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ABSTRACT: Accuracy of protein−ligand binding free energy
calculations utilizing implicit solvent models is critically affected by
parameters of the underlying dielectric boundary, specifically, the
atomic and water probe radii. Here, a global multidimensional
optimization pipeline is developed to find optimal atomic radii
specifically for protein−ligand binding calculations in implicit
solvent. The computational pipeline has these three key
components: (1) a massively parallel implementation of a
deterministic global optimization algorithm (VTDIRECT95), (2) an accurate yet reasonably fast generalized Born implicit solvent
model (GBNSR6), and (3) a novel robustness metric that helps distinguish between nearly degenerate local minima via a
postprocessing step of the optimization. A graph-based “kT-connectivity” approach to explore and visualize the multidimensional
energy landscape is proposed: local minima that can be reached from the global minimum without exceeding a given energy
threshold (kT) are considered to be connected. As an illustration of the capabilities of the optimization pipeline, we apply it to find a
global optimum in the space of just five radii: four atomic (O, H, N, and C) radii and water probe radius. The optimized radii, ρW =
1.37 Å, ρC = 1.40 Å, ρH = 1.55 Å, ρN = 2.35 Å, and ρO = 1.28 Å, lead to a closer agreement of electrostatic binding free energies with
the explicit solvent reference than two commonly used sets of radii previously optimized for small molecules. At the same time, the
ability of the optimizer to find the global optimum reveals fundamental limits of the common two-dielectric implicit solvation model:
the computed electrostatic binding free energies are still almost 4 kcal/mol away from the explicit solvent reference. The proposed
computational approach opens the possibility to further improve the accuracy of practical computational protocols for binding free
energy calculations.

■ INTRODUCTION
Many cellular processes such as signal transduction, gene
expression, and protein synthesis are controlled by the binding
of biomolecules. In structure-based drug discovery, in silico,
accuracy, and computational efficiency of the binding free
energy prediction of small molecules to biomolecular targets is
of paramount importance for high throughput screening of
potential drug candidates.1−4 However, fast and accurate
computational prediction of binding free energies continues to
be challenging,5−13 and their outcomes depend strongly on the
molecular modeling technique, particularly, on how well the
solvent effects are approximated.11,14 There are two major
categories of solvent models used in this field:15 explicit and
implicit. Within the explicit solvent framework, the mechanistic
detail and the energetic effect of every single water molecule
are explicitly considered, which in turn results in considerable
computational cost. The implicit solvent model,16−20 which
treats the solvent as a continuum dielectric with polar as well as
nonpolar properties of water, may often offer a good balance
between accuracy and speed. Within this framework, the
generalized Born (GB) model21−30 is widely used because of
its relative simplicity and efficiency.31,32

A key step in implicit solvent modeling is the determination
of the solute−solvent dielectric boundary (DB), a region of

space over which the dielectric constant ϵ (r) shifts from the
value characteristic of the solute interior (e.g., ϵ = 1 or 4) to
that of the solvent, (e.g., 80 for water). Outcomes of implicit
solvent calculations have proven to be extremely sensitive to
the details of DB.33,34 The DB is determined by the radii of the
atom types comprising the protein as well as the size of the
water probe.34,35 Treating the radii as free parameters,
optimization of the DB, considering only the minimum of
four most abundant atom types in proteins (O, H, N, and C)
along with the radius of the water probe, would require finding
a minimum of the relevant objective function in a five-
dimensional parameter space. In the past, such optimizations
for solvation free energies of small molecules were
performedthe optimal DB minimized the deviation of the
computed target from an accepted reference, either exper-
imental or estimated via explicit solvent.36−41 One potential
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technical issue with previously derived optimal radii is that the
true global optimum may not have been foundeven for small
molecules, the corresponding optimization problem is highly
demanding; textbook numerical approaches are unlikely to find
the global optimum in a rugged, multidimensional landscape.
Although this issue may not be critical in practice if a “good
enough” local optimum is found, it still leaves the question
open of how well one can do in principle. Finding a true global
optimum can point to limitations of the underlying physical
theory and thus prompt further development. For practical
calculations, a much more important limitation of optimal radii
based on small-molecule hydration energies is that it is highly
likely that parameters defining the DB that are optimal for
small-molecule calculations are not optimal for estimates of
protein−ligand binding free energies,6,42,43 which is of
paramount interest.
To the best of the authors’ knowledge, global DB

optimization targeting protein−ligand binding has not yet
been performed, likely because of the sheer challenge of the
corresponding optimization problem. The objective function
landscape corresponding to the protein−ligand binding profile
is very likely rugged, with numerous local minima. Finding the
global minimum of such a nonconvex function with many local
minima is a very hard problem.44,45 Descent methods quickly
terminate at a local minimum point. Evolutionary algorithms
do not explore the entire feasible space, may not even converge
to a local minimum point, and are generally inefficient in terms
of the number of function evaluations. Statistical methods are
likewise inefficient in higher dimensions d. Brute force search
on a grid with S points in each of d dimensions has complexity
Sd, which is intractable in practice even for modest S = 102 and
d = 5 used in this feasibility study, for the computationally
expensive function evaluations of interest here. Truly global
methods such as lipschitzian optimization are efficient but
require knowledge of the Lipschitz constant that is often
unavailable. Recent advances in deterministic methods for
global optimization46 have led to an algorithm (DIRECT) that
is remarkably frugal in terms of the number of function
evaluations, practical for d < 100, does not require knowledge
of a Lipschitz constant, and is theoretically guaranteed to find a
global minimum point. The sophisticated search strategy of
DIRECT has been generalized to a massively parallel version,
implemented in the package VTDIRECT9547 used here.
As if finding a global optimum point was not hard enough,

the problem of finding a practically useful optimum is even
harder: the optimum must also be robust to virtually inevitable
perturbations in either the replication of the optimal
parameters or in the objective function. The latter source of
uncertainty is relevant here, as the objective function defined
on a necessarily limited set used in the training is guaranteed to
be somewhat different from that corresponding to the test set
chosen by somebody else in a specific application of the
optimal parameters. One approach is to design a robustness
metric that can be employed as a postprocessing step, decoupled
from the objective function and in principle applicable to the
outcome of any optimization.48

This work has several novel aspects: first, the atomic radii
are optimized specifically for protein−ligand binding free
energy calculations. Second, a Statistical Physics-inspired
method is developed to select the best robust solution. The
basic idea is that not only the value of the minimum of the
objective function but also the width of the “well” around the
point should be taken into account. In order to have a better

insight into the energy landscape, it is essential to explore the
objective function around candidate solutions. Here, we
propose a connectivity graph-based approach to the problem.
Moreover, to the best of our knowledge, the global
optimization technique VTDIRECT95 is new to the field of
structural biology.

■ MATERIALS AND METHODS
Electrostatic Component of Binding Free Energy. The

total solvation free energy ΔGsolv of a molecule is decomposed
into the polar and nonpolar component49

G G Gsolv pol nonpolΔ = Δ + Δ (1)

Given ΔGpol, one can calculate the polar component of
binding free energy, ΔΔGpol, via the following thermodynamic
cycle, as shown in Figure 1; full details can be found in ref 50.

G G G G Epol pol
complex

pol
protein

pol
ligand

CoulombicΔΔ = Δ − Δ − Δ + Δ
(2)

In general, the estimation of protein−ligand binding free
energy is extremely computationally demanding. In order to
make possible tens of thousands of such computations required
for the DB optimization, single-point energy estimates are used
here. The strategy of relying on single-point calculations in the
optimization is consistent with the use of a single snapshot and
fixed structures to obtain the explicit solvent reference ΔΔGpol
values51 employed here. The use of single snapshots for the
optimization is a limitation but a necessary one: attempting to
estimate ΔΔGpol for each trial point in the five-dimensional
atomic radii space based on thousands of snapshots, as is
common in standard MMGBSA protocols,52 would have been
prohibitively expensive in the context of the type multidimen-
sional optimization we have pursued.
We choose ΔΔGpol, as opposed to the total ΔΔG, as the

main reference for several reasons. First, the main objective is
to find parameters for the optimal DB, which explains the focus
on electrostatics. Second, many practical continuum solvent
models are based on the approximation in eq 1, where the
polar and nonpolar components of the total free energy are
decoupled from each other; although this approximation has
its limitations,53−56 it is widely used.15 Here, we decouple the
polar and nonpolar contributions by using as the reference
ΔΔGpol values computed in explicit solvent (TIP3P) and not
considering the nonpolar contribution in finding the optimal
parameters of the DB. Another reason why we do not consider
the total binding free energy for optimizing the DB within this
proof-of-concept work is because the total includes the entropy
componentpractical computational estimates of the latter

Figure 1. Thermodynamic cycle for calculating the polar component
of binding free energy. The vacuum environment is shown in white
background, and the water is in blue.
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involve potentially large uncertainties. Fundamentally, the DB
is related to the shape of the molecule, while the entropy
characterizes fluctuations about this shape, which is another
argument for why it makes sense to consider optimizing
parameters of the two separately, at least as the first
approximation.
Implicit Solvent Model. The GB model has become

popular in the implicit solvent framework because of its
reasonable compromise between accuracy and speed, and the
availability of its diverse flavors in leading molecular modeling
packages. In this work, the polar component of the solvation
energy, ΔGpol, is calculated by the modification57,58 of the
GB59 model:
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where ϵin = 1 and ϵout = 80 are the dielectric constants of the
solute and the solvent, respectively, β = ϵin/ϵout, α = 0.571412,
and A is the electrostatic size of the molecule, which is
essentially the overall size of the structure that can be
computed analytically. Here, we employ the most widely used
functional form f ij

GB = [rij
2 + RiRj exp(−rij2/4RiRj)]

1/2, where rij
is the distance between atomic charges qi and qj, and Ri and Rj
are the so-called ef fective Born radii of atoms i and j, which
represent each atom’s degree of burial within the solute. The
dielectric (solute−solvent) boundary enters into the model via
these radii. The effective Born radii R are calculated by the “R6”
equation60−63
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| − |
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where ∂V represents the chosen representation of the DB of
the molecule, dS is the infinitesimal surface element vector, ri is
the position of atom i, and r represents the position of the
infinitesimal surface element. Uniform offset to the inverse
effective radii is set to the default (which we also found optimal
in the context of this work) value that is 0.028 Å−1. Note that
the DB is not an experimentally measurable entity, a number of
different approaches exist19,34 for representing it within the
implicit solvent model. The solvent excluded surface (SES),
also known as the molecular surface (MS), is a widely used
option to represent the DB in continuum electrostatic
calculations,20,64−69 and we employ it here. While it was
often argued70,71 that the DB based on SES is physically more
realistic than computationally more facile alternatives such as
the van der Waals-based surface, opposite arguments and case
studies exist.72 What is certain is that outcomes of continuum
solvent calculations are very sensitive to details of the DB,33,34

including how internal cavities are treated. While the definition
and representation of internal cavities within SES is relatively
simple and robust, more sophisticated approaches exist, for
example, those based on multiple interacting surfaces73 or
smooth Gaussian DB.74

Within the SES-based representation of the DB, we use a
grid-based MS implementation of “R6”, called GBNSR6,75 for
calculating the integral in eq 4. The grid resolution is set to 0.5
Å by default. A detailed analysis of GBNSR6 and its input

parameters can be found in ref 75. Briefly, GBNSR6
approximates the ideal MS with orthogonal grid patches.
This approximation is based on the “field-view” method76

inspired by the conservation of the flux through different
surfaces. GBNSR6 has recently been shown to be the most
accurate among several other GB flavors in predicting the
electrostatic binding free energies, where the results from the
Poisson−Boltzmann (PB) model were chosen as the reference
values.50 Notice that, while the PB40,65−67,77−81 is generally
more accurate than the GB, using the PB model directly in a
global multidimensional optimization pipeline for calculating
ΔΔGpol is extremely computationally demanding. Specifically,
the use of a high accuracy PB solver77 in our optimization
pipeline would have been prohibitively expensive; GBNSR6
approximates the PB reasonably well, at a small fraction of the
cost.

Radial Distribution Function. A set of 11 small molecules
was selected from a larger set of 504 small drug-like
molecules;82 see Table 1. The choice of these 11 structures

was guided by a prior work,83 where 10 ns long simulation
trajectories were generated for all 504 molecules using
implicit29 water Langevin dynamics at 298 K. To minimize
possible uncertainties84 because of inadequate conformational
sampling of flexible molecules, these 11 structures were among
the ones with the lowest time averaged root-mean-square
deviation with respect to the original conformation. For the
“solute atom”-“water oxygen” radial distribution function
(RDF) estimates, we performed explicit water simulations on
these 11 shortlisted structures using the Amber1285 simulation
package; molecule coordinate and topology files were obtained
from elsewhere,82 and molecule parameters were assigned
using the GAFF force field.86 The molecules were solvated in a
pre-equilibrated cubic box with the TIP3P model water with at
least 12 Å distance from the solute to the nearest box edge.
The solute−solvent system was prepared first by a shallow
steepest descent minimization followed by a second-order
conjugate gradient minimization while restraining solute atoms
in the Cartesian space using a harmonic potential of 200 kcal/
mol/Å2. Subsequently, equilibration and production runs were
performed using the Langevin dynamics with a collision
frequency of 1 ps−1 and integration time step of 2 fs, while the
bonds were constrained by the SHAKE algorithm.87 Positional
restraints of 200 kcal/mol/Å2 were employed on solute atoms
throughout, and electrostatic interactions were approximated
via the particle mesh Ewald method, with 9 Å direct sum
cutoff. The minimized solute−solvent system was equilibrated
in two steps; first, the system was heated to 298 K for 1 ns
using an NVT ensemble followed by a 298 K, 1 bar NPT
ensemble simulation for another 1 ns. The RDFs were
computed from the later 18 ns of a total of 20 ns long
trajectory from 298 K, 1 bar NPT simulations using the radial
function in cpptraj88 feature of AmberTools between each

Table 1. List of 11 Molecules Used in This Work to
Compute the Solute Atom to Solvent (TIP3P) Oxygen RDF

1,1,1-trichloroethane 1,2,3,4-tetrachlorobenzene
2-bromo-2-methylpropane diethyl-sulfide
methyl-methanesulfonate tetrafluoromethane
1,1,2-trichloro-1,2,2-trifluoroethane 1-methylcyclohexene
4-fluorophenol iodobenzene
Morpholine
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solute atom and water oxygen. Positional restraints in the
production runs were used to obtain a “clean” estimate of the
bounds for the atom + water probe distances. Running the
simulation without such restraints would likely lead to a larger
amount of noise in the RDF, coming from conformational
variability. This approach is consistent with our choice of a
subset of the most rigid molecules from the small-molecule
data set listed in Table 1.
Objective Function. Considering the five radii (ρw, ρC, ρH,

ρN, and ρO) as free parameters, the DB optimization turns into
a multidimensional constrained optimization with respect to
minimization of error in calculating ΔΔGpol. The root-mean-
square error (RMSE) objective function to be minimized is

E p
N

G c p G c( )
1

( ( , ) ( ))
c C

i iC pol
GBNSR6

pol
TIP3P 2

i

∑= ΔΔ − ΔΔ
∈

(5)

where ΔΔGpol
GBNSR6(ci,p) is the electrostatic binding free

energy calculated by GBNSR6 for complex (ci) given point p in
the five-dimensional parameter space of (ρw, ρC, ρH, ρN, and
ρO). ΔΔGpol

TIP3P(ci) is the reference electrostatic binding free
energy calculated with TIP3P for complex (ci), and C is a given
data set of N complexes. (In our case, C is a data set of N = 15
small protein−ligand complexes.) The optimization is
performed under the constraints on the probe and atomic
radii listed in eq 9. ParmEd editor in AmberTools is used for
replacing the five radii that is an old point p with a new one, in
complex ci, at each iteration of the optimization. For previously
developed radii not optimized in this work, the equation above
is also used to compute the RMSE for comparison, without any
optimization. The abovementioned objective function is
deliberately cast in a form that retains the units (dimension-
ality) of the physical target quantity, energy here.
Sampling Around the Minimum Points. To have a

better insight into the behavior of the objective function, the
robustness analysis was performed on one thousand or five
thousand sample points in the close vicinity of the best
minimum points. Latin hypercube sampling (LHS),89 a
common algorithm for high dimensions,90 was selected from
the QNSTOP package.91 Briefly, LHS partitions the multi-
dimensional space into grid cells and generates random sample
points so that there exists one and only one sample point per
row and column. A two-dimensional example to demonstrate
the idea is shown in Figure 2.
LHS is easily generalized to high dimensions where many

well-known methods, such as naive Monte Carlo, fail to
explore the space comprehensively. To find the size of the

sampling box, the global minimum point was examined as
follows: We fixed four of the five variables around this point
alternatively and changed the fifth one so that the deviation
from the minimum reached 1.2 kcal/mol (∼2kT). This
strategy guarantees quite a wide region to gain meaningful
samples while avoiding potential overlaps between global and
local minima. Expectedly, this strategy produces an asymmetric
rectangular sampling box, as the electrostatic characteristics of
the atomic types are different

lower bounds ( 0.6 Å, 0.5 Å, 0.1

Å, 1.0 Å, 0.05 Å)
W C H

N O

ρ ρ ρ

ρ ρ

= − − −

− −

upper bounds ( 0.2 Å, 0.5 Å, 0.1

Å, 0.3 Å, 0.05 Å)
W C H

N O

ρ ρ ρ

ρ ρ

= + + +

+ +

Data Sets for Training and Test. The entire data set
consists of 15 protein−ligand complexes for which ΔΔGpol
estimates in explicit solvent (TIP3P) are available and
described in detail in ref 51. This data set was used previously
in similar contexts.50,51,92 Small in size (1635-1995 atoms) and
diverse with respect to values of ΔΔGpol (0.71−25.01 kcal/
mol), these complexes are good candidates to resemble those
in drug discovery. The complexes, ligands, and proteins are
neutral, individually. This choice is deliberate, as it avoids
various uncertainties and complications because of the use of
Ewald summation and periodic boundary conditions in explicit
solvent simulations used in a previous study51 to estimate the
electrostatic binding free energies employed here as the
reference. Also, the structures were restrained51 to mitigate
uncertainties due to conformational variability. Unless
otherwise specified, the data set is partitioned into two subsets
of eight (1PBK, 1FKF, 1BKF, 1FKH, 2HAH, 2FKE, 1ZP8, and
1F40) and seven (1B11, 1FB7, 1FKB, 1FKG, 1FKJ, 1FKL, and
3KFP) complexes in order to train and test the proposed
computational protocol, respectively. This partitioning guar-
antees similar distribution of ΔΔGpol values between the two
subsets.

VTDIRECT95: Global Multidimensional Optimization
Method. The deterministic DIRECT (Dividing Rectangles)
global minimization algorithm46 is a powerful optimization
method for a moderate number of dimensions. DIRECT
guarantees46 global convergence if the objective function is
Lipschitz continuous, without requiring a gradient or knowl-
edge of the Lipschitz constant. With wide application in many
practical nonlinear optimization problems, DIRECT has
proven to be a straightforward and efficient optimization
method. In a nutshell, DIRECT iteratively divides the search
space into boxes, identifies the potentially optimal boxes (those
most likely to contain a global minimum point), and
subdivides them into smaller boxes. An illustration of this
algorithm for a two-dimensional global search is given in
Figure 3.
VTDIRECT9547 is a Fortran 95 package containing a serial

and a massively parallel implementation of DIRECT, scaling to
several thousand processors because of the usage of distributed
control parallelism instead of a common master-slave paradigm
and dimension 100. Sophisticated dynamic data structures and
memory management strategies make VTDIRECT95 efficient
and robust.93−95 VTDIRECT95 is used for optimizing the
atomic radii and the probe radius in a feasible range, to be
determined in “Results and Discussion”, so that the binding

Figure 2. LHS. This example shows how LHS generates random
sample points in a two-dimensional space so that there exists one and
only one sample point in each row and column.
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free energies calculated by GBNSR6 have the best agreement
with those calculated by the reference explicit solvent model
TIP3P.96 As with any mathematical software, VTDIRECT95
has a few input parameters whose understanding and tuning
will improve performance. However, extensive tuning of these
is not necessary, and the time spent tuning usually outweighs
the time from a single run with reasonable (derived from
domain knowledge) and default values.
VTDIRECT95 was employed for the five-dimensional global

optimization with respect to the objective function shown in eq
5, its argument being the vector of parameters: (ρw, ρC, ρH, ρN,
and ρO). We tune three parameters to improve efficiency of the
global optimization with VTDIRECT95:

• eval_limit = 40,000: this condition terminates the
optimization after 40,000 number of objective function
evaluation. Each round of minimization took 1.5 days
using 64 CPUs (AMD Opteron (TM) Processor 6276)
in parallel to run 40,000 objective function evaluations.
There was no decrease, within 5 decimal point accuracy,
in objective function value beyond 38,000 iterations.

• eps_fmin = 0.0001: this parameter stops subdividing any
box further unless the expected change in the objective
function in that box is greater than 0.0001. This prevents
wasted compute time exploring the box, where the
objective function is not expected to change much. On
the other hand, this is a rough estimate over the
expected changes in each box. To avoid losing the global
minimum, and after several trials, the best setting for this
parameter turned out to be 0.0001.

• min_sep = 0.5: in computing multiple (k) lowest minima
corresponding to the global and local minimum points,
without limiting the distance between them, VTDIR-
ECT simply returns the k best values, all likely next to
each other. We define two minimum points (p1 and p2)
in the radii space to be meaningfully different if their
corresponding atomic radii are 0.2 Å far apart, on
average, per dimension (i.e., per atom type). This

constraint leads to a minimum 0.5 Å distance between
two such points in a five-dimensional space, that is
d(p1,p2) = [(p1

1 − p2
1)2 + (p1

2 − p2
2)2 + (p1

3 − p2
3)2 +

(p1
4 − p2

4)2 + (p1
5 − p2

5)2]1/2 = [(5 × (0.2)2)]1/2 ≈ 0.5.
min_sep is the corresponding parameter in VTDIR-
ECT95 that controls the minimum distance allowed
between any two optimal points. Note that this
parameter is taken into account after the optimization,
and it does not affect the global search itself, only which
minima are reported.

In summary, we choose a combination of eval_lim and
eps_fmin for an efficient exploration of the parameter space
and minimizing computational time wasted on those boxes
that are not likely to contain the global minimum. After the
search, by setting min_sep = 0.5, we select those best minima
that are “meaningfully” far apart. The remaining parameters of
VTDIRECT95 are set at their respective default values. See the
Supporting Information for a complete list of parameters used
in this work.

Proposed Metric of Optimum Robustness. Even if
globally optimal parameters have been found, there is no
guarantee that their use in practice will always lead to the most
optimal outcome because of multiple sources of error: for
example, physical manufacturing of the system with the exact
optimal parameters may not be possible in practice (case I)
because of inevitable errors in the process. Besides, optimal
parameters are obtained based on a limited training data set, so
the objective function may be different for the actual problem,
(test set) where the optimal parameters are used in practice
(case II). Although different strategies may be employed to
mitigate overfitting, these do not completely remove the risk of
low transferability between data sets. Therefore, we argue that
a solution that is slightly less optimal than the global optimum,
but leads to less error when replicated, may be preferred over
the true global optimum. In this section, we propose a general
metric for studying the optimum robustness, potentially
applicable to the incidents of the two sources of error. The
motivation is illustrated for the manufacturing source of
“noise”, case I, which we believe is the most straightforward
scenario. Later, a detailed application of the metric is
developed for case II which is directly relevant to our problem
of dielectric optimization.

Motivation. To illustrate, consider a one-dimensional
optimization scenario, as shown in Figure 4. In the first
example (left panel), the two minima correspond to the wells

Figure 3. Function evaluations performed by DIRECT after 0, 1, 5,
and 10 iterations. The objective function values are illustrated via the
contours and the corresponding color bar on the rightmost panel.
Comparing the first and second graphs on the top shows how
DIRECT divides a two-dimensional box after one iteration. On the
bottom right figure, DIRECT finds the global minimum at (0.9, 0.3)
after 10 iterations. It also explores a large domain and evaluates the
function near the local minimum at (0.4, 0.3).

Figure 4. Robustness analysis of two examples. The left panel shows
two equally wide wells, which are similarly robust to small
perturbations of the parameters. The right panel shows a totally
different behavior of the objective function, where the wide local
minimum is more robust to perturbations than the narrow global
minimum.
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at x = 0.5 and x = 1.5, which are equally “wide”, meaning that
inevitable small deviations of the parameters from the optimal
values (shown within the orange interval) lead to the similar
deviations of the objective function from the minimum. In that
respect, both minima are equally robust. As the objective
function E(x) at x = 0.5 is lower than that at x = 1.5 by a
positive Δ, the minimum at x = 0.5 is preferred. In contrast, for
the function shown in the right panel, one can argue that the
local minimum at x = 1.5 is a better choice under some
circumstances, even though the value of the objective function
at x = 1.5 is higher by Δ than the global minimum at x = 0.5.
This is because the local minimum well at x = 1.5 is wide and
flat, so that deviations of the parameters from this local
minimumbecause of, for example, manufacturing errors in
replicating the precise optimal parameter valuesdo not lead
to appreciable deviations in the objective function. However,
small changes (“noise”) in the parameters from the global
minimum at x = 0.5 result in substantial deviations in E(x).
The abovementioned reasoning about depth versus width is

intuitive, but not easy to express in a mathematical form. The
main difficulty is comparing the depth and the width on the
same footing: in general, these are not even expressed in the
same physical units, for example, energy versus length in the
case of the optimization discussed in this work. Insights into a
possible solution to the problem comes from Statistical
Physics:97 free energy

F ln e
x

E x E( ( ) )/g∑ξ= − ξ− −

(6)

includes both the depth (energy) and the width (entropy) of a
state, where Eg is the global minimum of E(x) and ξ = kT is, in
effect, the strength of the “thermal noise”. The state x with the
lowest free energy F corresponds to the most preferred
thermodynamic state in the energy landscape E(x) of the
system when it is coupled to a thermal noise.
Unfortunately, eq 6 is derived for the specific case of systems

in thermal equilibrium and cannot be assumed to be valid a
priori for a general optimization problem. Moreover, it is not
clear how to choose ξ in eq 6 in general. For example, simply
equating E(x) in eq 6 with an objective function that
corresponds to the cost of car production is difficult to justify.
Note that, in Physics, E(x) and ξ have very specific properties
that factor into the specific form of eq 6. Despite these
conceptual difficulties, free-energy like functions have been
used in machine learning98 and optimization99 mainly as the
objective function. However, it is worth mentioning that even
if the entire energy landscape is explored with a perfect
objective function, finding the most robust solution is
nontrivial and necessitates further analysis. The discussed
entropy idea cuts across multiple disciplines. For instance, von
Neumann entropy was used as a measure of the complexity of
protein binding pockets,100 networks,101 and graphs.102 Here,
our focus is on the robustness of optimal solutions with an
application to a problem related to computational drug
discovery.
Here, a more general metric of robustness of optima is

designed, free from the limitations mentioned above. Several
observations about the structure of eq 6 give insights into the
general structure of mathematical expressions that might be
useful in comparing widths and depths of minima. The factor
e−(E(x)−Eg)/ξ in eq 6 penalizes heavily all the contributions to the
sum in F that exceed the global minimum Eg of E(x) by more
than ξ; the value of ξ controls the penalty. In other words, only

a few sample points contribute to the sum in F from a narrow
well, while many more contribute from a wide well.

Proposed Robustness Metric. Inspired by the above-
mentioned example from Statistical Physics, we propose the
following measure of optimum robustness: the expected value
⟨E⟩ of the objective function taken over a representative
neighborhood of the given optimum point. Specifically, ⟨E⟩ =
∫ E(X)P(X)dX, where P(X) is the probability distribution
appropriate for the specific problem; P(X) characterizes the
uncertainty of replicating the optimal parameters or the
objective function optimum or both. Suppose ⟨E1⟩ and ⟨E2⟩
are the expected values of the objective function around
minimum point X1 and X2, respectively; then, by the proposed
criterion, if ⟨E1⟩ < ⟨E2⟩, then, minimum point X1 is preferred
over minimum point X2. Otherwise, X2 is preferred.
Qualitatively speaking, ⟨E⟩ is a robustness metric compromis-
ing between “width” and “depth”. Using Figure 4 again as an
illustration: on the left panel, the average of the objective
function values in the left well is lower than that in the right
one within their sampling boxes. In the right panel, while the
narrow well contains the global minimum point, the average of
its objective function values within the sampling box is higher
than that of the wider well. The statistical meaning of the
proposed robustness criterion can be made even more intuitive
by noting that it is equivalent to the following: “choose X1 if
the probability that E1 < E2 is greater than 1/2.” That is if the
minimum is chosen by this criterion, chances are it delivers the
lowest deviation from the reference, statistically speaking. The
proof of the equivalence is particularly straightforward if one

assumes normal distribution for P(X): P (E1 < E2) = ( )erfc1
2 2

μ
σ ,

where μ = ⟨E1⟩ − ⟨E2⟩, and σ2 is the corresponding variance.
Below, we develop an approach to estimate ⟨E⟩ in practice.

Motivated by the one-dimensional statistical discussion earlier,
consider an exponentially decaying weighted sample in a box B
around a local minimum point X* (in n dimensions) given by

E E P

AE

X X X X

X X

( ) ( )d

( )e d

B

B

X X X X(1/2)( ) ( )t 1

∫
∫

⟨ | *⟩ =

= − − * Σ − *−

(7)

where Σ is a n × n diagonal matrix with Σjj being the empirical
variance of Xj*, for j ∈ 1, ..., n. The specific form of P(X) = A

e−(1/2)(X−X*)
tΣ−1(X−X*), where A is the normalization factor, is

motivated by the common assumption of normal distributions
for complex systems. However, note that, in general, no
statistical distributional assumptions have to be made here, and
that, any reasonable decaying weight function P(X) based on
the data could be used instead, as long as it satisfies the
obvious normalization condition ∫ BP(X)dX = 1. In what
follows, we verify the robustness of the proposed metric to the
specific choice of P(X). Without loss of generality and for the
sake of simplicity and illustration, in what follows, we consider
E(X) as a function of one variable X. In addition, for the sake
of clarity and to simplify notation, we assume that the
coordinate origin is shifted to X*.

Uncertainty in Reproducing the Objective Function.
Assume that the exact replication of optimal parameters is
possible. (This is in fact the case in the dielectric optimization
problem, where the exact optimal atomic radii can be
generated computationally). As discussed earlier, it is
unavoidable that, when a new data set (test set) is considered,
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the objective function will deviate from that used in the
training to find the optimal parameters. To measure this
deviation, consider the shape of the objective function in the
close vicinity of the optimal parameters; see the left panel of
Figure 5. Around its minimum point on the training set, the
objective function is (nearly) a parabola such as E(X) = aX2 +
c. Deviation from this parabola results in another parabola such
as E′(X) = a′(X − b)2 + c′ on the test set. Note that shape
conservation among all sets is a valid assumption because the
training data set is supposed to be a legitimate representative of
the whole set.
In general, each new test set will have its own values of a, b,

and c. However, note that the value of the objective function at
its minimum point on each parabola is not affected by changes
in “a”. When several test data sets are studied, changes in “c”
lead to positive and negative deviations from the optimal
objective function. It is not unreasonable to assume that this
distribution is symmetric around its mean, and therefore, the
deviations in “c” cancel out for a statistically significant number
of test sets. Altogether, on average E′(0) ∝ b2. Using a one-

dimensional version of eq 7 for the illustration, b (0, )2σ≈ ∼ .
What the zero mean of the distribution implies is that the
training set is well chosen that is representative of the problem
and unbiased. We assume this to be the case; the assumption
can be verified explicitly in each specific case. Given this
distribution, the average of the objective function values is

E A E b b( )e d
b B

b /22 2∫⟨ ⟩ ≅ σ

∈ ̃
− ∼

(8)

where B is the sampling box around b = 0, and A normalizes
the probability density function (PDF); see “Materials and
Methods”. To estimate σ in principle, one needs to compare
Ek(X) from a statistically significant number k of independent
test sets; each Ek(X) is compared to E(X) from the training set
to identify the value of bk, for example, as in the example of the
right panel of Figure 5. Then, σ is computed as a standard
deviation of bk.

Numerical Estimate of ⟨E⟩. Here, we estimate the
expected value ⟨E⟩ = ∫ BE(X)P(X)dX of E(X) over the box
B of volume V(B), where P(X) is the PDF of X in B taken from

eq 7. E E PX X( ) ( )V B
N i

N
i i

( )
1⟨ ⟩ ≅ ∑ = . The PDF is normalized so

that P X( ) 1V B
N i

N
i

( )
1∑ == , for random variables X. We use N =

1000 points everywhere, except for the purposes of testing
convergence where N = 5000 is used.

■ RESULTS AND DISCUSSION
The key result of this work is a novel computational pipeline
generally applicable to any multidimensional constrained
optimizations, specifically studied for the DB optimization in
this paper. This section introduces those components of the
proposed optimization pipeline that are completely new,
followed by an illustrative application to a concrete example,
including an analysis. Existing methodological components,

Figure 5. Deviation from the optimal solution (X*) given a new data set. Left: changes in objective function value at X* = 0 (δ) is proportional to
b2. Right: estimation of the standard deviation of b when several test sets are given.

Figure 6. Proposed pipeline flowchart. Radii constraints, optimum robustness metric, and visual analysis are novel and explained in detail in the
Results and Discussion section. GBNSR675 and VTDIRECT9547 are reviewed briefly in the Materials and Methods section.
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such as the GB model or VTDIRECT95 method, are described
in “Materials and Methods”, along with several technical
details. The gist of our proposed pipeline is shown in Figure 6.
Bounds on Physically Meaningful Values of Atomic

Radii. To enforce physical realism and reduce overfitting, we
use atom-oxygen RDF as the key constraint in constructing the
DB; see the Materials and Methods section. Note that unlike
the DB, which is a theoretical concept, RDF is an experimental
observable. Specifically, the probe radius (ρw) and the intrinsic
atomic radii (ρi) are optimized simultaneously, under the
physically justified constraint that ρi + ρw is bounded within
one standard deviation of the first peak of the RDF, see Figure
7. The first-peak region is defined as the region bounded by the

minima before and after the first peak in an RDF. Combining
all the “first-peak” RDF data for a particular atom-type i, the
optimization range is then defined as the mean ± standard
deviation over that data. In the left panel of Figure 7, we show
an example of RDFs obtained from molecular dynamics
simulation trajectories of different molecules; after combining
the first-peak regions and computing the standard deviation,
the optimization region is defined by (Rmin, Rmax).
The RDFs are computed using molecular dynamics

simulations in TIP3P96 explicit solvent. As a result, the
following upper bounds and lower bounds are obtained:

0.2 Å 1.6 Å,

2.2 Å 3.8 Å,

1.4 Å 3.0 Å,

2.2 Å 3.8 Å,

2.2 Å 3.8 Å

w

w C

w H

w N

w O

ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

≤ ≤

≤ + ≤

≤ + ≤

≤ + ≤

≤ + ≤ (9)

The bounds for the water radius ρw were obtained as
follows: the upper bound for the water probe radius was
chosen (with a buffer of 0.2 Å above) as the standard water
probe radius of 1.4 Å, the lower bound was chosen as (with a
0.2 Å buffer lower than) the standard water probe radius of 1.4

Å minus the standard water oxygen−hydrogen bond length of
approximately 1 Å. There are only a few complexes containing
sulfur (S) atoms in the protein−ligand data set; to avoid any
potential overfitting, the S radius is set to 1.8 Å (bondi) as the
default. For a fair comparison, the same radius is considered for
S in PARSE41 and ZAP-9.40

Application to Optimization of Atomic Radii. Here, we
use VTDIRECT95 for global optimization of the probe and
atomic radii. Results are shown in Table 2. The practically
indistinguishable optima are reranked later using the proposed
robustness metric.

In what follows, a five-dimensional form of eq 8 will be
applied as the robustness metric for ranking the optimal
solutions. The generalization of σ 2 in eq 8 is Σ being the
empirical variance of the global optimal solution X* from the
test set. Here Σ is a five-dimensional diagonal matrix, where
diag(Σ ) = (σW

2, σC
2, σH

2, σN
2, σO

2); see eq 7. In other words,
diag(Σ ) shows the variance of each radius resulting from the
use of possible new test sets. The integration domain in eq 8
was estimated earlier in the Materials and Methods section,
and we use it here. The initial test set was introduced in the
Materials and Methods section; here, the test set is partitioned
into seven test cases each made of one single protein−ligand
complex. We are thus considering an instance of the general
problem where one is interested in the performance of the
optimal parameters on a single protein. As a result, we have a
statistically meaningful distribution of b values (see the right
panel of Figure 5).
To estimate Σ we must make approximations. We assume

that in going from the training to a test set, the whole objective
function (energy) landscape shifts as a whole, with a similar
pattern around each minimum, Figure 5. Because of the E(X)
shift in going from the training to the test sets, Ek(X*) −
E(X*) = δk > 0, where Ek(X) refers to the test case k, k ∈ {1, ...,
7}. To find bk we require that E(bk) = δk, similar to how the
sampling box bounds were identified, see the Materials and
Methods section. We repeat this process per dimension,
assuming that the deviation in each radii contributes equally to
the total deviation in energy. Given seven test cases, we
calculate the variance of b which finally results in diag(Σ ) =
(0.0096, 0.0024, 0.0025, 0.0324, 0.0009). We apply the same Σ 
to evaluate robustness of all the optima in Table 3the use of
the same Σ is justified by the assumption that the overall shape
of the test set objective function is similar to that of the
training set.
Objective function values, Etrain, and the corresponding

ranking on 1000 and 5000 sample points, ⟨Etrain
1000⟩ and

⟨Etrain
5000⟩, for the lowest five optima, OPT1 to OPT5, are

shown in Table 3. In order to study the effect of the underlying
sharply decaying weighting function on the final ranking, we

Figure 7. SES exemplified for a “molecule” of six atoms. SES is shown
as the purple boundary, defined as the locus of the contact points
(connected by circle arcs at contact discontinuities) of water probe
(white circle) when it is rolled over the molecule (gray circles). An
example of RDF of atom (water oxygen) obtained for atom type i
from molecular dynamics simulations of various molecules containing
that atom type is shown in the gi‑ow(R) plot to the left of the
schematic. Each color in gi‑ow(R) plot represents a separate instance of
atom type i; the bounds (Rmin, Rmax) are computed as one standard
deviation about the mean (shown as the double-headed red arrow) of
the RDF first peak, inferred from the combined data of the first peaks
for all the instances of the atom type i. These bounds are used to
constrain ρi + ρw for simultaneous optimization of ρi, atomic radii of
atom i, and ρw, water probe radius.

Table 2. Lowest Five Optimum Parameter Vectors Found
by VTDIRECT95a

ρW ρC ρH ρN ρO Etrain

OPT 1 1.37 1.40 1.55 2.35 1.28 3.94
OPT 2 1.52 1.79 1.47 2.27 1.28 4.04
OPT 3 1.06 1.67 1.32 2.14 1.35 4.08
OPT 4 1.37 1.34 0.77 1.57 1.81 4.24
OPT 5 1.06 1.35 1.74 2.71 1.17 4.25

aRadii are in Å, and objective function values of the training set, Etrain,
are in kcal/mol.
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considered a modified P(X), P′(X), that equals A within the
one standard deviation of the optimal solution and zero
otherwise. Formally

l
m
ooo
n
ooo

P A iX X X( ) , if 1, ..., 5 : ((diag( )))

0, otherwise
i i i

1/2

′ = ∀ ∈ { } | − *| < Σ∼

(10)

where A is the normalization factor; see the Materials and
Methods section. The corresponding ranking on 5000 sample
points, ⟨Etrain

5000⟩′, is shown in Table 3.
Three conclusions can be inferred from this table: first, while

all the Etrain values are within the kT range, the proposed
robustness method accentuates the difference between the
optima. This is particularly clear when OPT1 and OPT4 are
compared. Later, we will show how these two optima are
qualitatively different in terms of their connectivity in the
multidimensional landscape. Second, the ranking of the optima
is conserved among 1000 and 5000 sampling scenarios which
supports the convergence of the method. Third, both
weighting functions lead to similar ranking, which demon-
strates the stability of the proposed ranking method to the
choice of the weighting function. As a complimentary analysis,
we will now compare OPT1 and OPT4, the most and least
robust optimal solutions.
Objective Function Landscapes Near Optima. To

demonstrate the difference between OPT1 and OPT4 revealed
by our robustness metric, the behavior of the objective
function around these two optima is shown in Figure 8.
Comparing the left and right panel, wide wells are clearly
observed around OPT1, as opposed to OPT4 that has deep
narrow wells around the optimum in each dimension.
Visualizing the Optimization Landscape. Visualization

of a multidimensional landscape is problem-specific as there is
no single gold standard representation. We propose to reduce
the complex landscape to a connectivity graph that can be
constructed by a relatively limited sampling of the objective
function around and between pairs of global and local
minimum points. Our goal in this section is to facilitate the
visualization of the five-dimensional optimization landscape
between the global and four local minimum points.
Distance Plot. The key idea is to reduce the N-dimensional

landscape to a two-dimensional one, within a relatively narrow
“corridor” between pairs of the global and a local minima and
then to visualize only those points in the corridor, whose
objective function values are below a predefined threshold. For
mapping the five-dimensional space onto a two-dimensional
visualizable plot, the Euclidean distance is calculated from the
sample point to each of the two minima; see Figure 9 in which
the procedure is illustrated for the global minimum (OPT1)

and a local minimum (OPT2). The distances between a
sample point (x) and the two minima (OPT1 and OPT2) are
calculated in a large sampling box, as shown in black in Figure
9. We call these two distances d1 and d2, respectively; these
become the coordinates of x in the new 2D representation.
The large box covers the space between the smaller sampling
boxes (shown in red) bounded around OPT1 and OPT2. In
Figure 10, (“distance plot”) only those points (with
coordinates d1 and d2) whose objective function values are
within the range of kT from the objective function value at
OPT1 are shown. We call these points kT-reachable. Similar
plots are shown for OPT1 versus the remaining local minima
OPT3, OPT4, and OPT5.

kT-Connectivity Graph. An examination of the objective
function landscape shown in Figure 10 suggests that OPT1 is
“connected” to OPT2, OPT3, and OPT5 but “disconnected”
from OPT4, assuming kT ≈ 0.6 kcal/mol as a threshold of
meaningful difference in the objective function. Below, we
formalize this intuitive notion of connectivity of minima of a
multidimensional landscape. Namely, we define kT-connectiv-
ity graph, G(V,E), where V is the set of vertices and E is the set
of edges. G is a star-shaped graph, in which V represents the
global (OPT1) and local min points with OPT1 in the center;
see Figure 11. The central vertex (OPT1, in our case) and
another vertex in G are connected if and only if there exists a
“kT-path” between the two. We define kT-path as a continuous
path between the global minimum point and another local
minimum point such that all of the (sample) points along the
path are kT-reachable, that is, the objective function values for
all the points along the path are within the range of kT from
the global minimum. In practice, the goal is to ascertain kT-
connectivity with a high degree of certainty using a finite
number of sample points.

Establishing kT-Connectivity. This problem in general may
be very difficult: for example, if kT-paths deviate significantly
from a straight line connecting the two minima, extensive
sampling of large portions of N-dimensional space may be
required to establish one such path. Fortunately, in our case,
kT-paths between OPT1 and any of OPT2, OPT3, and OPT5
appear to be obvious; see Figure 10. We are relying on the fact
that the LHS method employed here samples the five-
dimensional space quite uniformly, which means that a clear
gap in kT-reachable points along a putative path may indicate
the presence of a true barrier above kT in the objective
function. However, while in the case of just 1000 sampling
points (orange dots), gaps of connectivity along the line
connecting the minima are seen, increasing the sampling 5-fold
(blue dots) and clearly filling these gaps with kT-reachable
points. We do not see a need to pursue a more formal proof
here. However, if a formal proof of kT-connectivity for a given
path is required, one can utilize the fact that our objective
function is assumed Lipschitz-continuous, meaning that there
exists a real constant K ≥ 0 such that, for any X1 and X2

E X E X K X X( ) ( )1 2 1 2| − | ≤ | − | (11)

Consider a set of N-dimensional spheres {S1, S2, ..., Sn}, each
of radius rK, such that the center of each sphere lies on the kT-
path being verified, spheres i and i + 1 overlap, and the center
of the first and last sphere coincide with the two minima for
which the path is being established. In short, the set of spheres
completely covers the putative path. (To be specific, one can
choose n such that the number of spheres needed for the
minimal coverage.) Now, choose rK small enough so that 2KrK

Table 3. Robustness Analysis of the Lowest Five Optimum
Parameter Vectors Found by VTDIRECT95a

⟨Etrain
1000⟩ ⟨Etrain

5000⟩ ⟨Etrain
5000⟩′

OPT 1 4.73 4.71 4.45
OPT 2 4.75 4.75 4.51
OPT 3 5.00 4.97 4.75
OPT 4 5.75 5.78 5.37
OPT 5 4.87 4.90 4.61

a⟨Etrain
1000⟩ and ⟨Etrain

5000⟩ show the result of ranking using Gaussian
distribution as the weighting function, while the last column,
⟨Etrain

5000⟩′, uses P′(X) defined in eq 10, all are in kcal/mol.
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< 0.1kT, and choose the sampling density high enough so that
each sphere contains at least one point X0 for which E(X0) is
within 0.9kT of the global minimum; then, by eq 11, all points
in each Si are kT-reachable, and because the spheres overlap,
the path we have just verified is indeed a kT-path between the

two minima. Note that the rationale for 2KrK < 0.1kT is as
follows: if a 0.9kT-reachable point X0 exists within a given
sphere, then the maximum distance from it to any point X
within this sphere is 2rK; therefore, the maximum deviation of
E(X) inside this sphere from E(X0) is less than 2KrK (by

Figure 8. Projection of OPT1 (global min) and OPT4 (local min) onto different radii coordinates. The left panel shows the behavior of OPT1
objective function projected onto ρW, ρC, ρH, ρN, and ρO within the sampling box and in the physical bound proposed in eq 9. The right panel
shows similar graphs for OPT4. Radii (x coordinates) have different ranges in order to keep the objective function values (y coordinates) in the
same range, which is 2kT forming the OPT1 value.
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Lipschitz continuity), which in turn is less than 0.1kT by the
imposed condition on rK. Because |Eg − E(X0)| < 0.9kT, where
Eg is the global optimum, it means that |Eg − E(X)| < 0.9kT +
0.1kT, thus X, and any other point inside the sphere, is kT-
reachable.
Establishing kT-Disconnectivity. In stark contrast to OPT2,

OPT3, and OPT5, the distance plot between OPT1 and OPT4
suggests that these two optima are disconnected; see Figure 11.
While formal proof is not pursued in this work, we provide a
qualitative rationale for why OPT4 is so different from the
other minima in its connectivity to the global optimum.
Consider a path between OPT4 and OPT1, where all of the
radii except ρO are kept at their OPT4 values, while the oxygen
radius (ρO = 1.81 Å at OPT4) converges to its OPT1 value
(ρO = 1.28 Å). In doing so, the objective function becomes
large very quickly: a 0.1 Å decrease in the ρO of OPT4 leads to

more than 4kT deviation in the binding energy. This behavior
is suggestive of the existence of a high barrier between OPT4
and OPT1. Comparing the kT-connectivity graph in Figure 11
and Table 2, we observe that changes in ρO play a key role in
the kT-connectivity graph: OPT1 and OPT2 that share an
identical ρO are clearly connected, while OPT1 and OPT4,
that have quite different ρO, are disconnected. This observation
is also aligned with the electrostatic characteristic of oxygen
which can substantially change the result of ΔΔGpol.

Optimized Parameters of the DB Show Promise. For
the most robust optimum (OPT1 in Table 2), the deviation of
the corresponding electrostatic binding free energy from the

Figure 9. Procedure for creating a distance plot, exemplified. OPT1
(global minimum) and OPT2 (local minimum) are selected in this
demonstration. The large sampling box, shown in solid black, covers
the space between the smaller sampling boxes (dashed red rectangles)
around OPT1 and OPT2. These two smaller boxes are found by
applying the sampling algorithm explained in the Materials and
Methods section. For each sample point x in the large box, five-
dimensional Euclidean distances d1 and d2, from OPT1 and OPT2
(shown as stars) to x are calculated, and the corresponding objective
function value is illustrated on the distance plot, as shown in Figure
10.

Figure 10. Distance plots. Shown are only those sample points whose objective function values are within the range of kT from OPT1. The 1000
and 5000 sample-point scenarios are shown in orange and blue, respectively.

Figure 11. kT-connectivity graph. Vertices represent the global
minimum point (OPT1) in the center and local minimum points
around it. An edge between OPT1 and another vertex indicates that it
is possible to move between the two minima without exceeding a
predefined threshold of the objective function; in our case, kT ≈ 0.6
kcal/mol.
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reference on the training and test sets are shown in Table 4.
We also tested two other commonly used radii: PARSE and

ZAP-9, optimized previously against solvation energies of small
molecules. These two sets of radii are chosen for comparison
because they have about the same number of independent
atom types; to the best of our knowledge, no radii sets
optimized specifically for protein−ligand binding exist. Four
conclusions can be made. First, the global radii optimization
methodology discussed here delivers around 1.5 kcal/mol
improvement in the accuracy of the estimation of the
electrostatic binding free energy on the test set compared to
what can be achieved with existing radii sets with similar
numbers of distinct atom types. This observation supports our
key conclusion that the proposed multidimensional global
optimization procedure works as intended. Second, the
remaining error is still appreciably larger than chemical
accuracy of 1 kcal/mol, which means that the new radii set
should be considered as a step in the right direction but not
the final solution. The fact that the global optimum is still
outside the chemical accuracy is not surprising given the “bare
minimum” number of atomic radii optimized, combined with
the relatively simplistic two-dielectric continuum model and a
small size of the training set of structures used in this proof-of-
concept study. Third, the difference between the energies of
training and test sets is significantthat issue will be addressed
below. Finally, it is worth mentioning that OPT4 performs
poorly on the test data set, RMSE = 7.92 kcal/mol. This, again,
supports the use of the proposed robustness metric to
eliminate the least promising optimization candidates.
Rebalancing of the Training and Test Sets. From Table 4

it is clear that the current training and test sets are not well
balanced, in that the RMSE to the reference is almost 3 kcal/

mol smaller for the training set compared to the test set, for all
three radii sets. To close this gap between the training and test
sets, a data-driven partitioning idea is proposed. As shown in
the left panel of Figure 12, the current partitioning assigns
1B11 complex to the test set. In the revised partitioning, this
complex, whose ΔΔGpol is an outlier, is assigned to both the
training and test sets. The atomic radii are then reoptimized.
Although the RMSE of the training set increases from 3.94 to
4.39 kcal/mol in this revision, a more consistent correlation
with the reference explicit solvent model is observed.
Moreover, the RMSE of the test set decreases from 6.62 to
4.98 kcal/mol that is quite close to the RMSE on the training
set. The optimal atomic radii obtained by this rebalanced
partitioning scheme will be explored in detail in a future study.

■ CONCLUSIONS

The main outcome of this work is a novel computational
pipeline that can be employed to address highly complex and
computationally demanding optimization problems where
global optimization is desirable. Using the novel pipeline, we
have performed, to the best of our knowledge for the first time,
a global multidimensional optimization of atomic radii
specifically for the purpose of computing protein−ligand
binding free energies in implicit solvent. Our approach is
distinctly different in several respects from the past efforts to
optimize atomic radii for continuum solvent calculations. First
and foremost, the introduced optimization protocol targets
reference binding free energy directly, which is computation-
ally much more demanding than using the solvation free
energy of small molecules as the reference, as was done in
several previous studies. The necessary computational
efficiency was achieved here by the use of a highly accurate
numerical GB model (GBNSR6), instead of the numerical PB
model employed in the past in radii optimization efforts.
Second, the highly parallel optimization approach (VTDIR-
ECT95) used in this work is able to deliver global rather than
local optima. Global optimization of parameters of the DB at
this scale was all but impossible in the past but is now within
reach through the computational pipeline developed in this
work. Third, a new general metric was introduced for
robustness analysis of the multiple nearly degenerate optimum
points. The metric helped us to clearly distinguish several
optima otherwise indistinguishable. The exploration of the
complex multidimensional objective function landscape was
facilitated by what may be a novel visualization approach.

Table 4. Accuracy (RMSE to the Explicit Solvent Reference,
eq 5) of Calculating ΔΔGpol Values Using the Proposed
Optimal Radii (OPT1) and Two Other Popular Sets of
Atomic Radiia

atomic radii ρW ρC ρH ρN ρO Etrain Etest

OPT1 1.37 1.40 1.55 2.35 1.28 3.94 6.62
PARSE 1.4 1.7 1.0 1.5 1.4 10.80 8.07
ZAP-9 1.4 1.87 1.1 1.55b 1.52c 5.28 8.27

aRadii are in Å and RMSE value of the training and test sets, Etrain and
Etest, are in kcal/mol. bSame value for secondary and tertiary N. cSame
value for carbonyl O.

Figure 12. Rebalancing of the training and test sets, with the TIP3P explicit solvent model as the reference. Left: the current partitioning method
partitions the whole data set of 15 small protein−ligand complexes into the training and test subsets with a similar distribution of ΔΔGpol. Training:
RMSE = 3.94 kcal/mol and r2 = 0.76. Test: RMSE = 6.62 kcal/mol and r2 = 0.37. These results are obtained using the existing global optimum radii
(OPT1). Right: New partitioning puts the single outlier (1B11) in both the training and test sets. Training: RMSE = 4.39 kcal/mol and r2 = 0.68.
Test: RMSE = 4.98 kcal/mol and r2 = 0.57. These results are obtained using new global optimal radii (not discussed here) found by
VTDIRECT95.
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With respect to the globally optimized atomic (and water
probe) radii obtained with the new pipeline, at least two results
have emerged that should be of interest to the biocomputa-
tional field. First, compared to two well-known sets of
“electrostatic” atomic radii, previously developed based on
hydration free energies of small molecules, the new radii result
in a better agreement with the explicit solvent electrostatic free
energy, used as the reference. The improvement should be
viewed as a consistency check of the optimization method
rather than a claim of an immediate practical value of the new
radii. It is still worth noting that the number of distinct radii, or
atom types, in the proposed radii set is only five, including that
of the water probe. To the extent that better agreement with
the explicit solvent improves the accuracy of implicit solvation
with respect to reality, the new atomic radii warrant further
exploration to see if they improve outcomes of practical
protein−ligand binding calculations within the GB/PB frame-
work. At the same time, the remaining error, relative to the
explicit solvent, is still appreciably above the desired chemical
accuracy threshold. Given that the global optimum was found,
this result points to a fundamental limitation of the common
continuum solvent model at the GB/PB level.
The proposed optimization pipeline, and especially, the

proposed parameters (atomic radii) of the resulting “electro-
statically optimal” DB have several limitations, within the
continuum solvent framework. To begin with, we expect the
optimal radii to be specific to the DB definition used here, that
is, sharp SES. Future efforts should explore to what extend the
accuracy of the implicit solvent-based protein−ligand binding
energies may improve if alternative definitions of the DB are
used.33 The optimal radii are also specific to the explicit water
model used here as the reference (TIP3P); a future
optimization effort should consider at least two different
accurate water models as alternative accuracy targets. Another
limitation of the approach is the focus on the polar component
of the solvation and the neglect of possible coupling to the
nonpolar part of the total binding free energy. Adding
computationally feasible parts of the nonpolar energy and
optimizing against the resulting total may improve the
outcomes. We also note that the optimization pipeline does
not account for the entropy component of the binding free
energy: thus, if the given protein−ligand complex binding is
dominated by the entropy, the optimal DB will have little effect
on the overall accuracy. However, the “electrostatically
optimal” DB proposed here may still serve as a good starting
point for more sophisticated optimizations that account for the
entropy component. Finally, the training and test sets of
protein−ligand complexes used here are relatively small, which
raises transferability concerns. This limitation is not of the
optimization pipeline but of the specific radii set proposed.
In the future, it would be interesting to explore to what

extend the accuracy of the implicit solvent-based protein−
ligand binding energies can improve if the number of atom
types with distinct radii is increasedthe developed computa-
tional pipeline can easily handle global optimization even if the
number of atom types is doubled. However, fundamentally, the
accuracy limitations revealed by this work point to the need to
develop and test, within the context of protein−ligand binding
and implicit solvation models of higher accuracy than the GB/
PB for the electrostatic effects. Global optimization for models
comparable in efficiency to the GB, such as fast numerical PB
flavors, can be handled easily by the new pipeline. In fact, it will
be easy to check if the optimal radii developed here perform as

well or nearly as well within the PB. Perhaps, a more
interesting investigation would involve models, such as 3D-
RISM, which incorporates many of the explicit solvent effects
beyond the PB, and has shown promise in end-point ligand-
binding estimates.103 An optimization pipeline based on
VTDIRECT95 has the potential to handle such relatively
expensive optimizations, given an appropriately scaled
computational resource. This is because VTDIRECT95 can
efficiently utilize all of the CPUs made available to it, for
sampling of the vast parameter space, that is, given 100× the
computational power used in this work, not only will the
parallel implementation scales to 100× per single-point
evaluation but it will also scale to 100× concurrent evaluations.
Ultimately, we hope that the optimization methodology
proposed in this work will help reduce the error of the
implicit solvation approach relative to the experiment in
protein−ligand binding estimates.
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