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Abstract. The formation of inorganic nitrate is the main sink

for nitrogen oxides (NOx = NO + NO2). Due to the impor-

tance of NOx for the formation of tropospheric oxidants such

as the hydroxyl radical (OH) and ozone, understanding the

mechanisms and rates of nitrate formation is paramount for

our ability to predict the atmospheric lifetimes of most re-

duced trace gases in the atmosphere. The oxygen isotopic

composition of nitrate (117O(nitrate)) is determined by the

relative importance of NOx sinks and thus can provide an

observational constraint for NOx chemistry. Until recently,

the ability to utilize 117O(nitrate) observations for this pur-

pose was hindered by our lack of knowledge about the oxy-

gen isotopic composition of ozone (117O(O3)). Recent and

spatially widespread observations of 117O(O3) motivate an

updated comparison of modeled and observed 117O(nitrate)

and a reassessment of modeled nitrate formation pathways.

Model updates based on recent laboratory studies of hetero-

geneous reactions render dinitrogen pentoxide (N2O5) hy-

drolysis as important as NO2 + OH (both 41 %) for global

inorganic nitrate production near the surface (below 1 km al-

titude). All other nitrate production mechanisms individually

represent less than 6 % of global nitrate production near the

surface but can be dominant locally. Updated reaction rates

for aerosol uptake of NO2 result in significant reduction of

nitrate and nitrous acid (HONO) formed through this path-

way in the model and render NO2 hydrolysis a negligible

pathway for nitrate formation globally. Although photolysis

of aerosol nitrate may have implications for NOx , HONO,

and oxidant abundances, it does not significantly impact the

relative importance of nitrate formation pathways. Modeled

117O(nitrate) (28.6 ± 4.5 ‰) compares well with the aver-

age of a global compilation of observations (27.6 ± 5.0 ‰)

when assuming 117O(O3) = 26 ‰, giving confidence in the

model’s representation of the relative importance of ozone

versus HOx (= OH + HO2 + RO2) in NOx cycling and ni-

trate formation on the global scale.

1 Introduction

Nitrogen oxides (NOx = NO + NO2) are a critical ingredient

for the formation of tropospheric ozone (O3). Tropospheric

ozone is a greenhouse gas, is a major precursor for the hy-

droxyl radical (OH), and is considered an air pollutant due to

its negative impacts on human health. The atmospheric life-

time of NOx is determined by its oxidation to inorganic and

organic nitrate. The formation of inorganic nitrate (HNO3(g)

and particulate NO−

3 ) is the dominant sink for NOx globally,

while formation of organic nitrate may be significant in rural

and remote continental locations (Browne and Cohen, 2014).

Organic nitrate as a sink for NOx may be becoming more im-

portant in regions in North America and Europe where NOx
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emissions have declined (Zare et al., 2018). Uncertainties in

the rate of oxidation of NOx to nitrate have been shown to

represent a significant source of uncertainty for ozone and

OH formation in models (e.g., Newsome and Evans, 2017),

with implications for our understanding of the atmospheric

lifetime of species such as methane, whose main sink is re-

action with OH.

NOx is emitted to the atmosphere primarily as NO by

fossil fuel and biomass/biofuel burning, soil microbes, and

lightning. Anthropogenic sources from fossil fuel and biofuel

burning and from the application of fertilizers to soil for agri-

culture currently dominate NOx sources to the atmosphere

(Jaeglé et al., 2005). After emission, NO is rapidly oxidized

to NO2 by ozone (O3), peroxy (HO2) and hydroperoxy radi-

cals (RO2), and halogen oxides (e.g., BrO). During the day-

time, NO2 is rapidly photolyzed to NO + O at wavelengths

(λ) < 398 nm. NOx cycling between NO and NO2 proceeds

several orders of magnitude faster than oxidation of NOx to

nitrate during the daytime (Michalski et al., 2003).

Formation of inorganic nitrate is dominated by oxida-

tion of NO2 by OH during the day and by the hydrolysis

of dinitrogen pentoxide (N2O5) at night (Alexander et al.,

2009). Recent implementations of reactive halogen chem-

istry in models of tropospheric chemistry show that forma-

tion of nitrate from the hydrolysis of halogen nitrates (XNO3,

where X = Br, Cl, or I) is also a sink for NOx with im-

plications for tropospheric ozone, OH, reactive halogens,

and aerosol formation (Schmidt et al., 2016; Sherwen et

al., 2016; Saiz-Lopez et al., 2012; Long et al., 2014; Par-

rella et al., 2012; von Glasow and Crutzen, 2004; Yang et

al., 2005). Other inorganic nitrate formation pathways in-

clude hydrogen abstraction of hydrocarbons by the nitrate

radical (NO3), heterogeneous reaction of N2O5 with particu-

late chloride (Cl−), heterogeneous uptake of NO2 and NO3,

direct oxidation of NO to HNO3 by HO2, and hydrolysis

of organic nitrate (Atkinson, 2000). Inorganic nitrate parti-

tions between the gas (HNO3(g)) and particle (NO−

3 ) phases,

with its relative partitioning dependent upon aerosol abun-

dance, aerosol liquid water content, aerosol chemical com-

position, and temperature. Inorganic nitrate is lost from the

atmosphere through wet or dry deposition to the Earth’s sur-

face with a global lifetime against deposition on the order of

3–4 d (Park et al., 2004).

Formation of inorganic nitrate was thought to be a perma-

nent sink for NOx in the troposphere due to the slow photol-

ysis of nitrate compared to deposition. However, laboratory

and field studies have shown that NO−

3 adsorbed on surfaces

is photolyzed at rates much higher than HNO3(g) (Ye et al.,

2016). For example, the photolysis of NO−

3 in snow grains

on ice sheets has a profound impact on the oxidizing capacity

of the polar atmosphere (Domine and Shepson, 2002). More

recently, observations of NOx and nitrous acid (HONO) pro-

vide evidence of photolysis of aerosol NO−

3 in the marine

(Reed et al., 2017; Ye et al., 2016) and continental (Ye et al.,

2018; Chen et al., 2019) boundary layer, with implications

for ozone and OH (Kasibhatla et al., 2018).

Organic nitrates form during reaction of NOx and NO3

with biogenic volatile organic compounds (BVOCs) and

their oxidation products (organic peroxy radicals, RO2)

(Browne and Cohen, 2014; Liang et al., 1998). Products of

these reactions include peroxy nitrates (RO2NO2) and alkyl

and multifunctional nitrates (RONO2) (O’Brien et al., 1995).

Peroxy nitrates are thermally unstable and decompose back

to NOx on the order of minutes to days at warm temperatures.

Decomposition of longer-lived peroxy nitrates such as perox-

yacetyl nitrate (PAN) can provide a source of NOx to remote

environments (Singh et al., 1992). The fate of RONO2 is un-

certain. First-generation RONO2 is oxidized to form second-

generation RONO2 species with a lifetime of about a week

for the first-generation species with ≥ 4 carbon atoms and

up to several weeks for species with fewer carbon atoms

(e.g., days to weeks for methyl nitrate) (Fisher et al., 2018).

Subsequent photolysis and oxidation of second-generation

RONO2 species can lead to the recycling of NOx (Müller

et al., 2014), although recycling efficiencies are highly un-

certain (Horowitz et al., 2007;Paulot et al., 2009). RONO2

can also partition to the particle phase (pRONO2) contribut-

ing to organic aerosol formation (Xu et al., 2015). pRONO2

is removed from the atmosphere by deposition to the surface

or through hydrolysis to form inorganic nitrate and alcohols

(Rindelaub et al., 2015; Jacobs et al., 2014).

The oxygen isotopic composition (117O = δ17 − 0.52 ×

δ18O) of nitrate is determined by the relative importance of

oxidants leading to nitrate formation from the oxidation of

NOx (Michalski et al., 2003). Observations of the oxygen

isotopic composition of nitrate (117O(nitrate)) have been

used to quantify the relative importance of different nitrate

formation pathways and to assess model representation of the

chemistry of nitrate formation in the present day (Alexan-

der et al., 2009; Michalski et al., 2003; Costa et al., 2011;

Ishino et al., 2017; Morin et al., 2009, 2008, 2007; Savarino

et al., 2007, 2013; Kunasek et al., 2008; McCabe et al.,

2007; Hastings et al., 2003; Kaiser et al., 2007; Brothers

et al., 2008; Ewing et al., 2007) and in the past from ni-

trate archived in ice cores (Sofen et al., 2014; Alexander et

al., 2004; Geng et al., 2014, 2017). Ozone-influenced reac-

tions in NOx oxidation lead to high 117O(nitrate) values

while HOx-influenced reactions lead to 117O(nitrate) near

zero. Oxidation by XO (where X = Br, Cl, or I) leads to

117O(nitrate) values similar to reactions with ozone because

the oxygen atom in XO is derived from the reaction X + O3.

Therefore, 117O(nitrate) is determined by the relative impor-

tance of O3 + XO versus HOx (= OH + HO2 + RO2) in both

NOx cycling and oxidation to nitrate. Although freshly emit-

ted NO will have 117O(NO) = 0 ‰, NOx achieves isotopic

equilibrium during the daytime due to rapid NOx cycling, so

that its 117O value (117O(NOx)) is solely determined by the

relative abundance of (O3 + XO) to (HO2 + RO2) (Michalski

et al., 2003).
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The 117O value of HOx (117O(HOx)) is near zero due

to isotopic exchange of OH with water vapor (Dubey et al.,

1997). Previously, observations of the 117O value of ozone

(117O(O3)) showed a large range (6 ‰–54 ‰) (Johnston and

Thiemens, 1997; Krankowsky et al., 1995), in contrast to

laboratory and modeling studies suggesting that the range

of 117O(O3) in the troposphere should be relatively nar-

row (30 ‰–46 ‰) (Morton et al., 1990; Thiemens, 1990).

The large range of observed 117O(O3) values is thought to

be due to sampling artifacts (Brenninkmeijer et al., 2003).

Uncertainty in the value of 117O(O3) has been the largest

source of uncertainty in quantification of nitrate formation

pathways using observations of 117O(nitrate) (Alexander et

al., 2009). Previous modeling studies showed good agree-

ment with observations of 117O(nitrate) when assuming that

the bulk oxygen isotopic composition of ozone (117O(O3))

is equal to 35 ‰ (Alexander et al., 2009; Michalski et al.,

2003) but varied in their assumption on terminal oxygen

atom versus statistical isotopic transfer from O3 to the re-

actant (NO and NO2). This is an important distinction be-

cause it is now known that the 17O enrichment in O3 is con-

tained entirely in its terminal oxygen atoms, and it is the ter-

minal oxygen atom that is transferred from O3 (Vicars et

al., 2012; Berhanu et al., 2012; Bhattacharya et al., 2008,

2014; Savarino et al., 2008; Michalski and Bhattacharya,

2009), so that the 117O value of the oxygen atom trans-

ferred from ozone to the product is 50 % larger than the

bulk 117O(O3) value. Recently, much more extensive ob-

servations of 117O(O3) using a new technique (Vicars et al.,

2012) consistently show 117O(O3) = 26±1 ‰ in diverse lo-

cations (Vicars et al., 2012; Ishino et al., 2017; Vicars and

Savarino, 2014) and suggest that previous modeling studies

are biased low in 117O(nitrate) (e.g., Alexander et al. 2009),

which would occur if the model underestimated the rela-

tive role of ozone in NOx chemistry. These new observa-

tions of 117O(O3), combined with improved understanding

and hence more comprehensive chemical representation of

nitrate formation in models, motivate an updated compari-

son of observed and modeled 117O(nitrate) as an observa-

tional constraint for the relative importance of nitrate forma-

tion pathways in the atmosphere. Note that laboratory stud-

ies show that the magnitude of 117O(O3) is dependent on

temperature and pressure (Heidenreich and Thiemens, 1986;

Thiemens, 1990; Morton et al., 1990). The observations of

117O(O3) by Vicars et al. (2012, 2013) were at the sur-

face over a large temperature range but may not reflect the

value of 117O(O3) at higher altitudes. However, with the ex-

ception of lightning, whose emissions are presently several

times smaller than NOx emissions from anthropogenic and

biomass burning sources (Murray, 2016), NOx sources emit

at the surface. With a NOx lifetime relative to its conversion

to nitrate on the order of 1 d (Levy et al., 1999), most nitrate

formation also occurs near the surface. Here, we examine the

relative contribution of each nitrate formation pathway in a

global chemical transport model and compare the model with

surface observations of 117O(nitrate) from around the world.

2 Methods

We use the GEOS-Chem global chemical transport model

version 12.0.0 driven by assimilated meteorology from the

MERRA-2 reanalysis product with a native resolution of

0.5◦×0.625◦ and 72 vertical levels from the surface up to the

0.01 hPa pressure level. For computational expediency, the

horizontal and vertical resolution were downgraded to 4◦×5◦

and 47 vertical levels. GEOS-Chem was originally described

in Bey et al. (2001) and includes coupled HOx–NOx–VOC–

ozone–halogen–aerosol tropospheric chemistry as described

in Sherwen et al. (2016, 2017) and organic nitrate chemistry

as described in Fisher et al. (2016). Aerosols interact with

gas-phase chemistry through the effect of aerosol extinction

on photolysis rates (Martin et al., 2003) and heterogeneous

chemistry (Jacob, 2000). The model calculates deposition for

both gas species and aerosols (Liu et al., 2001; Zhang et al.,

2001; Wang et al., 1998).

Global anthropogenic emissions, including NOx , are from

the Community Emissions Data System (CEDS) inventory

from 1950 to 2014 CE (Hoesly et al., 2018). The CEDS

global emissions inventory is overwritten by regional an-

thropogenic emissions inventories in the US (EPA/NE11),

Canada (CAC), Europe (EMEP), and Asia (MIX Li et al.,

2017). Global shipping emissions are from the International

Comprehensive Ocean-Atmosphere Data Set (ICOADS),

which was implemented into GEOS-Chem as described

in Lee et al. (2011). NOx emissions from ships are pro-

cessed using the PARANOX module described in Vinken et

al. (2011) and Holmes et al. (2014) to account for nonlin-

ear, in-plume ozone and HNO3 production. Lightning NOx

emissions match the OTD/LIS satellite climatological ob-

servations of lightning flashes as described by Murray et

al. (2012). Emissions from open fires are from the Global

Fire Emissions Database (GFED4.1). Biogenic soil NOx

emissions are described in Hudman et al. (2012). Aircraft

emissions are from the Aviation Emissions Inventory Code

(AEIC) (Stettler et al., 2011).

Chemical processes leading to nitrate formation in GEOS-

Chem have expanded since the previous work of Alexander

et al. (2009). Figure 1 summarizes the formation of inorganic

nitrate in the current model. In the model, NO is oxidized

by O3, HO2, RO2, and halogen oxides (XO = BrO, ClO, IO,

and OIO) to form NO2. The reaction of NO + HO2 can also

form HNO3 directly, although the branching ratio for this

pathway is < 1 % (Butkovskaya et al., 2005). NO2 can form

HNO3 directly from its reaction with OH and through hy-

drolysis on aerosol surfaces. NO2 can react with XO to form

halogen nitrates (BrNO3, ClNO3, and INO3), which can then

form HNO3 upon hydrolysis (as described in Sherwen et al.,

2016). NO2 can also react with O3 to form NO3, which can

www.atmos-chem-phys.net/20/3859/2020/ Atmos. Chem. Phys., 20, 3859–3877, 2020
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Figure 1. Simplified HNO3 formation in the model. Numbers show the global annual-mean percent contribution to NO2 and HNO3 formation

in the troposphere below 1 km for the cloud chemistry (standard) simulation. Red indicates reactions leading to high 117O values, and

blue indicates reactions leading to low 117O values. HO2 = HO2 + RO2; X = Br + Cl + I; HC: hydrocarbons; MTN: monoterpenes; ISOP:

isoprene.

then react with NO2, hydrocarbons (HC), and the biogenic

VOC monoterpenes (MTN) and isoprene (ISOP). Reaction

of NO3 with NO2 forms N2O5, which can subsequently hy-

drolyze or react with Cl− in aerosol to form HNO3. Reac-

tion of NO3 with HC forms HNO3 via hydrogen abstrac-

tion. Reactions of NO3 are only important at night due to its

short lifetime against photolysis. Formation of organic nitrate

(RONO2) was recently updated in the model as described

in Fisher et al. (2016). Reaction of NO3 with MTN and

ISOP can form RONO2. RONO2 also forms from the reac-

tion of NO with RO2 derived from OH oxidation of BVOCs.

RONO2 hydrolyzes to form HNO3 on a timescale of 1 h. In-

organic nitrate partitions between the gas (HNO3(g)) and par-

ticle (NO−

3 ) phase according to local thermodynamic equilib-

rium as calculated in the ISORROPIA-II aerosol thermody-

namic module (Fountoukis and Nenes, 2007). HNO3(g) and

NO−

3 are mainly lost from the atmosphere via wet and dry

deposition to the surface.

In the standard model, hydrolysis of N2O5, NO3

(γNO3 = 1 × 10−3), and NO2 (γNO2 = 1 × 10−4) occurs on

aerosol surfaces only. Uptake and hydrolysis of N2O5 on

aerosol surfaces depend on the chemical composition of

aerosols, temperature, and humidity as described in Evans

and Jacob (2005). Recently, Holmes et al. (2019) updated

the reaction probabilities of the NO2 and NO3 heterogeneous

reactions in the model to depend on aerosol chemical com-

position and relative humidity. Holmes et al. (2019) also up-

dated the N2O5 reaction probability to additionally depend

on the H2O and NO−

3 concentrations in aerosol (Bertram and

Thornton, 2009). In addition to these updates for hydrolysis

on aerosol, Holmes et al. (2019) included the uptake and hy-

drolysis of N2O5, NO2, and NO3 in cloud water and ice lim-

ited by cloud entrainment rates. We incorporate these updates

from Holmes et al. (2019) into the cloud chemistry model

to examine the impacts on global nitrate production mech-

anisms. We consider the cloud chemistry model as state of

the science, and as such we focus on the results of this par-

ticular simulation. Additional model sensitivity studies are

also performed and examined relative to the standard model

simulation, which represents a more common representation

of nitrate chemistry in atmospheric chemistry models. These

additional sensitivity simulations are described in Sect. 4.

117O(nitrate) is calculated in the model using monthly-

mean, local chemical production rates rather than by treat-

ing different isotopic combinations of nitrate as separate

tracers that can be transported in the model. Alexander et

al. (2009) transported four nitrate tracers, one each for nitrate

production by NO2 + OH, N2O5 hydrolysis, NO3 + HC, and

nitrate originating from its formation in the stratosphere.

Since 117O(NOx) was not transported in the Alexander et

al. (2009) model, it was calculated using local production

rates, so effectively only one-third of the 117O(nitrate) was

transported in Alexander et al. (2009). Accurately account-

ing for transport of 117O(nitrate) in the model would require

transporting all individual isotopic combinations of the pri-

mary reactant (NO), the final product (nitrate), and each re-

action intermediate (e.g., N2O5), which we do not do here

due to the large computational costs. Thus, the model results

shown here represent 117O(nitrate) from local NOx cycling

and nitrate production. This may lead to model biases, partic-

ularly in remote regions such as polar regions in wintertime

when most nitrate is likely transported from lower latitudes

or the stratosphere. This should make less of a difference

in polluted regions where most nitrate is formed locally or

for example in polar regions in summer when photochemical

recycling of nitrate in the snowpack represents a significant

local source of NOx at the surface (Domine and Shepson,

2002). Although lack of transport of the isotope tracers adds

uncertainty to direct comparison of the model with observa-

tions at any particular location, this approach will reflect the

full range of possible modeled 117O(nitrate) values for the

current chemical mechanism, which can then be compared to

the range of observed 117O(nitrate) values around the globe.

Atmos. Chem. Phys., 20, 3859–3877, 2020 www.atmos-chem-phys.net/20/3859/2020/
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Table 1. Calculated 117O(nitrate) in the model for each nitrate production pathway (X = Br, Cl, and I; HC: hydrocarbon; MTN: monoter-

penes; ISOP: isoprene; 117O(O∗
3) = 39 ‰). A is defined in Eq. (1).

Nitrate formation pathway 117O(nitrate)

Gas-phase reactions

R1 NO2 + OH 2/3A117O(O∗
3)

R2 NO3 + HC (2/3A + 1/3)117O(O∗
3)

R3 NO + HO2 1/3A117O(O∗
3)

Aerosol uptake from the gas phase followed by hydrolysis

R4 N2O5 + H2O(aq) (2/3A + 1/6)117O(O∗
3)

R5 N2O5 + Cl−(aq) (2/3A + 1/3)117O(O∗
3)

R6 XNO3 + H2O(aq) (2/3A + 1/3)117O(O∗
3)

R7 NO2 + H2O(aq) (2/3A + 1/3)117O(O∗
3)

R8 NO3 + H2O(aq) (2/3A + 1/3)117O(O∗
3)

R9 RONO2 + H2O(aq) 1/3A117O(O∗
3)

(where RONO2 is from NO + RO2)

R10 RONO2 + H2O(aq) (2/3A + 1/3)117O(O∗
3)

(where RONO2 is from NO3 + MTN/ISOP)

The 117O(nitrate) value of nitrate produced from each

production pathway is calculated as shown in Table 1. The

value of A in Table 1 represents the relative importance of the

oxidation pathways of NO to NO2 where the oxygen atom

transferred comes from ozone (NO + O3 and NO + XO):

A =

kO3+NO [O3] + kXO+NO [XO]

kO3+NO [O3] + kXO+NO [XO] + kHO2+NO [HO2] + kRO2+NO [RO2]
. (1)

In Eq. (1), k represents the local reaction rate constant for

each of the four reactions, XO = BrO, ClO, IO, and OIO;

and we assume 117O(XO) is equal to the 117O value of the

terminal oxygen atoms of ozone, as described in more detail

below. This effectively assumes that the other oxidation path-

ways (NO + HO2 and NO + RO2) yield 117O(NOx) = 0 ‰.

Although HO2 may have a small 17O enrichment on the order

of 1 ‰–2 ‰ (Savarino and Thiemens, 1999b), the assump-

tion that this pathway yields 117O(NOx) = 0 ‰ simplifies

the calculation and leads to negligible differences in calcu-

lated 117O(nitrate) (Michalski et al., 2003). This approach

assumes that NOx cycling is in a photochemical steady state,

which only occurs during the daytime. A is calculated in the

model as the 24 h average NO2 production rate rather than

the daytime average only. As was shown in Alexander et

al. (2009), rapid daytime NOx cycling dominates the calcu-

lated 24 h averaged A value, leading to negligible differences

in calculated 117O(nitrate) for 24 h averaged values versus

daytime averaged values.

NOx formed during the day will retain its daytime

117O(NOx) signature throughout the night due to lack of

NO2 photolysis (Morin et al., 2011), suggesting similar A

values for the nighttime reactions (R2, R4, R5, R8, and R10

in Table 1). However, NO emitted at night will not undergo

photochemical recycling, initially suggesting that NO will

retain its emitted 117O(NO) value of 0 ‰ prior to sunrise.

Thus, any NO emitted at night and oxidized to NO2 before

sunrise will result in 117O(NO2) equal to one-half of the

117O value of the oxidant, since only one of the two oxy-

gen atoms of NO2 will originate from the oxidant. Since

HOx abundance is low at night, ozone will be the domi-

nant oxidant. Thus, NO both emitted and oxidized to NO2

at night will lead to Anight = 0.5 (half of the O atoms of NO2

originate from O3). Although isotopic exchange between

NO + NO2 (Sharma et al., 1970) and NO2 and NO3 via ther-

mal dissociation of N2O5 (Connell and Johnston, 1979) will

tend to increase 117O(NO) above its emitted value of 0 ‰,

the bulk 117O value of the NOx plus NO3 system will be

lower at night than during the daytime due to the absence of

photochemical cycling at night (Michalski et al., 2014; Morin

et al., 2011). Since the atmospheric lifetime of NOx near the

surface against nighttime oxidation to nitrate (R2 + R4 + R5)

is typically greater than 24 h (Fig. S1 in the Supplement),

most nitrate formed during the nighttime will form from NOx

that reached photochemical equilibrium during the previous

day. Thus, we use values of A calculated as the 24 h aver-

age NO2 production rate for calculating the 117O(nitrate)

value of all nitrate production pathways, including those that

can occur at night. Using 24 h averaged A values may lead

to an overestimate of 117O(nitrate) in locations with more

rapid nighttime nitrate formation rates such as in China and

India (Fig. S1). However, even in these locations the life-

time of NOx against nighttime oxidation is greater than 12 h,

suggesting that over half of nitrate formation at night oc-

curs from the oxidation of NOx that reached photochemical

equilibrium during the daytime. When comparing modeled

www.atmos-chem-phys.net/20/3859/2020/ Atmos. Chem. Phys., 20, 3859–3877, 2020
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117O(nitrate) with observations, we add error bars to model

values in these locations (Beijing and Mt. Lulin, Taiwan) that

reflect the range of possible A values for nighttime nitrate

formation, with the high end (Ahigh) reflecting 24 h average

A values and the low end assuming that half of nitrate forma-

tion occurs from oxidation of NOx that reached photochemi-

cal equilibrium during the daytime (Alow = 0.5A+0.5Anight,

where Anight = 0.5).

117O(nitrate) for total nitrate is calculated in the model

according to

117O(nitrate) =

R10
∑

R=R1

fR117O(nitrate)R, (2)

where fR represents the fractional importance of each nitrate

production pathway (R1–R10 in Table 1) relative to total

nitrate production, and 117O(nitrate)R is the 117O(nitrate)

value for each reaction as described in Table 1. To calculate

117O(nitrate), we assume that the mean 117O value of the

ozone molecule (117O(O3)) is equal to 26 ‰ based on recent

observations (Vicars et al., 2012; Ishino et al., 2017; Vicars

and Savarino, 2014) and that it is the terminal oxygen atom

that is transferred to the oxidation product during chemical

reactions (Savarino et al., 2008; Berhanu et al., 2012). Thus,

we assume that the 117O value of the oxygen atom trans-

ferred from O3 (117O(O∗
3)) = 1.5 × 117O(O3), as in previ-

ous work (e.g., Morin et al., 2011), where 117O(O∗
3) repre-

sents the 117O value of the terminal oxygen atoms in ozone.

Assuming that 117O(O3) = 26 ‰ based on recent observa-

tions, this leads to 117O(O∗
3) = 39 ‰.

3 Results and discussion

Figure 1 shows the relative importance of the different oxi-

dation pathways of NO to NO2 and nitrate formation below

1 km altitude in the model for the cloud chemistry simulation,

with equivalent values for the standard simulation shown

in parentheses. We focus on model results near the surface

(below 1 km) because these can be compared to observa-

tions; currently only surface observations of 117O(nitrate)

are available. We note that two observation data sets – from

Bermuda (Hastings et al., 2003) and Princeton, NJ (Kaiser et

al., 2007) – are rainwater samples and thus may represent ni-

trate formed aloft. However, since cloud water peaks on aver-

age near 1 km altitude in the MERRA2 meteorology used to

drive GEOS-Chem, our model sampling strategy should cap-

ture the majority of the influence of clouds on the chemistry

of nitrate formation. The dominant oxidant of NO to NO2

is O3 (84 %–85 %). Much of the remaining oxidation occurs

due to the reaction with peroxy radicals (HO2 and RO2). Ox-

idation of NO to NO2 by XO is minor (1 %) and occurs over

the oceans because the main source of tropospheric reactive

halogens is from sea salt aerosol and sea water (Chen et al.,

2017; Sherwen et al., 2016; Wang et al., 2019) (Fig. 2). In

Figure 2. Annual-mean fraction of NO2 formation from the oxi-

dation of NO in the troposphere below 1 km altitude in the cloud

chemistry model.

the model, the global annual-mean lifetime of NOx in the

troposphere against oxidation to nitrate is about 1 d; about

50 % of this loss is from the reaction of NO2 + OH. NOx loss

from N2O5 becomes more important near the surface where

aerosol surface area is relatively high. The global annual-

mean lifetime of nitrate in the troposphere against wet and

dry deposition to the surface is about 3 d.

For both the cloud chemistry and standard simulations,

the two most important nitrate formation pathways are

NO2 + OH (41 %–42 %) and N2O5 hydrolysis (28 %–41 %),

the latter of which is dominant over the mid- to high northern

continental latitudes during winter, where both NOx emis-

sions and aerosol abundances are relatively large (Figs. 1 and

3). The cloud chemistry simulation results in an equal impor-

tance of nitrate formation via NO2 + OH and N2O5 hydrol-

ysis (both 41 %) due to increases in the rate of N2O5 uptake

in clouds and decreases in the importance of NO2 hydrol-

ysis, which can compete with N2O5 formation at night. In

the standard model, NO2 hydrolysis represents an important

nitrate production mechanism (12 %), but it is negligible in

the cloud chemistry simulation due to the reduction in the

reaction probability (from γNO2 = 10−4 to γNO2 = 10−4 to

10−8) in the model, which is supported by laboratory stud-

ies (Burkholder et al., 2015; Crowley et al., 2010; Tan et

al., 2016). The formation of HNO3 from the hydrolysis of

RONO2 formed from both daytime (NO + RO2) and night-

time (NO3 + MTN/ISOP) reactions represents 6 % of total

global nitrate formation (Fig. 1) and is dominant over Ama-

zonia (Fig. 3). RONO2 hydrolysis represents up to 20 % of

inorganic nitrate formation in the southeastern US (Fig. 3).

This is similar to Fisher et al. (2016), who estimated that for-

mation of RONO2 accounts for up to 20 % of NOx loss in

this region during summer, with RONO2 hydrolysis repre-

senting 60 % of RONO2 loss. Globally, the formation of in-
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Figure 3. Annual-mean fraction of HNO3 formation from the oxi-

dation of NOx in the troposphere below 1 km altitude in the cloud

chemistry model.

organic nitrate from the hydrolysis of RONO2 is dominated

by RONO2 formation from the daytime reactions (3 %–6 %),

while the formation of RONO2 from nighttime reactions rep-

resents up to 3 %. The relative importance of nighttime and

daytime RONO2 formation is expressed as a range because

precursors to RONO2 that formed from monoterpenes can

form from both daytime and nighttime reactions, and these

precursors are not separately diagnosed in the model out-

put. HNO3 formation from NO3 + HC and the hydrolysis of

XNO3 is small globally (5 %–6 %). Although XNO3 hydrol-

ysis is the dominant nitrate formation pathway over the re-

mote oceans (Fig. 3), its contribution to total global nitrate

production is relatively small due to small local NOx sources

in these regions.

Figure 4. Modeled annual-mean 117O(nitrate) below 1 km altitude

for the cloud chemistry model.

Figures 4–6 show modeled 117O(nitrate) for the cloud

chemistry simulation (the standard simulation is shown

in Figs. S2–S4). Figure 4 shows modeled annual-mean

117O(nitrate) below 1 km altitude (117O(NO2) is shown

in Fig. S5). The model predicts an annual-mean range of

117O(nitrate) = 4 ‰–33 ‰ near the surface. The lowest val-

ues are over Amazonia due to the dominance of RONO2

hydrolysis, and the highest values are over the midlatitude

oceans due to the dominance of XNO3 hydrolysis (Figs. 3

and 4).

Figure 5 compares the model with a global compilation

of 117O(nitrate) observations from around the world. Ob-

servations included in Fig. 5 include locations where there

is enough data to calculate monthly means (McCabe et al.,

2006; Kunasek et al., 2008; Hastings et al., 2003; Kaiser et

al., 2007; Michalski et al., 2003; Guha et al., 2017; Savarino

et al., 2013, 2007; Ishino et al., 2017; Alexander et al., 2009;

He et al., 2018b; Fibiger et al., 2013; Wang et al., 2014).

Figure 6 compares the seasonality in modeled 117O(nitrate)

to the observations where samples were collected over the

course of approximately 1 year (McCabe et al., 2006; Ku-

nasek et al., 2008; Kaiser et al., 2007; Michalski et al., 2003;

Guha et al., 2017; Savarino et al., 2013, 2007; Ishino et

al., 2017; Alexander et al., 2009). In contrast to Alexan-

der et al. (2009), the model does not significantly under-

estimate the 117O(nitrate) observations when assuming a

bulk ozone isotopic composition (117O(O3)) on the order

of 25 ‰ (see Fig. 2d in Alexander et al., 2009). The in-

crease in modeled 117O(nitrate) is due to increased impor-

tance of O3 in NOx cycling (85 % below 1 km) compared to

Alexander et al. (2009) (80 % below 1 km altitude), as well

as an increase in the number and fractional importance of ni-

trate formation pathways that yield relatively high values of

117O(nitrate) (red pathways in Fig. 1). Although XO species

themselves are only a minor NO oxidation pathway (1 %),

the addition of reactive halogen chemistry in the model has
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altered the relative abundance of O3 and HOx (Sherwen et al.,

2016) in such a way as to increase the modeled 117O(NOx).

The Alexander et al. (2009) study used GEOS-Chem v8-

01-01, which included tropospheric nitrate formation from

the NO + OH, N2O5 + H2O, and NO3 + HC pathways only.

An increased importance of N2O5 hydrolysis (R4) and ad-

ditional nitrate formation pathways that yield relatively high

values of 117O(nitrate) (R5, R6, R8, and R10) in the present

study also explain the increase in modeled 117O(nitrate) rel-

ative to Alexander et al. (2009). An increase in the average A

value from 0.80 to 0.85 would tend to increase the calculated

117O(nitrate) on the order of 2 ‰ (0.05 × 117O(O∗
3)), sug-

gesting that the increase in the relative importance of the ter-

minal reactions R4, R5, R6, R8, and R10 explains the major-

ity of the difference between the results presented here com-

pared to Alexander et al. (2009). Assuming a value of 35 ‰

for bulk 117O(O3) in the model that did not include reac-

tive halogen chemistry or heterogeneous reactions in cloud

water produced good agreement between modeled and ob-

served 117O(nitrate) in Alexander et al. (2009); however,

in the current version of the model this bulk isotopic as-

sumption leads to a model overestimate at nearly all loca-

tions (Fig. S6). The cloud chemistry model shows somewhat

better agreement with the observations (R2 = 0.51 in Fig. 5)

compared to the standard model (R2 = 0.48 in Fig. S3). Im-

proved agreement with the observations occurs in the mid- to

high latitudes (Figs. 6 and S4) and is due to addition of N2O5

hydrolysis in clouds (Figs. 3 and S6).

The mean 117O(nitrate) value of the observations (27.7±

5.0 ‰) shown in Fig. 5 is not significantly different from

the modeled values at the location of the observations

(28.6 ± 4.5 ‰); however, the range of 117O(nitrate) values

of the observations (10.9 ‰–40.6 ‰) is larger than in the

model (19.6 ‰–37.6 ‰). As previously noted in Savarino

et al. (2007), the maximum observed117O(nitrate) value

(40.6 ‰) is not possible given our isotope assumption for

the terminal oxygen atom of ozone (117O(O∗
3) = 39 ‰);

however, it is theoretically possible given the approxi-

mately 2 ‰ uncertainty in observed 117O(O∗
3). A value of

117O(nitrate) = 41 ‰ is possible if 117O(O∗
3) = 41 ‰ and

all oxygen atoms of nitrate originate from ozone (A = 1 and

all nitrate forms from R2 and/or R5). Although this may be

possible for nitrate formed locally in the Antarctic winter

due to little to no sunlight, lack of local NOx sources during

Antarctic winter makes it unlikely that all nitrate observed

in Antarctica forms locally. Long-range transport from lower

latitudes and/or the stratosphere likely contributes to nitrate

observed in Antarctica during winter (Lee et al., 2014). Ob-

served 117O(nitrate) > 39 ‰ (in Antarctica) has been sug-

gested to be due to transport of nitrate from the stratosphere

(Savarino et al., 2007), as stratospheric O3 is expected to

have a higher 117O(O3) value than ozone produced in the

troposphere (Krankowsky et al., 2000; Mauersberger et al.,

2001; Lyons, 2001). Indeed, the model underestimates the

observations at Dumont d’Urville (DDU) and the South Pole

(both in Antarctica) during winter and spring (Fig. 6), where

and when the stratospheric contribution is expected to be

most important (Savarino et al., 2007). The model under-

estimate in Antarctica may also be due to model underes-

timates of the BrO column (Chen et al., 2017) and ozone

abundance (Sherwen et al., 2016) in the southern high lati-

tudes. The largest model overestimates occur at Mt. Lulin,

Taiwan (Figs. 5 and 6). Based on nitrogen isotope obser-

vations (δ15N), nitrate at Mt. Lulin is thought to be influ-

enced by anthropogenic nitrate emitted in polluted areas of

mainland China and transported to Mt. Lulin rather than lo-

cal nitrate production (Guha et al., 2017). However, observa-

tions of 117O(nitrate) in autumn and winter in Beijing sug-

gest much higher values (30.6±1.8 ‰) than was measured at

Mt. Lulin (15 ‰–30 ‰ in winter). A potential reason for the

model overestimate of the observed values at Mt. Lulin could

be qualitatively explained by transport of nitrate formed in

the free troposphere to this high-altitude location, where the

high-117O(nitrate)-producing pathways (R4–R8) should be

negligible due to minimal aerosol surface area for hetero-

geneous chemistry. Low 117O(nitrate) values from nitrate

formed at higher altitudes and transported to Mt. Lulin would

not be accounted for in the model since the isotopes are not

transported. The model compares better to the midlatitude

locations close to pollution sources (La Jolla and Princeton),

although the model overestimates wintertime 117O(nitrate)

in Princeton, NJ, USA, by up to 6 ‰ and underestimates win-

ter time 117O(nitrate) in La Jolla, CA, USA, by up to 4 ‰ .

The model overestimate at Princeton during winter could be

due to the fact that these are precipitation samples and not

ambient aerosol samples, and thus may reflect nitrate formed

at altitudes higher than we are sampling in the model. The un-

derestimate at La Jolla, CA, could be due to underestimates

in reactive chlorine chemistry in the model, which would

tend to increase 117O(nitrate) by increasing nitrate forma-

tion by the hydrolysis of halogen nitrates (R6) in this coastal

location. The model underestimates the 117O(nitrate) obser-

vations at Cabo Verde in late summer/early autumn by up to

6 ‰ (Savarino et al., 2013). Comparison with results from

the steady-state model employed in Savarino et al. (2013)

suggests that the low bias could be due to an underestimate

of nitrate formation via NO3 + DMS (R2). The steady-state

model in Savarino et al. (2013) agreed with observations

when R2 represented about one-third of total nitrate forma-

tion. The model results presented here have R2 representing

about 15 % of total nitrate formation in this season. An under-

estimate of the relative importance of R2 could result from a

model underestimate of atmospheric DMS abundances.
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Figure 5. Comparison of monthly-mean modeled (cloud chemistry)

and observed 117O(nitrate) at locations where there are enough ob-

servations to calculate a monthly mean. References for the obser-

vations are in the text. The error bars represent different assump-

tions for calculated modeled A values for nighttime reactions as

described in the text. Error bars for Beijing and Mt. Lulin reflect the

range of possible modeled A values for nighttime reactions as de-

scribed in the text. The y = x (solid line) and y = 2x and y = 0.5x

(dashed) are shown.

4 Model uncertainties

The uncertainty in the two most important nitrate formation

pathways, NO2 + OH and N2O5 hydrolysis, and their im-

pacts on NOx and oxidant budgets have been examined and

discussed elsewhere (Macintyre and Evans, 2010; Newsome

and Evans, 2017; Holmes et al., 2019). The impacts of the

formation and hydrolysis of halogen nitrates on global NOx

and oxidant budgets have also been previously examined

(Sherwen et al., 2016). Here we focus on three additional

processes using a set of model sensitivity studies. First, we

examine the importance of the third most important nitrate

production pathway on the global scale as predicted by the

standard model, NO2 aerosol uptake and hydrolysis, and its

implications for the global NOx , nitrate, and oxidant budgets.

Second, we examine the role of changing anthropogenic NOx

emissions over a 15-year period (2000 to 2015) on the rela-

tive importance of the formation of inorganic nitrate from the

hydrolysis of organic nitrates. Finally, we examine the role of

aerosol nitrate photolysis on the relative importance of differ-

ent nitrate formation pathways. The impact of aerosol nitrate

photolysis on NOx and oxidant budgets has been examined

in detail elsewhere (Kasibhatla et al., 2018).

4.1 Heterogeneous uptake and hydrolysis of NO2

Heterogeneous uptake of NO2 to form HNO3 and HONO

is the third most important nitrate formation pathway in the

standard model on the global scale (Fig. 1). The reaction

Figure 6. Comparison of monthly-mean modeled (cloud chemistry)

and observed 117O(nitrate). Error bars for model results from Mt.

Lulin reflect the range of possible modeled A values for nighttime

reactions as described in the text. Error bars for the observations re-

flect the analytical uncertainty in the measurements, except for two

data points in June for Summit which reflect the standard deviation

of 117O(nitrate) from multiple measurements during that month.

probability (γNO2 ) measured in laboratory studies ranges be-

tween 10−8 and 10−4 depending on aerosol chemical compo-

sition (Lee and Tang, 1988; Crowley et al., 2010; Gutzwiller

et al., 2002; Yabushita et al., 2009; Abbatt and Waschewsky,

1998; Burkholder et al., 2015; Bröske et al., 2003; Li et al.,

2018a; Xu et al., 2018). A value of γNO2 = 10−4 is used in

the standard model, which is at the high end of the reported

range. A molar yield of 0.5 for both HNO3 and HONO for-

mation is assumed in the model based on laboratory studies

and hypothesized reaction mechanisms (Finlayson-Pitts et

al., 2003; Jenkin et al., 1988; Ramazan et al., 2004; Yabushita

et al., 2009). However, both the reaction rate and mechanism

of this reaction and its dependence on chemical composition

and pH are still not well understood (Spataro and Ianniello,

2014).

The cloud chemistry simulation uses a reaction proba-

bility formulation for aerosol uptake of NO2 (γNO2) that

depends on aerosol chemical composition, ranging from

(γNO2) = 10−8 for dust to (γNO2 ) = 10−4 for black carbon

based on recent laboratory studies (Holmes et al., 2019).
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Figure 7. Modeled annual-mean HONO (a, c, e) and fine-mode nitrate (b, d, f) concentrations below 1 km altitude in the standard simulation

(a, b) with γNO2
= 10−4 for NO2 hydrolysis. Absolute (c, d) and relative (e, f) change in concentrations below 1 km altitude between the

standard model and the model simulation with γNO2
= 10−7. Negative numbers represent a decrease relative to the standard simulation.

The updated NO2 reaction probability results in a negligi-

ble (< 1 %) importance of this reaction for nitrate formation,

compared to a 12 % contribution in the standard model. The

cloud chemistry simulation significantly increases the frac-

tional importance of N2O5 hydrolysis (from 28 % to 41 %,

globally below 1 km altitude) compared to the standard sim-

ulation, in part due to decreased competition from NO2 hy-

drolysis and in part due to increased N2O5 hydrolysis in

clouds. To evaluate the relative importance of competition

from NO2 hydrolysis and the addition of N2O5 hydrolysis in

clouds, we perform a model sensitivity study that is the same

as the standard simulation but decreases the reaction prob-

ability of NO2 hydrolysis on aerosol (N2O5 = 10−7), with-

out adding N2O5 hydrolysis in clouds. Similar to the cloud

chemistry simulation, using N2O5 = 10−7 renders NO2 hy-

drolysis a negligible nitrate formation pathway and increases

the relative importance of N2O5 hydrolysis from 28 % to

37 %. This suggests that reduced competition from NO2 hy-

drolysis is the main reason for the increased importance of

N2O5 hydrolysis in the cloud chemistry simulation, though

the addition of heterogeneous reactions on clouds also plays

a role.

NO2 hydrolysis represents a significant source of HONO

in the standard model simulation; the reduced NO2 reaction

probability from N2O5 = 10−4 to N2O5 = 10−7 results in a

reduction of HONO below 1 km altitude by up to 100 % over

the continents, with relatively small (up to 1 ppb) changes in

nitrate concentrations (Fig. 7). The reduction in the rate of

heterogeneous NO2 uptake leads to reductions in OH where

this reaction was most important in the model (over China

and Europe) due to reductions in HONO but leads to in-

creases in OH elsewhere due to increases in ozone (by up to

a few ppb) resulting from small increases in the NOx lifetime

due to a reduction in the NOx sink (Fig. 8). Similar changes

in HONO are seen when comparing the standard and cloud

chemistry simulation (not shown). Increased importance of

N2O5 hydrolysis in both the cloud chemistry simulation and

the simulation without cloud chemistry but with a reduced

reaction probability for NO2 hydrolysis increases modeled

annual-mean 117O(nitrate) by up to 3 ‰ in China, where this

reaction is most important. This improves model agreement

with monthly-mean observations of 117O(nitrate) in Beijing

(He et al., 2018a) (Figs. 5 and S3).
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Figure 8. Same as Fig. 7 except for OH (a, c, e) and ozone (b, d, f).

Figure 9. Absolute (a, b, c) and relative (d, e, f) change in HONO (a, d), OH (b, e), and ozone (c, f) concentrations below 1 km altitude

between the standard model and the model simulation with an acidity-dependent yield from NO2 hydrolysis. Positive numbers represent an

increase relative to the standard simulation.
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Figure 10. Modeled annual-mean difference in the fractional pro-

duction rate of HNO3 from the hydrolysis of organic nitrate below

1 km attitude in the year 2015 relative to 2000 (2015–2000).

The product yields of NO2 hydrolysis are also uncer-

tain. Jenkin et al. (1988) proposed the formation of a wa-

ter complex, NO2 ·H2O, leading to the production of HONO

and HNO3. Finlayson-Pitts et al. (2003) and Ramazan et

al. (2004) proposed the formation of the dimer N2O4 on the

surface, followed by isomerization to form NO+NO−

3 . Re-

action of NO+NO−

3 with H2O results in the formation of

HONO and HNO3. Laboratory experiments by Yabushita et

al. (2009) suggested that dissolved anions catalyzed the dis-

solution of NO2 to form a radical intermediate XNO−

2 (where

X = Cl, Br, or I) at the surface followed by reaction with

NO2(g) to form HONO and NO−

3 . These experiments de-

scribed above were performed at NO2 concentrations much

higher than exist in the atmosphere (10–100 ppm) (Yabushita

et al., 2009; Finlayson-Pitts et al., 2003; Ramazan et al.,

2004). A laboratory study utilizing isotopically labeled wa-

ter to investigate the reaction mechanism suggested that the

formation of HONO resulted from the reaction between ad-

sorbed NO2 and H+, while the formation of HNO3 resulted

from the reaction between adsorbed NO2 and OH−, and did

not involve the N2O4 intermediate (Gustafsson et al., 2009).

Results from Gustafsson et al. (2009) suggest an acidity-

dependent yield of HONO and HNO3, favoring HONO at

low pH values. A recent study in the northeastern US during

winter found that modeled nitrate abundance was overesti-

mated using a molar yield of 0.5 for HONO and HNO3, and

the model better matched the observations of NO2 and nitrate

when assuming a molar yield of 1.0 for HONO (Jaeglé et al.,

2018). Particles were acidic (pH < 2) during this measure-

ment campaign (Guo et al., 2017; Shah et al., 2018), which

may favor HONO production over HNO3.

We examine the potential importance of this acidity-

dependent yield by implementing a pH-dependent product

yield in two separate sensitivity simulations, first using an

NO2 aerosol uptake reaction probability of γ = 10−4 as in

the standard simulation and second with γNO2 = 10−7. The

acidity-dependent yield for HONO and HNO3 formation is

based on the laboratory study by Gustafsson et al. (2009). We

use aerosol pH calculated from ISORROPIA II (Fountoukis

and Nenes, 2007) to calculate the concentration of H+ and

OH− in aerosol water. The yield of HONO (ϒHONO) from

heterogeneous uptake of NO2 on aerosol surfaces is calcu-

lated according to Eq. (3):

ϒHONO =

[

H+
]

[

H+
]

+
[

OH−
] , (3)

where [H+] and [OH−] are in units of M. The yield of HNO3

from this reaction is equal to (1 − ϒHONO). Eq. (3) yields

values of ϒHONO near unity for aerosol pH values less than

6, decreasing rapidly to zero between pH values of 6 and 8

(Fig. S8). Calculated aerosol pH values are typically < 6 in

the model except in remote regions far from NOx sources

(Fig. S9), favoring the product HONO.

The acidity-dependent yield implemented in the standard

simulation with γNO2 = 10−4 increases HONO concentra-

tions by up to 1 ppbv in China, where this reaction is most im-

portant (Fig. 9). Fractional increases in HONO exceed 100 %

in remote locations (Fig. 9). Increased HONO leads to in-

creases in OH on the order of 10 %–20 % in most locations

below 1 km altitude, while ozone concentrations increase in

most locations by up to several ppbv (Fig. 9). The excep-

tion is the southern high latitudes, likely due to decreased

formation and thus transport of nitrate to remote locations.

The impact on NOx and nitrate budgets is relatively minor.

The global annual-mean NOx burden near the surface (be-

low 1 km) increases slightly (+2 %) as a result of the de-

creased rate of conversion of NO2 to nitrate; the change to

the global tropospheric burden is negligible. Annual-mean

surface nitrate concentrations show small decreases up to

1 ppbv in China, where this reaction is most important in

the model; impacts on nitrate concentrations over a shorter

time period may be more significant (Jaeglé et al., 2018).

The fraction of HNO3 formed from NO2 + OH (49 %) in-

creases due to increases in OH from the HONO source. The

fraction of HNO3 formation from the uptake and hydrolysis

of N2O5 also increases (from 28 % to 32 %) due to reduc-

tions in the nighttime source of nitrate from NO2 hydroly-

sis. The calculated mean 117O(nitrate) at the location of the

observations shown in Fig. 5 (27.9 ± 5.0 ‰) is not signifi-

cantly impacted due to compensating effects from changes

in both high- and low-producing 117O(nitrate) values. Mod-

eled monthly-mean 117O(nitrate) in China, where NO2 hy-

drolysis is most important, decreases by 0.9 ‰–1.9 ‰ and is

biased low by 1.8 ‰–3.4 ‰ .

Using a combination of both the low reaction probability

(γ = 10−7) and the acidity-dependent yield gives similar re-

sults to using γ = 10−7 and assuming a molar yield of 0.5

for HONO and HNO3 (not shown). In other words, includ-

ing a pH-dependent product yield rather than a yield of 0.5
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for HONO and nitrate results in negligible differences for ox-

idants, NOx and nitrate abundances when the reaction prob-

ability (γNO2) is low.

4.2 Hydrolysis of organic nitrates (RONO2)

Anthropogenic NOx emissions have been increasing in

China and decreasing in the US and Europe (Richter et al.,

2005; Hoesly et al., 2018), with implications for the rela-

tive importance of inorganic and organic nitrate formation

as a sink for NOx (Zare et al., 2018). To examine the im-

pacts of recent changes in anthropogenic NOx emissions

for nitrate formation pathways, we run the standard model

using the year 2000 emissions and meteorology after a 1-

year model spin-up and compare the results to the standard

model simulation run in the year 2015. This time period en-

compasses significant changes in anthropogenic NOx emis-

sions in the US, Europe, and China and encompasses most

of the time period of the observations shown in Figs. 5 and

6. Total global anthropogenic emissions of NOx are slightly

lower in the year 2000 simulation (30 Tg N yr−1) compared

to the year 2015 simulation (31 Tg N yr−1) due to decreases

in North America and Europe, counteracted by increases in

Asia (Fig. S10). This leads to increases of less than 10 %

in the annual-mean, fractional importance of the source of

nitrate from the hydrolysis of organic nitrates in the US

and corresponding decreases of less than 10 % over China

(Fig. 10). Relatively small changes (< 10 %) in nitrate for-

mation pathways yield small changes (< 2 ‰) in modeled

annual-mean 117O(nitrate) between the year 2000 and 2015;

differences in 117O(nitrate) over shorter time periods may

be larger. Changes in the formation of nitrate from the hy-

drolysis of RONO2 remain unchanged globally, as increases

in the US and Europe and decreases in China counteract one

another.

4.3 Photolysis of aerosol nitrate

Observations have demonstrated that aerosol nitrate can be

photolyzed at rates much faster than HNO3(g) (Reed et al.,

2017; Ye et al., 2016); however, the magnitude of the pho-

tolytic rate constant is uncertain. We examine the implica-

tions of this process for global nitrate formation pathways by

implementing the photolysis of aerosol nitrate as described in

Kasibhatla et al. (2018) into the standard model simulation,

scaling the photolytic rate constant for both fine- and coarse-

mode aerosol nitrate to a factor of 25 times higher than that

for HNO3(g) (Kasibhatla et al., 2018; Romer et al., 2018),

with a molar yield of 0.67 for HONO and 0.33 for NOx pro-

duction. The global annual-mean NOx burden near the sur-

face (below 1 km) increases slightly (+2 %) as a result of

the photolytic recycling of nitrate to NOx , similar to Kasib-

hatla et al. (2018). Aerosol nitrate photolysis results in only

small impacts on the relative importance of nitrate formation

pathways (< 2 %), likely due to simultaneous increases in O3

and OH (Kasibhatla et al., 2018), which in turn yields small

impacts on calculated 117O(nitrate) at the location of the ob-

servations shown in Fig. 5 (27.9±5.0 ‰). Nitrate photolysis

itself has minimal impact on 117O(nitrate) because it is a

mass-dependent process (McCabe et al., 2005).

5 Conclusions

Observations of 117O(nitrate) can be used to help quan-

tify the relative importance of different nitrate formation

pathways. Interpretation of 117O(nitrate) requires knowl-

edge of 117O(O3). Previous modeling studies showed good

agreement between observed and modeled 117O(nitrate)

when assuming a bulk oxygen isotopic composition of ozone

(117O(O3)) of 35 ‰ based on laboratory and modeling stud-

ies (Morton et al., 1990; Thiemens, 1990; Lyons, 2001).

However, recent and spatially widespread observations of

117O(O3) have consistently shown 117O(O3) = 26 ± 1 ‰,

suggesting that models are underestimating the role of ozone

relative to HOx in NOx chemistry. We utilize a global com-

pilation of observations of 117O(nitrate) to assess the rep-

resentation of nitrate formation in a global chemical trans-

port model (GEOS-Chem), assuming that the bulk oxy-

gen isotopic composition of ozone (117O(O3) = 26 ‰. The

modeled 117O(nitrate) is roughly consistent with observa-

tions, with a mean modeled and observed 117O(nitrate) of

(28.6 ± 4.5 ‰) and (27.6 ± 5.0 ‰), respectively, at the loca-

tions of the observations. Improved agreement between mod-

eled and observed 117O(nitrate) is due to increased impor-

tance of ozone versus HO2 and RO2 in NOx cycling and an

increase in the number and importance of nitrate production

pathways that yield high 117O(nitrate) values. The former

may be due to implementation of tropospheric reactive halo-

gen chemistry in the model, which impacts ozone and HOx

abundances. The latter is due mainly to increases in the rel-

ative importance of N2O5 hydrolysis, with the hydrolysis of

halogen nitrates also playing an important role in remote re-

gions.

The main nitrate formation pathways in the model be-

low 1 km altitude are from NO2 + OH and N2O5 hydrolysis

(both 41 %). The relative importance of global nitrate forma-

tion from the hydrolysis of halogen nitrates and hydrogen-

abstraction reactions involving the nitrate radical (NO3) is

of similar magnitude (∼ 5 %). The formation of nitrate from

the hydrolysis of organic nitrate has increased slightly in the

US and decreased in China (changes < 10 %) due to chang-

ing NOx emissions from the year 2000 to 2015, although

the global mean fractional importance (6 %) remains un-

changed as the regional changes counteract one another. Ni-

trate formation via heterogeneous NO2 and NO3 uptake and

NO2 + HO2 are negligible (< 2 %). Although aerosol nitrate

photolysis has important implications for O3 and OH, the im-

pacts on nitrate formation pathways are small.
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The model parameterization for heterogeneous uptake of

NO2 has significant impacts on HONO and oxidants (OH

and ozone) in the model. HONO production from this reac-

tion has been suggested to be an important source of OH in

Chinese haze due to high NOx and aerosol abundances (Hen-

drick et al., 2014; Tong et al., 2016; Wang et al., 2017), with

implications for the gas-phase formation of sulfate aerosol

from the oxidation of sulfur dioxide by OH (Shao et al.,

2019; Li et al., 2018b). More recent laboratory studies sug-

gest that the reaction probability of NO2 on aerosols is lower

than that previously used in the model. Using an NO2 re-

action probability formulation that depends on the chemical

composition of aerosols as described in Holmes et al. (2019)

renders this reaction negligible for nitrate formation and has

significant implications for modeled HONO, ozone, and OH.

Although uncertainty also exists in the relative yield of ni-

trate and HONO from this reaction, the impacts of this as-

sumption are negligible when we use these updated NO2 re-

action probabilities. Observations of 117O(nitrate) in Chi-

nese haze events during winter (He et al., 2018b) may help

to quantify the importance of this nitrate production pathway

in a region where the model predicts it is significant.
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