
Received March 26, 2021, accepted April 9, 2021. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.3073089

On Parallel Real-Time Security Improvement
Using Mixed-Integer Programming
HUSSAIN M. J. ALMOHRI 1, (Member, IEEE), LAYNE T. WATSON2,3,4, (Life Fellow, IEEE),
HOMA ALEMZADEH5, (Member, IEEE), AND MOHAMMAD ALMUTAWA1
1Department of Computer Science, Kuwait University, Kuwait
2Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
3Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
4Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
5Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA

Corresponding author: Hussain M. J. Almohri (almohri@ieee.org)

ABSTRACT Network security defenses evolve, responding to real-time attack incidents, modifying the
underlying topology, or reallocating defense systems across the network. The present work emphasizes
reducing the time to compute new optimal reallocations of defense systems, responding to emerging real-
time remote attacks. The proposed heuristic method utilizes parallel processing by slicing the underlying
graphical model representing the network topology, solving in parallel multiple mixed-integer programming
problems corresponding to the created subgraphs, and producing an estimate of the optimal defense. The
parallelized method to compute a new defense enables producing a response, in real-time, before remote
attackers compromise a target machine in the network. Our prototype tool to compute a new defense,
the high-performance security analyzer, has a speedup of at least 20 over solving the original problem
using a serial algorithm, and with an insignificant difference between the performance of the (computed
in parallel) approximately optimal defense and the (serially computed) optimal defense. A major conclusion
is that further speedups will come from parallel integer programming algorithms rather than from graph
partitioning.

INDEX TERMS Security management, parallel processing, tree graphs, mathematical programming.

I. INTRODUCTION
System administrators can analyze a network’s security by
constructing a graph-theoretic model, referred to as the attack
graph, showing access control rules across the network nodes.
Using graphs to represent networks is a common practice and
can benefit from a wealth of graph algorithms. A specific
advantage is to model the flow of attacks in a network using a
digraph (defined as an attack graph or an attack tree [1]–[4]).
Particularly, as shown in some of the previous works (such
as [5]–[7], and [8]), graph-theoretic models can be used to
optimize network security goals against powerful attackers.
Given prior attack data, attack success probabilities can be
propagated through an attack graph, capturing the attacker’s
probability of success in compromising a specific target
machine (represented as a sink node in the graph). Using the
success probability as a measurable quantity, improving the

The associate editor coordinating the review of this manuscript and

approving it for publication was Chunsheng Zhu .

defense can be realized as an integer optimization problem to
minimize the attacker’s success, considering several defense
opportunities subject to access control rules. In a volatile net-
work environment, remote attacks emerge supported by auto-
mated tools and prior planning, requiring only a few seconds
to penetrate the network. Groups of coordinating or inde-
pendent attackers may attack simultaneously or within short
time intervals, stressing the defense to develop new plans for
combating the incoming offenses. Methods such as patch-
ing vulnerable software [9] and moving target defenses [10]
are orthogonal to graph-theoretic analysis of security in the
network. However, we only focus on using optimization for
improving the security of networks against external attacks.

This work emphasizes the need to reconsider the effi-
cacy of existing optimization methods to react in real time
to attacks, minimizing the progress of the attack through
the network. The immediacy of response necessitates gen-
erating a new defense plan in real-time, utilizing intrusion
prevention systems, modifying the defense parameters, and

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 1

https://orcid.org/0000-0002-7738-5864
https://orcid.org/0000-0001-8041-0197

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

reorganizing the network topology. A swift response must
therefore produce a new defense plan before an attack com-
pletes. We observe that the time required for solving opti-
mization problems can preclude swift responses to attacks in
real time, creating the need for improving the computation
time.

The efficiency of graph-based optimization is mainly
dependent on the approach to model the optimization prob-
lem and the graphical structure of the network. The main
challenge is designing realistic optimization methods against
external attacks while minimizing the computational hurdles.
The graphical structure of the network would impose fur-
ther requirements on building computationally efficient algo-
rithms to aid in real-time network attack strategy assessment.
Thus, we elaborate on the need to exploit parallelism for
improving the efficiency of optimizationmethods for reacting
to emerging external attacks.

There are several ways for implementing a parallel secu-
rity optimization algorithm. Shared memory and distributed
memory methods deal primarily with hardware than struc-
tural parallelism.An analysis of the problem’s potential paral-
lelism, and parallel computational results, show that existing
optimization software only allows coarse grained parallelism,
whereas better speedups could be attained if only fine grained
parallel optimization algorithms were available. It is beyond
the scope of this work to develop from scratch a fine-grained
parallel mixed integer optimization code. Thus, the main
contribution of this work is to present the methods for an
improved computational efficiency by parallelizing the opti-
mization effort across several subgraphs.

There is a large body ofwork concerning graph partitioning
(for example [11], [12]) and parallel graph algorithms such
as Pregel [13]. The literature on graph partitioning and par-
allel graph processing mainly focus on processing social net-
works or graphs used in machine learning algorithms. Kaynar
and Sivrikaya proposed a distributed processing model to
improve the efficiency of attack graph generation [14]. Simi-
larly, Hong et al. proposed a scalable attack graph processing
method [15]. The previous works share our concern about the
scalability problem when processing intrusion using graph-
theoreticmodels. However, the efficiency of processing graph
optimization remains an open problem.

We address the problem by using a coarse-grained decom-
position method of the original problem to benefit from par-
allelism, and a parallel heuristic that only computes a local
optimum. We have designed and experimented with two par-
titioning methods to ascertain the benefits of our approach:
a tree partitioning method and a method we call improve-
ment target partitioning. We first present the tree partitioning
method. This method receives an attack tree and decomposes
it into several complementary subtrees. The resulting subtrees
are used to compute probability propagation across the tree,
reduced to compute a final attack success probability. A sim-
ilar technique is used as a heuristic to decompose the security
improvement problem into multiple subproblems, each test-
ing the security improvement of one or several of the available

security improvement instruments. The subproblems results
are integrated in a final stage to find the best achieved
objective among the competing subproblems. The second
method, improvement target partitioning, is also presented,
evaluated, and compared against the tree partitioning method.
This method aims to reduce the number of nodes to which a
specific improvement instrument is applied. Our experiments
show the effectiveness of tree partitioning for parallel proba-
bility propagation, which achieves a performance gain of up
to 20 times faster than a serial security improvement com-
putation method. The parallel security improvement using
tree partitioning was also tested for both cases of an exact
and estimated solution, achieving an average improvement
of 30 times faster computation time over the serial algorithm.
Estimating the global optimum has negligible relative errors
when evaluated on synthetic attack graphs mimicking real
organizational networks.

In summary, this article presents an overview of proba-
bilistic propagation and security improvement using attack
graphs (Section III), the design of the architecture for a
real-time security response system (Section IV), and the
description of a parallelized security improvement using tree
partitioning (Section V-B) and improvement target parti-
tioning (Section V-C). The presented methods are evaluated
(Section VI) using the developed tool on large synthetic
attack graphs.

II. RELATED WORKS
This work addresses the efficiency problem with computing
optimized security defenses based on the graph-theoretic
representation of enterprise networks. We hypothesize that
system administrators can utilize coarse-grained parallelism
to produce efficient security improvement while using exist-
ing graph-theoretic and optimization algorithms to repre-
sent vulnerabilities. Specifically, we assume a probabilistic
attack graph (Section III-A) is generated that represents the
depth of the vulnerability of networks to remote intrusions.
Attack graphs (developed through several years, notably
in [16]–[18]) are merely used to represent the flow of an
attack. The benefit of using attack graphs to describe an
attack flow is to exploit the existing literature on digraphs
(see [2]–[4], [19], [20]). Attack graphs can quantitatively
model a probabilistic view of attacker capabilities (defined
as Bayesian attack graphs [6]).

As proposed in previous works, such as [5], [8], a proba-
bilistic attack graph showing the probability of success for a
remote intruder can further be used in optimization problems
to compute an improved network structure. In [8], the authors
used MulVAL attack graphs (as discussed in Section III-A)
and provided a novel computational model using mixed-
integer programming. This model enables network security
administrators to utilize state-of-the-art optimization models
and systems to enhance network security analysis further. The
present work explores the use of parallelization technology
for enhancing the efficiency of security improvement using
attack graphs. The work by Yin et al. discussed real-time

2 VOLUME 9, 2021

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

attack analysis using attack graphs in which multiple vulner-
abilities were analyzed [21]. Real-time intrusion alert corre-
lation was also addressed by Ramaki et al. [22].

In the remainder of this section, we briefly discuss the
related work on security planning followed by a discussion
of parallelized belief propagation and graph analysis.

A. SECURITY PLANNING
Security planning requires a complete analysis of the security
of the network, an examination of the plausible security
strategies, and the production of the optimal security model.
Towards the goal of producing plans for improving the secu-
rity of a network, a wealth of previous works have presented
various approaches. For example, genetic algorithms were
used in [23] and [5] for improving the security of networks
given multiple potentially conflicting objectives. The prob-
lem formulated by Dewri et al. is to find a network con-
figuration that minimizes the total security control cost and
the residual damage by the produced policy. Minimum-cost
SAT-solvers were used by Huang et al. to distill critical parts
of attack graphs, which are used for preparing defenses [24].
Other approaches, such as the use of diffusion games [25],
have also been proposed for hardening the security of net-
works. In this work, our focus is on producing real-time secu-
rity plans using methods to parallelize attack graph analysis
and security improvement planning.

B. PARALLEL BELIEF PROPAGATION IN BAYESIAN
NETWORKS
Several previous works have investigated belief propaga-
tion in Bayesian networks with an emphasis on junction
trees (details in [26]). Darwiche demonstrated a differential
approach to evaluate probabilistic queries in Bayesian Net-
works by constructing junction trees [27]. Later Vasimuddin
et al. developed an algorithm to parallelize Bayesian Network
inferences using arithmetic circuits where operations such as
sum and product [28]. Bayesian networks share similarities
with attack graphs. Posterior probabilities are computed in
Bayesian networks, allowing efficient computation of event
probabilities. A probabilistic attack graph facilitates prob-
ability propagation using structural properties and logical
connections that are constructed based on the underlying
computer network. Further, junction trees allow for answer-
ing inference queries based on Bayesian networks. Although
junction trees have useful applications, attack graphs have
simpler requirements. Accordingly, equivalent attack trees
are constructed in this work that prepare the foundation of
data parallelization on parallel shared-memory machines.

C. PARALLELIZED GRAPH ANALYSIS
The only work concerning parallelizing attack graphs is
by Kaynar and Sivrikaya, which introduced a model for
distributed attack graph generation [14]. In that work,
a hyper-graph is partitioned according to various reachability
subgraphs. The proposal is to use the distributed memory
manager algorithm by Li and Hudak [29] to distribute the

task of generating an attack graph among independent dis-
tributed agents. The authors developed a parallel, shared-
memory depth-first search to produce the attack graph with a
complexity of O(N 2/log(N)). The experiments demonstrated
a speedup of about 40%. In contrast, the focus of our work is
on generating parallel security improvements.

Although parallelizing attack graph computations has not
been the subject of previous works, numerous paralleliza-
tion approaches for various graph models have been studied.
For example, PowerGraph [30] and GraphChi [31] propose
system-level approaches for massively scalable graph com-
putations. GraphChi introduces the parallel sliding window
model, which uses efficient disk access to parallelize graph
computations on a consumer PC. GraphChi leverages stan-
dard graph partitioning methods to enhance the computa-
tion efficiency. The graph partitioning method introduced in
Section V is inspired by GraphChi [31], classical tree parti-
tioning [32], and MapReduce [33]. A work by Li et al. also
described attack graph partitioning using forward search [11].
A partition and merge approach was previously proposed by
Hong et al. [15] for infrastructure as a service clouds. First,
the work describes the architecture of partition and merge to
be used as part of Infrastructure as a Service (IaaS). Second,
the work does not concern with the optimization of defense
against a probabilistic model of the attack. Third, the experi-
mental results describe an analysis of a search method, which
further puts their work apart from others.

III. BACKGROUND
This section defines attack graphs, describes the success
probability measurement in terms of a Bernoulli distribution,
a probability propagation model, and an optimization model
for improving the security of a network. These preliminary
models are introduced in a previous work [8]. The contri-
bution of this work is to improve the security evaluation
of a network using parallel computation (Section V). The
approach can be used for efficient online computation of
security improvement strategies for real-time systems.

A. PROBABILISTIC ATTACK GRAPHS
A probabilistic attack graph is a directed graph with nodes
that participate in weighted causal dependency relationships.
The weights of these relationships are probabilities that indi-
cate the expected chance that an attack step, represented by a
node, is exploited by an attacker.

A probabilistic logical attack graph G = (V ,A) is an
acyclic digraph where V = Nf ∪ Ng ∪ Nr and Nf , Ng, Nr
are disjoint sets of nodes containing fact nodes, goal nodes
(logical disjunctions), and rule nodes (logical conjunctions),
respectively. A is the set of arcs, and G ∈ Ng is the attacker’s
goal. In a logical attack graph, nodes are of three types
and are defined as tuples. Each attack graph node u is a
tuple (du,E[Xu]) where du is the description of a network
configuration item (when u ∈ Nf), an attack rule (when
u ∈ Nr), or an attack goal (when u ∈ Ng), and E[Xu] ∈ [0, 1]

VOLUME 9, 2021 3

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

FIGURE 1. An example subgraph (of the attack graph in Figure 3) showing
two possible ways to gain remote access on the host h. Boxes show fact
nodes, plain circles are rule nodes, and gray circles are goal nodes. Nodes
are labeled with the information they represent about the network.

is the corresponding expected chance that the node u is
exploited by an attacker.

For example, suppose that an attacker wants to exploit a
host h in a target network. The attacker should use a remote
exploitation method (rule) to gain remote access on h. There
could be more than one possible method, depending on the
vulnerabilities and configurations of the target network. The
attacker performs reconnaissance to develop an understand-
ing of the vulnerable points in the network. This reconnais-
sance effort results in the picture of Figure 1. The attacker
knows that there are two possible methods for exploiting
the vulnerable host h, represented by the rule nodes u2 and
u3. Using rule node u2, the attacker should be capable of
using the remote exploitation vulnerability of the fact node
u5. Also, the host should allow inbound TCP traffic on some
port x. The alternative is to use rule node u3, which requires
inbound TCP traffic on port y, and the capability to exploit
the remote exploitation vulnerability of the fact node u7. The
goal node u4 indicates the possibility of gaining remote access
on h using either of the two methods. After constructing
the subgraph, the attacker executes the remote exploitation
attack, provided that the preconditions of one of the two rule
nodes are satisfied.

B. PROBABILISTIC ATTACK MODEL
The probabilistic component of an attack graph is represented
using a Bernoulli random variable Xu defined on a corre-
sponding sample space �(u) for a node u ∈ V . The outcome
ω ∈ �(u) of an attack exploiting a node u can either be a
success (Xu(ω) = 1) or a failure (Xu(ω) = 0). For any node
u ∈ V of an attack graph, the expected chance of a successful
exploitation, simply the expected success, at a node u is given
as E[Xu] = P(Xu = 1), that is, the probability of success for
the random variable Xu.
The security of the network can be improved by analyzing a

set of security improvement strategies that could be deployed
in the network. As the probabilistic attack graph captures
the internal structure of security vulnerabilities, security
improvement options can be directly applied to attack graphs.
The success probability of an attack is measured according

to specific network topology, anticipated vulnerabilities, and
a set of initial belief values about the feasibility of attacks.
An initial belief value, associated with a fact node, is the esti-
mated probability that an attack step precondition is satisfied
by an arbitrary attacker. In the subdigraph of Figure 1, The
initial belief value E[u1] = 1 encodes the belief obtained
from historical data that h is expected to be responding on port
x continuously with no downtime, and E[u5] = 0.8 indicates
that the remote exploitation vulnerability is expected to be
exploited with probability 0.8. The initial belief vulnerability
values could be determined from vulnerability databases [34],
expert knowledge, and using vulnerability assessment met-
rics such as total vulnerability exposure [35], the Common
Vulnerability Scoring System (CVSS) [36] and the Common
Weakness Scoring System (CWSSTM) [37].

1) PROBABILITY PROPAGATION MODEL
An attack graph shows the intermediate attack steps required
to exploit a target node in the network. Thus, a typical
attack graph has a single leaf node G (digraph sink) that
captures the ultimate attack goal. To measure the success
of the attacker in exploiting the target, E[XG] is computed.
This computation requires propagating an initial set of belief
values throughout the attack graph. The initial set of belief
values are the expected chances of exploiting the fact nodes
in the graph. That is, for each fact node u ∈ Nf , system
administrators compute an initial belief value E[Xu]. These
values represent historical attack success data (note that this
work does not concern the computation of the initial belief
values). An initial belief value is propagated from a node u to
a node v, when (u, v) ∈ A. The propagation occurs using the
model below. The propagation model is defined based on the
type of the receiving node v.
Let φ(u) denote the set of predecessor nodes to node u. The

propagation model combines the initial belief values to form
the expected success at a rule node u:

E[Xu] =
∏
v∈φ(u)

E[Xv], (1)

and multiple rule node values can be combined to form the
expected success at a goal node u:

E[Xu] =
∑
v∈φ(u)

wvuE[Xv], (2)

where wvu ∈ [0, 1] is the weight of the predecessor v for
propagating E[Xv] to u. This weight represents the strength
of the attack path that passes through v. Note that wvu can
represent a binary integer variable to select a maximally
successful attack path in the graph. System administrators
do not necessarily provide the weights. One advantage of the
presentedmodel is that the weights can be estimated using the
optimization problem that is described later in this section.
For the fact nodes, the expected success is simply

E[Xu] = yu, (3)

4 VOLUME 9, 2021

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

where yu is an estimated initial belief value for the node u.
Given the equations above to propagate the expected chance
of a successful attack, the overall probability that a network
target is compromised is given by E[XG].
To compute the optimal propagation, an optimization prob-

lem is defined. Here, the goal is to maximize E[XG] subject to
the propagation equations above as constraints. The expected
success E[Xu] for each node u corresponds to a real-valued
decision variable in the optimization problem. The decision
variables are initially set to zero, except those for the fact
nodes where the initial belief values are used. Let xi = E[Xi]
denote the decision variable for node i in the graph whose
nodes are indexed by 1, 2, . . ., |V |, with x|V | = E[XG] being
the final goal node. Let(

y1, y2, . . . , y|V |
)

be the vector of initial values for the decision variables xi. The
optimization problem is formulated as

max x|V |
subject to

xi = gi
(
x1, . . . , xi−1, xi+1, . . . , x|V |−1

)
,

1 ≤ i ≤ |V |.

The function gi is defined by Equations (1), (2), and (3) for the
variable xi depending on the type of the corresponding node in
the graph. The weights in Equation (2) can also bemodeled as
decision variables when supporting data for preferred attack
paths does not exist. For each predecessor v of a goal node u
an additional decision variable wvu ∈ [0, 1] is added to the
optimization problem. An additional constraint is added for
each goal node u: ∑

v∈φ(u)

wvu = 1.

This constraint ensures that the weights act as selectors for
the best possible path for the attacker among the available
predecessors of the goal node u. The only inputs to the opti-
mization problem are the structure of the graph and the initial
belief values that are estimated based on metrics computed
from vulnerability databases (such as CVSS [36]).

The optimization problem is a mixed-integer program-
ming problem that computes the probability of success for
the attacker at the graph’s sink (the ultimate attack goal).
In addition, the computed values of the variables, represent-
ing graph nodes, demonstrate the maximum vulnerability
paths in the graph. This is because Equation 2 guides the
maximization problem to select, among the various available
attack choices, the one with the highest incoming probability
value. The computed expected success values are essential to
the improvement planning problem. Intuitively, the expected
success values must be minimized to reduce the attack risk
on the target network. Security improvement in the context
of real-time security planning is explored next.

IV. REAL-TIME SECURITY IMPROVEMENT
In this work, we consider a setting in which the network is
under time constraints, and thus a security response subject
to a definite deadline is required. Real-time security sys-
tems are similar to general real-time systems [38] in which
tasks are scheduled and processed. In real-time security sys-
tems, attacks impose tasks on the defense system for which
counterattack measures forming a security response must be
scheduled. Security response is a set of actions taken by
a trustworthy subsystem that manages the security of the
overall network. This trustworthy subsystem, referred to as
the controller, is responsible for reacting to incidents that
are security-critical. For example, new nodes joining the
system require a reconsideration of the security of the overall
system. In an environment that nodes are frequently added
and removed from the system, the controller must provide
real-time security by first analyzing the security status of the
system and then generating the appropriate response.

The focus here is to investigate the possibility of reducing
the computation time for expected success probabilities in
an attack graph to aid the controller in generating the appro-
priate response given tight time deadlines. The deadlines are
determined by the duration of sudden and unexpected attack
events. Attack events are assumed to endure for a specific
time interval. For example, a data leak attack event starts by
unauthorized transferring of a large amount of data and ends
when the transfer is complete. During the required time to
complete a successful attack, the defense must be capable of
detecting the intrusion, analyzing the event, and producing
a response. Similarly, a denial of service attack on a subset
of nodes in the network downgrades the quality of service
and should be detected and mitigated immediately to ensure
service availability.

The architecture of a real-time security response system
based on attack graphs is given in Figure 2. The Attack Graph
Repository is a component of the architecture. As the target
network is modified by configuration events (new users, new
network nodes, modified firewall rules) and attacks, network
configuration changes are reported to the Real-time Security
Improvement Planner (simply called the planner). The plan-
ner ideally produces a real-time response (a response that is
generated and executed before a deadline), which results in a
modified attack graph. The modified attack graph is cached
in the Attack Graph Repository and is communicated to
the Security Response Engine. Finally, the security response
engine applies the modifications to the target network and
acknowledges the changes with the Attack Graph Repository.

In the subsequent sections, the core functionality of
the Real-time Security Improvement Planner is presented.
A security improvement model based on an attack graph is
developed to realize various security improvement scenar-
ios. Later in Section V-B the parallelized versions of the
probability propagation model and the security improvement
model are presented and discussed. Note that this work does
not concern the underlying mechanisms for generating attack

VOLUME 9, 2021 5

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

FIGURE 2. The architecture of real-time security response system using
attack graphs.

graphs (by the Dynamic Attack Graph Generator) or the
techniques for applying security policies (executed by the
Security Response Engine).

A. MODELING SECURITY IMPROVEMENT
Security improvement refers to the problem of developing a
security plan, given a set of alternative strategies, such that
the expected success of a prospective attacker is minimized.
In this context, security improvement instruments (or simply
called instruments) are hardware or software resources (such
as network intrusion prevention systems) that could be pur-
chased and deployed in quantities, depending on the organi-
zational and technical constraints. Thus, a specific instrument
can be repeated within a network, or multiple instrument
types could be considered.

There are two fundamentally different approaches for secu-
rity improvements: (1) the sensor distribution strategy is to
place multiple sensors across the network, and (2) the net-
work restructuring strategy is to modify the network topology
to achieve improved security. The challenge with the first
approach is to find a non-conflicting subset of improvement
instruments that minimize E[XG]. In the second approach,
the challenge is to find a variation of the attack graph, subject
to constraints on the structural changes that can lower the
value of E[XG]. In this work, the first approach is considered.
That is, given a set of possible security instruments (such
as intrusion detection and prevention systems and network
traffic monitors), the problem is to find the best placement
of these instruments, given the security structure captured
in an attack graph. The main contribution is to compute an
improved network security plan by using a shared-memory
parallel architecture. This parallelism helps the overall objec-
tive of aiding real-time security decisions in large network
environments.

This section develops the optimization problems for com-
puting a security improved network, given a set of security
improvement instruments and strategies. Complex networks
often face several network security improvement instruments
and strategies. Both modeling single (e.g., [8]) and multiple
security improvement (e.g., [5]) options have been studied

in previous works. However, in this work, existing mod-
els are extended to leverage mixed-integer programming for
developing network security improvement strategies. A sin-
gle security improvement refers to computing the placement
of a single security improvement in the network such that
the expected attack success is minimized. Multiple security
improvements refers to computing the placement of multi-
ple security instruments across the network, minimizing the
expected attack success.

Following the model in [8], improvement instruments are
formalized as additional synthetic nodes. Here, we further
expand the model and define an improvement node as a
fact node that has an arc to exactly one rule node. An
improvement target is the unique rule node successor of an
improvement node. In a computer network, the improvement
target represents the exploitation of a service on a machine
in the network. A placement of an improvement instrument
is the installation of the instrument in a particular location
in the network. Within an attack graph, a placement is an
arc from an improvement node to an improvement target.
Thus each improvement instrument (such as an intrusion
prevention system) is represented by several improvement
nodes. When an improvement instrument can be potentially
placed in several machines in the network, the possibility of
placing the instrument for each location is referred to as a
placement option (or candidate). All the placement options
for an improvement instrument are represented as a set of
arcs, as defined in Section IV-B.

The rationale for this model is to examine the effect of the
improvement instrument on the expected success chance at
a particular rule node. For example, in the attack graph of
Figure 3, one can consider attaching an improvement node to
the improvement target rule node u2 along with the existing
predecessors u1 and u5. The expected success chance of the
improvement node represents the success of the improvement
instrument in reducing the security risk, as opposed to the
measured attack success at other nodes in the graph.

B. SECURITY IMPROVEMENT CONSTRAINTS
Security improvement is computed by solving a mixed-
integer programming problem using a local gradient-based
algorithm [39]. The improvement nodes are added with the
constraints that either the improvement node is included or
excluded. The models below can be used for single improve-
ment (mutual exclusion of improvement placement options),
multiple placement improvement, and multiple conflicting
placements of improvement nodes.

For an improvement instrument with multiple placement
candidates, a fact node is added for each placement candidate
as a predecessor of a rule node. LetNh ⊂ Nf ⊂ V be the set of
improvement (fact) nodes corresponding to a single improve-
ment instrument. Let Ah ⊂ A be the set of arcs connecting
improvement nodes to improvement targets. Each u ∈ Nh has
a rule node successor x ∈ Nr . If u, v ∈ Nh, (u, x) ∈ Ah and
(v, x) ∈ Ah, then u = v. Each arc in Ah designates a possible
placement of the improvement instrument. The nodes in Nh

6 VOLUME 9, 2021

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

are identical in nature but differ in their placements across the
attack graph.

The expected success probability for a rule node with an
improvement instrument is computed as

E[Xu] =
(
(1− tw)+ tw(1− E[Xw])

) ∏
v∈φ(u)\{w}

E[Xv], (4)

where tw is a binary variable, with tw = 1 indicating that the
improvement node w is placed for the improvement target
u. Note that E[Xw] is the probability of success of the cor-
responding instrument, so (1 − E[Xw]) is the corresponding
probability of attack success. An extra constraint is added to
the optimization problem in Section III-B1 for limiting the
number of possible placements:

t1 + t2 + · · · + t|Nh| ≤ m,

where m is the maximum number of placements for the
considered improvement instrument.

For multiple nonconflicting improvements, consider k
types of possible improvement instruments leading to the set

Nh = N 1
h ∪ N

2
h ∪ · · · ∪ N

k
h

of improvement nodes, where the N i
h are disjoint. Further,

define the corresponding set

Ah = A1h ∪ A
2
h ∪ · · · ∪ A

k
h

of all possible placements (arcs) for all improvement instru-
ments.

Modeling the security improvement follows Equation (4)
as the improvement nodes are added according to the
improvement node sets in Nh, with the single improvement
factor becoming a product of such factors. The maximum
number of placement options also follows the constraint
above, with |Nh| replaced by |Nh|. Note that if the number
of possible placements from each improvement set is not
bounded, the resulting combinatorial problem is computa-
tionally intractable. Finally, the mutual exclusion between
two improvement instruments can be defined as a comple-
mentary constraint on each possible placement for each of the
improvement instruments. Conflicting options may require
such constraints. For example, the installation of a network
monitor conflicts with limiting connecting IP addresses on
the same host. Thus, system administrators must choose the
most promising option accordingly.

Suppose that N i
h and N

j
h represent conflicting options, with

an identical rule node successor for node u ∈ N i
h and node

v ∈ N j
h. Then tu + tv ≤ 1 ensures mutual exclusion of

the two options. Section V-B provides the model for parallel
computation of the solution to the optimization problem for
all three cases of the security improvement problem.

V. PARALLEL SECURITY IMPROVEMENT
This section describes a tree partitioning method for (1)
parallelizing the propagation of expected success values
throughout the attack digraph (Section V-A), and (2) paral-
lelizing security improvement computations (Section V-B).

FIGURE 3. An attack graph G showing attack paths to G. Dashed arcs are
eliminated to prepare a tree T ≺ G for partitioning. Boxes are fact nodes,
plain circles are rule nodes, and gray circles are goal nodes. The tree T
can be generated using attack graph generators by requiring that fact and
rule nodes only have forward edges to a single successor, avoiding the
need to transform G to T . The extra edges can be connected by extra
auxiliary nodes with the exact specification of the original nodes.

A. PARALLELIZED PROPAGATION
Enhancing the efficiency of computing expected success val-
ues is by using a gradient-basedmethod to solve the optimiza-
tion problem formulated in Section III-B1. In this section,
the focus is not on parallelizing the gradient-based algorithm
for approximating the solution for the nonlinear optimization
problem. Instead, a divide-and-conquer approach (inspired
by the MapReduce [33] programming model) is used to effi-
ciently compute the expected success for all nodes in an attack
graph by solving multiple nonlinear optimization problems.

The computation can be parallelized by first eliminating
semicycles in the attack digraph G, resulting in an in-tree
attack digraph T = (VT ,AT) logically equivalent to G. The
notation T ≺ G is used to refer to an in-tree thusly created
from G (Figure 3). The tree structure (the attack in-tree) is
then partitioned into k in-trees, whose sinks are the 0-indegree
nodes for a final in-tree, and this final in-tree. Classical
tree partitioning methods (such as [32]) can be extended
to a balanced partitioning scheme where each partition is
constrained to a maximum number of nodes. k-BALANCED
partitioning is useful but is computationally infeasible [40].
In the example attack digraph of Figure 3, eliminating the
dashed arcs and adding other nodes and arcs results in an
attack in-tree. The eliminated arcs are in the attack digraph
because attack digraph generators can reduce the number of
nodes in the digraph by generating extra arcs. For example,
the arc (u6, u11) can be eliminated by introducing a new node
u23 that is identical to u6 with an arc (u23, u11).

The attack in-tree (logically equivalent to an attack
digraph) is partitioned based on the characteristics of an in-
tree and with a simple heuristic. Consider an attack in-tree
T with L = (l1, l2, . . . , ln) levels, where the first level only
has fact nodes, and the last level only has the ultimate goal
node G. Recall that a level is a subset of nodes with an equal

VOLUME 9, 2021 7

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

distance from the leaf of the in-tree. A level l in an attack
in-tree has an arbitrary number of nodes (as opposed to the
case with k-ary trees) as the arcs in the in-tree correspond to
the underlying computer network structure with no specific
topological constraints. Suppose that each level in the in-tree
has nodes of a single type. Define the distance of a level l to
the leaf node G as the number of levels beyond l in T . The
in-tree T is partitioned by finding the level l∗ closest to node
G, such that l∗ contains only goal nodes, is not the last level,
and has more than a single node. The in-tree in Figure 3 is
partitioned on l5, which is the closest to l7 (the last level).
In this case, two subin-trees are created with the goal nodes
u18 and u19 as their leaves.
The expected success values are propagated independently

in each subin-tree created as part of attack in-tree partitioning.
The computed expected success values for the leaves of the
subin-trees are then passed over to a final in-tree F . The
final in-tree includes all nodes of the original in-tree T ,
excluding the nodes from the subtrees T1, . . . ,Tk resulting
from partitioning the in-tree T . k fact nodes are added to
the in-tree, each representing the goal leaf node in a subin-
tree Ti. The arcs in F include all arcs of T excluding arcs
connecting the nodes in the subin-trees. Finally, each new
fact node in F is connected to a rule node using the arcs that
connected the corresponding goal nodes in the original in-
tree T . For example, in Figure 3, the final in-tree consists of
G, u22, and two fact nodes u18, and u19. The two fact nodes are
the predecessors of u22. Lastly, the propagation is computed
on the final in-tree with the new fact nodes assigned their
computed expected success values as the initial values.

Algorithm 1 summarizes the steps for partitioning an attack
in-tree. Assume that pred(l, G) is a function that returns
the immediate predecessors of the nodes in l from the graph
G. An immediate predecessor of a node u is one that has
a direct arc to u. Assume that len(x) is a function to
compute the number of elements in a list x, type(x) is
a function to return the type of the nodes in a given tree
level x, traverse(u) is a function that performs a subtree
(ending with u) traversal and returns the traversed subtree,
and append(x, y) is a function to append an element x
to the end of a list y. The graph G given to Algorithm 1 is
assumed to have been converted to an in-tree, as described
above, before input.

Once the attack tree is partitioned, the initial expected
success values in the first layer of the tree must be propa-
gated throughout the tree such that the propagation algorithm
determines an expected success probability for every goal
node in the graph. This propagation is performed by parallel
calls to the optimization solver given independent subin-
trees produced by Algorithm 1. Algorithm 2 summarizes the
steps to propagate the expected success in the attack tree G
using the list of attack in-trees T ∗ from Algorithm 1 and the
final attack in-tree F . Here, assume that success(T) is
a function that receives an attack tree (in-tree) T and com-
putes the expected success using the optimization problem in
Section III-B1; leaf(T) returns the leaf (goal) node of a

Algorithm 1 Partition Tree
Require: G
l ← (G)
T ∗← ()
loop
l ← pred(l, G)
if len(l)≥ 2 and type(l) is goal then
for u ∈ l do
T ← traverse(u)
append(T, T ∗)

end for
break

end if
end loop
return T ∗

given attack in-tree T ; and initialize(u, A) sets the
initial expected success value for u by matching it with a pair
of node and expected success value in the list A.

Algorithm 2 Propagate the Expected Success Values
Require: T ∗,F
A← ()
for each in-tree T from list T ∗ do
E ←success(T)
u←leaf(T)
append((u, E[Xu]), A)

end for
for each node u in tree F do
if type(u) is fact then
initialize(u, A)

end if
end for
E ←success(F)
return E

Algorithm 2 substantially reduces the size of the opti-
mization problem and tackles two fundamental problems.
First, the number of variables in each subproblem is reduced
relative to the number of subin-trees created by Algorithm 1.
Second, the combinatorial choices for finding the most vul-
nerable path are reduced, which substantially impacts the
execution time of Algorithm 2 (SectionVI-A). This algorithm
provides the basis for enhancing the efficiency of the security
improvement problem, as described next.

B. TREE PARTITIONING FOR SECURITY IMPROVEMENT
The goal is to parallelize the computation of security
improvements using an attack digraph and a set of possi-
ble security improvement instruments. Recall that security
improvement is computed by placing improvement nodes
across an attack digraph, aiming to minimize the expected
success values (Section IV-B). The optimization problem to
compute and select the best security instruments and the best
placement of the improvements requires a significant number

8 VOLUME 9, 2021

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

of additional decision variables and constraints. The plan here
is to logically decompose the optimization problem and solve
multiple optimization problems in parallel. The approach is to
extend the model used in Section V-A and apply it to various
cases of security improvement.

As described earlier, two major security improvement
cases are considered: (1) selecting a single placement of
an improvement instrument type, and (2) selecting multiple
placements of improvement instruments. Letm be the number
of acceptable placements and k be the number of types of
available improvement instruments. Depending on the values
of m and k , the resulting optimization problem (for security
improvement) may be decomposed and solved in parallel by
finding either an optimal solution or an estimated solution.
The latter case is addressed using a heuristic. Recall that secu-
rity improvement could be made with multiple instrument
types, each represented by a set of improvement nodes N i

h
and a set of placements (arcs) Aih.
For selecting a single improvement instrument placement

(m = 1 and k ≥ 1), a parallelized security improvement
computation is possible using the tree partitioning method
outlined below. For selecting multiple improvement place-
ments (m > 1), two cases are considered. In the first case
when 1 < m < k (that is, selectingm placements with a larger
number k of available instrument types), z =

(k
m

)
independent

subproblems must be solved to find the optimal selection of
security improvements. When m ≥ k , the problem cannot
be separated and thus no parallelization is possible. This is
because all combinations of available instruments and their
candidate placements must be considered to find the optimal
solution. In this case, a parallelized heuristic estimates the
solution, which does not guarantee the selection of optimal
placements. The performance of the heuristic is evaluated in
Section VI.
The tree partitioning method is used to parallelize two

instances of the security improvement problem (m = 1 and
m ≥ k ≥ 1). In this method, the attack digraph is partitioned
into smaller in-trees (as in Section V-A). Using the in-tree
partitioning method:

1) the original attack digraph is partitioned by executing
Algorithm 1.

2) Then for each of the k improvement instrument types,
1 ≤ i ≤ k , and for each v ∈ N i

h whose improvement
target x ∈ VT , v is added to VT in the subin-tree T =
(VT ,AT), and the placement option arc (v, x) ∈ Aih is
added to AT .

3) The optimization problems (described below for the
two cases) for all the subin-trees T are solved in par-
allel.

4) For each T , an intermediate objective value xT0 is com-
puted. The best m placements are selected as the final
solution.

1) SINGLE INSTRUMENT PLACEMENT (m = 1)
In the simplest case where placing a single improvement
instrument is considered, the improvement, such as placing

a single sensor across the network, is represented as a set
of improvement nodes. Given that there are several place-
ment options for the improvement captured by the optimiza-
tion problem in Section IV-B, the solution to the problem
can be parallelized by either the tree or target partitioning
(Section V-C) methods, both returning the global optimum.
Each problem is solved using a nonlinear integer program-
ming algorithm on a shared memory parallel machine. For
improved efficiency utilizing multiple cores on a shared
memory machine, several problems may be combined on a
single core.
The tree partitioning method and the serial computation

of security improvement with m = 1 produce identical
objective function values. This is because an attack digraph,
after conversion to an equivalent in-tree, has a unique sink
(the goal node). Partitioning this in-tree into subin-trees,
observe that the optimal path to the goal node for an attacker
must lie wholly within one subin-tree. Therefore solving the
placement problem in each subin-tree with m = 1 must
find the optimal placement for the entire attack digraph after
assembling and comparing the results for all the subin-trees.

2) MULTIPLE IMPROVEMENT PLACEMENTS (m > 1)
In applications with a small number of instrument types
k > m, solving z =

(k
m

)
mixed-integer optimization problems

in parallel on a shared memory machine can be feasible.
However, with a large z, the parallel performance (defined
as speedup on p processors divided by p) would be poor.
A total of z independent problems (one for each size m
subset of instrument types {1, . . ., k}) should be solved in
parallel (no subin-trees or target partitions are involved) to
return the global solution. In this work, we do not address
this case as an efficient solution requires parallelizing the
underlying branch-and-reduce algorithm. This fine-grained
parallelism is not a new problem and is beyond the scope of
this work. Further, k > m means that there are more options
available than the required maximum number of placements.
This problem is less likely to appear in large networks where
the number of possible placements exceeds far beyond the
number of instrument types k . Further, in cases where the
instrument types are only software solutions, then practically
k ≤ m as the possible copies of the solution is usually
available in unlimited quantities.

For m ≥ k , both the tree partitioning and the instrument
target partitioning methods could be used. Both methods
are used as heuristics to estimate the global optimum. In
the tree partitioning method, p subin-trees are produced for
solving p optimization problems in parallel. The goal is to
find the instrument placements that minimize the expected
success of the attacker. The proposed method is that for each
subin-tree, an independent optimization problem is created
with dm/pe or bm/pc (which one is randomly assigned)
possible placements of any instrument types, summing to m.
The optimization problems (assumed feasible) for all subin-
trees are solved in parallel. The solution produced by this
heuristic is not guaranteed to be optimal, because the globally

VOLUME 9, 2021 9

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

optimal solution might have more than dm/pe placements in
one subin-tree, and the interactions between placements in
different subin-trees are being ignored. The same is true of
the target partitioning.

C. INSTRUMENT TARGET PARTITIONING FOR SECURITY
IMPROVEMENT
An alternative to the tree partitioning method is the instru-
ment target set partitioning method that is used to parallelize
the computation of security improvement for a single instru-
ment placement (m = 1). This method works when k ≥ 1
and can substantially reduce the computation time as k grows
(Section VI-C). Suppose that for an attack in-tree T there is
a single security improvement instrument placement (m = 1)
from one instrument type (k = 1) with τ = |N 1

h | > 1
improvement targets, and ` threads (cores) to use. Here,
the approach is to partition the τ improvement targets into
subsets of sizes dτ/`e or bτ/`c, formulate an optimization
problem for each subset and then solve these problems in
parallel on ` cores. In this case, each optimization problem
includes the entire attack in-tree, and the optimization prob-
lems differ in their possible improvement targets.

This method can be generalized to be used with multi-
ple improvement instrument types k > 1. When multi-
ple improvement instrument types are available (k > 1),
the improvement targets are assigned to target sets by the
instrument type, creating k target subsets (not a partition,
since the same node can be a target of two different improve-
ment type nodes). For each target subset, an optimization
problem is formulated with the original entire attack in-
tree T . Each optimization problem considers one of the k
instrument types with that instrument type’s targets. All opti-
mization problems are then solved in parallel. Note that using
the instrument target partitioning with k > 2, one can reduce
the number of target subsets from k to bk/nc for some n < k .
This improves the efficiency by allowing one thread to have
more work, when the number of threads ` < k is small. For
m = 1 and k ≥ 1 instrument target partitioning finds the
same global optimum as the serial algorithm.

VI. EXPERIMENTS
The focus of the experiments is on evaluating the efficiency
of the parallelization approaches discussed for the various
instances of the security improvement problem using attack
digraphs. The first experiment tests the parallelized propa-
gation method discussed in Section V-A. The second and
third experiments evaluate the instrument target partitioning
(Section VI-C) and the tree partitioning (Section VI-B) meth-
ods. The case where more instrument types are available than
acceptable placements (k > m > 1) is not evaluated as it is
not expected to occur in reality.

Our experiments were conducted on a system with
two 12-core Intel Xeon (E5-2690 V3 with a speed of
2.60GHz) CPUs running Ubuntu 18.04. The 24 cores were
hyperthreaded for a nominal 48 threads, but there were only
effectively 24 threads available for computation. During the

experiments, no GUI utility was actively used, and the num-
ber of running processes was minimized.

The digraphs used in the experiments below follow
the structure of Figure 4. The optimization problems are
solved using BARON [41], which uses a branch-and-
reduce approach to global mixed-integer programming prob-
lems [39]. The software tool developed for the experiments
generates synthetic attack trees that are used to test the
expected success propagation and the security improvement
methods. The software tool is referred to as the High-
Performance Security Analyzer (HPSA). The source code for
HPSA is available at https://github.com/kussl/HPSA. When
a synthetic attack tree is generated, initial belief values for
the fact nodes are assigned using a uniform distribution.
HPSA either propagates probabilities sequentially or using
the parallelization described in Section V-A. The sequential
method uses the partially quantified attack tree (only contain-
ing initial belief values for the fact nodes) to generate the cor-
responding optimization problem for computing probability
propagations. BARON is fed the resulting problem using a
file interface. BARON is then loaded into a separate process
and computes the solution for the problem. For the parallel
method, the tree partitioning component in HPSA produces
the independent subin-trees. Each subin-tree is given to the
sequential probability propagation for computation.

Note that for each subin-tree, a separate BARON process
is created since, as of this writing, BARON does not pro-
vide loadable shared libraries. The scheduling of BARON
processes depends on the scheduling algorithm used by the
underlying operating system. Also, the abundance of memory
can assist in improving the efficiency of BARON in solving
some of the problems. The use of OpenMP [42] was also
explored in the experiments. The scheduling of subin-trees
was set to be managed by OpenMP [42]’s guided parallel for-
loop. OpenMP parameters were set to defaults. OpenMP is
expected to create p threads. In a guided schedule, OpenMP
would separate the loop into approximately d`/pe chunks,
where ` is the number of optimization problems to be solved.
However, no benefit of using OpenMP was observed as the
BARON processes were managed efficiently by the operating
system.

A. PROBABILITY PROPAGATION
In this experiment (Figure 5), Algorithms 1 and 2 were tested
against the serial computation of probability propagation. The
serial version takes as input the full attack digraph and a set of
initial belief values and populates all other digraph nodes with
expected success probabilities based on Equations (1)–(3).
The main assumption of parallel probability propagation is
the possibility of reducing an attack digraph to an attack
in-tree by eliminating the unnecessary semicycles in the
digraph (Section V-A). This is a reasonable assumption as
all unnecessary semicycles can be eliminated by introducing
extra nodes in the digraph. The parallel version produced
by Algorithms 1 and 2 splits the attack in-tree into multiple
smaller subin-trees and computes the expected success values

10 VOLUME 9, 2021

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

FIGURE 4. A digraph with 46 nodes that includes six subtrees, representing six goals (compromising six different goals in the network)
that could aid the attacker to achieve the ultimate goal in node 0. In the experiments, this digraph is scaled horizontally (adding more
subgoals as preconditions of the sink) and vertically (adding more preconditions to the subgoals).

FIGURE 5. Execution time for probability propagation with serial and
parallel algorithms. The parallelized computation was performed
according to Algorithms 1 and 2.

for each node in each subin-tree in parallel. Figure 5 shows
a comparison between the serial and parallel computation
times of probabilities in an attack in-tree. Let S = Ds

Dp
be the

speedup ratio, whereDp is the parallel computation time, and
Ds is the serial computation time.
In this experiment, the maximum speedup ratio is S = 22

for 24 cores. Note that the total time Dp spent for the parallel
computation includes the extra effort for partitioning the
digraph and combining and recomputing the final results.
Thus, the extra effort results in poor parallel performance
for digraphs smaller than about 7000 nodes. Another compo-
nent of the total time is preprocessing of the attack digraph
to produce an equivalent attack in-tree, which may take a
noticeable time. However, this could be done once when the
attack digraph is generated, and consequent changes to the
attack digraph and equivalent attack in-tree could be done by
maintaining the invariant that any new node should not create
a semicycle in the digraph.

B. ATTACK TREE PARTITIONING
Here, the focus of the experiments is on the heuristic method
provided in Section V-B for m > 1, m ≥ k . To conduct
this experiment, the original attack in-tree T is partitioned
using Algorithm 1, producing several subin-trees T1, T2, . . .,
T`, where ` is the number of goal nodes in the layer with
the least distance to the ultimate goal node in T . For each

improvement instrument of the available k instrument types,
the tree with the improvement targets is identified. Then the
improvement nodes are added to the identified trees, subject
to bm/`c acceptable placements. Each tree Ti is sent to a
BARON process for optimization of the objective function,
doing all ` in-trees in parallel using 24 cores. When the
solutions for all trees from BARON are ready, the solutions
are read from secondary storage into memory. The final
security instrument placement is computed by combining the
trees’ optimal placements. The time spent for the BARON
computation and combining the solutions is measured and
compared against the serial computation in Figure 6, with
the values of ` annotated on the dashed line. The values of
k and m were taken as k = blog2(m)c and m = `. The
serial computation involves security improvement with the
full attack tree.

The results of Figure 6 indicate a large difference between
the serial and the parallel tree partitioning heuristic times
for solving the multiple improvement placement problem.
Notice that the two computations have different mathematical
interpretations with the optimal solution only guaranteed by
the serial version. The tree partitioning method can yield
an optimal solution for some problems. In our experiments,
the achieved objective function of the heuristic method for
all graphs had negligible relative error when compared to
the exact serial version. This is an inherent capability of the
model developed earlier in [8] as the optimization problem
always selects the best route towards the target. Thus, each
tree partition participates in a race to provide the best solution
for the final objective. In this case, all sub-intrees attempt
to select m best placements. The final optimization problem
combines and selects the best value among all sub-intrees,
thereby resulting in the best m placements being selected.
One may argue that the selection may miss some of the
opportunities in combining a subset of selections from several
subtrees instead of distributing all them selections in an entire
sub-intree. However, per our experiments the difference in the
final objective function is extremely small.

C. INSTRUMENT TARGET PARTITIONING
The performance of this approach is depicted in Figure 7. In
Figure 7a, the case with k = 1 and m = 1 is considered

VOLUME 9, 2021 11

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

FIGURE 6. A comparison of the serial and parallel times for security
improvements using the tree partitioning method.

whereas in Figure 7b, the case with k > 1 and m = 1 is
considered.

In Figure 7a, the performance of the parallel algorithm
is poor in smaller graphs of less than 8000 nodes. The per-
formance improvement generally increases as the graph size
increases, widening the gap between the serial and parallel
versions, as the attack digraph increases in size. In this par-
ticular instance, the parallel algorithm has an average speedup
of S ≈ 0.18 with a maximum speedup of S ≈ 0.9. The reason
for poor parallel performance is due to the small number of
binary variables requiring deep branch-and-reduce iterations.
Note that here k = 1, which requires a single binary variable
for each improvement target.

The performance in Figure 7b clearly shows the advantage
of the parallel algorithm, showing an average speedup of S ≈
6 and a maximum speedup of S ≈ 10. The graph shows the
performance of both serial and parallel algorithms with the
value of k (the number of available instrument types) shown
as annotations on the parallel performance curve. In this
experiment, as the value of k grows, the serial algorithm
time increases rapidly. The parallel algorithm time has a
slower growth as the value of k and the size of the graph are
increased.

The number of threads used in this example is equal to the
number k of target subsets used. Since the parallel version of

FIGURE 7. A comparison of the serial and parallel times for security
improvement using improvement instrument target partitioning.

the problem is mathematically equivalent to the serial version
of the problem, the final objective function values for the two
versions should be equal, as BARON was allowed to find the
globally optimal solutions.

Table 1 shows a comparison of the serial (branch and
reduce) optimization algorithm with the introduced tree par-
titioning method. In this experiment, the maximum wall
time for BARON is set to 500 seconds. The results clearly
indicate that the serial algorithm quickly becomes infea-
sible as the digraph size increases. In contrast, our pro-
posed method can aid in producing real-time responses
as the computation for digraphs as large as 80,000 nodes
only requires less than 10 seconds of wall time. This indi-
cates the efficacy of our proposed methods as described in
Section V.

D. COMPARISON OF THE PARTITIONING METHODS
The two partitioning methods present alternative ways to
decompose the security improvement problem and reduce
computation time. Both models provide the same guarantees
(or lack thereof, for the m > 1 heuristics) in terms of finding
the optimal solution. While improvement target partition-
ing is simpler to implement, the tree partitioning method

12 VOLUME 9, 2021

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

TABLE 1. A comparison of computation time (wall time) between the
serial and the tree partitioning methods for large digraphs. The
computation time is in seconds. To avoid lengthy computation times,
BARON is bound to 500 seconds of wall time for the optimization
algorithm (the extra seconds are to finalize the results).

outperforms the improvement target partitioning method in
all experiments. Also, the improvement target partitioning
method does not work with the case m > 1. Thus, comparing
the relative objective function error between the two methods
is not possible. The tree partitioning method horizontally
divides the tree while the improvement target partitioning
methodmaintains the same tree structure in each subproblem.
The two models can be potentially combined to improve the
results.

VII. CONCLUSION
This work presented a parallel method for probability propa-
gation in attack digraphs and for computing security improve-
ment plans based on attack digraphs. The performance
achievement of the probability propagation is mainly due to
solving significantly smaller subproblems and the nature of
the attack trees. For large attack digraphs and m = 1 (e.g.,
to optimally repair a particular security hole), the parallel
tree partitioning method for security improvement produces
a solution comparable to that from the serial optimization,
and takes only a second or so, making real-time security
repairs practical. This work does not address the problem
when k > m as the solution cannot use coarse-grained par-
allelism. Better parallel performance gains can be achieved
by fine-grained parallelism in which a new parallel algorithm
(e.g., a parallel version of BARON) is designed to specifi-
cally parallelize the optimization of security improvements
for attack digraphs. This is a significant and challenging
problem, which is left for future work.

REFERENCES
[1] C. Phillips and L. P. Swiler, ‘‘A graph-based system for network-

vulnerability analysis,’’ in Proc. Workshop New Secur. Paradigms (NSPW),
1998, pp. 71–79.

[2] P. Ammann, D. Wijesekera, and S. Kaushik, ‘‘Scalable, graph-based net-
work vulnerability analysis,’’ in Proc. 9th ACM Conf. Comput. Commun.
Secur. (CCS), Nov. 2002, pp. 217–224.

[3] S. Jajodia, S. Noel, and B. O’Berry, ‘‘Topological analysis of network
attack vulnerability,’’ inManaging Cyber Threats: Issues, Approaches and
Challanges, V. Kumar, J. Srivastava, and A. Lazarevic, Eds. Norwell, MA,
USA: Kluwer 2003, ch. 5.

[4] X. Ou, S. Govindavajhala, and A. W. Appel, ‘‘MulVAL: A logic-based
network security analyzer,’’ inProc. USENIX Secur. Symp.Baltimore,MD,
USA, vol. 8, 2005, pp. 113–128.

[5] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, ‘‘Optimal security
hardening using multi-objective optimization on attack tree models of
networks,’’ in Proc. 14th ACM Conf. Comput. Commun. Secur. (CCS),
2007, pp. 204–213.

[6] N. Poolsappasit, R. Dewri, and I. Ray, ‘‘Dynamic security riskmanagement
using Bayesian attack graphs,’’ IEEE Trans. Dependable Secure Comput.,
vol. 9, no. 1, pp. 61–74, Jan. 2012.

[7] M. Khouzani, Z. Liu, and P.Malacaria, ‘‘Scalable min-maxmulti-objective
cyber-security optimisation over probabilistic attack graphs,’’ Eur. J. Oper.
Res., vol. 278, no. 3, pp. 894–903, Nov. 2019.

[8] H. M. J. Almohri, L. T. Watson, D. Yao, and X. Ou, ‘‘Security opti-
mization of dynamic networks with probabilistic graph modeling and
linear programming,’’ IEEE Trans. Depend. Sec. Comput., vol. 13, no. 4,
pp. 474–487, Jul. 2016.

[9] Y. Xu, Z. Xu, B. Chen, F. Song, Y. Liu, and T. Liu, ‘‘Patch based vulner-
ability matching for binary programs,’’ in Proc. 29th ACM SIGSOFT Int.
Symp. Softw. Test. Anal., Jul. 2020, pp. 376–387.

[10] J. Xu, P. Guo, M. Zhao, R. F. Erbacher, M. Zhu, and P. Liu, ‘‘Comparing
different moving target defense techniques,’’ in Proc. 1st ACM Workshop
Moving Target Defense (MTD), 2014, pp. 97–107.

[11] H. Li, Y. Wang, and Y. Cao, ‘‘Searching forward complete attack graph
generation algorithm based on hypergraph partitioning,’’ Procedia Com-
put. Sci., vol. 107, pp. 27–38, Jan. 2017.

[12] H. Meyerhenke, P. Sanders, and C. Schulz, ‘‘Parallel graph partitioning
for complex networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 9,
pp. 2625–2638, Sep. 2017.

[13] G. Malewicz, H. M. Austern, J. C. A. Bik, C. J. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, ‘‘Pregel: A system for large-scale graph processing,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), New York,
NY, USA: Association for Computing Machinery, 2010, pp. 135–146.

[14] K. Kaynar and F. Sivrikaya, ‘‘Distributed attack graph generation,’’ IEEE
Trans. Depend. Sec. Comput., vol. 13, no. 5, pp. 519–532, Sep. 2016.

[15] J. B. Hong, T. Eom, J. S. Park, and D. S. Kim, ‘‘Scalable security analysis
using a partition and merge approach in an infrastructure as a service
cloud,’’ in Proc. IEEE 11th Intl Conf Ubiquitous Intell. Comput. IEEE
11th Intl Conf. Autonomic Trusted Comput. IEEE 14th Intl Conf Scalable
Comput. Commun. Associated Workshops, Dec. 2014, pp. 50–57.

[16] C. A. Phillips, ‘‘The network inhibition problem,’’ in Proc. 25th Annu.
ACM Symp. Theory Comput. (STOC), 1993, pp. 776–785.

[17] M. Dacier, Y. Deswarte, and M. Kaâniche, ‘‘Quantitative assessment of
operational security: Models and tools,’’ in Information Systems Security,
S. Katsikas and D. Gritzalis. London, U.K.:, Chapman & Hall, 1996,
pp. 86–179.

[18] I. S. Moskowitz and M. H. Kang, ‘‘An insecurity flow model,’’ in Proc.
workshop New Secur. Paradigms (NSPW), 1997, pp. 61–74.

[19] X. Ou, W. F. Boyer, and M. A. McQueen, ‘‘A scalable approach to attack
graph generation,’’ in Proc. 13th ACM Conf. Comput. Commun. Secur.
(CCS), 2006, pp. 336–345.

[20] N. Cao, K. Lv, and C. Hu, ‘‘An attack graph generation method based
on parallel computing,’’ in Proc. Int. Conf. Sci. Cyber Secur. Cham,
Switzerland: Springer, 2018, pp. 34–48.

[21] X. Yin, Y. Fang, andY. Liu, ‘‘Real-time risk assessment of network security
based on attack graphs,’’ in Proc. Int. Conf. Inf. Sci. Comput. Appl. (ISCA),
2013, pp. 75–80.

[22] A. A. Ramaki, M. Khosravi-Farmad, and A. G. Bafghi, ‘‘Real time alert
correlation and prediction using Bayesian networks,’’ in Proc. 12th Int.
Iranian Soc. Cryptol. Conf. Inf. Secur. Cryptol. (ISCISC), Sep. 2015,
pp. 98–103.

[23] M. Gupta, J. Rees, A. Chaturvedi, and J. Chi, ‘‘Matching information secu-
rity vulnerabilities to organizational security profiles: A genetic algorithm
approach,’’ Decis. Support Syst., vol. 41, no. 3, pp. 592–603, Mar. 2006.

[24] H. Huang, S. Zhang, X. Ou, A. Prakash, and K. Sakallah, ‘‘Distilling crit-
ical attack graph surface iteratively through minimum-cost SAT solving,’’
in Proc. 27th Annu. Comput. Secur. Appl. Conf. (ACSAC), 2011, pp. 31–40.

[25] M. Waniek, T. P. Michalak, and A. Alshamsi, ‘‘Strategic attack & defense
in security diffusion games,’’ ACM Trans. Intell. Syst. Technol., vol. 11,
no. 1, pp. 1–35, Feb. 2020.

[26] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques—Adaptive Computation and Machine Learning. Cam-
bridge, MA, USA: MIT Press, 2009.

[27] A. Darwiche, ‘‘A differential approach to inference in Bayesian networks,’’
J. ACM, vol. 50, no. 3, pp. 280–305, May 2003.

VOLUME 9, 2021 13

H. M. J. Almohri et al.: On Parallel Real-Time Security Improvement Using Mixed-Integer Programming

[28] M. Vasimuddin, S. P. Chockalingam, and S. Aluru, ‘‘A parallel algorithm
for Bayesian network inference using arithmetic circuits,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. (IPDPS), May 2018, pp. 34–43.

[29] K. Li and P. Hudak, ‘‘Memory coherence in shared virtual memory sys-
tems,’’ ACM Trans. Comput. Syst., vol. 7, no. 4, pp. 321–359, Nov. 1989.

[30] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘‘Power-
graph: Distributed graph-parallel computation on natural graphs,’’ in Proc.
10th USENIX Symp. Operating Syst. Design Implement. (OSDI), 2012,
pp. 17–30.

[31] A. Kyrola, G. Blelloch, and C. Guestrin, ‘‘Graphchi: Large-scale graph
computation on just a PC,’’ in Proc. 10th USENIX Symp. Operating Syst.
Design Implement. (OSDI), Hollywood, CA, USA, 2012, pp. 31–46.

[32] J. A. Lukes, ‘‘Efficient algorithm for the partitioning of trees,’’ IBM J. Res.
Develop., vol. 18, no. 3, pp. 217–224, May 1974.

[33] J. Dean and S. Ghemawat, ‘‘Mapreduce: Simplified data processing on
large clusters,’’ in Proc. 6th Symp. Operating Syst. Design & Implement.
(OSDI), 2004, p. 10.

[34] S. Zhang, D. Caragea, and X. Ou, ‘‘An empirical study on using the
national vulnerability database to predict software vulnerabilities,’’ in
Proc. Int. Conf. database expert Syst. Appl. Berlin, Germany: Springer,
2011, pp. 217–231.

[35] K. A. Farris, A. Shah, G. Cybenko, R. Ganesan, and S. Jajodia, ‘‘VUL-
CON: A system for vulnerability prioritization, mitigation, and manage-
ment,’’ ACM Trans. Privacy Secur., vol. 21, no. 4, pp. 1–28, Oct. 2018.

[36] P. Mell, K. Scarfone, and S. Romanosky, ‘‘Common vulnerability scoring
system,’’ IEEE Secur. Privacy Mag., vol. 4, no. 6, pp. 85–89, Nov. 2006.

[37] S. C. Coley. (Sep. 2014). Common Weakness Scoring System (CWSS).
Accessed: Jan. 12, 2020. [Online]. Available: https://cwe.mitre.org/
cwss/cwss_v1.0.1.html

[38] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. New York, NY, USA: Springer, 2011.

[39] H. S. Ryoo and N. V. Sahinidis, ‘‘A branch-and-reduce approach to global
optimization,’’ J. Global Optim., vol. 8, no. 2, pp. 107–138, 1996.

[40] A. E. Feldmann and L. Foschini, ‘‘Balanced partitions of trees and appli-
cations,’’ Algorithmica, vol. 71, no. 2, pp. 354–376, 2015.

[41] N. V. Sahinidis, ‘‘BARON:A general purpose global optimization software
package,’’ J. Global Optim., vol. 8, no. 2, pp. 201–205, 1996.

[42] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald,
Parallel programming in OpenMP. San Mateo, CA, USA: Morgan
Kaufmann, 2001.

HUSSAIN M. J. ALMOHRI (Member, IEEE)
received the B.S. degree in computer science from
Kuwait University and the Ph.D. degree in com-
puter science from Virginia Tech, in 2013. He is
currently with the Computer Science Department,
Kuwait University. He has co-founded a mobile
payment startup. He has also advised a number
of software startups. His research interests include
systems and network security, intrusion detection
in the IoT, and application of optimization in com-

puter security. He served as a reviewer for several IEEE journals and security
conferences.

LAYNE T. WATSON (Life Fellow, IEEE) received
the B.A. degree (magna cum laude) in psychol-
ogy and mathematics from the University of
Evansville, Indiana, in 1969, and the Ph.D. degree
in mathematics from the University of Michigan,
Ann Arbor, MI, USA, in 1974.

He has worked with USNAD Crane, Sandia
National Laboratories, and General Motors
Research Laboratories. He served on the faculties
of the University of Michigan, Michigan State

University, and the University of Notre Dame. He is currently a Professor
of Computer Science, Mathematics, and Aerospace and Ocean Engineering
with Virginia Polytechnic Institute and State University. He has published
well over 300 refereed journal articles and 200 refereed conference papers.
His research interests include fluid dynamics, solid mechanics, numerical
analysis, optimization, parallel computation, mathematical software, image
processing, and bioinformatics. He is a fellow of the National Institute of
Aerospace and the International Society of Intelligent Biological Medicine.
He serves as a Senior Editor for Applied Mathematics and Computation, and
an Associate Editor of Computational Optimization and Applications, Evo-
lutionary Optimization, Engineering Computations, and the International
Journal of High Performance Computing Applications.

HOMA ALEMZADEH (Member, IEEE) received
the B.Sc. and M.Sc. degrees in computer engi-
neering from the University of Tehran and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Illinois at Urbana-
Champaign. She worked with the DEPENDGroup
within the Coordinated Science Laboratory, Uni-
versity of Illinois at Urbana-Champaign. Before
joining theUniversity of Virginia (UVA), shewas a
Research Staff Member with the IBM T. J. Watson

Research Center. She is currently an Assistant Professor with the Department
of Electrical and Computer Engineering, University of Virginia (UVA). She
is also affiliated with the LinkLab, Multi-Disciplinary Research Center for
Cyber-Physical Systems (CPS). She is particularly interested in data-driven
resilience assessment and design of embedded and cyber-physical systems,
with a focus on safety and security validation and monitoring in medical
devices and systems, surgical robots, and autonomous systems. Her research
interests include intersection of computer systems dependability and data
science.

MOHAMMAD ALMUTAWA received the B.S.
degree in computer science from Oregon State
University, and the master’s and Ph.D. degrees in
computer science from the University of Colorado
at Boulder, Boulder, CO, USA. He is currently
an Assistant Professor of Computer Science with
Kuwait University. His research interests include
security and privacy, pervasive computing, and the
Internet of Things.

14 VOLUME 9, 2021

