GENERALIZED SCHUR ALGEBRAS

ALEXANDER KLESHCHEV AND ROBERT MUTH

ABSTRACT. We define and study a new class of bialgebras, which generalize cer-
tain Turner double algebras related to generic blocks of symmetric groups. Bases
and generators of these algebras are given. We investigate when the algebras are
symmetric, which is relevant to block theory of finite groups. We then establish
a double centralizer property related to blocks of Schur algebras.

1. INTRODUCTION

Let k be a commutative domain of characteristic 0 and A be a unital k-superalgebra,
which is free as a k-supermodule. Let a be a unital subalgebra of the even part Ag,
which is a direct summand of Ag as a k-module. Some of the unitality conditions will
be relaxed in the main body of the paper but in this introduction we will consider
a special case.

We define and study generalized Schur (super)algebras

T (n,d) C S4(n, d).

The algebra S4(n,d) is defined as the algebra of invariants (M,,(A)®4)%¢, and so in
the case A = k we get that S¥(n,d) is the classical Schur algebra. If a = Ag, then
TA(n,d) = S4(n,d), but in general the subalgebra TA(n,d) C S4(n,d) is proper,
although it is always a full sublattice in S%4(n,d). Thus extending scalars to a field
K of characteristic 0 produces the same algebras: T (n, d)x = S4(n, d)x. However,
importantly, extending scalars to a field F of positive characteristic will in general
yield non-isomorphic algebras T (n,d)r and S4(n,d)r of the same dimension. Tt
turns out that in many situations it is the more subtly defined algebra T (n,d)p
that plays an important role.

As a special case of our construction, we recover the Turner double algebras
DA(n,d) studied in [Ty, To, T3, EK;]. In fact, we show in §5.4.2 that

DA, d) = Ty (n. d),
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where E(A) is the trivial extension algebra of A. Turner double algebras are impor-
tant because of their connection to generic blocks of symmetric groups via Turner’s
conjecture, recently proved in [EKjs]|. To be more precise, for an appropriate zigzag
algebra Z and a subalgebra 3 C Z, the generalized Schur algebra, T3—2 (n,d) is Morita

equivalent to weight d RoCK blocks of symmetric groups. In this way, TZZ (n,d) can
be considered as a ‘local’ object replacing wreath products of Brauer tree algebras
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in the context of the Broué abelian defect group conjecture for blocks of symmetric
groups with non-abelian defect groups.

However, it is known that Turner doubles cannot provide a similar ‘local’ descrip-
tion for blocks of classical Schur algebras because the former are always symmetric
algebras while the latter in general are not. We believe that our more general
construction of T (n, d) fixes the problem. In [KM], we formulate an explicit con-
jecture for RoCK blocks of classical Schur algebras in terms of the generalized Schur
algebras TZ,Z (n,d), where Z is an extended zigzag algebra.

Furthermore, we will prove in [KM] that, under reasonable additional assump-
tions on a, the algebra T, aA(n,d) is quasi-hereditary if A is quasi-hereditary. This
provides us with a method to produce new interesting quasi-hereditary algebras
from old. In particular, the algebra Téz (n,d) from the previous paragraph is quasi-
hereditary, as should be expected if it is to be Morita equivalent to a block of the
Schur algebra.

We now describe the contents of the paper in more detail. Section 2 is preliminary.
In Section 3, given a basis B for A which extends a basis for a, we describe a natural
basis for S4(n,d) in terms of certain elements 5,13,5, where b € B?, r,s € [1,n]%
This is an analogue of Schur’s basis of the classical Schur algebra. By rescaling this
natural basis using certain products of factorals defined in Section 2, we define the
full sublattice T (n,d) C S4(n,d). Our first main result is:

Theorem 1. We have that T (n,d) C S4(n,d) is a unital subalgebra.

There is another description of T2 (n,d) as a subalgebra of S4(n, d), which shows
in particular that T:(n, d) is independent of the choice of basis B above:

Theorem 2. We have that T/ (n,d) is the subalgebra of S*(n,d) generated by

S%n,d) and the elements of the form
d—1
Z 1®d—1—e ® 6 ® 1®67
e=0
where § € My(A) and 1:= 1y, (a)-
A slightly stronger result appears as Theorem 4.13. In order to prove this result,

we first investigate some coproducts and #-products. Recall that @dzo M, (A)®?
has a natural coproduct V, see §3.3. We then prove

Theorem 3. The coproduct V restricts to coproducts on
S54(n) = @SA(n,d) and TH(n) := @Tf(n,d).
d>0 d>0
In Section 4, we show that the *-product (or shuffle product) on
D Mn(4)*
d>0

restricts to a product on S4(n) and TA(n), which, together with V, gives these
objects a superbialgebra structure. We then prove that Tf(n) is generated under
the x-product by S%(n) and M, (A). This allows us to prove Theorem 2.
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In Section 5 we first discuss some properties of idempotents and idempotent
truncations in T;*(n,d). Given an idempotent e € a, we define an idempotent
¢¢ € TA(n,d) and prove in Lemma 5.12 that

ETA(n, d)E = TEA(n, d).

eae
Section 5 is completed with some important examples of generalized Schur algebras.
We discuss how T2 (n, d) generalizes the Turner double construction and look at the
case where A is the extended zigzag algebra.

In Section 6 we study the symmetricity of T;*(n, d). This is important since blocks
of finite groups are symmetric algebras and, inspired by [EKj], we hope that in some
situations T, C{4(71, d) could provide a local description of some interesting blocks. As
the example A = k shows, it is certainly not enough to assume that A is symmetric
to guarantee that so is T, C{4(71, d). A natural assumption we have to make is that the
symmetrizing form t is (A4, a)-symmetrizing, i.e. (a,a); = 0 and the k-complement
¢ of a in Aj can be chosen so that the restriction of (-,-); to a X ¢ is a perfect
pairing. Then we construct an explicit symmetrizing form t” on Tf(n, d) and prove
in Corollary 6.7:

Theorem 4. Ift is an (A, a)-symmetrizing form on A, then the algebra T (n, d) is
symmetric, with symmetrizing form t*.

In Section 7 we investigate double centralizer properties. Let S be a k-algebra
and e € S be an idempotent. We say that e is a double centralizer idempotent for
S if the natural map S — End.g.(Se) is an isomorphism. Given e € a, which is
a double centralizer idempotent for A, it is not in general true that £° is a double
centralizer idempotent for Tf(n, d), see Remark 7.19. However, in Theorem 7.2, we
prove the following positive result:

Theorem 5. Let e € A be a double centralizer idempotent for A and d < n. Then
£° is a double centralizer idempotent for S4(n,d). In particular, if K is the quotient
field of k, then £¢ is a double centralizer idempotent for S4(n,d)x = T (n, d)k.

Finally, in Theorem 7.17, we deal with the all-important zigzag case over the
arbitrary k:

Theorem 6. Let Z be the extended zigzag algebra with the standard idempotents
€p,€1,...,ep. Wesete:=eg+ - -+ ep_1, so that eZe is the zigzag algebra. Then
e is a double centralizer idempotent for Z, and £° is a double centralizer idempotent
for Téz(n, d) provided d < n.

2. PRELIMINARIES
Throughout the paper k is always a commutative domain of characteristic 0.

2.1. Superalgebras and supermodules. Let V be a k-supermodule, i.e. V is
endowed with a k-module decomposition V' = Vi @ V; (the superstructure could be
trivial, i.e. we could have V = V;). If € € Z/2 and v € V,, we call v homogeneous
and write v := €. For a set S of homogeneous elements of V and € € Z/2 we denote

S =5NV.. (2.1)

A map f:V — W of k-supermodules is called homogeneous if f(V.) C W, for all
€. A k-supermodule V is free if so is each V.. Let V be a free k-supermodule. A
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homogeneous basis of V' is a k-basis all of whose elements are homogeneous. A (not
necessarily unital) k-algebra A is called a k-superalgebra, if A is a k-supermodule
and A:As C Aoy for all ¢,4.

Throughout the paper we will work with a fixed superalgebra A which is free as
a k-supermodule (not necessarily of finite rank). Moreover, we fix a k-subalgebra
a C Aj such that a and A/a are both free as k-modules. Such a pair (A, a) will
be called a good pair. 1t is called a unital good pair if both A and a are unital and
1, =14.

For our fixed good pair (A, a), we pick a k-module complement ¢ for a in Ag and
k-bases By, B., By for a, ¢, Aj, respectively, so that

B = B,UB.U B; (2.2)

is a homogeneous basis for A. We call such a basis an (A, a)-basis.
Define the structure constants “2,(; of A from

ac = Z /ifwb (a,c e A). (2.3)
beB

More generally, for
b=(by,....bg) € B! and a=(ay,...,aq), c=(c1,...,cq) € A%,

we define
/{Z,c =KL KD (2.4)
Finally, we denote by H the set of all non-zero homogeneous elements of A.
The matrix algebra M, (A) is naturally a superalgebra. For 1 < r,s < n and

a € A, we denote

g,s = akb, s € My(A). (2.5)
Then
{eb,|1<rs<n, be B} (2.6)
is a homogeneous basis of M, (A), and by (2.3) we have
0 =0 Kb &, (a,c€A, 1< s tu<n) (2.7)

beB

2.2. Combinatorics. For r,s € Z we denote [r,s] == {t € Z | r <t < s}. We
fix n € Zso and d € Z>¢. For a set X, the elements of X? are referred to as
words (of length d) with letters in the alphabet X. The words are usually written
as 2122 xq € X% For & € X% and @' € X¥ we denote by zz’ € X9 the
concatenation of « and a’. For z € X, we denote 2% :=z---z € X¢.

The symmetric group &4 acts on the right on X% by place permutations:

(331 "'l‘d)O' = Tol """ Lod-

For z,x’ € X9, we write  ~ a’ if xo = 2’ for some 0 € &4. If X1,..., Xy are sets,
then G4 acts on X{ x --- x XJC(, diagonally:

(x',...,.2")o = (x'o,..., 2 0).
The set of the corresponding orbits is denoted (X{ x --- x X%)/&,, and the orbit
of (x!,...,x") is denoted [z',...,x"]. We write

(wl,...,wN)N(yl,...,yN)
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if [z',.... 2N =[y',...,y"].

Let P be a set of homogeneous elements of A. Our main examples will be P = B
and P = H (the set of all non-zero homogeneous elements of A). We have P =
P5 U P;. Define Trif (n,d) to be the set of all triples

(p.7r.8) = (p1-+-pas 11+ Tas 51+ 5q) € P4 x [1,n]* x [1,n)?
such that for any 1 < k # | < d we have (pg, 7k, sx) = (p1,71,5) only if pp € P;.
Then Trif (n,d) C P? x [1,n]¢ x [1,n]? is G4-invariant and so we have the orbit set
Trif (n,d)/S4.
For (p,r,s) € Tri” (n,d), we consider the stabilizer
61’7"'73 = {U € 6d ‘ (para S)U = (para S)},

and denote by P"*Z a set of the shortest coset representatives for Sy, . \&,,. Then
{(p,r,8)0 | 0 € P"3P} is the set of distinct elements in the orbit [p,r, s].

We fix a total order ‘<’ on P x [1,n] x [1,n]. Then we also have a total order on
Trif’ (n, d) defined as follows: (p,r,s) < (p/,r',s') if and only if there exists [ € [1,d]
such that (pg, 7k, sk) = (P}, 1}, ) for all k <1 and (p;, 71, s) < (p}, 7], s]). Denote

Tril (n,d) = {(p,r, s) € Trif (n,d) | (p,7,8) < (p,r,s)o for all 0 € G4}. (2.8)
We have a bijection
Trig (n, d) — Ti”(n,d)/Sq, (p,7,8) = [p.7,5].
For (p,r,s) € Tri"(n,d), p’ € P and o € &4, we define
(p,r,s) = ﬁ{(k‘ivl) € [17d]2 | k< l7 DPk,D1 € PI? (pkarkask) > (plarlvsl)}a
(p,p) = t{(k,]) € [L,d)* | k > I, py,p| € Pr}.
<O-7p> = ﬁ{(k‘ivl) € [1?d]2 | k< la O-_lk > 0_1l> Pk,pL € PI}
Note that
(=1){pmsitporase) _ (_1)loip), (2.9)
Let us now specialize to the case P = B.

Lemma 2.10. Let (a,r,t), (c,t,u) € TriP(n,d). Assume that, for some 1 < k < d,
either ay = Cx or Ggp+1 = Ck+1. Lhen
(_1)<a77‘7t>+<07tyu>+<a,c> — (_1)<ask7""31@7t3k>+<csk7t3k7usk>+<ask703k>'

Proof. We consider three cases:

Case 1: at least two of ak,cp,arr1,ckr1 are even. In this case s; does not ex-
change the positions of two odd elements in a or ¢, so (a,r,t) = (ask, rs, tsg) and
(e, t,u) = (esg, tsg, usy). We also note that apiq and ¢; cannot both be odd, and
ay, and ciy1 cannot both be odd, so (a,c) = (asg, csi).

Case 2: FExactly one of ag,ck,ar11,Crr1 1S even. By symmetry we may assume
that ag, ar1q are odd and one of ¢, ¢y is even. Then we have

(_1)<a,r,t> _ _(_1)<ask,rsk,tsk>’

(_1)<c,t,'u,> — (_1)(csk,tsk,'u,sk)
(_1)(a,c> — _(_1)<ask7csk>‘
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Case 3: ag,C,ak+1,ck+1 are all odd. Then we have
(_1)<a,r,t> — _(_1)<ask,rsk,tsk)

)

(_1)<c,t,u> — _(_1)<csk,t5k,usk>’
(_1)<a,c) _ (_1)(ask,csk>‘

(]
Let (b,r,s) € Tri®(n,d). For b € B and r, s € [1,n], we denote
[b, 7, 3]275 =t{k € [1,d] | (bk,rk,sk) = (b,7,9)}, (2.11)
and define
b,r.s =[] Brslt= [ [brs?, (2.12)

beB, r,s€[1,n] beBg, r,s€(1,n]

(if B is infinite, these are infinite products but all but finitely many factors are 1).
Note that

Gprs| = [b,7, 8] (2.13)
Moreover, we define
b= [ [b.rosl (2.14)
b€ Ba, r,s€[1,n]
brsli= [ [b.rsl (2.15)

beB., r,s€[1,n]
3. GENERALIZED SCHUR ALGEBRAS

Throughout the section, (A,a) is a fixed good pair with an (A, a)-basis B =
B, U B Bj as in (2.2). Recall that H denotes the set of all non-zero homogeneous
elements of A. We also fix n € Z~o and d € Z>o.

In this section, we will construct generalized Schur algebras T (n,d) C S4(n, d).
The definition of the algebra S4(n, d) is straightforward, while T (n,d) is obtained
by making a subtle choice of a full-rank sublattice in S4(n,d) which depends on
a. If a = Ag, then TA(n,d) = S4(n,d), but in general the algebras are different.
In §3.3, we investigate a natural coproduct on S4(n) := Dacz-, S4(n,d) and show
that -

TA(n) == EB TA(n,d) C S4(n)
d€Z>¢
is a subcoalgebra.

3.1. The algebra S“(n,d). Let M,(A) be the k-(super)algebra of n x n matrices
with entries in A and recall the notation (2.5). There is a right action of &4 on
M, (A)®? with (super)algebra automorphisms, such that for all ai,...,aq € H,

T1,81,---,7d, 84 € [1,n] and o € &4, we have
(€0 @ @ELL) = ()G, 0 BRI,

The algebra S4(n,d) is defined as the corresponding algebra of invariants
§4(n, d) = (M (A)®4).
Note that S4(n,d) is unital if and only if so is A.
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For (a,r,s) € Tri¥ (n,d), we define elements

a P al . aq o
g’r,s T E ( 71,51 ® ® rd,sd)
oceaTsg

(3.1)

_ _1\lars) a8 (o e £%
= > (-1) &t ot RSy

(a’,r',s")~(a,r,s)
in S4(n,d), where we have used (2.9) to obtain the last equality. The following is
clear (as noted in [EK;, Lemma 6.10]):
Lemma 3.2. We have that {¢, | [b,7,s] € Trif (n,d)/Bq} is a basis of SA(n,d).

Lemma 3.3. If (a/,r/,s') ~ (a,r,s) are elements of Tri' (n,d), then

'r'8') ra
), >5r,s-

Proof. This follows from (3.1). O
For (a,p,q), (c,u,v) € Tri (n,d) and (b, r, s) € Tri®(n, d), define the structure
constants fons. o ue from
Emabin = > opieeaun rs (3-4)
[b,r,s]€TriB(n,d)/64
Note by Lemma 3.3 that if (b',7/,s") ~ (b, 7, s) then

bﬂ',S — (_1)<b,?",8>+(b’,?",,8,>f 7,8
a

a7p7q;c7u7v - 7p7q;c7u7v :

€ = ()er e

Recalling the notation (2.4), the following generalization of Green’s product rule
[G, (2.3b)] follows from [EK, (6.14)].

Proposition 3.5. Let (a,p,q), (c,u,v) € Tri¥ (n,d) and (b,r,s) € Tri®(n,d).
Then

b7r7s — (_1)(a7p7q>+<c7u7v>+<al7r7t>+<cl7t7s>+<a,7c,> b
a?p?q;c7u7v - /{a’/7c/’

a’,ct
where the sum is over all a’,¢’ € H® and t € [1,n] such that (a',r,t) ~ (a,p,q)
and (c',t,8) ~ (c,u,v).

We can collect some of the equal terms in the formula above to rewrite it in the
following form:

Corollary 3.6. Let (a,p,q), (c,u,v) € Tri'(n,d), (b,r,s) € Tri®(n,d), and let
X be the set of all (a',c/,t) € H? x H* x [1,n] such that (a’,7,t) ~ (a,p,q),
(c,t,8) ~ (c,u,v), and @), + &, = by, for all k € [1,d]. We have:
(i) If (@', ,t) € X then (a’,c,t)o € X for any 0 € Spps. Let [a,c,t] :=
{(a’,d,t)o |0 € Sprs} C X denote the corresponding Sp . s-orbit.
(ii) mg,’c, and the parity of (@', r,t)+(c,t,s)+(a’,c') depend only on the orbit
[a, ¢ t].
(iii) The structure constant f&5s.cue equals

/ / Ay
Z (=1){@Paltleuv)t(a’r)+cts)+Ha'c) (Gbrs: GbrsNGar e t] ,{g,’c,_
[[a’,c’,t]]eX/Gb’,,,’S
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Proof. Let 0 € Gpr s and (a’,c,t) € X.
(i) To show that (a’c,c'o,to) € X, note that
and similarly (c’al,)ta, 8) ~ (cb, u,v). Fin;ﬂly, we have @, + ¢, = byx, = by, for all k.
(ii) We have Kaloco = Falgeo = Kare» 8lving the first statement of (i1). To
complete the proof of (ii), we now show that
(_1)(a’,r,t)—l—(c’,t,s)—l—(a’,e’) _ (_1)<a’o,r,to)+<c’cr,tcr,s>+(a’o,c’cr>

Write ¢ as a reduced product of simple transpositions ¢ = sy, ---s;,, (it is not
in general true that s;,,...,s;,, € Gprs). Since (b,r,s) € Tri(n,d), we have
ok = k for all k such that b; is odd. Therefore for all 1 < j < m, at least one
of (bsyy =+ 81;,_4)1;, (bsyy, -+ s1,_,)i,+1 is even—i.e., no two odd elements are ever ex-
changed by the simple transpositions that comprise o.

For 1 < j < m, either (a’sy, -+~ s1,_, )i, and (¢'sy, -+~ s1,_, ), are of the same parity,
or (a'sy “+ 81,1 )1;+1 and (s, - “+81;,_,)1;+1 are of the same parity, by the above
paragraph and the fact that @, + ¢, = by, for all k. Therefore we may repeatedly
apply Lemma 2.10 to get:

(_1)<a’,r,t)—l—(c’,t,s)—l—(a’,c’)

— (_1)<a'811 7Sty sts1y )€ sty sts1y,851, ) H(a! 51 ¢ s1)

_ (_ 1) <a,811 8155781, Sly 7t511 Sl >+(C,811 Sl ,tsll 815,851, Siq >+<a/811 Sl ,C,Sl1 Sl >

(_ 1) (@'o,roto)+(c o,to,so)+(a’o,c' o)

_ (_ 1) (a’o,rto)+(c'o,to,s)+(a’o,c' o)

Y
completing the proof of (ii).
(iii) As /42’7 » = 0 unless aj + ¢, = by, we may assume that the summation in
Proposition 3.5 is over all (a’,¢/,t) € X. By (i), (ii) and Proposition 3.5, we have
Crgens = p_ #la . ] (-nlepareus@ et e b,
HalvclvtﬂeX/Gb,r,s
It remains to note that #[a’,c',t] = |Gpr s/Cpr.s N Sq/ e tl- O
Let 7 be a homogeneous anti-involution on A. Then 7 induces a homogeneous
anti-involution
Tn : Mn(A) - Mn(A)7 g;},s = E;—,(ra)’
which in turn induces an anti-involution
Tnd 0 S (n,d) = SA(n,d), €&, €L, (3.7)

where for a = a; ---ag € HY, we have denoted a” := 7(ay)---7(aq) € H?
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3.2. The algebra T (n,d). Recalling the notation (2.15), for (b,r,s) € Tri®(n, d),
we set '
s = B,7, 8 & (38)
Define the k-submodule T2 (n,d) C S4(n,d) to be
TA(n,d) := span (775378 | (b,r,s) € TriB(n,d)).

It will turn out that T, f(n,d) depends only on a but not on ¢ or B, see Proposi-
tion 4.11.

Lemma 3.9. We have that {n | (b,r,s) € Tri®(n,d) /S, } is a basis of T (n, d).
Proof. Follows from the definition and Lemma 3.2. (]
Lemma 3.10. Let ay,...,aq € aU A7 and v, s € [1,n]%. Then &2, € TA(n,d).

Proof. By assumption, for 1 <1 < d, either aj =), cjpb or a; = ZbeBi c1,pb, with

ap € k. It follows that £ 5 is a linear combination of the elements 5517 s such that b
is of the form by - - - by with b, € B, U Bi for all I = 1,...,d. But for such b, we have
52,5 = 77113,5 € Tc{‘(nv d) O

Proposition 3.11. We have that T2 (n,d) C S4(n,d) is a k-subalgebra. It is a
unital subalgebra if (A,a) is a unital good pair.

Proof. By Lemma 3.10, if 14 € a, then the identity 14 ®---® 14 € S4(n, d) belongs
to TA(n, d), so we only have to prove the first statement of the lemma.

We now fix (a,p, q), (¢, u,v), (b,r,s) € Tri®(n, d) and apply Corollary 3.6. Using
the notation as in the corollary, assume that (a’,c,t) € X is such that &%, . # 0.
In view of Corollary 3.6(iii), it suffices to prove that the integer

M = [a,p, Q]L : [C, u, U]L . ‘Gb,r,s/eb,r,s N Ga’,c’,t‘
is divisible by [b,r, s].. For b,a’,¢ € B and r,s,t € [1,n], define
m?:;?ic, =#{kel,d|a,=db=0bc,=,rp,=r s =stp =t}

Then, using that (a’,r,t) ~ (a,p,q), (¢, t,8) ~ (¢, u,v), we obtain:

/ b /
Gbr,s N Garer ] = 11 my ¢! (3.12)
a’,b,c’€B, r,s,te[l,n]
borslto= > mi  (beB rselln), (313
a’,c'€B, te[1,n]
b /
la.p.aly,= > myte  (a€B, pqelln]), (3.14)
b,c’€B, te[l,n]
cuvls,= Y. mih, (ceB, uveln]), (3.15)

a’ ,beB, t€[1,n]
By (3.13), for every b € B and r,s € [1,n], we have that

b [b,r,s]%!

Yps = € Z.

H a’,b,c’y
a’,c'€B, te[1,n] mr,s,t :
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So
C:= H y?s €7,
beB,UBj, 1,s€[1,n]
and by (3.12), we have

b b
|6b,r,s/6b,r,s N 6a’,c’,t| = H Yrs = C- H Yr s
beB, r,s€[l,n] beB., r,s€[1,n]

@0 > 1 imply o’ € B; or ¢ € B. Indeed, if
a’ € Bj, then using (3.14), we get m?js’l?f/ < [a,p, q]?:t <1 as (a,p,q) € Tri%(n,d),

which is a contradiction. Thus o' € Bg. Similarly, ¢ € Bg. If d/,¢ € By, then

Now we claim that b € B, and m

i /
k2 , = 0 since a is closed under multiplication. Since my. s’bf > 0, this implies
lﬁlz/ o = 0, which contradicts our choice of (a’, ¢/, t), proving the claim.

By the claim, for b € B, and r,s € [1,n], we may write

[b, 7, 8]2,5!

a’,b,c)

b _
yr,s - a’.b,cy
Ha'eBc,c’eB,te[l,n} My st Ha’eBauBi,c’eBc,te[l,n] My st -

So M equals
< H [a’7p7 q]?,t!> . ( H [C, u, U]&J) . C . H y?,s
a’€B; ' €B. bEB¢,r,s€[1,n]
r,t€[l,n] t,s€[1,n]

_ [a'7 D, Q]?,/t' [67 u, ’U]gs'
o H a’,b,c’y H a’,b,c)

a'€B. I_IC’EB7 bE B¢, s€[1,n] My st - ' €B. Ha’EBaUBi, bEB, T€[1,n] Myest -
rte[l,n] t,s€[1,n]

b
xC - H [b, 7, 5]y .
beB., T,s€[1,n]

Note that the first factor is an integer by (3.14), and the second factor is an integer
by (3.15). We have thus proved that M is divisible by

H [b,r,s]g’s! = [b,r, s]lc,
bE B¢, 1,s€[1,n]
completing the proof. O

3.3. Coproduct on generalized Schur algebras. In this subsection, it will be
convenient to use the following notation. Let 7 = (b,r,s) € Tri®(n,d). We write

§r = gg,sv nr = ng,s’ T-@ = b,r,sg’ [7—]1 = [b’rv S]Iw To = (b,’l",S)O‘, etc.

If d =dy +dog, TH = (bl, 7!, s') € TriP(n,dy) and T2 = (b%, 72, 5%) € TriP(n, ds),
we denote

T2 = (b'b%, 712, s's?) € BY x [1,n)? x [1,n]%.
In general 7272 does not need to be an element of Tri”(n, d).
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Recall the notation (2.8). For 7 € Trif(n,d) and 0 < I < d, define the sets of
l-splits of T and splits of T as

SpL(T) == {(T",T%) € Tvif (n,1) x Tif (n,d — 1) | T"T* ~ T},
Spl(T) :== | | Sph(T
0<i<d
For (T, 72) € Spl,(T), let 077—177-2 be the unique element of 7% such that
TO';:177—2 =T'T%

Let ¢; : 6; x G4_; — &4 be the standard inclusion. Let 7 € Trig(n, d). Note that
for every o € 79 there exist unique (7,72) € Sply(T), o1 € 7' P and 09 € T° P
such that o = 0;——1’7~2Ll(01, 02). In other words, the map

| | T9xT9-Tg (3.16)
(T, 7T%)eSpL(T)
sending (o1,09) € T'9 x TP to 077—177-2 (o1, 02), is a bijection.
Note that for (o1,02) € 7' 2 x T° 2 we have
<0'%77—2L1(01,0'2);b> = (0%’7?; b) + (o1;b') + (09;b). (3.17)

Recall from [EK;, §3.3], that @ -, M, (A)®? is a supercoalgebra with the co-
product V defined by B

d
v - M @ ®l ® M, (A) ®(d-1)
Z
1@ Q& — Z ®&) O (§r1® - ®&a)
=0
Let
) =@ SHn.d) and T (n):=PTnd). (3.18)
d>0 d>0

We next prove that these are sub-supercoalgebras of € ;~o M, (A)®¢. The following
result is actually contained in [EK;], but we give a proof using our current notation
for reader’s convenience.

Lemma 3.19. [EKj, (6.12)] If T = (b,r,s) € Trif (n,d) then
<‘7T1 2;b)
Ve = Y. D)V e én.

(T, 72)eSpl(T)

In particular, S4(n) is a sub-supercoalgebra of Do M, (A)®4,
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Proof. Writing Z for the sum over all (77%,72) € Spl,(T) with 7' = (b',r!, s!)
Splz(T)
and 72 = (b%,72, %), we have that V({fls) equals

Z (_1)<07b>v( 713;}750'1 ®§Todvsad)

ocTg
d b
;b bo by o by
= Z (_1)<UY > Z(gro'iso'l ® o ® grafvsal) ® (57‘0'811;’50““’1) ® e ® gTUZ,Sod)
0'67—] =0

_Z Z Z 7—17—27 (fb% ®“'®£bl1 )01
ri,si st
1=0 Sp,(T) 5,7
UQGTQ.@

b2
Bl 0 0L, )

. l’sd l

d
Z >« o2t ‘e @ &,

=0 Spl;(b,r,s)

where we have used the bijection (3.16) and the sign identity (3.17) for the second
equality above. O

Corollary 3.20. If T = (b,r,s) € Tri¥ (n,d) then

ol ;b :
Vor = Y et e e
(T, 72)eSpl(T) [THTe
with [7_1[]7_[];_2] € Z. In particular, T{(n) is a sub-supercoalgebra of Do M, (A)®?,

Proof. By Lemma 3.19, we just have to check that [7']}[7?]} divides [T]. whenever
(T*,T?) € Spl,(T). But in this situation we have that [T]%, = [T*]%, + [T?]%, for
all be B and 1 < r,s < n, which implies the required divisibility. O

4. SUPERBIALGEBRA STRUCTURE

Recall the definition of S4(n) and T*(n) from (3.18). In this section we study the
star-product on S4(n) and T;}(n) which together with the coproduct V from §3.3
makes them into superbialgbras. For SA(n) this is well-known, see for example [EK,
Lemma 3.12].

4.1. Star-product. For d,e € Z>, let (@€) 9 be the set of the shortest coset rep-
resentatives for (G4 x &,.)\&4. Given & € M, (A)®? and & € M, (A)®¢, we define

Grbi= Y (L0&). (4.1)
oclde)g

It is well-known that this +-product makes ;- M, (A)®? into an associative su-
percommutative superalgebra.

Lemma 4.2. For (b r,s) € Tri®(n,d) and (c,t,u) € Tri%(n,e), we have
( ) grl s ¥ Erd Sd [bv r, 3]! 6273'
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[be,rt,su)' .
[b,7,s]'c,t u]' Tésu

[be,rt, sull
(111) nr,s * nt,u = [b r S]! [C t ;]! 77r1?,su7

(i) €&y =

[be,rt,su]' [bc,rt su]}
b,7,s]'[c,t,u]’ [b,r,s]4[c,t,uly

(iii) are taken to be zero when (be,rt,su) ¢ TriP%(n,d + e).

where rand r are integers, and the right hand sides of (ii) and

Proof. We have that frl s KX fgsd is equal to
Z (57’1781 gT’d,Sd)U - Z Z 7’1 81 gT’d Sd)a 7
€6y oebrsg o’ egbrs
! b
= [b7 T? S] Z ( 7‘},81 ® STd,Sd)o-
oebrsg
= [b7 r? s]' 53737
proving (i). Thus
! ) b
[b, r, S] [C, t7 u] gr,s * Sfiu, = ( r},sl grd sd) (Stl up gte,ue)
67‘1,31 "k Srd Sd * Stl U1 te,ue
= [be, rt, su] L’ﬁsu,

where the last line is interpreted as 0 if (be, rt, su) ¢ Tri®(n,d + ). Therefore

b7, slale,tulonl o+ gy = b7, 8] fe t,u] €+ 6,
= [be, rt, su) %su
= [be, rt, sulg 176 su-
Now (ii) and (iii) follow by noting that
[be, rt, su]?s = [b,r, s]g’s + [c,t,u]?s
for all b, r, s. O

Corollary 4.3. S4(n) and T (n) are subsuperalgebras of @ o My (A)®? with re-
spect to the *-product. B

Corollary 4.3 together with [EK;, Lemma 3.12] now imply

Corollary 4.4. With respect to the coproduct V and the product *, S4(n) and
TA(n) are superbialgebras.

We will also need the following result, where the Sweedler notation V(x) =
21y ® x(9) s used:

Lemma 4.5. [EKi, Lemma 4.2] Let z,y, z,u € S*(n,d). Then
(@xy)(zxu) =Y (1) (@a)zn) * Wa)ze) * @@uam) * Ye)te),
where s = (3_3(2) + 37(2))2 + ?](1)(:3(2) + 5(1)) + Y2)U(1)-
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4.2. Separation. Let ¢ € Zsg and § = (di,...,dy) € Z%, with di + -+ + dg = d.
Then &5 := &g, x -+ X Gg, < &4. Suppose that for eachm =1,...,q, we are given

(a(m)y ’I"(m)a S(m))7 (c(m) ’ t(m)7 u(m)) S TriH (n7 dm)

We write
al™ = agm) e agl?, rm = rgm) "rc(l:), etc.
Let
a=a" ... a9 r=r®_  p@ et
We also write
a=ai--aq, T=1"1"""Tq, €tc.

The triple (a,r,s) is called §-separated if 1 < m # | < q implies
(™ 1) o) 2 (D D0

u ’Tu )
forall 1 <t <d,, and 1 <wu < d;. Note that we then automatically have (a,r,s) €
H(n,d).
Lemma 4.6. If (a,r,s) is 0-separated then
(1) (a) (1) a(®
&rs =& s(1) Koo 5?(5)73@ and 1y s = 77?<1>,s<1> k) 8@
Proof. Recalling the notation (2.8), for each 1 < t < ¢, there exists (&), #® é(t)) €
Trif! (n, dy) such that (@®, 70, 30) ~ (a®,r® sO). Write a := a) - ( )i
P57 @ 5= 5 ... 59 Then (a,7,8) ~ (a,r,s), and (a,#,8) is 5—Separated
Moreover we have that G443 < G5, and both groups are standard parabolic sub-
groups of &,. Using (3.1), we get

;;I,é = 2(52117§1 R ® éad A )o

Td,Sd

(o
= Y (€, @ g, )
o f‘1,81 74,84

OJ 0.//

a a(@ 1"

= (&% 50 @ © &G (@)

o—//

€) (@)
a a
=& s * *5 (@) ga)

where 0 runs over *" o’ runs over all shortest coset representatives for S 7 5\ S5

9,
and ¢” runs over all sho rtest coset representatives for G5\ S,.
D) ~ (a®,7® s®) for all 1 <t < g, we have

7
(—1)<G,,’I“,S>+<{l T S> == (_1)<a‘(1)7r(1)75(1)>+"'+<a(q)7T(q)7S(q)>+<d(1)7%(1)73(1)>+"'+<d(q)77;(q)7'§(q)>

Since (a®,#(

Then, using Lemma 3.3, we have

8.7.8) 6 4.7.8) ca() @
€ o= (1) @A = (L) emIH @RI ) x e x € @

a® M) sWy4(aM® 71 5Dy 41
(_1)< i f CORFIEY

a@ @ g(@)4 (4D 7@ 32y .4
% (—1)¢ i >,;<q>,§<q>

e 0@
= &) 50 * 7 * E0) g@)

as desired. The result for n’s follows from the result on &’s. O
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Lemma 4.7. Let (a,r,s) and (c,t,u) be d-separated and suppose that
(1) (9) (1) (9) /
(Erw s © B &) o) (5w ) @ O &) ) =0
whenever o and o' are distinct elements of °2. Then

a@® 1) al®) (@)

a ¢c
& sbtu = F(Ew s € ) * ¥ (§) 5085w ayio)-
Moreover, if ai,...,aq or ci,...,cq are all even, then the sign in the right hand side

15 +.
Proof. By Lemma 4.6, £ ;&f,, equals

1) (@) - 1) (@) o
> (€ S @ BER L) > (& W ®® &g @) |
o€%9 =117
and the result follows. O
The following result allows one to reduce the study of S4(n,d) to the blocks of
A, and similarly for T2 (n, d).

Lemma 4.8. Let m € Z~q. Fort € [1,m] assume that (A, a;) is a good pair. Write
A:=@", A and a := P, a;. Then we have

@ éSAt(n, vt) and T (n, d) @ ® (n,vy)

veA(m,d) t=1 veA(m,d) t=
as k-superalgebras.
Proof. For t € [1,m], let B; be the designated (A, a;)-basis, and set B = L, B,

as the designated (A, a)-basis. It follows from Lemma 4.6 that, for any (b,r,s) €

b « S1!,(m)

Tri® (n, d), we have 5273 = £ s F T 8l m) for some v € A(m,d) and

(D, 7 s0) e TriPt (n, 1) for t € [1,m]. So we may write
S54(n,d) = EB SAL(n ) % % SAM (0, vy,
veA(m,d)

Inductive application of Lemma 4.5 shows that this is a decomposition of S4(n, d)
into subalgebras. Moreover, it follows as well from Lemma 4.5 that for all v €
A(m,d) we have

SAL () % % SAM (N, vp) =2 SN (n,1) @ - @ SA™ (0, 1)
as k-superalgebras, proving the claim for SA(n,d). The proof of the claim for

T C{4(71, d) proceeds exactly as above, since Lemma 4.6 provides an analogous result
for n’s. (]

4.3. Generation. We define
Y = Span(fzs |r,se€[l,n], be B.UBi) C M,(A),
Star?Y ;=Y x---x Y C T (n,d),
d times

where the second inclusion comes from Corollary 4.3. Note also that S%(n,d) C
TA(n,d) since by definition, for b € BZ, we have 5273 = 7]373. The following is a
generalization of [EK;, Lemma 4.30].
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Lemma 4.9. We have
d

T (n,d) = EBS“(n, d —e) *Star®Y.
e=0
Proof. As S%(n,d —e) C T{(n,d —e) and Y C TA(n,1), the right hand side is
contained in the left hand side thanks to Corollary 4.3. For the converse containment,
we only need to prove that every 77113,3 with (b,7,s) € Tri®(n, d) is contained in the

right hand side. For any b € B and 7, s € [1,n], denote m? , := [b, 7, 5], and set

e:= Z m‘;’s.
beBUBj, r,s€[1,n]
Using the fact that m?s € {0,1} for all b € Bj, Lemma 4.6 and the definition of
77113,37 we see that

mp *mP |
Mhs =+ ( x ()" )) x ( * (&) )) , (4.10)
b€ Bq, r,s€[1,n] beBUBj, r,s€[1,n]

with the first term in S%(n,d — e) and the second term in Star®Y. O

Proposition 4.11. The algebra Tf(n, d) depends only on the subalgebra a, and not
on the choice of the (A, a)-basis B.

Proof. Let B = B,UB.UBj and B’ = B;LIB;LI B} be distinct choices of (4, a)-bases,
Y = span({ﬁ’s | r,s € [1,n], b € B.U Bj), and Y/ = span({ﬁ’s | r,s € [1,n], b €
B{ U BYf). As B{ C span(B. U By,), we deduce that

e
star®Y’ C @Pstar® /Y xstar/ a.
£=0
Therefore by Lemma 4.9, the algebra 'T(n, d) defined using the basis B’ is contained
in the algebra TA(n,d) defined using the basis B. Similarly, T (n,d) C '"T2(n,d).
O

Let 7 be an anti-involution on A, such that 7(a) = a. Then it is easy to see using
Proposition 4.11 that the involution 7, 4 on S%4(n,d) defined in (3.7) restricts to the
involution of TA(n,d). Moreover, if 7(By) = B, 7(B.) = B, and 7(B;) = By, then
we have

Toa: Tg (n,d) = T (n,d), 17 4 = 1 (4.12)

The following theorem generalizes [EK;, Theorem 4.31].

Theorem 4.13. Suppose that (A,a) is a unital good pair and let 1 := 1y (a)-
Then T (n, d) is the subalgebra of S4(n,d) generated by S%(n,d) and 19971 Y :=
{19414y |y € Y}.
Proof. Let U be the subalgebra of T/ (n,d) generated by S%(n,d) and 199! x Y.
We show by induction on e = 0,...,d that U contains every element of the form
777’3’3 %19(4=¢) wwhere (b, 7, s) € Tri®(n,e). This proves the theorem in the case d = e.
The base case e = 0 is clear. Let 0 < e < d. Let (b/,7',s') € Tri%(n,e). We
will show using the inductive assumption that 77713;’ o #1919 c U If b’ € B, then
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775,3' x18(d=¢) ¢ §%(n, d) C U, and we are done. So we may assume that (b',7/,s') =
(bb, rr, 85), for some (b,r,s) € Tri®(n,e — 1), b € B;U By and r,s € [1,n].

By the induction assumption, 77,13,5*1®(d_5+1) € U, and we also have 1®(d—1) *5713,5
1®9d=1) + Y C U. Thus the following product is contained in U:

(19, % 12D (A2 5 ) )
== (77113,3)(1) * 1®(d—e+1) (772 s)(2 gﬁs + 77113 s ¥ 1®(d—e) * f?lz,s
==+ (77113,3)(1) * (U?,s) 57" s * 1®(d etl) :l: 77 5 * 1®(d—e)’
where the equalities come from Lemma 4.5 and the supercommutativity of x. Note
that by Corollary 4.4, we have that (ngs)(l) * (?’]?’S)(z)fgs belongs to T (n,e — 1),
and thus may be written as a linear combination of elements of the form n,’fx

m

,8
where (b”,7" s") € Tri®(n,e — 1). Thus the induction assumption implies that
the term (77373)(1) * (77713’5)(2)571375 s 12(d=e+1) helongs to U, which in turn implies that
17712’5 * gﬁs % 1®(d=€) ¢ 7. But since b € B, U Bi, we have as in (4.10) that 773:78, =
117 5 # €51 SO

77715,3' * 1®(d_e) = ing,s * g?,s * 1®(d_6) € U7
completing the induction step, and the proof. O

5. MISCELLANEOUS PROPERTIES AND EXAMPLES

Throughout the section, (A4, a) is a fixed good pair with an (A, a)-basis B = B, U
B, Bj as in (2.2). Much of this section deals with various idempotent truncations.
If e € A is an idempotent, we say that B is e-admissible if ebe = b or ebe = 0 for all
b € B. We say that we say that B is right e-admissible if be = b or be = 0 for all
beB.

5.1. Idempotents and characters. Throughout the section, let eg,...,es € a be
a set of orthogonal idempotents. We do not assume that Zfzo e; = 1, and usually
we do not make any admissibility assumptions on B. Set I = [0, ¢].

Let A(n) :=Z%, and Al (n) := A(n)!. We think of the elements of A(n) as com-
positions A = (A1,...,\,) and the elements of Af(n) as tuples A = (A, ... \(©)
of compositions. For such A € A(n) and A € Al(n), we set |A| := S0\,
IA] = Ycr AP, and, for any d € Zs, we define

A(n,d) == {Ae An) | N =d}), Al(n,d):={xeAn)]| |\ =d}.
The group &,, acts on A(n) via
O = (Ag=11y -y Ag—1p)-
The group &/ :=[],.; &, acts on Al(n) via
o\ = (0(0))\(0), ... ,U(Z))\(Z)),

for o= (0@, ... 0y e &L and X = (N0 ... AO) € Al(n).
To A € A(n,d) we associate the word I* = 1M ... p* € [1,n]¢. For any idempo-
tent f € A we have an idempotent

f)\ = flA a» € SA(n,d).
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Note using Lemma 3.10 that §{ € TA(n,d) if f € a. Define

S € (5.1)

AEA(n,d)
If, for any a € A we define
= &, € My(A), (5.2)
r=1
then
§f:Ef®---®Ef. (5.3)
If A is unital, we denote
=60 (5.4)

Then 1ga(, q) = D e A(n,d) &) is an orthogonal idempotent decomposition. If the
pair (A, a) is unital, then &, € T (n, d) for all A € A(n,d). For u € Al(n,d), define:

ex 1= {i?o) YN S0 € TA(n d). (5.5)
Forac Aando € &, let 2 :=5"" o) M, (A) be the permutation matrix
corresponding to ¢ multiplied by a. For o = (O'(O), . ,O'(Z)) € &, we set
Eoi= D (E8)%0 ke (654,)%" € T (n, d).

(805.,80)EAT (d)
Lemma 5.6. For all o, T € 61, we have £gér = Egr-
Proof. This follows easily from Lemma 4.7. (]
Lemma 5.7. If A € Al(n,d) and o € &L, then we have £5exép-1 = €.
Proof. Let d; = [\?| for all i € I. Using Lemma 4.7, we get
Ereatot = ((€500)PPE (€00 1)® ) w - x (65002 M €5t (€t )" )

For all 7 € I, we have

€4 i ¢€i €4 A € 1 € () €4 53) €4 i
(5U(i))®d g)\(i)(g(g(i))—l)(gd = (go(i))@i ((51 )®)\1 Kok n,n)®)\ )(g(o.(i))fl)@d

(1) (%)
@A RAn,
(fa(l)f J(z) )E (fa(z)fn n (U(z) 1)
_ ] e €; e
= (faz(i)l U(i)l) ok (fal(i)n U(i)n)
A A
@A L ®A
= (&) T (G1) T
- é-o.l(z‘))\(z‘) ’
where we have used the commutativity of x-product on even elements for the penul-
timate equality. So the result follows. O

We consider Af(n) as an abelian monoid, where A = p + v when A = ,uff) + )

foralli € I and r € [1,n].
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Lemma 5.8. For A € Al(n,d), we have
Viex) = Z ep ® ey

m,veAT(n)
pHrv=2XA

Proof. The result follows by Corollary 3.20. Indeed, recalling the notation of §3.3,
0 4

note that ey = &, where T = (b,r,s), with b = elo’\()l---elg)‘()‘, r =35 =

MM Then (T8, 72) € Spl(T) if and only if 7' = (b, 7!, s!) with b =

(0) (£) (0) (0) i (0) (£)
eg“ ‘---e‘; ‘,rlzslzl“ 1 andT2:(bz,r2,32),vv1thb2:e‘oy |---e|[ ‘,
0 4
r2 =82 = 1" 1" such that p+ v = A O
Define

R:=Z[t]/(t* — 1),
and denote the image of ¢ in the quotient ring by m, so that #° makes sense for
€ € 7Z/2. Writing the operation in the monoid A(n,d) multiplicatively, denote by
RA'(n,d) the corresponding R-monoid algebra. This algebra inherits the &/ -action
from that on A’(n,d). Since this action is by algebra automorphisms, we have the
invariant algebra (RAZ(n, d))®n.

If V is a free k-module of finite rank, we denote its rank by dim V. If V be a free
k-supermodule of finite rank, its super-rank is defined to be dim,V := dim V5 +
(dim Vi)m € R. Let W be a T/} (n, d)-supermodule. If exW is free of finite rank as a
k-supermodule for all A € Af(n,d), we say that W is a supermodule with free weight
spaces. In this case, the (formal) character of W is defined to be

che W= ) (dimgexW)X € RA (n, d).
AEA!(n,d)
Lemma 5.9. If W is a Tf(n, d)-supermodule with free weight spaces then ch, W €
(RA!(n,d))®".
Proof. By Lemma 5.7, we have that e,/W = exW as k-supermodules whenever p
and X are in the same & -orbit. 0

Finally, Lemma 5.8 gives us:

Lemma 5.10. Let Wy be a TA(n, dy)-supermodule with free weight spaces and W
be a Tf(n,dg)-supermOdule with free weight spaces. We consider W1 @ Wy as a
Tf(n, dy + da)-supermodule via the coproduct V. Then W1 @ Wy is a supermodule
with free weight spaces, and
ch, (W1 @ Wa) = ch(W7) ch,(Wa).
Let A, € Al(n). We call X\, u non-overlapping if for every i € I and r € [1,n]
we have that /\511) = 0 implies ,ugl) =0.

Proposition 5.11. Suppose that B is right e;-admissible for all i € I. Let A €
A(n,c), p € Al(n,d) and suppose that X\ and op are non-overlapping for some
o € G!. Then we have isomorphisms

S4(n,clex @ SA(n,d)e, = SA(n, ¢+ d)extop,
T:‘(TL, C)eA & Tf(n,d)e“ = T:‘(’I’L,C + d)e)\—i-o'u-
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of S4(n,c+ d)- and T (n, c + d)-modules, respectively.

Proof. We prove the result for T, &4; the proof for S is similar. Since T f(n, d)ey, =
TaA(n, d)esy by Lemma 5.7, we may assume that XA and p are non-overlapping and
prove that
TA(n,c)ex @ T (n, d)e, = T n, ¢+ d)exrp.
Set B(i) := {b € B | be; = b} for all i € I. For v € Al(n, f), let TriZ (n, f) be the
set of all (b,r,s) € Tri®(n, f) such that

#{k | by € B(i),sp =t} =1V, Vi€ It € [1,n].
Then for all (b,r,s) € Tri®(n, f) we have
773786,, #£0 < ?’]?786,, = 77373 <~ (b,r,s) € Trif(n,f),

SO

{17 | [b,7, 8] € Tvij (n, f)/S}
is a basis for Tf(n, f)ew. By the non-overlapping condition, we may choose a total
order on B X [1,n] x [1,n] such that (b,r,s) > (V/,7',s") whenever b € B(i) and
b € B(j) for some i,5 € T with A’ > 0 and 4 > 0. Let TriZ(n, f)o € TriB(n, f)
be the subset of triples which are lexicographically maximal under this total order.
The set TriZ(n, f)/&/ is in bijection with TriZ (n, f)o, so

{77113,5 ‘ (b7 T, S) € Trif(n7 f)O}

. . A
is a basis for T (n, f)e.
We have a one-to-one correspondence

Triy (n, c)o x Tril; (n,d)o < Triy, ,(n,c+ d)o,
given by
((b,r,8),(b,r",s")) — (bY,rr', ss').
Thus we have a k-linear isomorphism
P - T&A(nv C)e)\ ® Tf(”) d)elb = TA(nv c+ d)e)\-l-ﬂ
defined via
77113,.9 ® 772’,3’ = ng?",ss’
for all (b,r, s) € Tri¥(n,c)o and (b',7',s') € Triﬁ(n, d)o. Moreover, in this situation
bb’

(bb', 77, s8') is (¢, d)-separated by the non-overlapping condition, so n22, ., = 77373 *

?7713: o by Lemma 4.6. Thus we may describe the isomorphism more generally via the
star map:

@ : TH(n,c)ex ® Tf(n,d)eu = TA(n, e+ d)extps TRY > x*Y.

Finally, ¢ is an isomorphism of T2 (n, ¢ 4 d)-modules thanks to Lemma 4.5. (]
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5.2. Idempotent truncation. Let e € a be an idempotent and £¢¢ € T (n,d) be
the idempotent of (5.1). Set

A:=cAe and @:= eae.
By definition, Ais a subalgebra of A and a is a subalgebra of a. So we can consider
S4(n,d) and hence T¢ (n, d) as subalgebras of S4(n, d).
Lemma 5.12. Let e € a be an idempotent. Suppose that B is e-admissible. Then:
(i) S“E(n,d) =¢84 (n, d)ee.
(i) T5'(n, d) = €T (n, d)¢°.
Proof. By assumption, we have an (A, a)-basis B = B, U B, Ll B such that ebe = b
or ebe = 0 for all b € B. Defining
By == {b € B, | ebe = b},
¢ :={b € B. | ebe = b},
Bi = {b € By ’ ebe = b},
we have that B := B, U B, Ll By is an (A, a)-basis for A. Then, for all (b,r,s) €
Tri® (n, d), we have

o]l

cegb go — gehienchie _ {52,3 iftbe f?d
’ ’ 0 otherwise,
which implies the result. 0
For r € [1,n]? we define
w' = (wi,...,wp) € A(n,d)
via wy :={k € [1,d] | rp = r} for all r € [1,n]. Recall the idempotent £, from (5.4).
Lemma 5.13. Let A be unital. If X\ € A(n,d) and (a,r,s) € Tri (n,d) then

g)\gg,s = 5)\,0.)7‘5'7:73 and gg,sf)\ = 5)\,0.)55'?:,3'

Proof. Immediate from Proposition 3.5. U
Let N > n. Set
AY(d) = {A € A(N,d) | Apy1 =+ = Ay = 0} C A(N, d),
and define the idempotent
gl = > &estN.ad). (5.14)
AEAD (d)

If the (A, a) is unital, then £ (d) € TA(N, d).
Lemma 5.15. Let A be unital, N > n and (b,r,s) € Tri®(N, d).
(i) We have

fév(d)fgs = 5w"€A{)’(d)£g,s and gf?,sgé\[(d) = 5ws€AfY(d)£g,s'
In particular, the map
S4(n,d) = SAN,d), &, €8,  ((br,s) € Tri®(n,d))
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is a (unital) algebra isomorphism
§4(n, d) = & (d) S (N, d)&) (d).
(ii) If (A, a) is a unital good pair then €Y (d) € TA(N,d),
V(AL s =rean@mbs and 02 &N (d) = SuseanayTo.s-
In particular, the map
Tf(n,d) — Tf(N, d), 773,3 — 773,3 ((b,r,s) € TriB(n,d))
is a (unital) algebra isomorphism
T (n,d) == &N THN, d)EY (d).
Proof. Follows from Lemma 5.13. (]
Corollary 5.16. Ifd <n < N, then V > £N(d)V defines equivalences of categories
SA(N,d)-mod =+ §4(n,d)-mod and TA(N,d)-mod = T (n,d)-mod .

Proof. To prove the result for S4, in view of Lemma 5.15, we just have to prove
that
SN, )& (d)SH (N, d) = SA(N, d).

The last equality will follow if we can show that each &, with A € A(N,d) is in the
left hand side. By the assumption that d < n, there is ¢ € &,, such that all non-zero
parts of o\ are among its first n parts, and so

ga)\ = f(,)\fév(d) € SA(N7 d)grjzv(d)SA(N7 d)
By Lemma 5.7, we have that £,6,&, 1 = &4, or

& =& nés € SAN, )& (d)SH (N, d),
and we are done. The proof for T} is the same, using the fact that &, € T (n,d). O

Remark 5.17. Let d < n and w := (1,...,1,0,...,0) € A(n,d). It is proved
in [EK;, Lemma 5.15] that the idempotent truncation &,54(n,d)&, is naturally
isomorphic to the wreath product superalgebra A Sy. If the pair (A, a) is unital,
we have &, € T/ (n,d) and it is easy to see that &,TA(n,d)¢, = £,5%(n, d)&,.
5.3. Tensor product, truncation and induction. In this subsection, we drop
indices and write T'(n,d) for T*(n,d) and S(n,d) for S4(n,d). Throughout the sub-
section, we fix a € Z>1, a composition 6 = (dy,...,d,) € A(a,d), and a composition
v=(ny,...,nq) € A(a,n) with ny,...,n, > 0. We denote
T(n,6) :=T(n,d1) ®---@T(n,d,) and T(v,9):=T(n1,d1) @ - T (ng,dy).

Let

V= (1d** 2 @V)o- -0 (id@V)oV : T(n,d) - O T(n,7)

veA(a,d)
be the iterated coproduct. Projecting onto the summand T'(n,d) yields the algebra
homomorphism
Vs: T — T(n,d).
Using Vs, we can consider T'(n,d) as a (T'(n,d),T(n,0))-bimodule, so that
U@ @ U, 2T(n,6) Qpps) (U1 K ---KU,) (5.18)
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for U; € T(n,dy)-mod, ..., U, € T(n,d,)-mod.
Recall the idempotent £V (d) € T(N,d) from (5.14). The first result relates tensor
product and truncation.

Proposition 5.19. Let n < N and Vi, € T(N,dy)-mod for k =1,...,a. Then there
is a functorial isomorphism of T'(n,d)-modules

(V1@ @ Va) 2 (& (d)V1) © - @ (& (da)Va)-
Similar statement holds for S in place of T.

Proof. Note using Lemma 5.8 that
Vs(€l (d Z Vs(ér) = Z §uy ® - B &y,

AEAN (d) p1€AN (d1),...,pa €AY (da)
=& (d) @ @6 (da).
Therefore
G (D)@ @ Va) = (& (d)V1) @ -+ ® (& (da)Va),
and the result follows. O
In the rest of this subsection, we concentrate on T'(n,d), although similar results

hold for S(n,d). We now define certain induction operation and relate it to tensor
product. Set

mk::an (k=1,...,a+1).

Denote
mE41

Awid)={AeAn,d) | > A =dforallk=1,...,a},

r=mp+1

and define the idempotent

E(v; ) = Z &x € T(n,d).
AEA(v39)
For r =7y - 1y € Z and m € Z>(, we define
r(+m) == (r1 +m) - (r, +m) € Z.
Now let 7F € [1,n4]% for k =1,...,a, and r := r'--. 7% € [1,n]%. We define
r(+0) = v (m)r2(+mg) - 79 (+mg) € [1,n]".

If (b*, rk, sF) € TriP(ny, dy,) for k=1,...,a, and b:=b'---b%, r :=rl...p0 s:=
s'... 8% then (b,r(+v),s(+v)) € Tri®(n,d) is d-separated, and so by Lemma 4.6,
we have
b _ bt b? b®

T () (0v) = TeComa) sCrmn) * Te(ema),s(tma) * * eema) s(tma) - (5-20)
Similarly, (b,r,s(4+v)) € Tri®(n,d) is d-separated, and

b — P «n S (5.21

nr,s(—l—y) - nr,s(—l—ml) nr,s(—i—mg) 777' ,8(+mq)" : )
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Lemma 5.22. The map
T(v,6) = T(n,d), 7721,31 Q- ® n?z,sa = 77?(+u),s(+u)
is an algebra homomorphism, mapping the identity element of T(v,0) onto {(v;9).
Proof. This follows easily from (5.20) and Lemma 4.5. O
In view of the lemma, we consider
T(n,d)¢(v,0)

as a (T'(n,d), T(v,d))-bimodule. Given a T'(v,d)-module V', we now define

15V = T(n, d)E(v;6) @1y, V-
This yields the functor

I:Zgl : T(v,d)-mod — T'(n,d)-mod .
The following proposition generalizes [BK, 2.7].

Proposition 5.23. Suppose that for all k = 1,...,a we have dp < ni and let
Vi € T(n,dy)-mod. Then we have a functorial isomorphism

Vi@ @V, = I (V)R- B (€L Va)) -

Proof. In this proof k always runs throgh {1,...,a}. Denote T := T'(n,d), Ty :=
T(n,dy), Ty, := T(ng, dg), so that T(n,8) =T1®@---@T, and T (v,0) =T1 ®--- T

Since Vi — &, Vi is an equivalence by Corollary 5.16, denoting Wy, := &5, Vi, we
have Vi, & T, kﬁé\; 7 Wy, and it suffices to prove

(Th&, @ W) @ -+ @ (To&y, @1y Wa) = [S;Z;d WK KW,). (5.24)
We now apply (5.18) with Uy := Tj:&);, @77 Wi to see that the left hand side of (5.24)
is obtained from W; X - .- X W, by tensoring with the (T, T(v, d))-bimodule
M := M ®@r(ng) (T16,, @ - @Tely ) =TEL, @ -+ @ THE] .

On the other hand, the right hand side of (5.24) is obtained from W; X---X W, by
tensoring with the (T, T(v, d))-bimodule T¢(v;d). So we just need to prove that the
(T, T(v,9))-bimodules M" and T¢(v;0) are isomorphic.

Define

i (n,np), di) := {(b,7,s) € Tvi®(n,d;) | s € [1,n4]%}.
Then, for all (b,r,s) € Tri®(n, dy), we have that

b gn _ 77113,.9 if (b,r,s) € TriB((n7nk)adk)
T sSmy, = 0 otherwise.

Therefore {nl , | [b,7,s] € Tri®((n,ny),di)/Ga, } is a basis for Ty, » and we may
define a k-linear map

1 a
P M — Tf(v; 5)7 777131,31 K- ® 77713“,3“ = ng,s(—l—u)f(w 5) = ng,s(—l—u)’
where [bF r* s¥] € Trif((n,ny), di)/Ga, for all k, b=b'---b% r =r!...r% and

s = s'..-5% It follows from (5.21) and Lemmas 4.5 and 5.22 that ¢ is a map of

(T, T(v,6))-bimodules, and it remains to prove that ¢ is an isomorphism.
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For s € [1,n]?, we define 3(s) € A(n,d) via B(s); := #{u € [1,d] | s, = t}, for all
€ [1,n]. Then for (b,r,s) € Tri®(n,d) we have

W (6 = {nsf,s if A(s) € A(v;0);

0 otherwise.

Thus, setting
Tvi® (v;6) := {(b,r, 8) € Tvi’ (n,d) | B(s) € A(v;6)},

we have that {773,3 | [b,7,s] € Tri®(v;6)/64} is a basis for TE(v;6). It is straight-
forward to check that the map

[T (@i ((n,n4), di)/Sa,) — TriP (v;6) /&4,
k=1
([bl, rl sl], oo 04,1 8Y) = by s(+rv)],

where b=0b'-- - b%, r =7r!...r% s =s'...5% is a well-defined bijection. Therefore

the ¢ restricts to a bijection (up to signs) of bases, and so ¢ is an isomorphism. [
5.4. Examples. We finish this section with some examples.

5.4.1. Schur superalgebras. Let A = M,4(k). For r,s € [1,p + q], let E,  be the
matrix with 1 in the (r, s)-th component, and zeros elsewhere. We have

— )0 ifr,s<porrs>p,
"7 11 otherwise.

It follows from [MZ, Theorem 2| that the Schur superalgebra S(p|q, d) is not quasi-
hereditary (over k) unless ¢ = 0 or p = ¢ = d = 1. Choosing a := span(E, s | r,s < p)
we get a non-unital good pair (A,a) and the corresponding non-unital generalized
Schur superalgebra T (n, d). We will prove in [KM] that T (n, d) is quasihereditary
if d <n.

5.4.2. Trivial extension algebras. Let C be a unital superalgebra which is free of
finite rank as a k-supermodule. The dual C* := Homg(V, k) is a k-supermodule in a
natural way. We have the pairing (-, -) between C' and C* with (a, a) = (o, a) := a(a)
for a € C and a € C*. We consider C* as a C-bimodule with respect to the dual
regular actions given by

(a-a,by = (a,ab), (bya-a)= (ba,c) (a,be C, aeC).
The trivial extension superalgebra E(C') of C is E(C) = C @ C* as a k-supermodule,
with multiplication
(a7a)(bvﬁ):(ab7a'ﬁ+a'b) (a7b607 O‘yﬂeo*)'

Note that Cj is a unital subalgebra of E(C')g. The pair (E(C),Cj) is an example of
a unital good pair (4, a). In this case it is natural to take ¢ = Cjj. The basis By is a
basis of Cfj, the basis Bj is a basis of E(C); = C7 @ C¥, and the basis B, is a basis
of Cf.

Let n € Zso. For @ € C* and 1 < 7,5 < n, we have the element zy; € M, (C)*
defined from

(m?"s,fﬁw = 0p10s.u (0, @) (1<t,u<n, a€C).
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It is pointed out in [EK;, Lemma 3.21] that there is an isomorphism of superalgebras

My (E(C)) = E(Mqa(0)), &5 = (&1, 2%,). (5.25)

By [EK;, Theorem 4.27], we have an explicit isomorphism
SEC) (n,d) = 'D(n,d), (5.26)
where ' DY (n, d) is the divided power Turner’s double algebra defined in [EK, §54,6].
It now follows from Theorem 4.13 and [EK;, Theorem 4.31] that under the isomor-
phism (5.26) the subalgebra TE(_)(C) (n,d) € S*©)(n,d) gets identified with the Turner
double subalgebra D (n,d) C 'D%(n,d) of [EK1, §§4,6]:

E(C ~
15 (n, d) = DC (n, d). (5.27)
5.4.3. Zigzag algebras. Fix £ > 1 and I be the quiver with vertex set I := {0, 1,...,/¢}
and arrows {a;j;—1,a;-1,;|j=1,...,¢} as in the picture:
ay o ag 1 az 2 ag_2¢-1 A p—1
/\/_\
0e 10 20 cee Lt—-1@ N )

S ) N A

a0,1 a1,2 az,3 ap—2,£—1 ar—1,0

The extended zigzag algebra Z is the path algebra kI" modulo the following relations:
(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All length-two cycles based at the same vertex are equivalent.
(iv) agr—1as-1,0=0.

Length zero paths yield the idempotents {eq, ..., e/} with e;a; je; = a;; for all
admissible 4,j. The algebra Z is graded by the path length: Z = Z° @ Z' & Z2.
We consider Z as a superalgebra with Z; = Z° @ Z2 and Z; = Z'. Let 3 :=
span(eg, ...,e¢). Define also J := {0,1,...,¢ — 1} and for all j € J, set ¢; :=
ajj+10j4+1,;.- We have a basis B = B; U B, LU B of Z as in (2.2), with

Bi ={ajjr1,a501 15 €J}, By=AHei|liel}, Bei={c|jeJ}

Let e :=eg+ -+ +er_1 € Z. The zigzag algebra is Z := eZe C Z. We also have
3 := e3e = span(eq,...,ep_1). For n > d, the generalized Schur algebra TZZ(n, d) in
this case is Morita equivalent to weight d RoCK blocks of symmetric groups (and the
corresponding Hecke algebras), as conjectured by Turner [T;]| and proved in [EKj].
This was our motivating example. )

In [KM] we construct an explicit cellular basis of ng (n,d), while no such basis is

known for SZ(n,d) (and it probably does not exist in general). Moreover, in [KM]
we prove that Tf (n,d) is quasi-hereditary, while SZ(n,d) in general is not.

6. SYMMETRICITY

6.1. Central and symmetrizing forms. Assume in this section that A has finite
rank as a k-supermodule. We say an even k-linear map t: A — k is a central form
for A provided t(ab) = t(ba) for all a,b € A. In this case we have an associative
symmetric bilinear form (-, -); with (a,b); = t(ab) and a homomorphism

A — A" := Homg (A, k), a+— (a,-)
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of (A, A)-superbimodules. We say that the central form t is a symmetrizing form if
this homomorphism is an isomorphism, i.e. if (-,-); is a perfect pairing.

If A is equipped with a symmetrizing form, we say A is symmetric. We want to
show that if A is symmetric then so is TA(n, d). We will do this under some natural
assumptions. The following lemma is easily checked.

Lemma 6.1. Assume that t is a central form on A. Then the algebra M, (A)®¢ has
a central form t™ : M,(A)®? = k given by

(g, ® @&, = brst(z1) - t(aa),
for all (a,r,s) € A4 x [1,n]? x [1,n]?.
Lemma 6.2. Assume that t is a central form on A. Then the algebra S (n,d) has
a central form t° : S4(n,d) — k given by

d!
ts(fg,s) = m5r,st(a1) -+ t(aq).

for all (a,r,s) € Trit (n,d). Moreover, tM|5A(n,d) = 7.
Proof. Let (a,r,s) € Tri" (n,d). Since t(x) = 0 whenever z € A7, we have
(€ @ ®G,,)7) =t © - e &),

Td;Sd Td,Sd
for all o € &,.
Then for all (a,r,s) € Trif (n,d), we have

tM(é.'IC"L,S) = tM ( Z ( 7(“111,51 QR &gg,sd)a>

sE= 5

= > tME, e 06,))

o-em,’l‘,s_@
M
Y v oo g
o-em,’l‘,s_@
K K M
= ’a " S@’t ( 7[‘111,81 Q& gﬁisd)
d!

— gt t(ea).

giving the result. U

If k is a field of characteristic 0 or greater than d, one can check that the from
is symmetrizing. But this is certainly false over fields of positive characteristics
less than d. In fact, for such fields even the classical Schur algera S*(n,d) is not
symmetric.

tS

6.2. Symmetricity of T (n,d). Throughout the subsection we assume that (A, a)
is a unital good pair, and that A is symmetric, with symmetrizing form t. We
say that t is (A, a)-symmetrizing if (a,a)y = 0 and the k-complement ¢ of a in Aj
can be chosen so that the restriction of (-,-); to a x ¢ is a perfect pairing. If t
is an (A, a)-symmetrizing form, we always assume that the complement ¢ has this
property.

Let t be an (A, a)-symmetrizing form. For a € a, we have t(a) = (a,1) = 0 so
t(a) = 0. There exists an (A, a)-basis B = B, U B, U By of A such that the dual
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basis B* = {b* | b € B} of A with respect to (-,-); satisfies the following property:
setting
By :={b"|be By}, Bi:={b"|bec B}, Bj:={b"|bec Bi}.
we have that By = B¢, B = B,, and Bf is a basis for A;. Then B* := B UB;U Bj

is an (A, a)-basis as well. If t is an (4, a)-symmetrizing form, we always assume that
B has been chosen to satisfy these properties.

Lemma 6.3. Lett be an (A, a)-symmetrizing form. Then the algebra T (n,d) has
a central form tT : TA(n,d) — k given by

tT(???,s) i= Op st(b1) - - - t(ba).
for all (b,r,s) € Tri®(n,d). Moreover, tS|T&4(n7d) =d't’.

Proof. Recall t° from Lemma 6.2. For (b,r,s) € Tri®(n,d) we have

! | d!
k) =% (b, skl ) = b, s]: - o g ometo) - tba).

But, since t(b) = 0 whenever b € B, U By, we have [b,r,s]. = [b,r,s]' whenever
t5(nb 4) # 0. So for all (b,r,s) € Trif (n, d) we have

(17 5) = d!0r st(b1) - t(ba) = It (g ).

As k is a characteristic zero domain and t° is central by Lemma 6.2, t7 is also
central. 0

Lemma 6.4. For allz € TA(n,dy), y € T (n,da), we have t7 (x x y) = t7 (2)t” (y).
Proof. Take (b,r,s) € Tri®(n,d;) and (¢, t,u) € Tri®(n, dy). We have

(0 )t (05 ) = Or 50t (b1) -+ t(bay Jt(c1) -~ t(ca,)-
On the other hand, by Lemma 4.2(iii), we have

|

T b c [bc7 rt, Su]b T be

(ks wia) = ()
777«,3 * nt,u [b, r, s]!a[c, t, u]'a nrt,su

[be, rt, sul,

= Boroslle t L reeut(b) - tbatlen) - teay)-

Since t(b) = 0 whenever b € a, we have the result. (]
Lemma 6.5. Let (b%,7% s%) € Tri®(n,d). Let (c,t,u) € Tri® (n,d). Then

T ey = {F Te=0)ht=slu=r
Thastltw) = Y0 Ctherwise.
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Proof. Recall the central forms t” and t from Lemmas 6.1 and 6.2. We have

d | | d
AT (0l ) = € (100, e, b ) € o6

| | d o
= [bd7 Td? Sd].c[cv t7 u]c tM Sgd,sd Z (gtl,ul ' ® gtd,ud)

oceetuy

= [bd7 rd7 Sd]!c[cv tv ,u’]'c tM Z iésd,to(gg,cifall Q& gg,cgjd)
O-ec,t,u@
= b, r%, s7e, tull Y 00 1500 o t(DCey) - - t(BCoa).
Uec,t,u@
Since t(bc) = 0 for all ¢ € B*\{b*}, we have that tT(n% sdnfu) = 0 unless ¢ = (b*)%,

t = 5% and w = r%. Assume now that ¢ = (b*)¢, t = s? and u = r%. Then

etug = {1}, so the above simplifies to
A" () = £ L0, 5, L

If b € a, then b* € ¢, so we have

b rd, sl =0, [(b9)4,s%, 7Y = d.
Conversely, if b € ¢, then b* € a, so we have

b rd, s =d, [(b)4, 52,7, = 0.
If b € Az, then b* € Az, and (b%,r?, s%) € Tri®(n,d) implies d = 1, so we have

[bd,rd, ] _ [(b*)d d d]c —=0.

Thus, in any case, we have d! tT(ngd’Sdn{?’u) = =d!, so the result follows since k is a
characteristic zero domain. (]

Now we upgrade this lemma. For b € B, write b* := (b,...,b%) € (B*)%.
Lemma 6.6. Let (b,r,s) € Tri®(n,d) and (c,t,u) € Tvi® (n,d). Then

T/ b
t (e Mt w) :{

+1 if (e, t,u) ~ (b*,s,7)
0 otherwise.

Proof. We go by induction on d. The base case follows from Lemma 6.5. Let d > 1.
We have by Lemma 4.6 that either 773,3 = nffj qa for some b € B, r,s € [1,n], or else
77113,3 may be written as
b & b(®
s = 100 s * o) 52

for some d-separated (b(l),r(l), s e Trif(n,dy), (b(2),r(2), s?) e Trif(n,dy),
with dyi,ds > 0 and d; + do = d. In the former situation, the claim follows from
Lemma 6.5, so assume we are in the latter situation.
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Recalling the notation of §3.3, we assume without loss of generality that (¢, t,u) €
Trif" (n,d). We have that

T b T b
t (T sMpw) =t ((imu) s ¥ o) +@ ) )

+le, t,ull | p &)

T b b

=t Z [THT2)! (777«<1> 3(1)?771) (777~<2>7s(2)77T2)
(T1,72)eSpl(c,t,u) ¢ ¢

- Z [T [T2]c t(n (1) s(l)ﬁTl) (m(z) s(2>7772)

(T1,72)eSpl(c,t,u)
applying Corollary 3.20 and Lemma 4.5 for the second equality and Lemma 6.4 for
the third equality. If this is nonzero, then by the induction assumption we must have
T~ (6M)*, s r) and T2 ~ ((b(2 )*, 8@ ) for some (T, T?) € Spl(c, t,u),
which implies (b*,s,r) ~ (¢, t,u).

On the other hand, assume (b*,s,r) ~ (¢, t,u). Then there is exactly one
(T, 72) € Spl(e, t,u) such that 7' ~ ((bM)*, s D) and 72 ~ (8?)*, s?), (),
Then by the above we have

c,t,u 1 2 c.t,u
tT(n27sn§u) =% [;1] [T]Q] (773(01 s<1>777’1) (7711352;)3(2)777—2) = [;1] [T]Q]l )

using the induction assumption. But note, since (b(l), r, 3(1)) and (b(2),r(2), 3(2))
are d-separated, we have [c, t,u]. = [T'].[T?]}, which completes the proof. O

Corollary 6.7. Ift is an (A, a)-symmetrizing form on A, then the algebra T (n, d)
is symmetric, with symmetrizing form t*.

Proof. The form t” is central by Lemma 6.3. Moreover, by Lemma 6.6, we have
that (-,-),r is a perfect pairing. O

Remark 6.8. Given a superalgebra C, this result recovers the symmetricity prop-
erty of the Turner double algebra D%(n,d) described in §5.4.2. In particular,
E(C) = C & C* has a symmetrizing form given by t(a,a) = a(a), so the sym-

metricity of D (n,d) = g(_)( )(n, d) follows from Corollary 6.7.

7. DOUBLE CENTRALIZER PROPERTY

Throughout the subsection we assume that k is a principal ideal domain (as usual
of characteristic 0). All modules and algebras are assumed to be free of finite rank
as k-modules. An element v of a k-module V is called divisible if there is w € V and
a non-unit m € k with v = mw. Otherwise v is called indivisible. We let K to be
the field of fractions of k.

7.1. Double centralizer idempotents. Let S be a k-algebra and e € S be an
idempotent. Considering Se as a right eSe-module, we have an algebra homomor-
phism
A: S — Endese(Se), s— Ag

where \s(s'e) = ss’e for all s,s" € S. We say that e is a double centralizer idempotent
for S if X\ is an isomorphism. We say that e is a sound idempotent for S if \ sends
indivisible elements of S to indivisible elements of End.s.(Se). Clearly, a double
centralizer idempotent is sound.
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Set Sk := S ®x K and use the map s — s ® 1k to identify S as a subset of
Sk. Then Se ®x K = Ske. Using the Universal coefficient theorem, we identify
Endcse(Se) @k K = Endesy(Ske), so that the Ax := A ® idk is the map

)\K : SK — EndeSKe(SKe), S /\s
where Ag is the left multiplication by s. Clearly, if e is a double centralizer idempotent
for S then e is a double centralizer idempotent for Sk, but not vice versa in general.

Lemma 7.1. Let e € S be an idempotent. Then e is a double centralizer idempotent
for S if and only if e is a double centralizer idempotent for Sk and e is sound for S.

Proof. The ‘only-if’ part is immediate. For the ‘if’ part, the assumption that e is a
double centralizer idempotent for Sk implies that A : S — End.s.(Se) is injective.
Moreover,

ranky S = dimg Sk = dim End,g,.(Ske) = ranky End.g.(Se).
So A is a full rank embedding. As e is sound, it now follows that A is surjective. [

7.2. Double centralizer property for S4(n,d). Let (A, a) be a unital good pair,
e € a be an idempotent, and £¢ € T (n, d) be the idempotent of (5.1). Suppose that
e is a double centralizer idempotent for A. Although it is not true in general that &¢
is then a double centralizer for T (n,d), this is true in some interesting situations.

In view of Lemma 7.1, to verify that £¢ is a double centralizer for T2 (n,d), it
suffices to check that £¢ is a double centralizer idempotent for S4(n,d) and that £°
is sound for T (n,d)x = S4(n,d)k. Tt turns out that the first condition is always
true provided d < n. This will follow from the following stronger theorem:
Theorem 7.2. If e € A is a double centralizer idempotent for A and d < n, then
¢ is a double centralizer idempotent for S4(n,d).

Proof. As usual, we write A := eAe. First we show

M, (A) = Endy, 1) (My(Ae)). (7.3)
We have an algebra homomorphism A : M;,(A) — End,; (1)(Mn(Ae)) given by left
multiplication. On the other hand, let ¢ € End,;, 1)(Mn(Ae)). Since @(E}S) =
e(EMEY ;) = (Bl E;; for any a € A and i,1,j € [1,n], it follows that there exist
functions ¢y, ; : Ae — Ae such that

Eae Z E@k .iae)

Moreover, each ¢y ; € End z(Ae), since for all a € A,b € A, we have

,i(aeb)
ZES% (ae (Eaeb) — (EaeEb ) _ (EZE)E?,]

4,379,0

ZEeok .i(ae) Eb _ ZE}e:z;,i(ae)b_

k
implies that ¢y, ;(aeb) = gokﬂ-(ae)b. Thus, since A =2 End 7(Ae), we have that ¢y, ; is
given by left multiplication by a unique z;; € A. Then, since

ZEM i E?,Z _ ZEIU:ET% _ Z E]s:gk(ae) _ (’D(Ezes)’
k

k
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we have a well-defined map p : Endy; 1)(Mn(Ae)) — M,(A) given by ¢ —

> ki E,f’i’ It is clear that A and p are mutual inverses, proving (7.3).
Let us now write

5S4 = 54 (n, d) S4e .= (M, (Ae)®4)Sa S4 = 84(n,d)
MA = M, (A% M4 = M,(Ae)®? M4 = M, (A)%
For a = (ai,...,aq) € A%, r,s € [1,n]?, we will write
Eg,s = g11,81 Q- ® grliivsd'

Our next task is to show
Endgs(S4°) = End,, 4 (M4€)%a. (7.4)
The G -action on End,, 1 (M#A€)S¢ is given by f(x) := F(@ )7, Let
f € End,, 4(M*A¢)%a,
Consider the restriction fyes of f to the k-submodule S4¢. For any o € S4¢, we have
o o oo o
frcs(a) = f(Oé) = f(Oé ) = f (Oé) = f(OZ) = fros(a)a
SO fres € Endga(S4¢) and res : Endga(S4¢) — End,,1(M#¢)®4 is an algebra homo-
morphism.
Now, let g € Endga(54¢). Write e := (e, ...,e) € A%, andw = (1,...,d) € [1,n]"
We inflate g to a linear map ging : M Ae _y NfAe via
ginﬂ(Eg':,s) = g(g'rw',w)Ef),s‘
Note that for any ¢ € &4, we also have
ginﬂ(E'ra'},s) = g(gf,w)Es,s = g(&f,w”&j”,w)Es,s
= g(gf,wa)gj",wEi,s = g(gﬁw")Eg’,s
We will show that gina € End, 1 (M 46)8a_ First we check symmetry:

-1
Ina(Er s) = ginn (B 5)° 1)7

)O’ — (—1)<w7071>ginﬂ(Ewi
= (=) g€ B )7

-1

1 —
730

f,;O'
r° w/ T w,s%

1 JIES 1)

re W w,89
-1

= (~1)®7 Dg(e® . VES,

r? W

_ o1
= (1)@ N (—1)E7 Dg(e2 NES, , = gina(ET,).

Now we check that gj,g is an M A—homomorphism. Let ¢ € (Ae)d, b € A% and
r,s,t,u € [1,n]%

ginﬂ(E'ra'},sEgu) = 5S,tginﬂ(E'ra'},bu) = 53,759( f,?u)Es,u = 53,tg(§f,w€g,w)Es,u
= 5s,tg(§f,w)§g,wEfz7u = 5s,tg(§f7w)§g,wEueJ,u = 6s7tg(€'rw',w)Eg,u
= g(g'rw',w)Ef),sEgu = ginﬂ(Ef,s)Egu'



GENERALIZED SCHUR ALGEBRAS 33
Therefore ging € End, 1(M 4¢)84 - Now we show that res and infl are mutual in-
verses. Let € (Ae)?, and r, s € [1,n]?. For f € End,,1(M*4¢)% we have
(fres)inft (B ) = fres(§7 ) ES s = f (&7 W) EG s = F (&R ES o) = [(EF ),

50 (fres)inﬂ = f
Now, let g € Endga (S4¢), and write ¢’ := (ginfl)res- We have

g/(é.'ra'c,w) = ginﬁ(g'ra'c,w) = Yinfl Z (E'ra'},w)o = YGinfl Z ( )(m 0>E’ra'}‘7 w?

€6y c€Gy
= > (D)® (B ) = Y (1) g€ o) ESe e
€6y c€Gy
= Z (_1)(w,0>(_1) (gr w) W W — Z (5"' w) w9 W
€6y c€Gy
= S'r W Z Ew" 2w = g’r w)fw ,w = g(gf,wffz,w) = g(if,w)?

O'EGd
SO g/(ff,w) = g(é}”ﬁw). We also have

gr wgws = 7"1,51 ¥k ?jsd = |6m,’r,5| ’ gf,s'

Thus, writing m := |S4 5| € k, we have
ed ed
mg,(f’rw',s) = g/(mgf,s) = g/(gf,wgw,s) = g,(fvw',w)gw,s
€T ed €T Bd €T €T
= 9(&rw)€s = 9(&rw8,s) = 9(m&rs) = myg(&rs)-
As m # 0 and S4€ is free over k, this implies that g(E&xs) = g(&7 5). Thus res and

infl are mutual inverses, proving (7.4).
Now, note that the action of &4 intertwines the isomorphisms

M, (A)®% = Endy;, 3)(Mn(Ae))®® = End ), 1 (M),
so we have
Endgegace (S4¢°) = Endga(S¢) = End, 4 (M4°) 2 (M, (A)¥)% = 4,
as desired. O

Corollary 7.5. If e € A is a double centralizer idempotent for A and d < n, then
€€ is a double centralizer idempotent for S (n,d)x = TA(n, d)x.

7.3. Computations in extended zigzag Schur algebras. Recall the notation
of §5.4.3. In particular, we have the extended zigzag algebra Z for a fixed ¢ and the
idempotent e := eg+---+ey_1 € Z. We will use the standard basis B = B; LB LI By
of Z.

For r € [1,n]?, set &, := {0 € &4 | ro = r}, and denote by "2 the set of the
shortest coset representatives for &,.\S .

Lemma 7.6. Lett € [1,n] and 7, s,u € [1,n]%. Suppose that v, # ry, and s, # sp
foralll <a+#b<d. Then

. “?71,13 a?,lfl 0?71
(1) 77,,, td ntd = :l: deed(sgna)n'f’d,s .

d
au 1 Apo—1

d
(i) 776 g g = Egeug Nuo,s -
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Proof. (i) We have
“2171,2 a(zi,eq _ ag—1. ag—1,0\oc Qg g—1 age—1\T
Npa Tha'y = doE e eg) Yo Gate e
ceBy TEG,

== Y (sgno)(sgnr)Eiih, @ - © &L,
o,7€6,

= :]: Z (Sgn U)(Sgn T)Sﬁf;il.rps‘rl ® e ® Sﬁi;il.,.dvs‘rd
o,7€6,

=4 Z (sgn 07_1)(&?(‘;;1,51 ® - ® fﬁﬁild,sd)a,
o,7€6,
which equals the right hand side of the equation in (i).
(ii) We have

d

a? _ _ _
s = (Z <§Zi,t®---®szg,t>"> T e 0gw T

TEYY TEGy

age—1 ag,o—
= Z (sgn7) Eugtysrs @+ @ Lugyysra

oEY YD, TEG,
} : age—1 age—1
= (SgnT) Suo.,rflleSTl X ® guo.Tfle?STd
oEY P TEG,
Qg.e—1 ag,e—1 T
= E ( u, 1,5 O @ fuanld,Sd) )
gEY P TEG,
which equals the right hand side of the equation in (ii). O

We set
Py :=[1,n]% x [1,n]%,
i.e. elements of Py are pairs (r,s) of words 7 =11 ---14, 8 = 51 ---54 in [1,n]%. We
also define
P :={(r,s) € Py| (ra,84) # (rp,8p) for all 1 < a # b < c}.

For b € Bg, the triple (b%,7,s) belongs to Tri®(n,d) for all (r,s) € P;, while for
b € By, we have (b9, 7, s) € Tri? (n,d) if and only if (r,s) € P).

Given A\ € A(n,d), we define

= 1Mt e 1, 0]
We refer to such tuples as leading tuples. Then
6)\ = GTA = 6)\1 X oo X G)W.

For (b%,7,s) € Tri®(n,d), the corresponding Gg4-orbit [b%, 7, 5] has a representative
of the form [b?, t, 7*] for some A € A(n,d) and a representative of the form [b%, r#, u]

for some p € A(n,d). So while working with elements of the form 775’1113 € Tzz(n, d)
we will often assume that s or r is a leading tuple when convenient.

Lemma 7.7. Let A\ € A(n,d), and s,t,u € [1,n]? be such that (s,7%),(r},t) € P}
Then
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. a(zifu “?,271 02171
(1) 7737,,& TITA t + ZO’EGA(Sgn U)nsa,t :

.o d a/ a .
(ii) nZ‘M rizt ' = = D pcus, sfft Y where “S) is the set of the shortest coset

representatives for (S, N GSy)\S,.

Proof. Foru = 1,...,n, there exist words s*, t* € [1,n]* such that s = s' --- 8", t =
t' ... t". We have
d d A1 Al A A
A1 Cppo—1 + ap! 1,0 “u AN *( apy Gy
srd Mg = (77 11N Mx tl) " s nAn n)\n7tn)
1 52\11 02n1
_ - ny,,“e—
=+| > (sgno Mg | %o >~ (sgn o)y i
ole6y, o"eBy,
==+ E (sgno) nsat,
geG )

where we have used Lemma 4.7 for the first equality, Lemma 7.6(i) for the second
equality and Lemma 4.2(iii) for the last equality. This proves (i). The proof of (ii)
is similar but uses Lemma 7.6(ii) instead of Lemma 7.6(i). O

Let A € A(n,d). For r € [1,n], let 2, := 14 3271 A; and y, := S7_, A, so that

[L,d] = [z1,31] U U [z, n]
and if r» = ry---ry then ry = r if and only if s € [z,,y,]. Let 0 < ¢ < d and
we Aln,c), ve Aln,d — c) satisfy u+ v = A. We denote
QY ={U C[1,d] | |[UN [xp,yr])| = pr for all r =1,...,n}
Lett =t;---tg € [1,n]%. For U = {u; < --- < u.} € Q*", we set
U={v < <wvge}:=[1,d\U
and

tV =ty -t

tV =ty oty

With this notation, Corollary 3.20 yields:

Lemma 7.8. Let A € A(n,d) and t € [1,n]%. If (r},t) € P} then
d

d d—c
Ape—1 ag o1 Apo—1
YUAYREDY > > Enly e
c=0 peA(n,c),veA(n,d—c) UEQHV
pnrrv=A>A

Lemma 7.9. Let 0 < c <d, u € A(n,c), v € A(n,d —¢), » € [I,n]%, s € [1,n]¢¢
and t € [1,n]%. Suppose that (r,7") € P., and (r**V,t) € P}. Then

d— d—c
( ag_ Le o Ce c au 1 } : } : + Co_10g0-1
Ny ru 773,7'1’ Nty £ n(ra)(sr),tUtU/ )
UcQrv oe6,, 756,
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Proof. Using Lemmas 4.5, 7.8 and 7.7, we have

d—c d at d—c d—c
( ag_q, g o1 ag_1, G5 o q €, Ay o1

e
Ny ;T * T’sf’r" )nru+u7t = Z :|:(T],,, ,H nr“,tU ) * (ns,r" T"r‘”,tU/)
UeQmv

c d—c

_ Cr—1 Dy 0—1
UeQrv \oeB, TESG,

which equals the right hand side of the equality in the claim by Lemma 4.6. (]

Remark 7.10. Let (b, r ,8), (b, r",8') € Tri%(n,d). By (3.8) and Lemmas 3.2,3.3,

we have that nr s and 777» & are proportional if and only if (b, r,s) ~ v',r' 8. Tt

will be important later on that all the basis elements appearing in the right hand
side of Lemma 7.9 are linearly independent.

Let

d
K, := |_| A4, ¢) = {r = (K1, K2, K3, k1) € A(4) | |K] < d}.
c=0
For k € K4, we set

P, := P}, x Py, x P, x Py,.
Let ((r!,s'), (r?, s?),(r?, s%), (r*, s*)) € P.. We often denote

r=rlr?rirt) s = s's?s3st € [1, ],

and, abusing notation, write (r,s) € P,. Given (r,s) € P,, we define the following
element of Taz(n, |k]):

“L/ 1zee “M 1Ce 1 e 1,6 K2 zs;z 1 CZ41
: = * * * .
771" S = MNr,s 77,& ,s1 77 2 ,82 77,,,3 ,83 77,,44784

We have the equivalence relation ~ on P, given by
(r,8) ~ (t,u) if and only if (r",s") ~ (", u") for h =1,2,3,4.

Let B’ := B\ {ay—14,€s,ar0-1,c0-1}. Recall the equivalence relation ~ on
Tvi% (n,d — |k|) from §2.2. By Lemmas 3.9 and 4.6, we have that

{(npsx 1o g | K € Ka, (r,8) € P*/ ~, (b,p,q) € Tri¥ (n,d— [s])/ ~}  (7.11)
is a basis of Tf(n, d).
Lemma 7.12. Let k € Ky, (r,s) € P* with s' = r#, s> = r”, and (b,p,q) €
Tvi% (n,d — |k|). Let k = ki + ky and (rF7,t) € Pj. Then we have:

K1t+Kg4 Ko +I’€3

x b )( a?,z& *ged*k) _ Z Z + CoZ1 G % b
"lp.q nrl”r”,t - 77(,,.10),,.4(73 )r3,tU 544U’ g3 Np,q-
UeQhr 5es,,rer? 6,

Proof. By Lemmas 4.7 and 7.9, the left hand side equals

K

(s

ot 1,6 ey “2271 e b1 ety ed—Fk
((77 Lpn * 177"2,1'V)77r“+”,t) ((17 3,83 * Npa ,84 * 7717 q)E )

K3

. u 1 Apo—1 l 1
= § § inr1otU .2 U’ * (77,,43733 * M ga ¥ Tlp, q)
UEQY 5e6,,em &
122 v
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which equals the right hand side of the equality in the claim by Lemma 4.2(iii) and
Lemma 4.6. O

Remark 7.13. Suppose that in the assumption of Lemma 7.12, we have additionally
that t = t1,...,t; satisfies t, # ¢, for all 1 < a # b < k and t shares no letters
in common with the words s and s*. Taking into account Remark 7.10, one can
see that all the basis elements appearing in the right hand side of Lemma 7.12 are
linearly independent.

Recall the idempotent £° € TZ,Z (n,d). In this subsection we sometimes write

fed := £¢, so that we also have idempotents £¢° € TZ,Z(n, c) for all ¢ € Z>¢. Recalling
(5.2), we also introduce idempotents

€610 1= (B0)°) 5 (B9)%4) € Tnd) (0 e<d).
Note that €04 = ¢¢ and (40 = ¢e¢. Moreover,
g(c,d—c)f(b,d—b) — 5b Cg(c,d—c)' (714)
The following is easily checked using Lemma 4.5:

Lemma 7.15. Let k € Ky, (r,s) € P, (b,p,q) € TriB/(n,d —|k]), 0 < k < d,
X € A(n, k), and suppose that (v}, t) € Pj. Then

glratrsdmramns) (i ypb Jelmtrdmrmma) — pn Capb
_ ak, d—k ak, d—k
AR (g S €N = 3 g
k
In particular, (ny & * 77;’,7(1)(17%’[;1 * {edik) =0, unless k1 + ky = k and s's% ~ r*.
7.4. Double centralizer property for zigzag Schur algebras. Recall that Z :=
eZe is the zigzag algebra for a fixed ¢ > 1.

Lemma 7.16. We have that e is a double centralizer idempotent for Z.

Proof. As a right Z-module, Ze decomposes as
Ze=eLeDey1Zed---Degle,

so it is enough to check that the algebra map A : Z — End;(Ze) restricts to an
isomorphism e;Ze; — Hom(e;Ze,ejZe), for all 4, j € I.

Let i,j € I with i # £. The map A, z, : e;Ze; — Homg(e;Ze, ejZe) is injective,
since A\;(e;) = z for all x € e;Ze;. Now let f € Homp(e;Ze,e;jZe). As f is a
right Z-module homomorphism, f is determined by the image of e;. Moreover, since
flei) = f(ei)ei, we have f(e;) € ejZe;, and thus f = Ag(,), 50 Ale; ze,; is surjective,
and thus an isomorphism.

Now let j € I, and consider the map A|¢;z, : €jZe; — Homy(eiZe,e;Ze). Note
that e, Ze = span(as¢—1). First we show A’EjZ@[ is injective. If j # £,£ — 1 then
ejZe; = 0, and this is trivially true. If j = £ — 1 then e;Ze; = span(a¢—1¢), and
Mgy (age—1) = co—1 # 0. If j = £, then e;Ze; = span(ey), and A, (age—1) =
age—1 7 0. Thus, in any case )\‘ejZee is injective.

Now we show Al¢, ze, is surjective. Let f € Homy(e,Ze,e;Ze). Since f(age—1) =
flage—1)es—1, we have that f(ase—1) € ejZes—;. Since e;Zey_; = 0 for j # £, 0 —
1,/ — 2 we may assume j € {{,{ — 1,0 —2}. If j = ¢ — 2, then f(aps—1) = car—2,4-1
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for some o € k. But then 0 = f(ags—1a-10-2) = f(ar—1)ar—140-2 = ace_z, 50
f=0=X. If j =¢—1, then f(are—1) = aep_y + Bci—y for some o, € k.
But then 0 = f(are—1c—1) = flage—1)ce—1 = ace—y implies that « = 0. Thus
flage—1) = Beeo1 = Bag—ypapp—1 and f = Agq,_, ,. Finally, assume j = ¢. Then
flage—1) = aage—1 = aepape—q for some a € k, so f = Aqe,. Thus in any case
Ale ;Ze, 18 surjective, and thereby and isomorphism, completing the proof. O

In view of Lemma 5.12, we have feI;Z(n, d)¢c = TZZ(n, d). The main result of this
subsection is

Theorem 7.17. Letd < n. Then £° is a double centralizer idempotent for Tzz(n, d).
In particular, TZ,Z(n, d) = EndT_z(n d (Tf(n,d)g@).
3 b

Theorem 7.17 follows immediately from Lemma 7.1, Corollary 7.5, and the fol-
lowing proposition:

Proposition 7.18. Let d < n. Then £° is a sound idempotent for TZ,Z(n,d).

Proof. Set T := Taz(n, d). We will use the basis (7.11) of T.
Suppose for a contradiction that there exists an indivisible element

= > Giopalrs*hg) €T (4:2pq €K)
KEKg, (r,8)EP./~,
(b€ (n.d—|])/~
such that X\, : T¢® — T&° is divisible, i.e. there exists a non-zero non-unit m € k
such that zn&® € mT for all n € T. By the remarks preceding Lemma 7.7, we may
assume that all s' and s? are leading tuples. If s' = r# and s> = r, we write
(r,s) € P,

We may also assume that among all indivisible elements = as above, our x has the

smallest possible number of non-zero coeflicients q;f,’gmq. Then m does not divide
K,b K,b
Qr s;p.q Whenever ¢rls.pq 7 0.

Let k € Z>( be such that some coefficient qusb;p,q with x1 + k9 = k is non-zero.
We assume that (r,s) € P for some such non-zero coefficient. We now pick
t = (t1,...,tx) € [1,n]? be such that:

(1) t, #tsforall 1 <r#s<k;
(2) the words s* and s have no letters of the form ¢, for 1 < r < k.
Such t exists by the assumption that d < n.

k
We have (r#*% t) € P/. By Lemma 7.15, we have na”’l «¢¢" € T¢e, s0 by the

rHtY ¢
k

@e-1 * gedfk) € mT. On the other hand, by

assumptions made, we must have a:(nrw,, +
b
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k
Lemmas 7.15 and 7.12, we have that a;(n:ﬁ’ffult * fedfk) equals

Z Q'rqu(n 77p q)( »,-ftiult ge )
k€K, (r,8)EPL” /~,
(b,p,q)€TriB’ (n,d—|k|)/~
_ kb Ay agiiy b
- Z Ir,sip,q 77(,,, o) (r27)r3 $U U’ 3 *Mp.q>
k€K, (r,8)ePL" /~,
(b,p,q)€TriB (n,d—|x|)/~

where the second sum is over all U € Q*", 0 € §, and 7 € ’"26,,. By Remark 7.13,
all the basis elements appearing in the whole sum above are linearly independent.
By our assumptions this implies that all of the non-zero coeflicients qusb;p,q appearing
there are divisible by m, which is a contradiction. O

Remark 7.19. For an arbitrary algebra A with double centralizer idempotent e,
it is not the case that ¢ is in general a double centralizer idempotent for T2 (n, d).
For example, take arbitrary n € Zsq, and consider the case A = Ay = Ms(k),
a = span(Fi1, Ea2), ¢ = span(FEj2, E91), and e = Ej7. Then e is clearly a double

centralizer idempotent for A.

The element nﬁﬁ’lE 2= 2§1E113’1E12 is indivisible in T (n,2), and {Fy1, Ea} is a

basis for Ae. For b € {F11, E21}? and 7, s € [1,1n)%, we have that nE12’E12 nte=0
unless b = (Fs1, E91) and » = (1,1). Then, if s; = s9 we have

Ei2,E12  E21,F21 _ (2£E12,E12) . (2£E217E21) _ 4£E11,E11

E11,E11
Ti11 " "his 11,11 11,s 11,s =4

If s1 # s5 we have

E12,E12  FEo21,FE21 __ E127E12 Es1,E21\ _ o¢E11,B11 __ o _FE11,E11
i "Mis = (261, )+ ( 11,s )= 2511,5 =27 s -

This implies that A\ =, =, is divisible in End 4, 5 (T2 (n,2)£°), so £° is not sound,
111 i (n,2)

and thus not a double centralizer idempotent by Lemma 7.1.
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