ≈ 44 × 106 cm2 V–1 s–1 at electron densities 
as low as n ≈ 2 × 1011 cm–2. In the low-density (n ≲ 1.5 × 1011 cm–2) 
regime, where scattering by residual (background) impurities is 
dominant, our samples show twice the mobility of previous sam-
ples32–35. Low-temperature magnetotransport traces taken in a sam-
ple of this class show new FQH states, indicating great prospects for 
future studies of interaction-driven physics in the 2D setting.

Numerical calculations have suggested that residual impuri-
ties are the limiting factor for mobility in ultra-high-quality GaAs 
2DESs36–38. Efforts to systematically purify the Ga and Al source 
materials are in line with this understanding, as these metals are 
the most likely origin of unwanted impurities in a well-maintained, 
ultra-high-vacuum growth chamber35,39,40. Despite the different his-
tory of the source materials loaded into the MBE chambers and the 
varying purification techniques, ultra-high-quality samples from 
several groups around the world seem to converge at roughly simi-
lar values in electron mobility32–35. These results hint that the impu-
rities that are limiting the mobility in the modern ultra-high-quality 
GaAs 2DESs come from somewhere other than the source material.

While the environment in ultra-high-vacuum MBE chambers 
is certainly very sparse in atomic and molecular density, it is not 
completely void of matter. Even in well-equipped, conventional vac-
uum chambers, it is common that the mass spectrometer data of the 
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growth space show traces of H2O, N2, O2, CH4 and their derivatives. 
If incorporated during growth, these species would act as impurities 
in the structure and cause degradation in the quality of the GaAs 
2DES. Once the source materials become so pure that they are no 
longer the primary supplier of impurities to the growth environ-
ment, the background vacuum quality would determine the impu-
rity concentration in the sample.

As shown in Fig. 1a, we built an MBE chamber to verify this 
hypothesis. Our design includes conventional MBE chamber com-
ponents such as a load-lock chamber and a liquid N2 shroud, as well 
as three auxiliary cryo-cooled (~17 K) cold plates that augment four 
large (3,000 l s–1) cryopumps to achieve extreme levels of vacuum 
during sample growth. The cold plates are made of Cu to maximize 
cooling power and are coated with Ni to prevent possible corrosion 
when exposed to As and Ga, which are ubiquitously present in the 
growth chamber. It is difficult to quantitatively assess how much the 
base pressure improved in our growth chamber with the cold plates 
operating because the ion extractor gauges installed in the cham-
ber cannot reliably measure pressures below P ∼ 2−3 × 10−12 torr, 
and the base pressure already reaches this range even when only 
the four cryopumps are pumping on the chamber. However, when 
the cold plates are turned on, the mass spectrometer data shows 
a factor of 10 improvement in the partial pressures of N2 and O2 
species and a factor of 2.5 improvement in the partial pressures of 
H2O-related species. The mass spectrometer data, as well as more 
details concerning the cold plates, can be found in Section I of the 
Supplementary Discussion.

As previously demonstrated, it is possible to systematically eval-
uate the cleanliness of the growth environment during the MBE of 
GaAs–AlGaAs heterostructures40. A brief summary of the concept 

is to use the mobility of a GaAs 2DES with the sample structure 
shown in Fig. 1b as a very sensitive probe to gauge impurity accu-
mulation during growth. This method utilizes the fact that impuri-
ties surface-segregate on the growth front of the back AlGaAs layer 
and deposit at the AlGaAs–GaAs interface when the growing layer 
is changed from AlGaAs to GaAs. For a given back AlGaAs layer 
thickness, the mobility is lower when the growth environment is 
worse. The strength of this procedure is that the back AlGaAs layer 
thickness (d) can be made extremely large to detect even the most 
minute amounts of impurities incorporated in the crystal during the 
growth process.

Figure 1c shows the mobility of such structures grown in varying 
growth environments as a function of d. The enhanced mobility of 
samples grown after the sources were sufficiently outgassed (blue 
symbols) compared to those grown with a fresh batch of source 
materials (black symbols) demonstrates the importance of pre-
paring pure source materials when aiming for the cleanest growth 
conditions. Under these conditions, the source materials were clean 
enough that high-mobility GaAs 2DESs made from them displayed 
mobilities on par with ultra-high-quality samples in the literature. 
Despite further purification efforts, we could not obtain a strik-
ing improvement from the blue dataset under the normal operat-
ing vacuum conditions of having four cryopumps operating. This 
implied that at this point, our source materials had been amply puri-
fied so that they were no longer the primary supplier of impurities 
for our samples. It is then plausible to assume that the background 
vacuum starts to play a more important role. Consistent with this 
assumption, samples grown with only one cryopump operating 
exhibited worse mobilities compared to those grown with all four 
pumps turned on. Following this test, we investigated a series of 
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Fig. 1 | Improving vacuum quality and its assessment in a state-of-the-art MBE chamber. a, Schematic diagram of the MBE chamber used in this study.  
In addition to four large (3,000 l s–1) cryopumps operating at ~10 K, there are three auxiliary cryo-cooled Cu cold plates (~17 K on their back side) that pump 
the chamber. One ~5 × 5 inch2 cold plate is located in close proximity to the growth space, while two ~12 × 15 inch2 cold plates are in the sump. b, Sample 
structure used to analyse vacuum quality. A δ-function-like Si-dopant profile is introduced to the top side of the GaAs quantum well (QW) to define a 
2DES in the QW. If the source material is pure enough, the surface segregation of impurities during the growth of the back AlGaAs layer can be exploited 
to evaluate the vacuum quality by analysing the mobility of the GaAs 2DES. c, Mobility of samples that have the structure shown in b, with varying back 
AlGaAs thicknesses (d) and different vacuum and source purity conditions. The 2DES density is n ≈ 2.0 × 1011 cm–2. The datasets for different conditions are 
colour coded, where the data shown in black, blue and red were taken from samples grown in that chronological order; they correspond to samples grown 
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samples grown with all the cryopumps and the cold plates operating 
during growth (data shown in red in Fig. 1c). The data reveal that 
there is a notable improvement in GaAs 2DES mobility at all values 
of d compared to the case when the cold plates are off. Remarkably, 
the mobility of the samples grown with all cold plates operating sus-
tains the high value of μ ≈ 8 × 106 cm2 V–1 s–1 even when d = 10 μm.

These results demonstrate that vacuum integrity plays a crucial 
role in determining the amount of unintentional impurities depos-
ited on the sample during growth once the source material has been 
extensively purified. Consequently, we grew several GaAs samples 
with a wide range of 2D electron densities to investigate the impact 
of having an ultra-clean vacuum environment in the MBE chamber. 
Figure 2a compares the mobility of these samples with the previ-
ous ultra-high-quality GaAs 2DESs32–35. Figure 2b shows the layer 
structure of the samples used to obtain the data presented in Fig. 2a.  
We used two types of structure: the standard modulation-doped 
structure and the doping-well structure (DWS)41. While the donor 
energy level, which determines the position of the Fermi level, is 
tied to the AlGaAs barrier in the standard modulation-doped struc-
ture, in the DWS it is tied to the narrow AlAs layers that flank a 
narrow GaAs doping quantum well41. The DWS is advantageous in 
comparison to the standard modulation-doped structure because 
the electrons confined to the AlAs layer in the doped region  
provide additional screening for the 2DES from both residual 
impurities and intentional dopant ions38,41. It is striking that with 
the improvement in vacuum, even the standard modulation-doped 
samples (black circles in Fig. 2a) have considerably higher mobility 
values for all densities when compared to previous state-of-the-art 
DWSs (red open circles). This is particularly noteworthy consider-
ing that DWSs were necessary to achieve the previously reported 
ultra-high-mobility values32–35. It seems that the reduction in impu-
rities from better vacuum conditions by implementing the cold 
plates is pronounced enough to overcome the lack of such screening 
in our standard modulation-doped structures.

Furthermore, when we grow DWSs with the cold plates oper-
ating, we see an even larger increase in the mobility (red solid 
circles in Fig. 2a). These samples display mobility values as high 
as μ ≈ 44 × 106 cm2 V–1 s–1 at the density of only n ≈ 2.0 × 1011 cm–2. 
This implies a remarkable enhancement in sample quality consid-
ering that previous ultra-high-quality GaAs 2DESs had mobilities 
of μ ≈ 35 × 106 cm2 V–1s–1 at n ≈ 3.0 × 1011 cm–2 (refs. 32–35). Sample 
improvement is evident over a wide range of 2D electron densities as 
shown in Fig. 2a. When n < 1.5 × 1011 cm–2, our samples have mobil-
ity values that are roughly twice that of previous ultra-high-quality 
samples. For example, the mobility of our n ≈ 1.0 × 1011 cm–2 sam-
ple is μ ≈ 36 × 106 cm2 V–1 s–1, whereas previous ultra-high-mobility 
values for GaAs 2DESs with a similar density are less than 
μ ≈ 18 × 106 cm2 V–1 s–1 (refs. 35,42).

The power-law dependence observed for the mobility versus 
2D electron density profiles plotted in Fig. 2a is also noteworthy. 
Within the same category of samples, we observe a μ ∝ n0.7 rela-
tion for all cases. A similar power-law dependence was reported in 
high-quality, low-density GaAs 2DESs with very large spacer-layer 
thicknesses, and it is usually interpreted as an indication that the 
mobility is limited by the residual impurities in the structure43–45; 
there is also theoretical justification for such an interpretation46. 
This understanding is certainly consistent with our results, as the 
primary improvement we have made to our samples compared to 
the previous data is the reduction of residual impurities in the struc-
ture. Based on models for the two types of structures used for our 
samples38,46, we estimate that the residual impurity concentration in 
our GaAs quantum wells is ~1 × 1013 cm–3. Considering that there 
are ~1 × 1023 atoms cm–3 in single-crystal GaAs, this means there is 
roughly one impurity for every 10 billion atoms in these samples.

As mentioned in the introduction, probing intricate many-body 
phenomena is a core application of ultra-high-quality GaAs 2DESs. 
In this context, we also studied the low-temperature (T ≈ 30 mK) 
magnetotransport of one of our representative samples with 
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n ≈ 1.0 × 1011 cm–2. The specific layer structure for this sample is 
provided in Supplementary Table 1. Figure 3a shows a full-field 
longitudinal magnetoresistance (Rxx) trace of the sample, while  
Fig. 3b,c focuses on specific regions near zero magnetic field and 
near ν = 1/2, respectively; ν = hn/eB is the Landau-level filling  
factor, where h is the Planck constant, e is the fundamental charge 
and B is the perpendicular magnetic field. It is clear from the data 
that the sample has very high quality. For example, as seen in Fig. 3b, 
there are prominent signatures of Shubnikov–de Hass oscillations 
up to ν = 106 at B < 0.04 T. This implies that the Landau-level broad-
ening in this sample is smaller than the B = 0.04 T cyclotron energy 
gap of heB/m* ≈ 68 μeV (m* = 0.067 is the effective mass of electrons 
in GaAs in units of the free-electron mass). In addition, the data 
plotted in Fig. 3c display high-order FQH states up to ν = 16/31 and 
ν = 14/29 on the left and right flanks of ν = 1/2. We compare these 
results to those reported previously for epitaxially grown samples 
and 2D materials with ultra-high quality. In total, compared to pre-
vious ultra-high-quality GaAs samples with similar density42, nine 
extra FQH states are observed near ν = 1/2 in our sample, whose 
lowest-order and highest-order Landau-level fillings are marked 
in red on each side of ν = 1/2. By comparison, in ultra-high-quality 
monolayer graphene samples, high-order FQH states have been 
observed up to ν = 8/15 and ν = 7/15 on the left and right flanks of 
ν = 1/2 at similar temperatures but higher magnetic fields (~14 T)24; 
the data presented in Fig. 3 exhibit 15 additional FQH states with 
respect to these samples.

The quality of our samples in this density range also stands out 
at higher Landau-level fillings. Figure 4a,b shows expanded Rxx 
traces of the Fig. 3 sample near ν = 3/2 and ν = 5/2, respectively. 

Remarkably, even at this relatively low density, FQH states up to 
ν = 20/13 are observable in the vicinity of ν = 3/2. Furthermore, 
the ν = 5/2 and other FQH states in the second orbital Landau level 
(N = 1) are extraordinarily strong, considering that they occur at 
B < 1.9 T. In fact, the activation gap we measure for the ν = 5/2 FQH 
state is 5/2Δ ≈ 820 mK (Supplementary Fig. 4), surpassing the value 
of 5/2Δ ≈ 625 mK measured in previous ultra-high-quality samples 
by a considerable margin47. This observation is particularly note-
worthy given that the density of this sample is only ~1/3 of that of 
the 2DESs used in previous evaluations.

Given the potentially non-Abelian nature of the ν = 5/2 FQH 
state48,49, the data presented here have exciting implications for 
the realization of fault-tolerant, topological quantum computing 
devices. Using optimistic estimates for qubit error rate48, our larger 
5/2Δ value implies a factor of ~106 improvement compared to previ-
ous ultra-high-quality samples when operations are performed at 
T = 5 mK. In principle, if the samples presented here do not suf-
fer from severe detrimental effects caused by lithographic proce-
dures and are amenable to gating, one should be able to perform 
substantially more robust qubit operations at much lower magnetic 
fields. Previously, samples with similar structure have been used for 
interferometry experiments that can be considered a basis for qubit 
operation in GaAs 2DESs49, so we are optimistic that the technical 
details can be worked out.

Figure 4c shows magnetotransport data of a different sample 
with a similar density of n ≈ 1.1 × 1011 cm–2 in magnetic field ranges 
that correspond to higher (N = 2 and 3) orbital Landau levels. 
Well-quantized, reentrant integer quantum Hall states, as well as 
signatures of stripe or nematic phases, are observable at magnetic 
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fields B ≲ 1.0 T. These correlated states are known to be fragile, and 
are typically only observed in much higher density samples at larger 
magnetic fields and lower temperatures7,8,30,50.

The results presented here suggest a bright future for the inves-
tigation of interaction-driven physics in GaAs 2DESs. With this 
improvement in sample quality, several new FQH states have 
emerged, and numerous correlated phases display strong robust-
ness. For example, the ν = 5/2 FQH state exhibits a gap value of 
5/2Δ ≈ 820 mK, and we demonstrate that reentrant integer quantum 
Hall and stripe or nematic states are visible even at very low mag-
netic fields and electron densities. Moreover, we have experimen-
tally shown that vacuum integrity limits sample quality in current 
state-of-the-art MBE-grown GaAs. This gives a clear direction for 
further improvement in the quality of GaAs 2DESs. We speculate 
that further reducing the residual background impurity concentra-
tion by a factor of ~3 should allow one to obtain mobility values 
exceeding 108 cm2 V–1 s–1 as predicted by theory36. Perhaps this can 
be realized by implementing even more cold plates or pumps in the 
MBE chamber.

Some mysteries have also developed. When n ≥ 1.5 × 1011 cm–2, 
the electron mobilities seem to deviate to lower values than the 
power-law relation μ ∝ n0.7 would predict. We are currently unsure 
of the origin of this behaviour. It is possible that the remote ionized 
impurities from the intentional dopant atoms become relevant as a 
smaller spacer thickness is required to achieve higher 2D electron 
densities. If this is the case, in the future it may be useful to start from 
a low-density sample with large spacer thickness and increase the 
density by applying gate voltages to circumvent this issue. Another 
option is to vary structural parameters in the doped region of the 
DWS so that the spacer thickness can be increased while maintain-
ing the same 2DES density in the main quantum well41.
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Methods
Sample preparation. All of our samples are grown on 2-inch-diameter GaAs 
substrates in the vacuum chamber set-up shown in Fig. 1a. The substrates are 
outgassed for 30 minutes at T ≈ 610 °C in an As beam flux of P ≈ 6.0 × 10−6 torr 
prior to growth, where the temperature of the substrate is evaluated using 
a factory-calibrated pyrometer (Ircon Modline 7). We always confirm clear 
single-crystalline features in the reflection high-energy electron diffraction patterns 
of the substrate after this process. The substrate temperature is typically T ≈ 640 °C 
during growth. This growth temperature was chosen based on our past experience 
for growing ultra-high-quality samples. For such samples, the typical temperature 
window for optimal growth was approximately ±10 °C. The deposition rate of GaAs 
is calibrated to be ~2.83 Å s–1 for all growth by tuning the temperature of the Ga 
oven based on reflection high-energy electron diffraction oscillations. We tune the 
Al growth rate in a similar fashion to obtain the barrier alloy fraction of choice. The 
barrier alloy fraction is 32% for the samples whose data are shown in Fig. 1c, while 
the ultra-high-mobility samples use a stepped-barrier structure with alloy fractions 
24% and 12%. The specifics of the sample structure of the ultra-high-mobility 
samples can be found in Supplementary Discussion Section II.

Transport measurements. We performed all electronic measurements in the 
van der Pauw configuration using low-frequency lock-in amplifiers. Our samples 
have a square shape and a typical size of 4 mm × 4 mm. The mobility values of the 
GaAs 2DESs are evaluated in a 3He cryostat with a base temperature of T ≈ 0.3 K. 
A simple Drude formula μ = 1/ρne is used to obtain the mobility, where n is the 
2DES density, e is the fundamental electron charge and ρ is the resistivity of the 
2DES. Quantum Hall features in the magnetoresistance data are used to deduce 
n. For ρ, we take the average value of the resistance (Rave) measured between all 
the four-probe contact configurations in the sample, and use the standard van der 
Pauw geometry expression ρ = πRave/ln(2). The low-temperature magnetotransport 
data presented in the main text are measured in a dilution refrigerator with 
a base temperature of T ≈ 30 mK. It is well known that the illumination and 
cooldown procedure can affect the electronic properties of the GaAs 2DES at low 
temperatures. For the measurements in this work, we illuminate all samples for 
5 minutes at T ≈ 10 K with a red light-emitting diode (LED) before turning the 
LED off and waiting for an additional 30 minutes at T ≈ 10 K. A current of 6 mA 
is passed through the LED during illumination. We then cool the samples to the 
base temperature. A similar procedure is adopted for the dilution refrigerator 
measurements, but the LED illumination is done at T ≈ 4 K instead of 10 K because 

of the limitations of the apparatus. By repeating this procedure, we saw less than 
5% variance in the 2DES density and mobility even when the samples experienced 
a full thermal cycle to room temperature. For the magnetotransport measurements, 
a magnetic field sweep rate of 1 T per hour was used, except for the case of Fig. 1b, 
where a slower sweep rate of 0.1 T per hour was used.

Data availability
Data supporting the results in this paper and the Supplementary Information are 
available on request to the corresponding author. Source data are provided with 
this paper.
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