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Abstract In this work, we consider parabolic models with dynamic boundary conditions
and parabolic bulk-surface problems in 3D. Such partial differential equations based models
describe phenomena that happen both on the surface and in the bulk/domain. These problems
may appear in many applications, ranging from cell dynamics in biology, to grain growth
models in polycrystallinematerials. UsingDifference Potentials framework,we develop novel
numerical algorithms for the approximation of the problems. The constructed algorithms
efficiently and accurately handle the coupling of the models in the bulk and on the surface,
approximate 3D irregular geometry in the bulk by the use of only Cartesian meshes, employ
Fast Poisson Solvers, and utilize spectral approximation on the surface. Several numerical
tests are given to illustrate the robustness of the developed numerical algorithms.
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1 Introduction

The parabolic models with dynamic boundary conditions and parabolic bulk-surface models
can be found in a variety of applications in fluid dynamics, materials science and biological
applications, see for example, [11,10,28,12,15,7,22,4,16,19,24,26,5]. In many of these
problems, partial differential equations (PDE) based models are used to capture dynamic
phenomena that occur on the surface of the domain and in the bulk/domain. For instance,
cell polarizations can be modeled by the switches of Rho GTPases between the active forms
on the membrane (surface) and inactive forms in the cytosol (bulk) [12]. Another example
is the modeling of the receptor-ligand dynamics, [15], to name a few examples here.
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In the current literature, there are only few numerical methods developed for such
problems, and most of the methods are finite-element-based. For instance, a novel finite
element scheme is proposed and analyzed for 3D elliptic bulk-surface problems in [14],
where polyhedral elements are constructed in the bulk region, and the piecewise polynomial
boundary faces serve as the approximation of the surface. The method in [14] employs
two finite-element spaces, one in the bulk, and one on the surface. See also the review
paper [13] on the finite element methods for PDEs on curved surfaces and the references
therein. Also, space and time discretizations of 2D heat equations with dynamic boundary
conditions are studied in [21], in a weak formulation that fits into the standard variational
framework of parabolic problems. A flexible unfitted finite element method (cut-FEM) is
proposed for 3D elliptic bulk-surface problems in [6]. The developed cut-FEM utilizes the
same finite element space defined on a structured background mesh to solve the PDEs in
the bulk region and on the surface. Another space-time cut-FEM approach, with continuous
linear elements in space and discontinuous piecewise linear elements in time, is designed
for 2D parabolic bulk-surface problems on time-dependent domains in [20]. Furthermore, a
hybrid finite-volume-finite-element method is developed for 3D bulk-surface models in [9].
The hybrid method employs a monotone nonlinear finite volume method in the bulk, and the
trace finite element method [29,30] is used to solve equations on the reconstructed polygonal
approximation of the surface.

In this work, we develop novel numerical algorithms for 3D models with dynamic
boundary conditions and bulk-surface coupling, within the framework of Difference Poten-
tials method (DPM). The constructed numerical schemes efficiently and accurately handle
the coupling of the models in the bulk and on the surface, approximate 3D irregular geometry
in the bulk by the use of only Cartesian grids, employ Fast Poisson Solvers, and apply spectral
approximation on the surface.

The paper is organized as follows. In Section 2, we discuss the two distinct yet related
model problems that are considered in the current work, the parabolic model with dynamic
boundary condition and parabolic bulk-surface problem in 3D. Next, in Section 3, we develop
numerical methods based on Difference Potentials for these problems, and give the main
steps of the constructed numerical algorithms. Lastly, in Section 4, we present the extensive
numerical results (convergence, 3D views of the solutions, etc.) that show the robustness of
the developed algorithms.

2 The Model with Dynamic Boundary Condition and Bulk-Surface Problem

In this work, we consider the following two models in 3D:
Heat equation with dynamic boundary condition on the surface (see related examples in [34,
21]),

ut − ∆u = f , (x, y, z, t) ∈ Ω × R+, (1)
ut + u + n · ∇u = ∆Γu + g, (x, y, z, t) ∈ Γ × R+, (2)

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ Ω ∪ Γ. (3)
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The bulk-surface problem (see related examples in [20,15]),

ut − ∆u = f , (x, y, z, t) ∈ Ω × R+, (4)
−n · ∇u = h(u, v), (x, y, z, t) ∈ Γ × R+, (5)

vt − ∆Γv = g + h(u, v), (x, y, z, t) ∈ Γ × R+, (6)
u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ Ω, (7)
v(x, y, z, 0) = v0(x, y, z), (x, y, z) ∈ Γ. (8)

In the above models, Γ is a smooth boundary/surface of a bounded domain/bulk Ω ⊂ R3,
∆Γ is the Laplace-Beltrami operator defined on Γ, n denotes the outward unit normal vector.
The function h(u, v) is the coupling relation between the bulk and the surface, and g in (2)
or (6) is the source function on the surface. The initial data for the model (1)-(2) is given
by function u0(x, y, z), (x, y, z) ∈ Ω ∪ Γ and the initial data in (4)-(6) are given by functions
u0(x, y, z), (x, y, z) ∈ Ω and v0(x, y, z), (x, y, z) ∈ Γ.

3 Algorithms Based on DPM

The current work is a continuation of the recent work in [2,3,18,23]. For the time being,
we will consider the model with dynamic boundary conditions and the bulk-surface problem
in a spherical domain, but the proposed methods can be extended to domains with more
general geometry in 3D (and the main ideas of the algorithms will stay the same, see Remark
5 below). We employ a finite-difference scheme for the underlying space discretization of
the models in the bulk (1) or (4), combined with the idea of Difference Potentials Method
(DPM) ([32] and very recent work [33,17,2,3,18], etc.) that provides flexibility to handle
irregular domains and nontrivial boundary conditions (including, but not limited to, dynamic
boundary conditions like (2), or surface equations like (6)) accurately and efficiently.

3.1 The Numerical Algorithm Based on DPM

Discretization in the Bulk:

Introduction of the Auxiliary Domain. As a first step of the numerical algorithm, we embed
the original domain Ω into a computationally simple auxiliary domain Ω0 ⊂ R3, that we
will select to be a cube in this work. Next, we introduce a Cartesian mesh to discretize the
auxiliary domain Ω0, with mesh nodes (xj, yk, zl) = (x0 + j∆x, y0 + k∆y, z0 + l∆z), ( j, k, l =
0, 1, 2 . . . , N). Here, (x0, y0, z0) is the left-bottom corner point of the cubical auxiliary domain
Ω0. For simplicity, we assume that the Cartesian mesh is uniform, i.e., h := ∆x = ∆y = ∆z.
To discretize the PDE (1) or (4) in the bulk, with a second order accuracy in space, we
will consider the standard 7-point finite-difference stencil with a center placed at the point
(xj, yk, zl):

N7
j,k,l =

{
(xj, yk, zl), (xj±1, yk, zl), (xj, yk±1, zl), (xj, yk, zl±1)

}
. (9)

Next, we define the important point sets that we will use as a part of the Difference Potentials
framework (see Fig. 1):
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Fig. 1: Examples of point sets in the cross-sectional view: M+ (solid dots) as a subset of N+

(open circles), where solid dots in open circles show the overlap between M+ and N+ in the
left figure; and the discrete grid boundary γ as the union of γex (open circles) and γin (solid
dots) in the right figure. The auxiliary domain is denoted as Ω0 in both figures.

Definition 1 Introduce the following point sets:

– M0 =
{
(xj, yk, zl) | (xj, yk, zl) ∈ Ω0} denotes the set of all mesh nodes (xj, yk, zl) that

belong to the interior of the auxiliary domain Ω0;
– M+ = M0 ∩ Ω =

{
(xj, yk, zl) | (xj, yk, zl) ∈ Ω

}
denotes the set of all mesh nodes

(xj, yk, zl) that belong to the interior of the original domain Ω;
– M− = M0\M+ = {(xj, yk, zl) | (xj, yk, zl) ∈ Ω0\Ω} is the set of all mesh nodes
(xj, yk, zl) that are inside of the auxiliary domain Ω0, but belong to the exterior of the
original domain Ω;

– N+ =
{⋃

j,k,l N
7
j,k,l
| (xj, yk, zl) ∈ M+

}
;

– N− =
{⋃

j,k,l N
7
j,k,l
| (xj, yk, zl) ∈ M−

}
;

– N0 =
{⋃

j,k,l N
7
j,k,l
| (xj, yk, zl) ∈ M0

}
;

The point sets N± and N0 are the sets of all mesh nodes covered by the stencil N7
j,k,l

for
every mesh node (xj, yk, zl) in M± and M0 respectively;

– γ = N+ ∩ N− defines a thin layer of mesh nodes that straddles the continuous boundary
Γ and is called the discrete grid boundary;

– γin = M+ ∩ γ and γex = M− ∩ γ are subsets of the discrete grid boundary that lie inside
and outside of the spherical domain Ω respectively.

Construction of the System of Discrete Equations for Models (1) and (4). In this work, we
will use the trapezoidal time stepping (Crank-Nicolson scheme) to illustrate the approach
based on Difference Potentials for the models with dynamic boundary conditions and for the
bulk-surface problems. In general, any other stable time marching scheme can be employed
in a similar way.
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For the spatial discretization, we will employ the second-order finite-difference scheme
using the 7-point stencil N7

j,k,l
as defined above. Assume now, that ui

j,k,l
denotes a discrete

solution computed at the time level ti at the mesh node (xj, yk, zl). Then, the discrete system
of equations for (1) and (4) obtained using trapezoidal time approximation combined with
the second-order central finite-difference approximation in space is,

Lh,∆tui+1
j,k,l = Fi+1

j,k,l, (xj, yk, zl) ∈ M+, (10)

where, we introduced the discrete linear difference operator Lh,∆t ≡ ∆h −σI with σ = 2/∆t,
∆h–the discrete Laplace operator defined on point set M+, I–the identity matrix of the
same size as ∆h , the right-hand side function Fi+1

j,k,l
≡ −(∆h + σI)ui

j,k,l
− f i+1

j,k,l
− f i

j,k,l
, and

ui+1
j,k,l
≈ u(xj, yk, zl, ti+1).

The Discrete Auxiliary Problem (AP). One of the important steps of DPM-based methods
is the introduction of the auxiliary problem (AP). The discrete APs play a key role in
construction of the Particular Solution and the Difference Potentials operators as a part of
DPM-based algorithm proposed in this work.

Definition 2 At time ti+1, given the grid function qi+1 on M0, the following difference
equations (11)–(12) are defined as the discrete Auxiliary Problem (AP):

Lh,∆tw
i+1
j,k,l = qi+1

j,k,l, (xj, yk, zl) ∈ M0, (11)

wi+1
j,k,l = 0, (xj, yk, zl) ∈ N0\M0. (12)

Here, the discrete linear operator Lh,∆t = ∆h − σI is the linear operator similar to the one
introduced in (10), but is defined now on a larger point set M0.

Remark 1 The homogeneous Dirichlet boundary condition (12) in the AP is chosen merely
for efficiency of our algorithm, i.e. we employ Fast Poisson Solvers to solve the APs. In
general, other boundary conditions can be selected for the AP as long as the defined AP is
well-posed and can be solved computationally efficiently.

Construction of the Particular Solution. Let us denote by Gh,∆tFi+1
j,k,l

, (xj, yk, zl) ∈ N+, the
Particular Solution of the fully discrete problem (10). The Particular Solution is defined on
N+ at time level ti+1, and is obtained by solving the AP (11)–(12) with the following right
hand side:

qi+1
j,k,l =

{
Fi+1
j,k,l

, (xj, yk, zl) ∈ M+,
0, (xj, yk, zl) ∈ M−,

(13)

and by restricting the computed solution from N0 to N+.

Construction of the Difference Potentials and Boundary Equations with Projections. To
construct the Difference Potentials, let us first define a linear space Wγ of all grid functions
wi+1
γ (xj, yk, zl) at ti+1 on γ. The functions are extended by zero to other points in N0 set.

These grid functions wi+1
γ are called densities on the discrete grid boundary γ at the time

level ti+1.
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Definition 3 The Difference Potential associated with a given density wi+1
γ ∈ Wγ is the

grid function PN+γw
i+1
γ defined on N+ at the time level ti+1, and is obtained by solving the

AP (11)–(12) with the following right hand side:

qi+1
j,k,l =

{
0, (xj, yk, zl) ∈ M+,
Lh,∆t [w

i+1
γ ], (xj, yk, zl) ∈ M−, (14)

and by restricting the solution from N0 to N+.
Next, we will introduce the trace operator. Given a grid function wi+1 defined on the

point set N+, we denote by Trγwi+1 the trace or restriction of wi+1 from N+ to the discrete
grid boundary γ. Similarly, we define Trγinw

i+1 as the trace or restriction of wi+1 from
N+ to γin ⊂ γ. We are ready to define an operator Pγ : Wγ → Wγ such that Pγwi+1

γ :=
TrγPN+γw

i+1
γ . The operator Pγ is a projection operator. Now, we will state the key theorem

for Difference Potentials Method, which allows us to reformulate the difference equation
(10) defined on M+ into equivalent Boundary Equations with Projections (BEP) defined on
the discrete grid boundary γ only.

Theorem 1 (Boundary Equations with Projections (BEP)) At time ti+1, the discrete den-
sity ui+1

γ is the trace of some solution ui+1 on N+ to the difference equation (10), i.e.
ui+1
γ := Trγui+1, if and only if the following BEP holds:

ui+1
γ − Pγui+1

γ = Gh,∆tFi+1
γ , (xj, yk, zl) ∈ γ, (15)

where Gh,∆tFi+1
γ := TrγGh,∆tFi+1

j,k,l
is the trace of the Particular Solution on the discrete grid

boundary γ.

Proof See [32] or [18]. ut

Remark 2 Note, using that Difference Potential is a linear operator, we can recast (15) as

ui+1
m −

∑
n∈γ

Anmui+1
n = Gh,∆tFi+1

m , m ∈ γ, (16)

where m is the index of a grid point in the set γ, and Gh,∆tFi+1
m is the value of the Particular

Solution at the grid point with index m in the set γ.

Proposition 1 The rank of linear equations in BEP (15) is |γin |, which is the cardinality of
the point set γin.

Proof The proof follows the lines of the proof in [32,18], and we will present it below for
reader’s convenience. If the density ui+1

γex
on γex to the difference equation (10) is given,

then such discrete system will admit a unique solution ui+1
j,k,l

defined on a set N+. Hence, the
BEP (15) will have a unique solution, if ui+1

γex
is given. Thus, the solution ui+1

γ to BEP (15)
has dimension |γex |, which is the cardinality of set γex . As a consequence, the BEP (15) has
rank |γ | − |γex | = |γin |. ut

Next, we introduce the reduced BEP (17) defined only on γin that can be shown to be
equivalent to the BEP (15) defined on γ.

Theorem 2 The BEP (15) defined on γ in Theorem 1 is equivalent to the following BEP (17)
defined on a smaller subset γin ⊂ γ:

ui+1
γin
− Trγin Pγui+1

γ = TrγinGh,∆tFi+1
γ , (xj, yk, zl) ∈ γin (17)

Moreover, the reduced BEP (17) contains only linearly independent equations.
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Proof The proof follows the lines of the proof in [32,18] and we will present it below for
reader’s convenience. First, define the grid function:

Φi+1 := Pi+1 + Gi+1 − ui+1
γ , on N0, (18)

where Pi+1 is a solution to the AP (11)–(12) on N0 with right hand side (14) using density
ui+1
γ , Gi+1 is a solution to the AP (11)–(12) on N0 with right hand side (13), and ui+1

γ is
extended from γ to N0 by zero. By the construction of Φi+1, one can see that Φi+1 is a
solution to the following difference equation:

Lh,∆t [Φ
i+1] =

{
Fi+1 − Lh,∆t [ui+1

γ ], on M+,
0, on M−.

(19)

Therefore, we conclude that Φi+1 solves the following homogeneous difference equations on
the set M−:

Lh,∆tΦ
i+1 = 0, on M−. (20)

Additionally, by construction of functionsΦi+1, Pi+1 andGi+1, the grid functionΦi+1 satisfies
the following boundary condition:

Φi+1 = 0, on N0\M0. (21)

Next, observe that the BEP (15) and the reduced BEP (17) can be reformulated using
grid function Φi+1 in (18) as follows:

Φi+1 = 0, on γ, (BEP (15)), (22)

and

Φi+1 = 0, on γin, (BEP (17)). (23)

Hence, it is enough to show that (22) is equivalent to (23) to prove the equivalence between
the BEP (15) and the reduced BEP (17). First, note that if (22) is true, then (23) is obviously
satisfied.

Now, assume that (23) is true and let us show that (22) holds. Consider problem (20):
Lh,∆tΦ

i+1 = 0 on M−, subject to boundary conditions (21) and (23), since the set γin ∪
(N0\M0) is the boundary set for set M−. Then we have the following discrete boundary
value problem:

Lh,∆tΦ
i+1 = 0, on M−, (24)

Φi+1 = 0, on N0\M0, (25)

Φi+1 = 0, on γin, (26)

which admits a unique zero solution: Φi+1 = 0 on M−. Since γex ⊂ M−, we conclude that
Φi+1 = 0 on γex , as well as on γ ≡ γex ∪ γin, which shows that (23) implies (22).

Thus, we showed that (22) is equivalent to (23), and therefore, BEP (15) is equivalent
to the reduced BEP (17). Moreover, due to Proposition 1, the reduced BEP (17) consists of
only linearly independent equations. ut
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Similarly to (15)-(16), the reduced BEP (17) can be recast as

ui+1
m −

∑
n∈γ

Anmui+1
n = Gh,∆tFi+1

m , m ∈ γin . (27)

Remark 3 The BEP (15) or (17) reduces degrees of freedom from O(h−3) in the difference
equation (10) toO(h−2). In addition, the reduced BEP (17) defined on γin reduces the number
of equations in BEP (15) by approximately one half, since |γin | ≈ |γ |/2. Thus, using the
reduced BEP (17) will further improve the computational cost in our numerical algorithm,
especially in 3D, and we will use the reduced BEP as a part of the proposed numerical
algorithm.

Additionally, let us note that the BEP (15) or the BEP (17) will admit multiple solutions
since the system of equations (15) (and hence (17)) is equivalent to the system of difference
equations (10) without imposed boundary conditions yet. Therefore, to construct a unique
solution to BEP (17), we need to supply the BEP (17) with either the dynamic boundary
condition (2), or the coupling conditions on the surface (5)-(6). To impose these conditions
efficiently into BEP, we will introduce the extension operator (28) and combine (28) with the
spectral approach discussed below for the approximation of the boundary conditions/surface
equations.

Definition 4 The extension operator πγΓ[ui+1] of the function u(x, y, z, ti+1) from a point
(x, y, z) ∈ Γ to (xj, yk, zl) ∈ γ is defined as:

πγΓ[ui+1]|(x j,yk,zl ) := ui+1(x, y, z)|Γ + d
∂ui+1(x, y, z)

∂n

����
Γ

+
d2

2
∂2ui+1(x, y, z)

∂n2

����
Γ

, (28)

where n is the unit outward normal vector on Γ, d is the signed distance between a point
(xj, yk, zl) ∈ γ and the point of its orthogonal projection (x, y, z) on the continuous boundary
Γ in the direction of n.

Basically, the extension operator (28) defines values of πγΓ[ui+1] at the point of the discrete
grid boundary (xj, yk, zl) ∈ γ with the desired accuracy through the values of the continuous
solution and its gradients at time ti+1 at the continuous boundary Γ of the domain. In partic-
ular, we consider the extension operator (28) defined in (xj, yk, zk ) ∈ γin when we solve the
reduced BEP (17). In addition, note that d and n need not to be known precisely, see Tables
2–5 in Section 4.3.

Discretization on the Surface:
Here, for simplicity, we assume that the surface Γ is a sphere with radius R. However,

the proposed numerical algorithms can be extended to more general smooth domains and,
hence, more general surfaces, and the main steps of the methods will stay the same (see
Remark 5 below).

Case 1: Dynamic Boundary Conditions (2). We will use trapezoidal in time scheme for (2),
but other time discretizations can be employed as well. Since, in this work Γ is a sphere, we
have that the normal derivative satisfies,

∂u(x, y, z, t)
∂n

=
∂u(x, y, z, t)

∂r
, (x, y, z) ∈ Γ, (29)
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where n is the unit outward normal vector and r is the variable radius in the spherical
coordinates, and similarly, unn = urr .

The discrete in time dynamic boundary condition (2) is

ui+1(x, y, z) − ui(x, y, z)
∆t

=
1
2

(
∆Γui+1(x, y, z) − ui+1(x, y, z) −

∂ui+1(x, y, z)
∂r

+ gi+1(x, y, z) (30)

+ ∆Γui(x, y, z) − ui(x, y, z) −
∂ui(x, y, z)

∂r
+ gi(x, y, z)

)
,

for (x, y, z) ∈ Γ. Here, ui+1(x, y, z) is an approximation in time of u(x, y, z, ti+1), and
gi+1(x, y, z) is an approximation of g(x, y, z, ti+1) at time level ti+1. Also, note that, the
Laplace-Beltrami operator on the sphere Γ with a radius R at time ti+1 can be obtained as,

∆Γui+1(x, y, z) =
1

R2 sin θ
∂

∂θ

(
sin θ

∂ui+1(x, y, z)
∂θ

)
+

1
R2 sin2 θ

∂2ui+1(x, y, z)
∂ϕ2 , (31)

where (θ, ϕ) are the polar and azimuthal angles for a point (x, y, z) ∈ Γ.
Next, from (30), we can express the term ui+1

r (x, y, z) as,

∂ui+1(x, y, z)
∂r

= ∆Γui+1(x, y, z) − (1 + σ)ui+1(x, y, z) + σui(x, y, z) + gi+1(x, y, z)

+ ∆Γui(x, y, z) − ui(x, y, z) −
∂ui(x, y, z)

∂r
+ gi(x, y, z), (x, y, z) ∈ Γ

= ∆Γui+1(x, y, z) − (1 + σ)ui+1(x, y, z) (32)

+ σui(x, y, z) + gi+1(x, y, z) + uit (x, y, z), (x, y, z) ∈ Γ,

where σ = 2/∆t as before, and uit (x, y, z) denotes the time derivative of u(x, y, z, t) at time
level ti ,

uit (x, y, z) = ∆Γui(x, y, z) − ui(x, y, z) −
∂ui(x, y, z)

∂r
+ gi(x, y, z). (33)

We assume that u0
t (x, y, z) is known initially, since u0(x, y, z) and g0(x, y, z) are known at

the initial time. Note, that the time derivative ui+1
t (x, y, z) at the next time level ti+1, can be

updated efficiently using the following formula (consequence of (2) and (30)),

ui+1
t (x, y, z) = σui+1(x, y, z) − σui(x, y, z) − uit (x, y, z), (x, y, z) ∈ Γ, (34)

once we have computed ui+1(x, y, z) at time level ti+1.
Furthermore, we note that ui+1

rr (x, y, z) can be expressed in terms of ui+1
r (x, y, z) if one

subtracts (2) from (1) by extending (1) outside of domain Ω:

∂2ui+1(x, y, z)
∂r2 = −ui+1(x, y, z) −

(
1 +

2
R

)
∂ui+1(x, y, z)

∂r
− f i+1(x, y, z) + gi+1(x, y, z),

(35)

for (x, y, z) ∈ Γ. Also, note that the normal derivative ui+1
r (x, y, z) depends linearly on

ui+1(x, y, z) as in (32), hence we only need to determine one unknown term ui+1(x, y, z) in
the extension operator (28).
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Spectral Approach. To combine extension operator (28) accurately and efficiently with
dynamic boundary condition (30) (and, hence with (32)), we will introduce the spectral
approximations at each time level ti+1 of the following two terms:

ui+1(x, y, z) ≈
L∑
κ=1

ai+1
κ φκ (θ, ϕ), (x, y, z) ∈ Γ, (36)

where (θ, ϕ) are the polar and the azimuthal angles for a point (x, y, z) ∈ Γ.

Remark 4 Here, the number of spherical harmonics L does not depend on the underlying
mesh sizes and depends on the properties of the solutions to the models.

Now, combining relations (32), (35) and (36) with the extension operator (28), we obtain

πγΓ[ui+1]|(x j,yk,zl ) = ui+1(x, y, z)|Γ + d
∂ui+1(x, y, z)

∂r

����
Γ

+
d2

2
∂2ui+1(x, y, z)

∂r2

����
Γ

(37)

=

(
1 − d(1 + σ) +

d2

2

((
2
R
+ 1

)
(1 + σ) − 1

))
ui+1(x, y, z)

+

(
d −

d2

2

(
2
R
+ 1

))
∆Γui+1(x, y, z)

+ d(σui(x, y, z) + gi+1(x, y, z) + uit (x, y, z)) (38)

−
d2

2

((
2
R
+ 1

)
(σui(x, y, z) + gi+1(x, y, z) + uit (x, y, z))

)
+

d2

2

(
− f i+1(x, y, z) + gi+1(x, y, z)

)
≈ ui+1

γ (xj, yk, zl) (39)

= Aai+1 + ci+1, (xj, yk, zl) ∈ γ and (x, y, z) ∈ Γ, (40)

where ai+1 is the vector of the unknown spectral coefficients ai+1
κ , ci+1 denotes the known

vector:

ci+1 =d(σui(x, y, z) + gi+1(x, y, z) + uit (x, y, z))

−
d2

2
((

2
R
+ 1)(σui(x, y, z) + gi+1(x, y, z) + uit (x, y, z)))

+
d2

2
(− f i+1(x, y, z) + gi+1(x, y, z)), (41)

and d is the signed distance from the point (xj, yk, zl) in γ to its foot point (x, y, z) on the
continuous boundary Γ. The coefficient matrix A is assembled using the basis functions, i.e.,

Am,κ =

(
1 − dm(1 + σ) +

d2
m

2

((
2
R
+ 1

)
(1 + σ) − 1

))
φκ (θm, ϕm)

+

(
dm −

d2
m

2

(
2
R
+ 1

))
∆Γφκ (θm, ϕm) (42)

where m is the index that represents a point in γ, (θm, ϕm) are the polar and azimuthal angles
for the foot point (x, y, z) ∈ Γ of a point m in γ, and dm is the signed distance for this point.
Note, A is assembled using whole point set γ. However, only the rows corresponding to γin
will be used in our algorithm when we solve the reduced BEP (17).
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Remark 5 a) In the special case of a sphere, the surface laplacian of a spherical harmonic is
conveniently obtained by the following eigenvalue-eigenfunction relation:

∆ΓYm
` (θ, ϕ) = −`(` + 1)R2Ym

` (θ, ϕ) (43)

where Ym
` (θ, ϕ) is the spherical harmonic function of degree ` and order m (see detailed

formulas (83)–(84) in Section 4.1) and R is the radius of the sphere, see also [27,31].
Another equivalent approach is to use (31) and (36), where the derivatives of the spherical
harmonics ∂φi+1

κ

∂θ , ∂
2φi+1

κ

∂θ2 , ∂
2φi+1

κ

∂ϕ2 can be obtained using recursive formula [1]. In the numerical
section, we adopt the relation (43) for the efficiency of the codes.

b) In this work, we showcase the versatility of the DPM framework for dynamic BC and
bulk-surface problems, and we illustrate the ideas of the method using spherical geometry
in 3D. We should note that, the basis functions in the spectral approximation of the terms
in the extension operator in the DPM framework are not limited to spherical harmonics. For
example, in the case of smooth geometry other than spheres, local radial basis functions
can be employed instead of spherical harmonics. In addition, DPM-based algorithms were
developed for models on domains with corners (2D) [25] or wedges (3D) [18]. Furthermore,
one possible future direction is to replace the spectral approximation on the surface with a
more general method that can handle arbitrary geometry, for instance using ideas of the trace
finite element method (trace-FEM) [8,9] that utilizes the restriction (trace) of a volumetric
finite element space of piecewise continuous trilinear functions, to solve surface equations.
In addition, the choice of the discretization of the bulk equation in the DPM framework has
also a flexibility (and can be selected to be FEM, for example).

Case 2: Bulk-Surface Coupling (5)-(6). As for the bulk-surface problems, we assume here
that the surface Γ is also a sphere with radius R, and thus, the Laplace-Beltrami operator ∆Γ
at time ti+1 is computed using the eigenvalue approach (43). Again, the first order normal
derivative is computed as un(x, y, z, t) ≡ ∇u(x, y, z, t) · n = ur (x, y, z, t) for (x, y, z) ∈ Γ.

To discretize in time equation on the surface (6), we will use trapezoidal in time scheme
as it is used in the bulk (10). The discrete in time surface equation is (as a result of (6)):

vi+1(x, y, z) − vi(x, y, z)
∆t

=
1
2
(∆Γv

i+1(x, y, z) + gi+1(x, y, z) + h(ui+1(x, y, z), vi+1(x, y, z))

+ vit (x, y, z)), (x, y, z) ∈ Γ, (44)

where vit = ∆Γv
i + gi + h(ui, vi). Note that, to compute the term vit efficiently, we use the

formula,

vit (x, y, z) = σv
i(x, y, z) − σvi−1(x, y, z) − vi−1

t (x, y, z), (x, y, z) ∈ Γ, (45)

which is consequence of the discretization (44) and (6). Moreover, since from (5), we have
that h(ui+1, vi+1) = −ui+1

r , we obtain the following expression for ui+1
r ,

∂ui+1(x, y, z)
∂r

= −σvi+1(x, y, z) + ∆Γvi+1(x, y, z)

+ σvi(x, y, z) + gi+1(x, y, z) + vit (x, y, z), (x, y, z) ∈ Γ, (46)

where as before, σ = 2/∆t.
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a) Linear Bulk-Surface Coupling. For simplicity, we first consider case of linear coupling
function h(u, v) in (5) similar to, for example, [6] and [14],

h(u, v) = u − v, on Γ. (47)

Since h(ui+1, vi+1) = ui+1 − vi+1 at time level ti+1, and using equation (44), we have that,

ui+1(x, y, z) = (1 + σ)vi+1(x, y, z) − ∆Γvi+1(x, y, z)

− σvi(x, y, z) − gi+1(x, y, z) − vit (x, y, z), (x, y, z) ∈ Γ. (48)

Spectral Approach. Similarly to model with dynamic boundary conditions, to couple ac-
curately and efficiently discretization of the bulk equations, hence, the reduced BEP (17)
with the discretization of the surface equation (6) combined with coupling function (47), we
will employ idea of extension operator (28) together with the spectral approximation of the
functions vi+1(x, y, z) and ∂2ui+1(x,y,z)

∂r2 , (x, y, z) ∈ Γ at each time level ti+1.
Hence, for the density ui+1

γ , we combine the extension operator (28) together with
relations (46)-(48), to obtain:

πγΓ[ui+1]|(x j,yk,zl ) =ui+1(x, y, z) + d
∂ui+1(x, y, z)

∂r
+

d2

2
∂2ui+1(x, y, z)

∂r2 (49)

=[(1 + σ)vi+1 − ∆Γv
i+1] + d

[
−σvi+1 + ∆Γv

i+1] + d2

2
∂2ui+1

∂r2

+ [−σvi − gi+1 − vit ] + d
[
σvi + gi+1 + vit

]
, (50)

where (x, y, z) ∈ Γ is the foot point of a point (xj, yk, zl) in the discrete grid boundary γ, and
d is the signed distance from a point (xj, yk, zl) in γ to its foot point (x, y, z) ∈ Γ.

Next, similarly to the approximation of the dynamic boundary conditions, to construct
density ui+1

γ efficiently for the bulk model (4), we assume spectral approximations of the
terms vi+1(x, y, z) and, also of the term ∂2ui+1(x,y,z)

∂r2 in the extension operator (50), i.e.,

vi+1(x, y, z) ≈
L∑
κ=1

ai+1
κ φκ (θ, ϕ), (x, y, z) ∈ Γ, (51)

∂2ui+1(x, y, z)
∂r2 ≈

L∑
κ=1

bi+1
κ φκ (θ, ϕ), (x, y, z) ∈ Γ, (52)

where θ and ϕ are the polar and the azimuthal angles of the point (x, y, z) ∈ Γ. Then,
after we replace vi+1 and ∂2ui+1(x,y,z)

∂r2 in (50) using the spectral approximations above, the
approximation to the extension operator (50) is given by,

πγΓ[ui+1]|(x j,yk,zl ) ≈ ui+1
γ = Aai+1 + Bbi+1 + ci+1, (53)

where ai+1, bi+1 are the vectors that store the unknown spectral coefficients, and ci+1 denotes
the known term:

ci+1 = [−σvi(x, y, z) − gi+1(x, y, z) − vit (x, y, z)]

+ d
[
σvi(x, y, z) + gi+1(x, y, z) + vit (x, y, z)

]
, (x, y, z) ∈ Γ. (54)
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The coefficient matrices A and B are computed as,

Am,κ = (1 + σ)φκ (θm, ϕm) − ∆Γφκ (θm, ϕm)
+ dm [−σφκ (θm, ϕm) + ∆Γφκ (θm, ϕm)] , (55)

Bm,κ =
d2
m

2
φκ (θm, ϕm). (56)

Here m is the index that represents a point in γ, (θm, ϕm) are the polar and azimuthal angles
for the foot point (x, y, z) ∈ Γ of a point m in γ, and dm is the signed distance for this point.
Similarly, matrices A and B are assembled using the whole point set γ, but only the rows
corresponding to the γin set will be used in our algorithm to solve the reduced BEP (17).

b) Nonlinear Bulk-Surface Coupling. Here, we consider the example of nonlinear cou-
pling function h(u, v) in (5), similar to, for example, [15],

h(u, v) = uv. (57)

And, as before, at time level ti+1, we will have ui+1vi+1 = −ui+1
r .

Spectral Approach. Similar to model with linear bulk-surface coupling (47), to couple
accurately and efficiently discretization of the bulk equations, hence, the reduced BEP (17)
with the discretization of the surface equation (6), we will employ idea of extension operator
(28) together with the spectral approximation of the functions vi+1(x, y, z), ui+1(x, y, z) and
∂2ui+1(x,y,z)

∂r2 , (x, y, z) ∈ Γ at the time level ti+1, i.e.,

vi+1(x, y, z) ≈
L∑
κ=1

ai+1
κ φκ (θ, ϕ), (x, y, z) ∈ Γ, (58)

ui+1(x, y, z) ≈
L∑
κ=1

ci+1
κ φκ (θ, ϕ), (x, y, z) ∈ Γ, (59)

∂2ui+1(x, y, z)
∂r2 ≈

L∑
κ=1

bi+1
κ φκ (θ, ϕ), (x, y, z) ∈ Γ, (60)

where, as before, (θ, ϕ) are the polar and the azimuthal angles of the point (x, y, z) ∈ Γ.
Then, the extension operator (28) becomes,

πγΓ[ui+1]|(x j,yk,zl ) =ui+1(x, y, z) + d
∂ui+1(x, y, z)

∂r
+

d2

2
∂2ui+1(x, y, z)

∂r2 (61)

=ui+1 + d
(
−σvi+1 + ∆Γv

i+1 + σvi + gi+1 + vit

)
+

d2

2
∂2ui+1

∂r2 (62)

=ui+1 + d
(
−σvi+1 + ∆Γv

i+1
)
+

d2

2
∂2ui+1

∂r2 + d(σvi + gi+1 + vit ) (63)

≈ui+1
γ (xj, yk, zl)

=Aai+1 + Bbi+1 + Cci+1 + di+1, (xj, yk, zl) ∈ γ and (x, y, z) ∈ Γ, (64)
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where the coefficient matrices A, B,C for the unknown spectral coefficients ai+1, bi+1, ci+1

are computed as,

Am,κ = dm [−σφκ (θm, ϕm) + ∆Γφκ (θm, ϕm)] , (65)

Bm,κ =
d2
m

2
φκ (θm, ϕm), (66)

Cm,κ = φκ (θm, ϕm). (67)

Here, m is the index that represents a point in γ, (θm, ϕm) are the polar and azimuthal angles
for the foot point (x, y, z) ∈ Γ of a point m in γ, and dm is the signed distance for this point.
The vector di+1 in (64) represents the known quantity,

di+1 = d(σvi(x, y, z) + gi+1(x, y, z) + vit (x, y, z)), (x, y, z) ∈ Γ, (68)

and is computed at the same foot point (x, y, z) ∈ Γ of a point m in γ. Again, matrices A, B
and C are assembled for the entire point set γ, but only the rows corresponding to the γin set
will be used to solve the reduced BEP (17).

Linearization of the nonlinear coupling (57). To efficiently combine the coupling equa-
tion (57) with the BEP (17) and with the discretization of the surface equation (44), we will
consider linearization of (57) at time level ti+1.

To linearize, we replace vi+1(x, y, z) in (57) at the time level ti+1 by the following
approximation in time

vi+1(x, y, z) = vi(x, y, z) + ∆tvit (x, y, z) + O(∆t2) (69)

where ∆t = O(h). Then, the linearization of (57) gives us,

−n · ∇ui+1(x, y, z) ≈ ui+1(x, y, z)(vi(x, y, z) + ∆tvit (x, y, z)), (x, y, z) ∈ Γ, (70)

where vit term is computed via the relation (45). Note, that using (46) together with spectral
approximation in (58)-(59), we can formulate coupling relation (57) at ti+1 as,

⇒ −(−σvi+1(x, y, z) + ∆Γvi+1(x, y, z) + σvi(x, y, z) + gi+1(x, y, z) + vit (x, y, z))

= ui+1(x, y, z)(vi(x, y, z) + ∆tvit (x, y, z)), (71)

⇒ A′ai+1 − σvi(x, y, z) − gi+1(x, y, z) − vit (x, y, z) = C ′ci+1, (72)

⇒ −A′ai+1 + C ′ci+1 = −σvi(x, y, z) − gi+1(x, y, z) − vit (x, y, z). (73)

The expression (73) gives the linear relation between unknown spectral coefficients ai+1
κ and

ci+1
κ . Here, the matrices A′ and C ′ are defined as,

A′m,κ = −(−σφκ (θm, ϕm) + ∆Γφκ (θm, ϕm)), (74)

C ′m,κ = φκ (θm, ϕm)(v
i + ∆tvit ). (75)

Here, (θm, ϕm) corresponds to the angles of the foot point (x, y, z) ∈ Γ of a point m in γin
(since we employ the reduced BEP), and vi + ∆tvit is the corresponding value for the same
foot point m.
Remark 6 One possible improvement is to approximate vi+1 in (57) at ti+1 using the following
higher order in time approximation:

vi+1(x, y, z) ≈ vi(x, y, z) + ∆tvit (x, y, z) +
∆t2

2
vitt (x, y, z), (x, y, z) ∈ Γ, (76)

where vitt (x, y, z) can be approximated using the finite difference approximation in time.
Reconstruction of the Solutions at time ti+1:
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Case 1: Dynamic Boundary Conditions. Next, we use the reduced BEP (17) combined with
the approximation of the extension operator in the form (40), to obtain the least squares (LS)
system of dimension |γin | × L for the unknown spectral coefficients ai+1,

[A − PγA]ai+1 = Gh,∆tFi+1
γ − (ci+1 − Pγci+1), on γin . (77)

After that, we solve for the unknown spectral coefficients ai+1, using the normal equation of
the reformulated BEP (77).

Case 2: a) Linear Bulk-Surface Coupling. Similarly to the model with dynamic boundary
conditions,we combine the reducedBEP (17) and the approximation of the extension operator
in the form (53), to obtain the LS system of dimension |γin | × (2L) for the unknown spectral
coefficients ai+1 and bi+1,

[A − PγA]ai+1 + [B − PγB]bi+1 = Gh,∆tFi+1
γ − (ci+1 − Pγci+1), on γin . (78)

Again, we solve for the unknown spectral coefficientsai+1 and bi+1 using the normal equation
of the reformulated BEP (78).

Case 2: b) Nonlinear Bulk-Surface Coupling. Similarly to themodel with dynamic boundary
conditions and bulk-surface model with linear coupling, we combine the reduced BEP (17),
the approximation to the extension operator in the form (64) and the coupling condition (73),
to obtain the LS system of dimension 2|γin | × (3L) for the unknown spectral coefficients
ai+1, bi+1 and ci+1,

[A − PγA]ai+1 + [B − PγB]bi+1 + [C − PγC]ci+1 = Gh,∆tFi+1
γ − (di+1 − Pγdi+1), on γin,

(79)

−A′ai+1 + C ′ci+1 = −σvi − gi+1 − vit, on γin . (80)

Similarly, we solve for the unknown spectral coefficientsai+1, bi+1 and ci+1, using the normal
equation of the LS system (79)–(80).

Remark 7 For the LS system in Case 1, Case 2: a) and Case 2: b) described above, the
normal equation approach reduces the computational cost of the algorithms significantly,
since the size of the normal matrices will be L × L, 2L × (2L) or 3L × (3L), and |γin | � L.
As for the condition numbers of the normal matrices, they can be reduced to the magnitude
of approximately 103 on all meshes when one, for example, uses a simple preconditioner
based on the maximum value in the column scaling in the LS system, i.e. for LS system
Ax = b, the normal matrix is PT AT AP where P is a diagonal matrix with Pii = 1/max(Ai),
where Ai is the i-th column of the matrix A. See Tables 12 for examples of the condition
numbers.

Once we get the spectral coefficients (see Case 1, Case 2: a) and Case 2: b)), we will
be able to reconstruct (i) the solutions ui+1(x, y, z) or vi+1(x, y, z) for (x, y, z) on the surface
at the time level ti+1 using the spectral approximations; and (ii) the density ui+1

γ at time
level ti+1 using (40) (dynamic boundary conditions), (53) (bulk-surface model with linear
coupling), or (64) (bulk-surface model with nonlinear coupling). Finally, the approximated
solution ui+1

j,k,l
, (xj, yk, zl) ∈ N+ to the model (1)-(3) or (4)-(8) at the time level ti+1 is obtained

using the discrete generalized Green’s formula (81) below.



16 Yekaterina Epshteyn, Qing Xia

Discrete GeneralizedGreen’s Formula. The final step of DPM is to use the computed density
ui+1
γ to construct the approximation to the continuous solution in the bulk of themodel (1)-(3),
or of (4)-(8).

Proposition 2 (Discrete Generalized Green’s formula.) The discrete solution ui+1
j,k,l

on N+

constructed using Discrete Generalized Green’s formula,

ui+1
j,k,l = PN+γui+1

γ + Gh,∆tFi+1
j,k,l, (xj, yk, zl) ∈ N+, (81)

is the approximation to the exact solution u at (xj, yk, zl) ∈ Ω at time ti+1 of the continuous
model (1)-(3), or of (4)-(8). We also conjecture that we have the following accuracy of the
proposed numerical scheme,������ui+1

j,k,l − u(xj, yk, zl, ti+1)
������
∞
= O(h2 + ∆t2). (82)

Remark 8 The accuracy (82) is observed in all numerical experiments presented in Section 4.
The reader can consult [32] for the detailed theoretical foundation of DPM.

Algorithm 1 An Outline of Main Steps of the DPM-based Algorithm
1: Construct point sets M±, M0, N±, N0, γex and γin from uniform meshes on the auxiliary domain Ω0,

which embeds Ω
2: Assemble matrices for the reduced BEP:
3: if Case 1 then
4: Assemble A, then compute A− PγAwith restriction to the point set γin in (77)
5: else if Case 2: a) then
6: Assemble A and B, then compute A− PγA, B − PγB with restriction to the point set γin in (78)
7: else if Case 2: b) then
8: Assemble A, B and C, then compute A − PγA, B − PγB,C − PγC with restriction to the point

set γin in (79), and assemble A′ in γin
9: end if
10: if Case 1 or Case 2: a) then
11: Precompute the inverse of the coefficient matrix in the normal equation of the LS system (77) or (78),

using Cholesky decomposition
12: end if
13: Initialize the bulk/surface solutions using the initial conditions
14: while t i+1 ≤ Tf inal do
15: if Case 2: b) then
16: Assemble matrix C′ in γin and compute the Cholesky decomposition of the coefficient matrix of

the normal equation corresponding to the LS system (79)–(80)
17: end if
18: Construct the Particular Solution Gh,∆tF

i+1
j,k, l

on N+ using the discrete AP
19: Solve the BEP for the unknown spectral coefficients using the normal equations
20: Reconstruct the density ui+1

γ using extension operator (40) for Case 1, (53) for Case 2: a), or (64) for
Case 2: b)

21: Obtain bulk solution ui+1 using the discrete generalized Green’s formula (81), and surface solution
ui+1 or vi+1 using the spectral approximation

22: Update and march in time
23: end while

Remark 9 We solve the LS systems (77) in Case 1, (78) in Case 2: a), and (79)–(80) in Case
2: b) using the normal equation approach. For the normal equations of the resulting algebraic
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systems, the inverse matrices of the normal matrices are pre-computed outside of the time
loop for Case 1 and Case 2: a) using Cholesky decomposition.

ForCase 2: b), the normalmatrix needs to be assembled and the Cholesky decomposition
is performed at each time step since the matrix C ′ is updated at each time level inside the
time loop. However, if the size of the normal matrix is large, for efficiency, one can exploit
the block structures of the normal matrix and update only the blocks associated with C ′ at
each time step.

4 Numerical Results

In this section, we illustrate setup of the numerical tests and present the numerical results
(errors and convergence rates, 3D views of the bulk/surface solutions, etc.) for the models
with dynamic boundary condition (BC) (1)–(3), and for the bulk-surface problems (4)–(8). In
this work, we restrict our discussion to a spherical domainwith radius R centered at the origin.
For a general domain in 3D, the proposed algorithms can be extended in a straightforward
way, for example, by selecting a different set of basis functions or replacing the spectral
approach on the surface with the trace-FEM [8,9] (see Remark 5 in Section 3.1), which will
be reported in future work.

4.1 Setup of Numerical Tests

The auxiliary domain is chosen to be a cube, i.e., [−R−R/5, R+R/5]×[−R−R/5, R+R/5]×
[−R − R/5, R + R/5]. Then, the auxiliary domain is discretized using meshes of dimension
N × N × N and the grid spacing of the mesh is h = 2(R + R/5)/N . We adopt the notation
N × N × N for meshes throughout this numerical section. Note that, other choices of the
auxiliary domains will also work.

For the basis functions φκ (θ, ϕ), we use the following spherical harmonics:

Ym
` (θ, ϕ) =


Pm` (cos θ), m = 0,
Pm` (cos θ) cos(mϕ), m > 0,
P |m |
`
(cos θ) sin(|m|ϕ), m < 0,

for − ` ≤ m ≤ `. (83)

where Ym
` (θ, ϕ) is the spherical harmonic function of degree ` and order m. For the index κ

in φκ (θ, ϕ), it is related to (`,m), i.e.,

κ =

{
`2 + 2m + 1, m ≥ 0,
`2 + 2|m |, m < 0, (84)

The total number of spherical harmonics used in the tests is determined by the exact
solutions u(x, y, z, t) and v(x, y, z, t) on the boundary Γ. Generally, the spectral coefficients of
the spherical harmonic basis functions for the initial data of u and v can be computed. This
helps to determine the degree and the order of the spherical harmonics to be included in the
spectral approximations. Thus, the total number of harmonics used in the numerical tests is
independent of the grid spacing h. The only constraint on the number of the harmonics is
that, the total number of unknown spectral coefficients in the BEPs ((77) for Case 1, (78) for
Case 2: a), and (79) for Case 2: b)) is much less than |γin |. Generally, this condition is easily
satisfied due to the abundance of mesh nodes in γin in 3D, and the relative small number of
basis functions required to resolve u and v on the boundary.
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In all the numerical tests in this section, we set the final time to be T = 0.1. For the
time approximation of the models, we adopt the second-order trapezoidal scheme, and we
use the time step ∆t = h, since we consider the second-order approximation in space. There
is no particular reason of the choice of the trapezoidal rule, and other second-order implicit
time stepping techniques can also be employed. For example, one can use the second-order
implicit Runge-Kutta scheme, and the numerical results will not be significantly different
from the ones obtained with the trapezoidal rule.

4.2 The Bulk/Surface Errors

The approximation to the ∞-, L2- and H1-norm errors in the bulk are computed using the
following formulas respectively:

| |u − uih | |∞(Ω) ≈ E∞(Ω) = max
i, j,k,l

1M+

���ue(xj, yk, zl, ti) − uij,k,l
��� (85)

| |u − uih | |L2(Ω) ≈ EL2(Ω) = max
i


∑
j,k,l

1M+

(
u(xj, yk, zl, ti) − uij,k,l

)2
h3


1
2

(86)

| |u − uih | |H1(Ω) ≈ EH1(Ω) = max
i

[ ∑
j,k,l

1M+

(
u(xj, yk, zl, ti) − uij,k,l

)2
h3

+ 1M+

(
u(xj + h, yk, zl, ti) − u(xj − h, yk, zl, ti)

2h
−

ui
j+1,k,l − ui

j−1,k,l

2h

)2

h3

+ 1M+

(
u(xj, yk + h, zl, ti) − u(xj, yk + h, zl, ti)

2h
−

ui
j,k+1,l − ui

j,k−1,l

2h

)2

h3

+ 1M+

(
u(xj, yk, zl + h, ti) − u(xj, yk, zl − h, ti)

2h
−

ui
j,k,l+1 − ui

j,k,l−1

2h

)2

h3

] 1
2

(87)

where ui
j,k,l
≈ u(xj, yk, zl, ti) and ui

h
denotes also the numerical approximation to the exact

solution at time ti using grid spacing h. Also, 1M+ is the characteristic function for the point
set M+.

Additionally, we consider the ∞-norm error for the components in the gradient of the
bulk solution ui

j,k,l
at time level ti . For example, the ∞-norm error of the x-component can

be computed using the following formula:

E∞(Ω) = max
i, j,k,l

1M+

�����u(xj + h, yk, zl, ti) − u(xj − h, yk, zl, ti)
2h

−
ui
j+1,k,l − ui

j−1,k,l

2h

����� , (88)

and the errors in y, z-components are computed similarly.
The approximations to the∞-, L2-norm and H1-norm errors on the surface are computed

using the following formulas respectively:

| |v − vih | |∞(Γ) ≈ E∞(Γ) = max
i, j,k

���v(R, θ j, ϕk, ti) − vij,k ��� (89)
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| |v − vih | |L2(Γ) ≈ EL2(Γ) = max
i


∑
j,k

(
v(R, θ j, ϕk, ti) − vij,k

)2
sin θ j∆θ∆ϕ


1
2

(90)

| |v − vih | |H1(Γ) ≈ EH1(Γ) = max
i

[∑
j,k

(
v(R, θ j, ϕk, ti) − vij,k

)2
sin θ j∆θ∆ϕ

+

(
v(R, θ j + ∆θ, ϕk, ti) − v(R, θ j, ϕk, ti)

R∆θ
−
vi
j+1,k − v

i
j,k

R∆θ

)2

sin θ j∆θ∆ϕ

+

(
v(R, θ j, ϕk + ∆ϕ, ti) − v(R, θ j, ϕk, ti)

R sin θ j∆ϕ
−
vi
j,k+1 − v

i
j,k

R sin θ j∆ϕ

)2

sin θ j∆θ∆ϕ

] 1
2

(91)

where vi
j,k
≈ v(R, θ j, ϕk, ti) and vi

h
denotes also the numerical approximation of the exact

solution at time ti . The increments in the discretization of θ and ϕ are∆θ and∆ϕ respectively.
Moreover, in (91), we require sin θ j , 0. For the surface errors of the model (1)–(3) with
dynamic boundary condition, one simply replaces v with u in the formulas (89)–(91).

Note that, for all the∞-, L2- and H1-norm errors in space, the∞-norm is taken in time.

4.3 Dynamic Boundary Conditions

In this subsection,we present the numerical results formodels (1)–(3)with dynamic boundary
conditions in a spherical domain with radius R = 0.5.

4.3.1 Test 1

For the first test, we employ the exact solution u(x, y, z, t) = et (x2 + 2y2 + 3z2). The consid-
eration of such a test problem is that it offers both simplicity and asymmetry in space.

In Table 1, we observe that in the bulk, the L2-norm errors are smaller than the∞ errors,
which is as expected. However, on the surface, the L2-norm errors are larger than the∞-norm
errors. This can be explained by the following estimate of the L2-norm errors:

EL2(Γ) = max
i


∑
j,k

(
u(R, θ j, ϕk, ti) − uij,k

)2
sin θ j∆θ∆ϕ


1
2

(92)

≤ max
i, j,k

���u(R, θ j, ϕk, ti) − uij,k
��� 

∑
j,k

sin θ j∆θ∆ϕ


1
2

(93)

≈
√

4πR2 max
i, j,k

���u(R, θ j, ϕk, ti) − uij,k
��� (94)

= 2R
√
πE∞(Γ) (95)

We observe the overall second-order convergence in all norms of the errors for solutions,
both on the surface and in the bulk. Note that, the∞-norm errors of the gradients in the bulk
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 5.7519 E−6 — 3.4724 E−6 — 4.7239 E−6 —
63 × 63 × 63 1.6449 E−6 1.81 9.3307 E−7 1.90 1.2730 E−6 1.89

127 × 127 × 127 4.0469 E−7 2.02 2.3127 E−7 2.01 3.1149 E−7 2.03
255 × 255 × 255 1.0445 E−7 1.95 5.8647 E−8 1.98 7.9459 E−8 1.97

N × N × N E∞(Γ) : u Rate EL2(Γ) : u Rate EH1(Γ) : u Rate

31 × 31 × 31 5.8021 E−6 — 8.9307 E−6 — 9.6440 E−6 —
63 × 63 × 63 1.6613 E−6 1.80 2.4687 E−6 1.86 2.7621 E−6 1.80

127 × 127 × 127 4.0576 E−7 2.03 6.1087 E−7 2.01 6.7467 E−7 2.03
255 × 255 × 255 1.0469 E−7 1.95 1.5629 E−7 1.97 1.7384 E−7 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 1.8856 E−6 — 4.6662 E−6 — 7.7164 E−6 —
63 × 63 × 63 4.1092 E−7 2.20 1.1122 E−6 2.07 1.8944 E−6 2.03

127 × 127 × 127 9.8629 E−8 2.06 2.7337 E−7 2.02 4.6526 E−7 2.03
255 × 255 × 255 2.4337 E−8 2.02 6.7944 E−8 2.01 1.1611 E−7 2.00

Table 1: Convergence of the∞-, L2- and H1-norm errors of the solutions in the bulk/surface,
and the ∞-norm errors of the gradients in the bulk for the dynamic BC model (1)–(3) with
exact solution u = et (x2 + 2y2 + 3z2) until final time T = 0.1 in the sphere of R = 0.5. The
number of spherical harmonics for term u is 9.

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 1.6347 E−4 — 4.8011 E−5 — 2.9914 E−4 —
63 × 63 × 63 2.4156 E−5 2.76 6.4637 E−6 2.89 4.9519 E−5 2.59

127 × 127 × 127 3.4620 E−6 2.80 9.1209 E−7 2.83 8.3727 E−6 2.56
255 × 255 × 255 5.5230 E−7 2.65 1.4151 E−7 2.69 1.4736 E−6 2.51

N × N × N E∞(Γ) : u Rate EL2(Γ) : u Rate EH1(Γ) : u Rate

31 × 31 × 31 1.6052 E−5 — 1.1379 E−5 — 3.3818 E−5 —
63 × 63 × 63 3.0297 E−6 2.41 3.0092 E−6 1.92 5.5188 E−6 2.62

127 × 127 × 127 4.7815 E−7 2.66 6.9355 E−7 2.12 8.9181 E−7 2.63
255 × 255 × 255 1.1105 E−7 2.11 1.6069 E−7 2.11 1.7645 E−7 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 1.8435 E−3 — 1.8622 E−3 — 1.8753 E−3 —
63 × 63 × 63 4.8836 E−4 1.92 4.5222 E−4 2.04 4.6395 E−4 2.02

127 × 127 × 127 1.2831 E−4 1.93 1.1405 E−4 1.99 1.0923 E−4 2.09
255 × 255 × 255 3.4607 E−5 1.89 3.2892 E−5 1.79 3.1182 E−5 1.81

Table 2: Convergence: d perturbed by εh3 for for the dynamic BC model (1)–(3) with exact
solution u = et (x2 +2y2 +3z2) until final time T = 0.1 in the sphere of R = 0.5. The number
of spherical harmonics for term u is 9.

also obey the second-order convergence, as well as the H1-norm errors in the bulk and on
the surface.

In Tables 2–5, we present the convergence results for the dynamic BCmodel (1)–(3) with
perturbed d, θ, and ϕ in the extension operator (28). (The perturbations in θ and ϕ mimic
the “errors” in the normal vector n.) We investigated numerically with different choices
of perturbations and present the results with εh3 (ε is a pseudo-random number sampled
uniformly from [0, 1]), which preserves the second-order accuracy of the solution in∞-, L2-
and H1-norm, and the gradient components in ∞-norm. Since the random perturbation is
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 3.1314 E−5 — 5.5099 E−6 — 5.8781 E−5 —
63 × 63 × 63 4.9768 E−6 2.65 1.0797 E−6 2.35 1.1369 E−5 2.37

127 × 127 × 127 9.7584 E−7 2.35 2.3402 E−7 2.21 2.2574 E−6 2.33
255 × 255 × 255 1.8121 E−7 2.43 5.9103 E−8 1.99 4.7119 E−7 2.26

N × N × N E∞(Γ) : u Rate EL2(Γ) : u Rate EH1(Γ) : u Rate

31 × 31 × 31 3.0261 E−5 — 2.6860 E−5 — 7.6184 E−5 —
63 × 63 × 63 4.7251 E−6 2.68 4.0207 E−6 2.74 9.6476 E−6 2.98

127 × 127 × 127 7.7908 E−7 2.61 7.1346 E−7 2.49 1.3434 E−6 2.84
255 × 255 × 255 1.5157 E−7 2.36 1.6333 E−7 2.13 2.2525 E−7 2.58

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 4.7534 E−4 — 3.6962 E−4 — 4.0036 E−4 —
63 × 63 × 63 1.3972 E−4 1.77 1.0855 E−4 1.77 1.2844 E−4 1.64

127 × 127 × 127 3.7348 E−5 1.90 2.8852 E−5 1.91 3.4981 E−5 1.88
255 × 255 × 255 1.0169 E−5 1.88 7.8385 E−6 1.88 9.6735 E−6 1.85

Table 3: Convergence: θ perturbed by εh3 for for the dynamic BC model (1)–(3) with exact
solution u = et (x2 +2y2 +3z2) until final time T = 0.1 in the sphere of R = 0.5. The number
of spherical harmonics for term u is 9.

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 1.2008 E−5 — 3.5593 E−6 — 2.1347 E−5 —
63 × 63 × 63 2.2351 E−6 2.43 9.5723 E−7 2.89 4.1701 E−6 2.59

127 × 127 × 127 4.8683 E−7 2.20 2.3412 E−7 2.83 7.9991 E−7 2.56
255 × 255 × 255 1.0523 E−7 2.21 5.8696 E−8 2.69 1.5425 E−7 2.51

N × N × N E∞(Γ) : u Rate EL2(Γ) : u Rate EH1(Γ) : u Rate

31 × 31 × 31 1.3088 E−5 — 1.1687 E−5 — 3.8782 E−5 —
63 × 63 × 63 2.2948 E−6 2.51 2.6848 E−6 1.92 5.2359 E−6 2.62

127 × 127 × 127 4.4200 E−7 2.38 6.2695 E−7 2.12 8.5292 E−7 2.63
255 × 255 × 255 1.0517 E−7 2.07 1.5687 E−7 2.11 1.8487 E−7 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 1.6985 E−4 — 1.6487 E−4 — 1.4704 E−4 —
63 × 63 × 63 4.8808 E−5 1.92 5.2182 E−5 2.04 4.5240 E−5 2.02

127 × 127 × 127 1.4275 E−5 1.93 1.4329 E−5 1.99 1.2582 E−5 2.09
255 × 255 × 255 3.9625 E−6 1.89 3.9751 E−6 1.79 3.6156 E−6 1.81

Table 4: Convergence: ϕ perturbed by εh3 for for the dynamic BC model (1)–(3) with exact
solution u = et (x2 +2y2 +3z2) until final time T = 0.1 in the sphere of R = 0.5. The number
of spherical harmonics for term u is 9.

added at every point in γ set, the total perturbation is in the order of O(h). Note that tests with
perturbations in Tables 2–5 illustrate that the proposed DPM-based algorithm preserves the
second-order accuracy even in situations where the signed distances and the normal vectors
to the surface boundary are not known exactly.

In Fig. 2, we observe that the behavior of the L2- and H1-norm errors are very similar in
the bulk and on the surface. Besides, the errors in the bulk are smaller than the errors on the
surface in both norms. Also, as already mentioned, the H1-norm errors give the second-order
convergence, as opposed to the results obtained, for example, from the finite element method,
e.g., [20]. Moreover, the errors are far below the reference dashed lines, which implies a
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 1.6943 E−4 — 4.8339 E−5 — 3.0187 E−4 —
63 × 63 × 63 2.4949 E−5 2.76 6.5310 E−6 2.89 5.0688 E−5 2.59

127 × 127 × 127 3.4388 E−6 2.80 9.1301 E−7 2.83 8.6516 E−6 2.56
255 × 255 × 255 5.5585 E−7 2.65 1.4177 E−7 2.69 1.5262 E−6 2.51

N × N × N E∞(Γ) : u Rate EL2(Γ) : u Rate EH1(Γ) : u Rate

31 × 31 × 31 3.0730 E−5 — 2.6648 E−5 — 8.3318 E−5 —
63 × 63 × 63 4.4242 E−6 2.41 3.8308 E−6 1.92 8.5970 E−6 2.62

127 × 127 × 127 8.4725 E−7 2.66 8.1565 E−7 2.12 1.5920 E−6 2.63
255 × 255 × 255 1.4816 E−7 2.11 1.6760 E−7 2.11 2.3146 E−7 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 2.0305 E−3 — 1.7989 E−3 — 1.7563 E−3 —
63 × 63 × 63 5.5069 E−4 1.92 5.0127 E−4 2.04 5.0564 E−4 2.02

127 × 127 × 127 1.3554 E−4 1.93 1.2851 E−4 1.99 1.2397 E−4 2.09
255 × 255 × 255 3.9576 E−5 1.89 3.5780 E−5 1.79 3.2330 E−5 1.81

Table 5: Convergence: d, θ, ϕ perturbed by εh3 for for the dynamic BC model (1)–(3) with
exact solution u = et (x2 + 2y2 + 3z2) until final time T = 0.1 in the sphere of R = 0.5. The
number of spherical harmonics for term u is 9.

(a) (b)

Fig. 2: Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H1-
norm errors (right figure) for the dynamic BC model (1)–(3) with the exact solution u =
et (x2 + 2y2 + 3z2) in the sphere of R = 0.5.

small error constant in (82). In Fig. 3, we show the 3D isosurface plots (analogous to the
contour plots in 2D) in the top figure and the plot of surface solution in the bottom figure,
obtained using mesh 255 × 255 × 255 at the final time T = 0.1.

4.3.2 Test 2

In this subsection, we use the exact solution u(x, y, z, t) = et sin(x) sin(2y) sin(3z). Compared
to the first test, this choice of test is more oscillatory and requires a larger number of spherical
harmonics to resolve u and urr accurately on the boundary Γ. Nevertheless, the total number
of harmonics is still much less than |γin |, see Table 6, for example.
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(a)

(b)

Fig. 3: 3D views of the bulk (top figure) and the surface (bottom figure) approximations from
mesh 255 × 255 × 255 at T = 0.1 to the dynamic BC model (1)–(3) with the exact solution
u = et (x2 + 2y2 + 3z2) in the sphere of R = 0.5.

In Table 6, again we observe second-order accuracy in all norms of the solutions in the
bulk and on the surface.

Similarly, in Fig. 4, the errors in the bulk are smaller than the errors on the surface. In
Fig. 5, we give the 3D isosurface plots in the top figure and the plot of surface solution in
the bottom figure, obtained using mesh 255 × 255 × 255 at final time T = 0.1.

4.4 Linear Bulk-Surface Coupling

In this subsection, we present the numerical results for the model (4)–(8), with linear bulk-
surface coupling, i.e., h(u, v) = u− v in a spherical domain of radius R = 1. In particular, the
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 8.7147 E−6 — 2.4039 E−6 — 2.8357 E−5 —
63 × 63 × 63 1.7811 E−6 2.29 5.3478 E−7 2.17 5.6563 E−6 2.33

127 × 127 × 127 4.3585 E−7 2.03 1.3077 E−7 2.03 1.3353 E−6 2.08
255 × 255 × 255 1.0849 E−7 2.01 3.2659 E−8 2.00 3.3032 E−7 2.02

N × N × N E∞(Γ) : u Rate EL2(Γ) : u Rate EH1(Γ) : u Rate

31 × 31 × 31 5.8527 E−6 — 5.1084 E−6 — 3.7771 E−5 —
63 × 63 × 63 1.4134 E−6 2.05 1.2405 E−6 2.04 9.0795 E−6 2.06

127 × 127 × 127 3.4714 E−7 2.03 3.0530 E−7 2.02 2.2280 E−6 2.03
255 × 255 × 255 8.5729 E−8 2.02 7.5389 E−8 2.02 5.5028 E−7 2.02

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.5641 E−5 — 9.0012 E−5 — 1.6055 E−4 —
63 × 63 × 63 2.3716 E−5 1.85 2.0313 E−5 2.15 5.1744 E−5 1.63

127 × 127 × 127 5.0683 E−6 2.27 5.2314 E−6 1.96 1.1111 E−5 2.22
255 × 255 × 255 1.3229 E−6 1.94 1.1629 E−6 2.17 2.8860 E−6 1.94

Table 6: Convergence of the∞-, L2- and H1-norm errors of the solutions in the bulk/surface,
and the ∞-norm errors of gradients in the bulk for the dynamic BC model (1)–(3) with the
exact solution u = et sin(x) sin(2y) sin(3z) until final time T = 0.1 in the sphere of R = 0.5.
The number of spherical harmonics for terms u is 400 per each term.

(a) (b)

Fig. 4: Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H1-
norm errors (right figure) for the dynamic BC model (1)–(3) with the exact solution u =
et sin(x) sin(2y) sin(3z) in the sphere of R = 0.5.

exact solutions u(x, y, z, t) = ete−x(x−1)−y(y−1) and v(x, y, z, t) = ete−x(x−1)−y(y−1)(1 + x(1 −
2x) + y(1 − 2y)) are such that the coupling condition (5) is satisfied exactly on the surface
(the test is modification of the tests from [6,14]). Additionally, we provide numerical results
to compare with the ones obtained using the cut finite element method in [6].

Remark 10 We should note that the comparisons between the DPM-based method in this
work and the cut-FEM approach in [6] are not precise, since the exact solutions u(x, y, z) =
e−x(x−1)−y(y−1) and v(x, y, z) = e−x(x−1)−y(y−1)(1+ x(1−2x)+ y(1−2y)) in [6] are considered
for the elliptic type bulk-surface problems. Nevertheless, we add et in the exact solutions and
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(a)

(b)

Fig. 5: 3D views of the bulk (top figure) and the surface (bottom figure) approximations from
mesh 255 × 255 × 255 at T = 0.1 to the dynamic BC model (1)–(3) with the exact solution
u = et sin(x) sin(2y) sin(3z) in the sphere of R = 0.5.

take the∞-norm errors in time, in the hope to discuss the difference and similarity between
the two approaches.

In Table 7, we observe second-order accuracy for all norms of the solutions in the
bulk and on the surface, together with the second-order accuracy in the components of the
gradients. The relative larger errors of L2-norm on the surface, compared to the ∞-norm,
again can be similarly explained by the inequalities (92)–(95).

In Fig. 6, we observe second-order convergence for both the L2- and H1-norm errors in
the bulk and on the surface. In contrast, the bulk/surface H1-norm errors in the cut finite
element approach [6, Fig. 4] are only first order accurate. Furthermore, compared to [6, Fig.
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 1.2537 E−3 — 9.5344 E−4 — 3.5388 E−3 —
63 × 63 × 63 2.9791 E−4 2.07 2.2803 E−4 2.06 7.0225 E−4 2.33

127 × 127 × 127 7.2333 E−5 2.04 5.5188 E−5 2.05 1.7337 E−4 2.02
255 × 255 × 255 1.7734 E−5 2.03 1.3555 E−5 2.03 4.2658 E−5 2.02

N × N × N E∞(Γ) : v Rate EL2(Γ) : v Rate EH1(Γ) : v Rate

31 × 31 × 31 9.3119 E−5 — 1.2573 E−4 — 2.9557 E−4 —
63 × 63 × 63 2.3982 E−5 1.96 3.2923 E−5 1.93 7.3660 E−5 2.00

127 × 127 × 127 6.3155 E−6 1.93 8.5321 E−6 1.95 1.9781 E−5 1.90
255 × 255 × 255 1.5774 E−6 2.00 2.1147 E−6 2.01 4.9585 E−6 2.00

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.2067 E−3 — 8.2067 E−3 — 2.5934 E−3 —
63 × 63 × 63 1.1452 E−3 2.84 1.1452 E−3 2.84 3.6088 E−4 2.85

127 × 127 × 127 2.9309 E−4 1.97 2.9309 E−4 1.97 6.3228 E−5 2.51
255 × 255 × 255 7.6635 E−5 1.94 7.6635 E−5 1.94 1.5690 E−5 2.01

Table 7: Convergence of the∞-, L2- and H1-norm errors of the solutions in the bulk/surface,
and the∞-norm errors of gradients in the bulk for the model (4)–(8) with linear bulk-surface
coupling. The exact solutions are u = ete−x(x−1)−y(y−1) and v = ete−x(x−1)−y(y−1)(1 + x(1 −
2x) + y(1 − 2y)) until final time T = 0.1 in the sphere of R = 1. The number of spherical
harmonics for terms v and urr is 529 per each term.

(a) (b)

Fig. 6: Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H1-norm
errors (right figure) for themodel (4)–(8)with linear bulk-surface coupling h(u, v) = u−v. The
exact solutions are u = ete−x(x−1)−y(y−1) and v = ete−x(x−1)−y(y−1)(1+ x(1− 2x)+ y(1− 2y))
with final time T = 0.1 in the sphere of R = 1.

4], the approach based on DPM in this work gives much smaller L2-norm errors both in the
bulk and on the surface.

In the meantime, we notice that in Fig. 6, the errors on the surface are smaller than the
errors in the bulk, which is different from the results of the models with dynamic boundary
conditions, see Figs. 2 and 4. Nevertheless, the second-order convergence rates are recovered
in all cases.
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(a)

(b)

Fig. 7: 3D views of the bulk (top figure) and the surface (bottom figure) approximations from
mesh 255 × 255 × 255 at T = 0.1 to the model (4)–(8) with linear bulk-surface coupling
h(u, v) = u− v. The exact solutions are u = ete−x(x−1)−y(y−1), v = ete−x(x−1)−y(y−1)(1+ x(1−
2x) + y(1 − 2y)) in the sphere of R = 1.

In Fig. 7, we illustrate the solution via the 3D isosurface plots in the top figure and the
plot of the surface solution in the bottom figure, obtained on mesh 255 × 255 × 255 at final
time T = 0.1. The bottom figure in Fig. 7 can also be compared to [6, Fig. 3]. In this work,
we are able to recover a better resolution of the solution on the surface using the DPM-based
algorithms.
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 2.1745 E−3 — 1.4171 E−3 — 4.5547 E−3 —
63 × 63 × 63 6.6223 E−4 1.72 4.0246 E−4 1.82 1.1225 E−3 2.02

127 × 127 × 127 1.8343 E−4 1.85 1.0690 E−4 1.91 3.1453 E−4 1.84
255 × 255 × 255 4.6212 E−5 1.99 2.7124 E−5 1.98 7.8796 E−5 2.00

N × N × N E∞(Γ) : v Rate EL2(Γ) : v Rate EH1(Γ) : v Rate

31 × 31 × 31 1.2462 E−4 — 1.7529 E−4 — 3.6232 E−4 —
63 × 63 × 63 5.6149 E−5 1.15 7.6767 E−5 1.19 1.5940 E−4 1.18

127 × 127 × 127 1.7791 E−5 1.66 2.3819 E−5 1.69 4.9687 E−5 1.68
255 × 255 × 255 4.6461 E−6 1.94 6.3801 E−6 1.90 1.2982 E−5 1.94

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.5460 E−3 — 8.5460 E−3 — 4.2336 E−3 —
63 × 63 × 63 1.0922 E−3 2.97 1.0922 E−3 2.97 1.3177 E−3 1.68

127 × 127 × 127 3.1575 E−4 1.79 3.1575 E−4 1.79 3.6751 E−4 1.84
255 × 255 × 255 7.5933 E−5 2.06 7.5933 E−5 2.06 9.9683 E−5 1.88

Table 8: Convergence of the∞-, L2- and H1-norm errors of the solutions in the bulk/surface,
and the ∞-norm errors of gradients in the bulk for the model (4)–(8) with nonlinear bulk-
surface coupling. The exact solutions are u = ete−x(x−1)−y(y−1) and v = ete−x(x−1)−y(y−1)(1+
x(1−2x)+ y(1−2y)) until final timeT = 0.1 in the sphere of R = 1. The number of spherical
harmonics for terms u, v and urr is 529 per each term, and vi+1 ≈ vi + ∆tvit .

4.5 Nonlinear Bulk-Surface Coupling

In this subsection, we demonstrate the numerical results for themodels (4)–(8) with nonlinear
bulk-surface coupling h(u, v) = uv in the spherical domain of radius R = 1. The considered
model is motivated by the examples of the nonlinear bulk-surface coupling from [15,20].

4.5.1 Test 1 for Nonlinear Coupling

As a first test here, we consider the exact solutions u(x, y, z, t) = ete−x(x−1)−y(y−1) in the
bulk and v(x, y, z, t) = ete−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) on the surface. The
motivation to use the same exact solutions as in the linear coupling is that, we can compare
the performance of the algorithm for linear/nonlinear bulk-surface coupling and test the
robustness of the numerical algorithm based on DPM.

Note that, we do not have exact nonlinear coupling as in (5) if we use the above exact
solutions. Instead, we need to supply a source function w in the coupling, i.e.,

−n · ∇u = uv + w, (x, y, z, t) ∈ Γ × R+. (96)

Here, the source function w is computed from the exact solutions u and v. The discrete
version of (96) is

−n · ∇ui+1 = ui+1vi+1 + wi+1 (97)

which can be linearized, if the term vi+1 is approximated by either the 2-term approximation
(69), or the 3-term approximation (76).

The errors in Table 8 correspond to 2-term approximation (69) for vi+1. With the 2-term
approximation (69), the∞-, L2-, H1-norm errors of solutions in the bulk and∞-norm errors
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 1.2442 E−3 — 9.5589 E−4 — 3.6512 E−3 —
63 × 63 × 63 3.0007 E−4 2.05 2.2875 E−4 2.06 7.1388 E−4 2.35

127 × 127 × 127 7.2477 E−5 2.05 5.4911 E−5 2.06 1.7713 E−4 2.01
255 × 255 × 255 1.7687 E−5 2.03 1.3390 E−5 2.04 4.3475 E−5 2.03

N × N × N E∞(Γ) : v Rate EL2(Γ) : v Rate EH1(Γ) : v Rate

31 × 31 × 31 1.1314 E−4 — 1.3360 E−4 — 2.9799 E−4 —
63 × 63 × 63 2.9023 E−5 1.96 3.4459 E−5 1.96 7.6480 E−5 1.96

127 × 127 × 127 7.7800 E−6 1.90 9.2502 E−6 1.90 2.0684 E−5 1.89
255 × 255 × 255 1.9908 E−6 1.97 2.3611 E−6 1.97 5.2992 E−6 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.5799 E−3 — 8.5799 E−3 — 2.4914 E−3 —
63 × 63 × 63 1.1211 E−3 2.94 1.1211 E−3 2.94 4.0347 E−4 2.63

127 × 127 × 127 2.9313 E−4 1.94 2.9313 E−4 1.94 1.0618 E−4 1.93
255 × 255 × 255 7.6440 E−5 1.94 7.6440 E−5 1.94 2.6384 E−5 2.01

Table 9: Convergence of the∞-, L2- and H1-norm errors of the solutions in the bulk/surface,
and the ∞-norm errors of gradients in the bulk for the model (4)–(8) with nonlinear bulk-
surface coupling. The exact solutions are u = ete−x(x−1)−y(y−1) and v = ete−x(x−1)−y(y−1)(1+
x(1−2x)+ y(1−2y)) until final timeT = 0.1 in the sphere of R = 1. The number of spherical
harmonics for terms u, v and urr is 529 per each term, and vi+1 ≈ vi + ∆tvit + ∆t2vitt/2.

of the gradients in the bulk all obey optimal second-order convergence. Meanwhile, the∞-,
L2-, H1-norm errors of the solution on the surface give sub-optimal second-order accuracy
in the first few coarser meshes. However, the second-order accuracy is recovered on finer
meshes, e.g., on mesh 255 × 255 × 255.

In Table 9, we adopt the 3-term approximation (76) for the vi+1 term. There are slight
improvements of the accuracy for the solutions and gradients in the bulk. In themeantime, the
accuracy of the solution on the surface is improved and second-order accuracy is recovered
even on coarser meshes. Note that, there are barely any added computational cost, when one
switches from using 2-term approximation (69) to 3-term approximation (76) for the vi+1

term.
Moreover, the errors in the bulk and on the surface for the nonlinear bulk-surface coupling

in Table 9 are very similar to the errors for linear bulk-surface coupling in Table 7. This
illustrates the robustness of the designed DPM-based algorithm. Also note that, the algorithm
for nonlinear coupling is very similar to the ones for linear coupling. The only difference is
that the matrixC ′ in the least square system (80) needs to be updated and the resulting normal
matrices need to be inverted at each time step, which makes it more expensive. Hence, it is
advantageous to use the reduced BEPs as it is done in the current work.

Again, the plots of L2- and H1-norm errors of the nonlinear coupling in Fig. 8 are similar
to the plots of errors in the linear coupling, see Fig. 6. In Fig. 9, there is no observable
difference in the isosurface plots in the bulk and the surface plots from the plots for the
linear-coupling case, obtained on mesh 255 × 255 × 255 at final time T = 0.1, see Fig. 7.

4.5.2 Test 2 for Nonlinear Coupling

In this subsection, we employ the exact solutions u = v = et sin(x) sin(2y) sin(3z) both
in the bulk and on the surface, as the ones we use in the second test of the models with
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(a) (b)

Fig. 8: Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H1-norm
errors (right figure) for the model (4)–(8) with nonlinear bulk-surface coupling h(u, v) = uv.
The exact solutions are u = ete−x(x−1)−y(y−1) and v = ete−x(x−1)−y(y−1)(1+ x(1− 2x)+ y(1−
2y)) until final time T = 0.1 in the sphere of R = 1, and vi+1 ≈ vi + ∆tvit + ∆t2vitt/2.

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 1.3914 E−3 — 1.0543 E−3 — 5.0230 E−3 —
63 × 63 × 63 3.6065 E−4 1.95 2.6657 E−4 1.98 1.2706 E−3 1.98

127 × 127 × 127 9.4354 E−5 1.93 6.6522 E−5 2.00 3.1710 E−4 2.00
255 × 255 × 255 2.3408 E−5 2.01 1.6608 E−5 2.00 7.9165 E−5 2.00

N × N × N E∞(Γ) : v Rate EL2(Γ) : v Rate EH1(Γ) : v Rate

31 × 31 × 31 2.1011 E−5 — 2.7089 E−5 — 9.9342 E−5 —
63 × 63 × 63 6.5900 E−6 1.67 7.7509 E−6 1.81 2.6332 E−5 1.92

127 × 127 × 127 1.8191 E−6 1.86 2.3303 E−6 1.73 7.1906 E−6 1.87
255 × 255 × 255 4.6581 E−7 1.97 6.0249 E−7 1.95 1.8064 E−6 1.99

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 3.3321 E−3 — 4.5730 E−3 — 4.9888 E−3 —
63 × 63 × 63 8.3625 E−4 1.99 1.0630 E−3 2.11 1.1784 E−3 2.08

127 × 127 × 127 2.0870 E−4 2.00 2.6904 E−4 1.98 2.8762 E−4 2.03
255 × 255 × 255 5.2251 E−5 2.00 6.7303 E−5 2.00 7.3246 E−5 1.97

Table 10: Convergence of the∞-, L2- and H1-norm errors of the solutions in the bulk/surface,
and the ∞-norm errors of gradients in the bulk for the model (4)–(8) with nonlinear bulk-
surface coupling. The exact solutions are u = v = et sin(x) sin(2y) sin(3z) until final time
T = 0.1 in the sphere of R = 1. The number of spherical harmonics for terms u, v and urr is
400 per each term and vi+1 ≈ vi + ∆tvit .

dynamic boundary conditions. Again, second order accuracy are observed in Tables 10 and
11 for the ∞-, L2- and H1-norm errors. It is also interesting to notice that for this pair of
exact solutions, 2-term approximation (69) and 3-term approximation (76) of the vi+1 term
give very similar convergence results, which again illustrates the robustness of the proposed
DPM-based algorithms.

In Fig. 10, we observe second order convergence of L2- and H1-norm errors both in the
bulk and on the surface. Unlike the numerical results for dynamic boundary condition in
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(a)

(b)

Fig. 9: 3D views of the bulk (top figure) and surface (bottom figure) approximations from
mesh 255 × 255 × 255 at T = 0.1 to the model (4)–(8) of nonlinear bulk-surface coupling
h(u, v) = uv. The exact solutions are u = ete−x(x−1)−y(y−1), v = ete−x(x−1)−y(y−1)(1 + x(1 −
2x) + y(1 − 2y))in the sphere of R = 1, and vi+1 ≈ vi + ∆tvit + ∆t2vitt/2.

Fig. 4, the L2- and H1-norm errors in the bulk are larger than the errors on the surface in
Fig. 10, which is also observed in the first test of the nonlinear coupling in Fig. 8, as well as
in the test of linear bulk-surface coupling in Fig. 6.

In Fig. 11, we present the 3D views of the isosurface plots in the bulk and the plot of
surface solutions, obtained on mesh 255 × 255 × 255 at final time T = 0.1.
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N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH1(Ω) : u Rate

31 × 31 × 31 1.5302 E−3 — 1.0646 E−3 — 5.0709 E−3 —
63 × 63 × 63 4.1025 E−4 1.90 2.6970 E−4 1.98 1.2861 E−3 1.98

127 × 127 × 127 1.0691 E−4 1.94 6.7408 E−5 2.00 3.2158 E−4 2.00
255 × 255 × 255 2.6478 E−5 2.01 1.6839 E−5 2.00 8.0352 E−5 2.00

N × N × N E∞(Γ) : v Rate EL2(Γ) : v Rate EH1(Γ) : v Rate

31 × 31 × 31 3.4599 E−5 — 4.8766 E−5 — 1.2807 E−4 —
63 × 63 × 63 9.7036 E−6 1.83 1.3621 E−5 1.84 3.5923 E−5 1.83

127 × 127 × 127 2.6424 E−6 1.88 3.6432 E−6 1.90 9.6663 E−6 1.89
255 × 255 × 255 6.7367 E−7 1.97 9.3640 E−7 1.96 2.4564 E−6 1.98

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 3.4453 E−3 — 4.6325 E−3 — 5.0779 E−3 —
63 × 63 × 63 8.8748 E−4 1.96 1.0970 E−3 2.08 1.1997 E−3 2.08

127 × 127 × 127 2.1871 E−4 2.02 2.7758 E−4 1.98 3.0294 E−4 1.99
255 × 255 × 255 5.5442 E−5 1.98 6.9999 E−5 1.99 7.5981 E−5 2.00

Table 11: Convergence of the∞-, L2- and H1-norm errors of the solutions in the bulk/surface,
and the ∞-norm errors of gradients in the bulk for the model (4)–(8) with nonlinear bulk-
surface coupling. The exact solutions are u = v = et sin(x) sin(2y) sin(3z) until final time
T = 0.1 in the sphere of R = 1. The number of spherical harmonics for terms u, v and urr is
400 per each term and vi+1 ≈ vi + ∆tvit + ∆t2vitt/2.

(a) (b)

Fig. 10: Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H1-norm
errors (right figure) for the model (4)–(8) with nonlinear bulk-surface coupling h(u, v) = uv.
The exact solutions are u = v = et sin(x) sin(2y) sin(3z) until final time T = 0.1 in the sphere
of R = 1, and vi+1 ≈ vi + ∆tvit + ∆t2vitt/2.

4.6 Condition Numbers

In Table 12, we demonstrate the condition numbers of the normal matrices from the resulting
algebraic systems (77) in Case 1, (78) in Case 2: a), and (79)–(80) in Case 2: b). Note that
in Case 1) and Case 2: a), the normal matrices are pre-computed outside of the time loop,
while in Case 2: b), the normal matrices need to be assembled at each time step due to the
nonlinearity. Thus, in Table 12, the condition numbers for Case 2: b) are computed only at
the first and last time steps.
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(a)

(b)

Fig. 11: 3D views of the bulk (top figure) and surface (bottom figure) approximations from
mesh 255 × 255 × 255 at T = 0.1 to the model (4)–(8) of nonlinear bulk-surface coupling
h(u, v) = uv. The exact solutions are u = v = et sin(x) sin(2y) sin(3z) in the sphere of R = 1,
and vi+1 ≈ vi + ∆tvit + ∆t2vitt/2.

N Case 1 Test 2 Case 2:a Case 2:b Test 1 Case 2:b Test 1 Case 2:b Test 1
(at t = 0) (at t = 0) (w/o vt t at t = 0) (w/ vt t at t = 0) (w/ vt t at t = 0.1)

31 3.4838 E+1 1.7962 E+4 2.7494 E+4 2.7565 E+4 2.2402 E+4
63 4.4475 E+1 1.7659 E+3 3.7456 E+3 3.7483 E+3 3.8275 E+3
127 3.2709 E+1 3.4449 E+2 8.3878 E+2 8.3901 E+2 7.5131 E+2
255 4.0182 E+1 6.9272 E+2 9.1638 E+2 9.1639 E+2 9.0053 E+2

Table 12: Condition number of the normal matrices of BEP (notation “w/o vtt” denotes
2-term approximation (69) and notation “w/ vtt” denotes 3-term approximation (76)).
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Furthermore, we verified that condition numbers of the normalmatrices remain in similar
magnitude over time for the nonlinear models in Case 2: b). See the last two columns in
Table 12.
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