
ar
X

iv
:1

80
4.

00
21

7v
2

 [c
s.I

T]
 1

 A
pr

 2
01

9

Fundamental Resource Trade-offs for Encoded Distributed

Optimization

A. Salman Avestimehr, Seyed Mohammadreza Mousavi Kalan, and Mahdi Soltanolkotabi
Ming Hsieh Department of Electrical Engineering, University of Southern California

Email: avestimehr@ee.usc.edu, mmousavi@usc.edu, soltanol@usc.edu

Abstract

Dealing with the shear size and complexity of today’s massive data sets requires compu-
tational platforms that can analyze data in a parallelized and distributed fashion. A major
bottleneck that arises in such modern distributed computing environments is that some of the
worker nodes may run slow. These nodes a.k.a. stragglers can significantly slow down compu-
tation as the slowest node may dictate the overall computational time. A recent computational
framework, called encoded optimization, creates redundancy in the data to mitigate the effect
of stragglers. In this paper we develop novel mathematical understanding for this framework
demonstrating its effectiveness in much broader settings than was previously understood. We
also analyze the convergence behavior of iterative encoded optimization algorithms, allowing
us to characterize fundamental trade-offs between convergence rate, size of data set, accuracy,
computational load (or data redundancy), and straggler toleration in this framework.

1 Introduction

Modern data sets are massive in size and complexity consisting of tens of billions of examples.
These data sets are also very high-dimensional with numerous detailed information gathered for
each example. Furthermore, due to the proliferation of a variety of personal devices many modern
data sets are stored or collected in a distributed manner. To process such data sets in a timely
manner, distributed computing algorithms/platforms that can analyze data in a parallelized or
fully decentralized fashion are crucial.

As we scale out computations across many distributed nodes in modern distributed computing
environments, such as Amazon EC2, a major performance bottleneck is the latency in waiting for
slowest nodes, or “stragglers” to finish their tasks [2]. These stragglers are caused by various forms of
“system noise” (e.g., deallocation of computational resources, bandwidth limitation, node failure,
etc) and can significantly slow down computation as the slowest node may dictate the overall
computational time. The conventional approaches to mitigate the impact of stragglers involve
creation of some form of “computational redundancy”. For example, replicating the straggling task
on another available node is a common approach to deal with stragglers (e.g., [19]).

More recent approaches [9, 11, 10, 18, 3, 17, 5, 16] bring to bear ideas from coding theory to
distributed computing. These coded computing approaches create redundancy in the computation
tasks in unorthodox coded forms (as opposed to conventional replication approaches), thereby
alleviating the effect of stragglers more efficiently.

Coded computing has also been proposed for creating redundancy in distributed optimization
problems [6, 7]. The key idea of this approach, named encoded optimization, is to linearly encode the

1

http://arxiv.org/abs/1804.00217v2

data variables in the optimization. The encoded data is then distributed across the computational
nodes and distributed optimization algorithms are then applied to these encoded data. Due to the
redundancy created in the data the optimization algorithms can be completed without having to
wait for the straggler nodes.

The encoded optimization framework provides an intriguing approach to deal with the effect of
stragglers. However, our mathematical understanding of the effect of this data encoding strategy
is limited. In particular existing results such as [6, 7] mostly focus on understanding the effect
of random encoding strategies on the optimal solution to unconstrained least-squares problems.
Furthermore, there is very limited understanding of how such encoding strategies affect the use
of various computational and data resources. This is particularly important as in many modern
applications ranging from imaging to online advertisement and financial trading we are interested
in algorithms that can operate under multiple constraints (e.g. under a limited time budget).
Efficient learning from encoded data under these constraints poses new challenges: How can we
incorporate domain-specific prior knowledge in a principled manner? What algorithms should we
use under a fixed time budget? How much of the data should we use? Should we use all of the
data or just parts of it? How many passes (or iterations) of the algorithm is required to get to an
accurate solution? How much redundancy should we create in our data? How does the amount
of redundancy present in our data encoding strategy affect the convergence behavior and run-time
of our algorithms? How many straggler nodes can a particular form of data encoding approach
tolerate?

At the heart of answering these questions is the ability to predict run-time of encoded optimiza-
tion algorithms as a function of the required accuracy, the size of data, the number of straggler
nodes, the amount of prior knowledge, etc. That is, we need to understand precise trade-offs be-
tween run time, data size, accuracy, data redundancy and straggler toleration of iterative encoded
optimization algorithms. In this paper we wish to precisely characterize such trade-offs, signifi-
cantly broadening our current understanding of the encoded optimization paradigm. Our main
contributions in this paper are as follows.

• We study the encoded optimization framework in a much broader setting than previously
understood. In particular, we demonstrate how prior knowledge can be incorporated in this
framework via constraints on the optimization variables. Our guarantees are very general and
can deal with arbitrary and potentially nonconvex constraints.

• Our results require a near minimal amount of data redundancy/replication (a.k.a. compu-
tational load). We show that encoded optimization is effective as long as the data redun-
dancy/replication exceeds (up to constants) the sum of the total number of stragglers and a
precise quantity capturing the amount of prior knowledge that is enforced in the optimiza-
tion algorithm. In fact, in certain cases our framework applies even when the number of
encoded data is less than the number of data points allowing for data compression in lieu of
redundancy/replication.

• We also precisely characterize the convergence rate of iterative encoded optimization algo-
rithms as a function of various parameters including the straggler toleration, computational
load, prior knowledge, as well as the size of the data set. This allows us to precisely charac-
terize the various trade-offs between these fundamental resources.

2

2 Problem formulation

In this section we discuss the encoded distributed optimization framework and formulate the un-
derlying fundamental resource trade-offs that we study in this paper.

2.1 Setting

In many modern applications in signal processing and machine learning we aim to infer models
that best explain the training data. Given training data consisting of n pairs of input features
xi ∈ R

d and desired outputs yi ∈ R we wish to infer a function that best explains the training
data.The simplest functions are linear ones where the outputs are linear functions of the features.
Specifically, we are interested in finding a parameter θ∗ ∈ R

d obeying the following equations

yi =< xi,θ
∗ > +wi for i = 1,2, ..., n. (2.1)

Here, wi denotes the noise present in our training examples. A natural approach to finding the
best linear model is to minimize the empirical risk ∑n

k=1 ℓ(⟨xk,θ⟩, yk) via a quadratic loss ℓ(u, v) =
1
2
(u − v)2. This leads to the following optimization problem

θ̂ = argmin
θ

L(θ) ∶= 1

2
∥y −Xθ∥2ℓ2

subject to R(θ) ≤ R.

(2.2)

Here, y ∈ R
n is the output vector consisting of the outputs y = [y1 y2 ... yn]T and X ∈ R

n×d is the
feature matrix consisting of the data features X = [xT

1 xT
2 ... xT

n]T . Also, R ∶ Rd → R is a regularizer
function that is used to avoid over-fitting and captures some notion of structure/complexity of the
unknown parameter (with R a tuning parameter). We note that while we will focus on linear
models and quadratic losses many of the algorithms and technical proofs in this paper generalize
to other models/losses. We aim to pursue these extensions in future publications.

To solve optimization problems of the form (2.2) involving massive data sizes we need to utilize
modern distributed computing platforms. While there are many popular distributed computing
schemes [15], in this paper we focus on a OneToAll scheme which consists of a master node and
L workers. We focus on a distributed implementation of Projected Gradient Descent (PGD) for
solving problems of the form (2.2). To distribute PGD we assume the master partitions the features
matrix and the response vector y across rows between L worker nodes. Specifically, we partition

X/y into L parts across rows with X = [XT
1 XT

2 . . . XT
L]T , y = [yT

1 yT
2 . . . yT

L]T . Here,

Xℓ ∈ R
nℓ×d and yℓ ∈ R

nℓ with ∑ℓ nℓ = n. With this partition, worker ℓ receives data Xℓ/yℓ and
carries out updates/computations on this data. Starting from some initial solution θ0 ∈ R

d, in
each iterations the master sends the current update θτ to the workers. Each of the workers then
calculates a partial gradient based on the portion of the data it has access to. Specifically, worker
ℓ returns to the master the following partial gradient

∇L(ℓ)(θ) =XT
ℓ (Xℓθτ − yℓ) .

3

The master then aggregates all of these partial gradients and performs the following update

θτ+1 =P (θτ − µτ

L∑
ℓ=1

∇L(ℓ)(θτ))
=P (θτ − µτ

L∑
ℓ=1

XT
ℓ (Xℓθτ − yℓ))

=P (θτ − µ̃τX
T (Xθτ − y)) . (2.3)

Here, P denotes the Euclidean projection onto the constraint set K = {θ ∈ R
d ∶ R(θ) ≤ R} and µ̃τ

is the learning rate.
As mentioned in Section 1, a major performance bottleneck that arises when implementing such

distributed PGD updates is that some of the worker nodes may run slow (i.e., stragglers). The
presence of such stragglers can significantly slow down the computations as the master has to wait
for all the workers to send their partial gradient calculations, so that the overall run time is limited
by the slowest worker. For instance, in [1] the effect of slow workers under the title of outliers was
studied and it was shown that completion time of jobs can be prolonged by %34 at median. In
this paper, we will focus on the encoded optimization framework, which will be described next, to
mitigate the effect of stragglers.

2.2 The Encoded Optimization Framework

To deal with the effect of stragglers in the iterations (2.3), in this paper we utilize a new approach for
straggler mitigation, named encoded distributed optimization [6, 7] , which was originally developed
for unconstrained least-squares problems. The main idea behind this approach is to create redun-
dancy in the data by random embedding/encoding. In this section we discuss this computational
paradigm tailored to distributed PGD iterates.

To overcome the computational slowdown caused by stragglers we randomly embed/encode
the data by multiplying the feature matrix and the response vector by an encoding matrix A ∈
R
m×n. We then partition these embedded data AX/Ay and then distribute them across rows

between the L worker nodes. Specifically, we partition the matrix A into L parts across rows

A = [AT
1 AT

2 . . . AT
L]T with Aℓ ∈ R

nℓ×d and n = ∑ℓ nℓ. Similar to the un-coded case, with this
partition worker ℓ receives data AℓX/Aℓy and carries out updates/computations on this data so
that the partial gradient updates are now calculated based on these randomly encoded data. That
is,

∇L(ℓ)(θ) =XTAT
ℓ Aℓ (Xθτ − y) .

Due to the effect of stragglers the master may not receive gradient updates from some workers in
a timely manner so that computations based on some of the m rows maybe missing. Let us denote
the index of the slow workers at iteration τ by Iτ ⊂ {1,2, . . . ,L}. Also let Wℓ ⊂ {1,2, . . . , n} denote
the index of the rows of A sent to worker ℓ. Now define

Sτ = ⋃
ℓ∈Iτ

Wℓ,

4

which contains the indices of all the rows of A that is not available at the master due to stragglers.
We will use sτ = ∣Sτ ∣ to denote the total number of these straggler rows.

Based on the gradient updates available to the master it proceeds with the following PGD
update

θτ+1 =P ⎛⎝θτ − µτ ∑
ℓ∈Icτ

∇L(ℓ)(θτ)⎞⎠
=P (θτ − µτX

TAT
Sc
τ
ASc

τ
(Xθτ − y)) . (2.4)

Therefore the master effectively runs the encoded iterations (2.4) in lieu of the uncoded iterates
(2.3). Note that, apriori it is not clear when/why the encoded iterates serve as a good proxy for the
uncoded ones. Understanding this relationship is the main focus of this paper. In the next section
we discuss the main problems that we study in this paper by formalizing various fundamental
trade-offs that arise in the distributed encoded optimization framework.

2.3 Fundamental Resource Trade-offs

In this paper we wish to understand under what conditions the encoded iterates (2.4) are a good
proxy for the uncoded iterates (2.3). We aim to answer fundamental questions such as: When will
both set of iterates converge to the same fixed point? How does the convergence behavior change
due to the presence of the encoding mapping? What are the various trade-offs involved between
various resources. To discuss these problems more precisely we start with two simple definitions
related to the encoding matrix A.

Definition 1 (Computational Load) We use computational load m to refer to the number of
rows of A.

Definition 2 (Straggler Toleration) We use s to denote the maximum number of straggler rows
in each iteration (∣Sτ ∣ ≤ s). We refer to this quantity as straggler toleration.

With these definitions in place, we now discuss the fundamental trade-offs that we aim to
characterize in this paper.

• Accuracy vs. Computational Time: In many modern learning applications we must
operate on a fixed time budget. Therefore, it is crucial to understand how many passes (or it-
erations) of the algorithm is required to get to a certain accuracy. We wish to characterize this
fundamental trade-off between computational time and accuracy for the encoded distributed
optimization framework. Stated more formally, we are interested in precisely understanding
the distance between the encoded iterates and the true parameter (∥θτ − θ∗∥ℓ2) as a function
of the number of iterations (τ) and the noise level ∥w∥ℓ2 .

• Convergence Rate vs. Computational Load: We are interested in understanding how
the computational loadm affects the convergence behavior of the encoded iterates. Intuitively,
as the computational load increases the encoded iterates provide a better approximation to
the un-coded iterates. Therefore, we expect the coded iterates to converge faster as the
computational load increases. We wish to precisely characterize the convergence rate as a
function of the computational load.

5

• Convergence Rate vs. Straggler Toleration: In each encoded iteration, there are some
stragglers which are ignored by the master node. We aim to characterize the impact of
stragglers on the speed of convergence. By increasing the number of stragglers (s), the
master node ignores more and more data. Therefore, intuitively we expect that the more
stragglers we have, the more iterations are needed for the encoded iterates to converge to a
certain accuracy. We wish to characterize the convergence rate as a function of the straggler
toleration parameter.

• Computational Load vs. Straggler Toleration: Intuitively, as we increase the number
of stragglers, s, we need more redundancy in our encoded framework. Stated differently, we
need to increase the computational load as a function of the number of stragglers. This leads
to a fundamental trade-off between computational load and straggler toleration. We aim to
characterize the minimum required computational load as a function of the straggler toleration
parameter so as to ensure the encoded iterates eventually converge to a good estimate.

In the next section we state our main result that leads to a precise characterization of the
convergence behavior of the encoded iterates as a function of various parameters, allowing us to
precisely characterize the above trade-offs.

3 Main Results

We wish to characterize the convergence behavior of the encoded iterates (2.3) as a function of
various problem parameters for the worse possible choice of s straggler rows. More precisely, we
are interested in characterizing the relationship between

sup
Sτ⊂{1,2,...,m}, ∣Sτ ∣≤s

∥θτ − θ∗∥ℓ2 ,
and the error ∥w∥ℓ2 when running the iterations (2.3). To make these connections precise and
quantitative we need a few definitions.

Naturally our results depend on how well the regularization function R can capture the prop-
erties of the unknown parameter θ∗. For example, if we know our unknown parameter is approxi-
mately sparse, then using an ℓ1 norm for the regularizer is superior to using an ℓ2 regularizer. To
quantify this capability we first need a couple of standard definitions which we adapt from [12, 13].

Definition 3 (Descent Set and Cone) The set of descent of a function R at a point θ∗ is
defined as

DR(θ∗) = {h ∶ R(θ∗ +h) ≤R(θ∗)}.
The cone of descent is defined as a closed cone CR(θ∗) that contains the descent set, i.e. DR(θ∗) ⊂CR(θ∗). The tangent cone is the conic hull of the descent set. That is, the smallest closed coneCR(θ∗) obeying DR(θ∗) ⊂ CR(θ∗).

We note that the capability of the regularizer R in capturing the properties of the parameter
vector θ∗ depends on the size of the descent cone CR(θ∗). The smaller this cone is the more suited
the function R is at capturing the properties of θ∗. To quantify the size of various cones we shall
use the notion of mean width.

6

Definition 4 (Gaussian Width) The Gaussian width of a set C ∈ R
n is defined as ω(C) ∶=

Eg[sup
z∈C
⟨g,z⟩], where the expectation is taken over g ∼ N (0,In).

We now have all the definitions in place to quantify the capability of the function R in capturing
the properties of the unknown parameter θ∗ when using an encoding matrix A. This naturally
leads us to the definition of the minimum required computational load.

Definition 5 (Minimal Computational Load) Let CR(θ∗) be a cone of descent of R at θ∗.
We define the minimal computational load function as

M(R,X,θ∗, η) = (ω (XCR(θ∗) ∩ S
n−1) + η)2 .

where θ∗ ∈ R
d and X ∈ R

n×d. We shall often use the short hand m0 = M(R,X,θ∗, η) with the
dependence on R,X,θ∗, η implied.

The definition above characterizes the minimum computational load required for the encoded
iterations to converge to the true parameter in the absence of noise or stragglers.

The convergence rate of the encoded iterates also naturally depends on various characteristics
of the feature matrix X. We quantify a few of these characteristics below.

Definition 6 (Cone-Restricted Spectral Norm) Let CR(θ∗) be the cone of descent of the reg-
ularization function R at a point θ∗ per Definition 3. the cone-restricted spectral norm of a matrix
X ∈ R

n×d with respect to R at a point θ∗ is defined as σR(X) = sup
u∈CR(θ∗)∩Sd−1

∥Xu∥ℓ2.
We note that the above definition is a natural extension of the spectral norm of a matrix. It

is well known that the spectral norm of the feature matrix plays a crucial role in the convergence
behavior of least-square problems. The cone-restricted spectral norm defined above plays a similar
role in the convergence of constrained least-squares problems.

Furthermore, the convergence behavior of the encoded iterates is also related to that of the
uncoded iterates. The following two definitions, adapted from [12], concern the convergence of the
uncoded iterates.

Definition 7 (Convergence Rate) Consider the iterations 2.3. Let θ∗ ∈ R
d and X ∈ R

n×d andR be the regularizer function as well as µ be the learning rate. We define

ρ(µ) ∶= ρ(µ,X,R,θ∗) = sup
u,v∈CR(θ∗)∩Sd−1

uT (I − µXTX)v,
It is known that ρ(µ) characterizes the convergence rate of the uncoded iterations (2.3) [12].

Definition 8 (Noise Amplification) Consider the iterations 2.3. Let θ∗ ∈ R
d and X ∈ R

n×d andR be the regularizer function with w denoting the noise. We define

ξ(X) ∶= ξ(X,R,θ∗,w) = sup
v∈−CR(θ∗)∩Sd−1

vTXT w∥w∥ℓ2 .

7

It is known that the uncoded iterations eventually converge to a neighborhood of the unknown
parameter θ∗ [12]. The noise amplification factor defined above plays a crucial role in characterizing
the size of this neighborhood. In particular, [12] shows that the diameter of this neighborhood is
proportional to ξ(X) ∥w∥ℓ2 .

With these definitions in place we are now ready to state our main theorem regarding the
convergence of the encoded iterates (2.4).

Theorem 1 Let A ∈ R
m×n be a matrix with i.i.d. N (0,1) entries. Also assume the number of

straggler rows obeys sτ = ∣Sτ ∣ ≤ s with s the straggler toleration parameter per Definition 2 obeying
s ≤m. Furthermore, let m0 =M(R,X,θ∗, η) denote the minimal computational load per Definition
5. Then the encoded iterative updates (2.4) obey

sup
Sτ⊂{1,2,...,m}

∥θτ+1 − θ∗∥ℓ2 ≤κRρ(µ̃τ) ∥θτ − θ∗∥ℓ2
+ µ̃τ ⋅ κR ⋅ σ2

R(X) ⋅ (2 + 9sτ log(em/sτ)
m

+ 4
√

m0

m − sτ)∥θτ − θ∗∥ℓ2
+ κR(µ̃τ ⋅ ξ(X) + µ̃τ√

2
⋅ σR(X)

√
m0

m − sτ)∥w∥ℓ2 , (3.1)

for all τ with probability at least 1−6e− η2

8 −e− η2

2 −e−m
2 . Here, ρ is the convergence rate per Definition

7, ξ is the noise amplifications per Definition 8, σR(X) is the cone-restricted spectral norm of X
per Definition 6. Furthermore, the tunning parameter is set to R = R(θ∗) and the learning rate is

equal to µτ = µ̃τ

β2
sτ ,m

with βs,m = min(√3(m − s) log (em
m−s
),√m) and µ̃τ is the learning rate in the

uncoded iterations (2.3). Finally, κR = 1 for convex R and κR = 2 for nonconvex R.
Remarks 1 Theorem 1 essentially connects the convergence behavior of the encoded iterations to
that of the uncoded iterations. Consider the limit m → ∞ and note that for a Gaussian matrix
ASc

τ
, AT

Sc
τ
ASc

τ
→ I and thus the encoded iterations reduce to the uncoded iterations. In this case

the convergence bound provided by Theorem 1 reduces to

∥θτ+1 − θ∗∥ℓ2 ≤ κRρ(µ̃τ) ∥θτ − θ∗∥ℓ2 + κR√
2
µ̃τ ⋅ ξ(X)) ∥w∥ℓ2 . (3.2)

The first term gives the convergence rate to the true parameter. The second term characterizes
the size of the neighborhood (of the true parameter) to which the iterates converge, demonstrating
that the iterates eventually approximate the true parameter up to a term that is proportional to the
Euclidean norm of the noise. The bound (3.2) was proven recently in [12]. Our result generalizes
this result to the encoded case while recovering the special uncoded case in the limit m→∞.

Remarks 2 Theorem 1 characterizes the minimal computational load for convergence of (2.4) in
the presence of stragglers. Comparing (3.1) with (3.2) we see that as long as the computational load
is sufficiently large the effect of coding is only a slight increase in the convergence rate and the size
of approximation neighborhood. For instance, to ensure that in the encoded case the convergence
rate only increases by ǫ the computational load must obey

m − s ≥ 260m0 + s
ǫ2

≥ 64m0 + s
ǫ2

κ2R(µ̃τ ⋅ σ2
R(X))2.

8

In the last inequality we used κR ≤ 2 and the fact that µ̃τ typically scales with 1/σR(X)2 (as step size
typically scales with the inverse of the smoothness parameter). Thus as long as the computational
load exceeds the sum of the number of stragglers and the minimal computational load by a constant
factor, i.e.

m ≥ c(m0 + s) (3.3)

holds for some numerical constant c depending only on ǫ, then the increase in the convergence rate
is small. Similarly, the increase in the size of the approximation neighborhood remains small as
long as (3.3) holds.

Remarks 3 We now briefly discuss how our results compare with related work. Theorem 1 demon-
strates that the encoded iterates converge at a linear rate whilst dealing with arbitrary and possibly
nonconvex constraints. [7] also demonstrates a linear convergence, albeit in terms of the optimal
value. However, [7] only focuses on the special case where there are no constraints on the opti-
mization variables. Furthermore, [7] requires a computational load that is larger than the sum of
the number of stragglers and the total number of data points i.e. m ≥ 2(n + s). In comparison, our
results require a near minimal number of samples that is commensurate to the sum of the straggler
toleration and the amount of prior knowledge (m ≥ c(m0 + s)). This allows for a much smaller
computation load that can even be significantly smaller than the number of data points i.e. m << n.
Finally, we would like to mention related work in [14] where the authors focus on sketching of con-
strained convex programs. This paper focuses on the properties of the optimal solution to problems
of the form (2.2) without any stragglers. In comparison, we focus on analyzing the convergence
behavior of iterative algorithms when stragglers are present.

Remarks 4 (Convergence Rate vs. Computational Load) Theorem 1 characterizes the ef-
fect of the computational load on the convergence rate. In particular, this theorem shows that the
increase in the convergence rate is proportional to 1/√m. Therefore, as the computational load
increases the convergence rate decreases. Thus, a larger computational load ensures a faster con-
vergence of the encoded iterates.

Remarks 5 (Convergence Rate vs. Straggler Toleration) Theorem 1 also characterizes the
effect of stragglers on the rate of convergence. This result demonstrates a rate proportional to
1/√m − s so that as the number of stragglers increase, the convergence rate decreases leading to a
slower convergence of the encoded iterates.

Remarks 6 (Computational Load vs. Straggler Toleration) We also note that Theorem 1
indirectly characterizes a trade-off between the computational load and the straggler toleration of
the encoded iterations through (3.3). Indeed, (3.3) demonstrates that for a fixed convergence rate
the computational load must scale linearly with the number of stragglers.

4 Numerical Results

In this section, we corroborate the resource trade-offs characterized in Theorem 1 via experiments
on synthetic data. We generate the true parameter θ∗ ∈ R

d with d = 4000 and sparsity level k = 20
where the support is chosen at random and the values on support are distributed i.i.d N(0,1).

9

0 100 200 300 400 500
10−14

10−11

10−8

10−5

10−2

iterations (τ)

(a)

R
el
at
iv
e
er
ro
r
(∥θ τ

−θ
∗
∥ ℓ 2/
∥θ∗ ∥

ℓ 2

m = 800

m = 600

m = 400

m = 200

0 100 200 300 400 500

10−13

10−10

10−7

10−4

10−1

iterations (τ)

(b)

R
el
at
iv
e
er
ro
r
(∥θ τ

−θ
∗
∥ ℓ 2/
∥θ∗ ∥

ℓ 2

s = 400

s = 300

s = 200

s = 100

Figure 1: These two diagram show the empirical rates of convergence for Gaussian
encoded projected gradient descent in two different scenarios. (a) depicts the converge
rate as a function of the computational load m when the straggler toleration is fixed at
s = 100. (b) shows the convergence rate as a function of the straggler toleration with
a fixed computational load at m = 800.

Moreover, we generate the data matrix X ∈ R
n×d i.i.d. ∼ N(0,1) with n = 3000 and set the output

vector via y = Xθ∗. In our simulations we vary the computational load m and the straggler
toleration s and then plot the various trade-offs. We use two different encoding matrices: a random
Gaussian matrix and a random Discrete Cosine Transform (DCT) matrix. In the Gaussian case the
entries of the matrix are generated i.i.d. ∼ N(0,1). The random DCT matrix is generated according
to A =HD where H ∈ R

m×n is obtained by selecting m rows of an n × n DCT matrix at random
and D ∈ R

n×n is a diagonal matrix with i.i.d. ±1 entries on the diagonal. In our simulations in
each iteration we assume a different set of straggler rows chosen i.i.d. at random from the m rows.
To reconstruct θ∗, we run encoded Projected Gradient Descent (PGD) iterations (2.4) for solving
(2.2) with learning rates µτ = 1

5m
and µτ = 1/3 for the Gaussian and randomized DCT encoding

matrices, respectively. We use R(θ) = ∥θ∥ℓ1 with tuning parameter R = ∣∣θ∗∣∣1. We run the encoded
PGD iterates for 500 iterations and record the relative error ∥θτ − θ∗∥ℓ2 /∥θ∗∥ℓ2 .

• Convergence Rate vs. Computational Load: In this simulation we fix the straggler
toleration at s = 100 and vary the computation load m. We depict the relative error as a
function of iterations in Figure 1a. This figure confirms that the convergence is indeed linear
and increasing m leads to a faster convergence as predicted by Theorem 1.

• Convergence Rate vs. Straggler Toleration: In this simulation we fix the computational
load at m = 800 and vary the straggler toleration s and depict the relative errors as a function
of the iterations in Figure 1b. This figure confirms that the iterates converge at a linear rate
and increasing s leads to a slower convergence as predicted by Theorem 1.

• Computational Load vs. Straggler Toleration: In this simulation we vary the compu-
tational load m, and straggler toleration s and for each case run the encoded PGD iterations.

10

0 200 400 600 800
s

1200

900

600

300

0

m

0

0.2

0.4

0.6

0.8

1

(a)

0 200 400 600 800
s

1200

900

600

300

0

m

0

0.2

0.4

0.6

0.8

1

(b)

Figure 2: These two diagrams depict the empirical probability that encoded projected
gradient descent successfully reaches the global optimum of the uncoded optimization
problem for (a) Gaussian and (b) randomized DCT encoding matrices. The colormap
tapers between yellow and blue where yellow represents certain success, while blue
represents certain failure.

We stop after 500 iterations and record the empirical probability of success. The empirical
probability of success is an average over 50 trials, where in each instance, we generate new
random parameter vectors, data and encoding matrices. We declare a trial successful if the
relative error of the reconstruction ∥θ − θ∗∥ℓ2 / ∥θ∗∥ℓ2 falls below 10−3.

Figure 2a depicts the empirical success probabilities via a color map for different straggler
tolerations s and computational loads m. Yellow represents certain success, while blue rep-
resents certain failure. In the experiments of this figure the encoding matrix is Gaussian.
This figure clearly shows that there is a phase transition curve for the computational load
as a function of the straggler toleration. On one side of this curve encoded PGD updates
is successful with high probability on the other side it fails with high probability. Figure 2a
also shows that the computational load scales linearly in terms of the straggler toleration
parameter confirming the relationship (3.3) predicted by Theorem 1. Figure 2b depicts the
results for randomized DCT matrices. Encoding with such matrices is very efficient requiring
only a DCT transform. Perhaps unexpectedly, randomized DCT matrices exhibit very similar
behavior to the Gaussian matrix demonstrating that such matrices can act as computational
friendly surrogates for encoding purposes. Proving Theorem 1 extends to randomized DCT
matrices is an interesting direction for future research.

11

5 Proofs

In this section we prove Theorem 1. Define the error vector hτ ∶= θτ −θ∗ and the cones C̃ ∶= CR(θ∗) ∈
R
d and C ∶=XC̃ ∈ R

n. Utilizing [12][Theorem 1.2] we have

∥hτ+1∥ℓ2 ≤κR(sup
ũ,ṽ∈C̃∩Sd−1

ũT (I − µτX
TAT

Sc
τ
ASc

τ
X)ṽ)∥hτ∥ℓ2 + κR ⋅ µτ ⋅ sup

ũ∈−C̃∩Sd−1
ũTXTAT

Sc
τ
ASc

τ
w.

(5.1)

We now proceed by simplifying each of these two terms. To simplify the first term, define
u ∶= Xũ

∥Xũ∥ℓ2
∈ S

n−1 and v ∶= Xṽ
∥Xũ∥ℓ2

∈ S
n−1 and note that

ũT (I − µτX
TAT

Sc
τ
ASc

τ
X)ṽ = ũT (I − µ̃τX

TX) ṽ + µ̃τ ⋅ ∥Xũ∥ℓ2 ⋅ ∥Xṽ∥ℓ2 uT (I − 1

β2
sτ ,m

AT
Sc
τ
ASc

τ
)v.

Now we can use the fact that supremum of sum is less than sum of suprema. Thus,

sup
ũ,ṽ∈C̃∩Sd−1

ũT (I − µτX
TAT

Sc
τ
ASc

τ
X)ṽ

≤ sup
ũ,ṽ∈C̃∩Sd−1

ũT (I − µ̃τX
TX) ṽ

+ µ̃τ

⎛⎝ sup
ũ∈C̃∩Sd−1

∥Xũ∥ℓ2 ⋅ sup
ṽ∈C̃∩Sd−1

∥Xṽ∥ℓ2 ⋅ sup
u,v∈C∩Sn−1

uT (I − 1

β2
sτ ,m

AT
Sc
τ
ASc

τ
)v⎞⎠

=ρ(µ̃τ) + µ̃τ ⋅ σ2
R(X) sup

u,v∈C∩Sn−1
uT (I − 1

β2
sτ ,m

AT
Sc
τ
ASc

τ
)v. (5.2)

In above, we used the cone-restricted spectral norm of X per Definition 6. We now focus on

simplifying the second term in 5.1. To this aim, for a vector u ∈ R
n define u⊥ = u − uTw

∥w∥2ℓ2
w. We

can use this definition to separate the second term in (5.1) into two terms as follows

µτ ⋅ ũTXTAT
Sc
τ
ASc

τ
w =µτ ∥Xũ∥ℓ2 (uTAT

Sc
τ
ASc

τ
w)

=µτ ∥Xũ∥ℓ2 (uT
⊥A

T
Sc
τ
ASc

τ
w) + µτ

ũTXTw∥w∥2ℓ2 ∥ASc
τ
w∥2

ℓ2
.

Thus using µτ = µ̃τ/β2
s,m we have

µτ ⋅ sup
ũ∈−C̃∩Sd−1

ũTXTAT
Sc
τ
ASc

τ
w ≤ µ̃τ

β2
sτ ,m

⋅ sup
ũ∈−C̃∩Sd−1

∥Xũ∥ℓ2 ⋅ sup
u∈−C∩Sn−1

uT
⊥A

T
Sc
τ
ASc

τ
w

+ ∥ASc
τ
w∥2

ℓ2

β2
sτ ,m
⋅ ∥w∥2ℓ2 ⋅ µ̃τ ⋅ (sup

ũ∈C̃∩Sd−1
ũTXT w∥w∥ℓ2)∥w∥ℓ2

= µ̃τ ⋅ σR(X)
β2
sτ ,m

⋅ sup
u∈−C∩Sn−1

uT
⊥A

T
Sc
τ
ASc

τ
w

+ 1

β2
sτ ,m

∥ASc
τ
w∥2

ℓ2∥w∥2ℓ2 ⋅ µ̃τ ⋅ ξ(X) ∥w∥ℓ2 . (5.3)

12

All that remains is to bound the extra additive term in (5.2) and the extra additive and multiplica-
tive terms in (5.3). To this aim note that for any γτ we have

uT (I − γτAT
Sc
τ
ASc

τ
)v =1

4
(∥u + v∥2ℓ2 − γτ ∥ASc

τ
(u + v)∥2

ℓ2
)

+ 1

4
(γτ ∥ASc

τ
(u − v)∥2

ℓ2
− ∥u − v∥2ℓ2) . (5.4)

To proceed we state a lemma about bounding set-restricted eigenvalues, which is proved in the
Appendix section.

Lemma 1 Let T ∈ R
n and define σ(T) ∶= sup

v∈T
∥v∥ℓ2. Also assume the random encoding matrix

A ∈ R
m×n is a matrix with i.i.d. N (0,1) entries. Furthermore, define αs,m = √m − 2 − 5s log (em

s
)

and βs,m =min(√3(m − s) log (em
(m−s)),√m). Then for all u ∈ T

sup
S⊂{1,2,...,m}, ∣S ∣=s

∥AScu∥ℓ2 ≤ βs,m ∥u∥ℓ2 + (ω(T) + η) , (5.5)

holds with probability at least 1 − 2e− η2

8σ2(T) . Furthermore, for all u ∈ T
inf

S⊂{1,2,...,m}, ∣S ∣=s
∥AScu∥ℓ2 ≥ αs,m ∥u∥ℓ2 − (ω(T) + η) , (5.6)

holds with probability at least 1 − 4e− η2

8σ2(T) .

To use the above lemma, define T+ = (C ∩ S
n−1)+ (C ∩ S

n−1) and T− = (C ∩ S
n−1)− (C ∩ S

n−1). Also
note that σ(T−) ≤ 2, σ(T+) ≤ 2, ω(T−) ≤ 2ω(C ∩ S

n−1), ω(T+) ≤ 2ω(C ∩ S
n−1), and u + v ∈ T+. Thus

by Lemma 1 equation (5.6)

∥u + v∥2ℓ2 − γτ ∥ASc
τ
(u + v)∥2

ℓ2
≤∥u + v∥2ℓ2 − γτ (αsτ ,m ∥u + v∥ℓ2 − (ω(T+) + η))2≤(1 − γτα2

sτ ,m
) ∥u + v∥2ℓ2

+ 2γταsτ ,m (ω(T+) + η) ∥u + v∥ℓ2 − γτ (ω(T+) + η)2=(1 − γτα2
sτ ,m
) ∥u + v∥2ℓ2

+ 2γταsτ ,m (2ω(C ∩ S
n−1) + η) ∥u + v∥ℓ2

− γτ (2ω(C ∩ S
n−1) + η)2 . (5.7)

holds with probability at least 1 − 4e− η2

32 . Also, u − v ∈ T−, thus by Lemma 1 equation (5.5)

γτ ∥ASc
τ
(u − v)∥2

ℓ2
− ∥u − v∥2ℓ2 ≤(γτβ2

sτ ,m
− 1) ∥u − v∥2ℓ2 + 2γτβsτ ,m (ω(T−) + η) ∥u − v∥ℓ2

+ γτ (ω(T−) + η)2
=(γτβ2

sτ ,m
− 1) ∥u − v∥2ℓ2 + 2γτβsτ ,m (2ω(C ∩ S

n−1) + η) ∥u − v∥ℓ2
+ γτ (2ω(C ∩ S

n−1) + η)2 (5.8)

13

holds with probability at least 1 − 2e− η2

32 . Plugging these bounds into (5.4) with ∥u + v∥ℓ2 ≤ 2 and∥u − v∥ℓ2 ≤ 2 and using the short-hand ω ∶= ω(C ∩ S
n−1) we conclude that for γτ = 1

β2
sτ ,m

uT (I − γτAT
Sc
τ
ASc

τ
)v ≤1

4
(1 − γτα2

sτ ,m
) ∥u + v∥2ℓ2 + 1

2
γταsτ ,m (2ω + η) ∥u + v∥ℓ2

+ 1

4
(γτβ2

sτ ,m
− 1) ∥u − v∥2ℓ2 + 1

2
γτβsτ ,m (2ω + η) ∥u − v∥ℓ2

≤1 − α2
s,m

β2
sτ ,m

+ 4(ω + η
2
)

βsτ ,m
(5.9)

holds with probability at least 1− 6e− η2

32 . Using a change of variable η to 2η together with the fact
that

√
m − sτ ≤ βsτ ,m ≤ √m we arrive at

uT (I − µτA
T
Sc
τ
ASc

τ
)v ≤ 2 + 5sτ log(em/sτ)

m
+ 4
√

m0

m − sτ ,

holds with probability at least 1 − 6e− η2

8 completing the proof of the bound on the extra term of
(5.2).

Now we focus on the extra additive and multiplicative terms in (5.3). We begin with the additive
term. To this aim note that since u⊥ is orthagonal to w, uT

⊥A
T
Sc
τ
ASc

τ
w has the same distribution

as ∥w∥ℓ2 uT
⊥A

T
Sc
τ
a with a distributed as a ∼ N (0,Im−∣Sτ ∣) and independent from A. Similarly,∥w∥ℓ2 uT

⊥A
T
Sc
τ
a has the same distribution as ∥a∥ℓ2 ∥w∥ℓ2 (uT

⊥g) with g ∼ N (0,In). Therefore,
sup

u∈−C∩Sn−1
uT
⊥A

T
Sc
τ
ASc

τ
w =∥a∥ℓ2 ∥w∥ℓ2 ⋅ (sup

u∈−C∩Sn−1
uT
⊥g)

≤∥a∥ℓ2 ∥w∥ℓ2 ⋅ (ω + η)≤√2(m − ∣S ∣τ) ∥w∥ℓ2 ⋅ (ω + η) (5.10)

holds with probability at least 1 − e− η2

2 − e−m
2 .

We now focus on the extra multiplicative term in (5.3). To this aim note that since w is fixed
ASc

τ
w is distributed as ∥w∥ℓ2 a with a distributed as N (0,Im−∣Sτ ∣). Therefore,

∥ASc
τ
w∥2

ℓ2∥w∥2ℓ2 = ∥a∥2ℓ2 ≤ 2(m − ∣Sτ ∣), (5.11)

14

holds with probability at least 1 − e−m
2 . Plugging (5.10) and (5.11) into (5.3) we conclude that

µτ ⋅ sup
ũ∈−C̃∩Sd−1

ũTXTAT
Sc
τ
ASc

τ
w ≤√2 µ̃τ ⋅ σR(X)

β2
sτ ,m

⋅√m − ∣Sτ ∣ ∥w∥ℓ2 ⋅ (ω + η)
+ 2(m − ∣Sτ ∣)

β2
sτ ,m

⋅ µ̃τ ⋅ ξ(X) ∥w∥ℓ2
≤µ̃τ ⋅ σR(X)¿ÁÁÀ m0

2(m − sτ) log2 (em
m−sτ

) ∥w∥ℓ2
+ 1

log (em
m−sτ

) µ̃τ ⋅ ξ(X) ∥w∥ℓ2
≤µ̃τ ⋅ ξ(X) ∥w∥ℓ2 + 1√

2
µ̃ ⋅ σR(X)

√
m0

m − sτ , (5.12)

holds with probability at least 1 − e− η2

2 − e−m
2 .

15

6 Acknowledgements

M. Soltanolkotabi is supported by the Packard Fellowship in Science and Engineering, a Sloan
Research Fellowship in Mathematics, an NSF-CAREER under award #1846369, the Air Force
Office of Scientific Research Young Investigator Program (AFOSR-YIP) under award #FA9550-
18-1-0078, an NSF-CIF award #1813877, and a Google faculty research award.

References

[1] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi Lu, Bikas
Saha, and Edward Harris. Reining in the outliers in map-reduce clusters using mantri. In
Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation,
2010.

[2] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,
56(2):74–80, 2013.

[3] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. Short-dot: Computing large linear
transforms distributedly using coded short dot products. In Advances In Neural Information
Processing Systems, pages 2092–2100, 2016.

[4] Y. Gordon. On Milman’s inequality and random subspaces which escape through a mesh in R
n.

Springer, 1988.

[5] Wael Halbawi, Navid Azizan Ruhi, Fariborz Salehi, and Babak Hassibi. Improving distributed
gradient descent using reed-solomon codes. In arXiv:1706.05436, 2017.

[6] C. Karakus, Y. Sun, and S. Diggavi. Encoded distributed optimization. In 2017 IEEE Inter-
national Symposium on Information Theory (ISIT), pages 2890–2894, June 2017.

[7] Can Karakus, Yifan Sun, Suhas Diggavi, and Wotao Yin. Straggler mitigation in distributed
optimization through data encoding. In Advances in Neural Information Processing Systems
30, pages 5440–5448. 2017.

[8] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry and Pro-
cesses. Springer, 1991.

[9] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up dis-
tributed machine learning using codes. In 2016 IEEE International Symposium on Information
Theory (ISIT), pages 1143–1147, July 2016.

[10] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. A unified coding frame-
work for distributed computing with straggling servers. arXiv preprint arXiv:1609.01690,
2016.

[11] Songze Li, Mohammad Ali Maddah-Ali, Qian Yu, and A Salman Avestimehr. A fundamental
tradeoff between computation and communication in distributed computing. IEEE Transac-
tions on Information Theory, 64(1):109–128, Jan 2018.

16

[12] S. Oymak, B. Recht, and M. Soltanolkotabi. Sharp time–data tradeoffs for linear inverse
problems. To appear in IEEE Transactions on Information Theory, 07 2017.

[13] S. Oymak and M. Soltanolkotabi. Fast and reliable parameter estimation from nonlinear
observations. arXiv preprint arXiv:1610.07108, 2016.

[14] M. Pilanci and M. J. Wainwright. Randomized sketches of convex programs with sharp guar-
antees. IEEE Transactions on Information Theory, 61(9):5096–5115, Sept 2015.

[15] H. Qi, E. R. Sparks, and A. Talwalkar. Paleo: A performance model for deep neural networks.
In ICLR 2017, 2017.

[16] Netanel Raviv, Itzhak Tamo, Rashish Tandon, and Alexandros G. Dimakis. Gradient coding
from cyclic MDS codes and expander graphs. In arXiv:1707.03858, 2017.

[17] Rashish Tandon, Qi Lei, Alexandros G. Dimakis, and Nikos Karampatziakis. Gradient coding:
Avoiding stragglers in distributed learning. In Proceedings of the 34th ICML. PMLR, 2017.

[18] Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr. Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication. In Advances in Neural Information
Processing Systems 30, pages 4406–4416. Curran Associates, Inc., 2017.

[19] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica. Improving
mapreduce performance in heterogeneous environments. In OSDI, volume 8, page 7, 2008.

7 Appendix

In this section we aim to prove Lemma 1 stated in the proofs section. Our proof is related to the
proof of Gordon’s celebrated escape through the mesh [4][Theorem A]. We will first show the bound
(5.5). To this aim we make use of Slepian’s lemma stated below.

Lemma 2 (Slepian’s inequality) [8][Section 3.3] If Xt and Yt are a.s. bounded, Gaussian pro-
cesses on T such that E[Xt] = E[Yt] and E[X2

t] = E[Y 2
t] for all t ∈ T and

E[(Xt −Xs)2] ≤ E[(Yt − Ys)2],
for all s, t ∈ T , then for all real t,

E[sup
t∈T

Xt] ≤ E[sup
t∈T

Yt]. (7.1)

Furthermore,

P{⋃
t∈T

[Xt > ηt]} ≤ P{⋃
t∈T

[Yt > ηt]}. (7.2)

Define ISc ∈ R
(m−s)×n as the part of the identity matrix that keeps the rows indexed by Sc. For

u ∈ T and v ∈ S
m−s−1 = {v ∈ R

m−s; ∥v∥ℓ2 = 1}, we define three Gaussian processes

X(u,S),v = v∗IScAu, Y(u,S),v = ∥u∥ℓ2 v∗ISca + g∗u and Z(u,S),v = ∥u∥ℓ2 (v∗ISca − βs,m) + g∗u.
17

Here a ∈ R
m is distributed as N(0,Im) and g ∈ R

n is distributed as N(0,In). It follows that for
all u, ũ ∈ T , v, ṽ ∈ S

m−s−1 and S, S̃ ⊂ {1,2, . . . ,m}, we have

E ∣Y(u,S),v − Y(ũ,S̃),ṽ∣2 − E ∣X(u,S),v −X(ũ,S̃),ṽ∣2 = ∥∥u∥ℓ2 IT
Scv − ∥ũ∥ℓ2 IT

S̃c ṽ∥2ℓ2 + ∥u − ũ∥2ℓ2
− ∥u (IT

Scv)T − ũ (IT

S̃c ṽ)T ∥2
F= (∥u∥2ℓ2 + ∥ũ∥2ℓ2) − 2 ∥u∥ℓ2 ∥ũ∥ℓ2 ⟨IT

Scv,I
T

S̃c ṽ⟩ − 2⟨u, ũ⟩
+ 2⟨u, ũ⟩⟨IT

Scv,I
T

S̃c ṽ⟩= (∥u∥2ℓ2 + ∥ũ∥2ℓ2) − 2 ∥u∥ℓ2 ∥ũ∥ℓ2 ⟨IT
Scv,I

T

S̃c ṽ⟩
− 2⟨u, ũ⟩ (1 − ⟨IT

Scv,I
T

S̃c ṽ⟩)≥2 ∥u∥ℓ2 ∥ũ∥ℓ2 − 2 ∥u∥ℓ2 ∥ũ∥ℓ2 ⟨IT
Scv,I

T

S̃c ṽ⟩
− 2⟨u, ũ⟩ (1 − ⟨IT

Scv,I
T

S̃c ṽ⟩)=2(∥u∥ℓ2 ∥ũ∥ℓ2 − ⟨u, ũ⟩) (1 − ⟨IT
Scv,I

T

S̃c ṽ⟩)≥0. (7.3)

AIt is trivial to check that E[X(u,S),v] = E[Y(u,S),v] and E[X2
(u,S),v] = E[Y 2

(u,S),v] for all u ∈ T ,v ∈
S
m−s−1 and S ⊂ {1,2, . . . ,m}. Thus, the two Gaussian processes X(u,S),v and Y(u,S),v obey the

three assumptions of Slepian’s inequality.
Now define the function f(x) = sup

S⊂{1,2,...,m}, ∣S ∣=s
∥xSc∥ℓ2 and let

Scx = argmax
S⊂{1,2,...,m}, ∣S ∣=s

f(x) and Scy = argmax
S⊂{1,2,...,m}, ∣S ∣=s

f(y).
We wish to bound f(a) with high probability. To this aim first note that by concentration of

Lipschitz functions of Gaussians

P{∥aSc∥ℓ2 − E[∥aSc∥ℓ2 ≥ δ} ≤ e−δ22
Note that since E[∥aSc∥ℓ2] ≤√E[∥aSc∥2ℓ2] =√m − s, by substituting δ = η+√2(m − s) log (em

m−s
)

we have

P

⎧⎪⎪⎨⎪⎪⎩∥aSc∥ℓ2 −√m − s ≥ η +
√

2(m − s) log (em

m − s)
⎫⎪⎪⎬⎪⎪⎭ ≤e

−(η+√2(m−s) log(em
m−s))

2

2

≤e−(
√

2(m−s) log(em
m−ms))

2

2 e
−η2
2

Using union bound, we have

18

P

⎧⎪⎪⎨⎪⎪⎩ sup
S⊂{1,2,...,m}, ∣S ∣=s

∥aSc∥ℓ2 ≥ η +√m − s +
√

2(m − s) log (em

m − s)
⎫⎪⎪⎬⎪⎪⎭ ≤(

m

m − s)e
−(√2(m−s) log(em

m−s))
2

2 e
−η2
2

=(m

m − s)(em

m − s)
−s

e
−η2
2

≤e−η22
We thus conclude that

P

⎧⎪⎪⎨⎪⎪⎩ sup
S⊂{1,2,...,m}, ∣Sc∣=s

∥aSc∥ℓ2 ≥ η +√m − s +
√

2(m − s) log (em

m − s)
⎫⎪⎪⎬⎪⎪⎭ ≤e

−η2
2 . (7.4)

Also note that

√
m − s +

√
2(m − s) log (em

m − s) ≤min
⎛⎝
√

3(m − s) log (em

m − s),m⎞⎠ ∶= βs,m
The latter together with (7.4) allows us to conclude that

P

⎧⎪⎪⎨⎪⎪⎩f(a) ≥ βs,m + η
⎫⎪⎪⎬⎪⎪⎭ ≤ e

− η2

2 . (7.5)

Now consider the relationship of following sets

{a ∶ ∥u∥ℓ2 f(a) ≥ ∥u∥ℓ2 βs,m + η} ⊂{a ∶ ∥u∥ℓ2 f(a) ≥ ∥u∥ℓ2 βs,m + ∥u∥ℓ2 η

σ(T)},
={a ∶ f(a) ≥ βs,m + η

σ(T)}.

Furthermore, note for every u ∈ T , {a ∶ ∥u∥ℓ2 f(a) ≥ ∥u∥ℓ2 βs,m + η} is a subset of {a ∶
f(a) ≥ βs,m + η

σ(T)}. Combining the latter with (7.5) we arrive at

P

⎧⎪⎪⎨⎪⎪⎩⋃u∈T {a ∶ f(a) ∥u∥ℓ2 > ∥u∥ℓ2 βs,m + η1}
⎫⎪⎪⎬⎪⎪⎭ ≤ P

⎧⎪⎪⎨⎪⎪⎩a ∶ f(a) ≥ βs,m +
η1

σ(T)
⎫⎪⎪⎬⎪⎪⎭ ≤ e

−
η21

2σ2(T) ,

which immediately implies

P{max
u∈T

∥u∥ℓ2 (f(a) − βs,m) > η

2
} ≤ e− η2

8σ2(T) . (7.6)

Also by the concentration of Lipschitz functions of Gaussians for the function max
u∈T

(g∗u) and
the definition of Gaussian width, we have

19

P{ max
u∈T

(g∗u) > ω(T) + η

2
} = P{ max

u∈T
(g∗u) > E [max

u∈T
(g∗u)] + η

2
} ≤ e− η2

8σ2(T) . (7.7)

So far, we have obtained upper bounds on the probability of sets {max
u∈T

∥u∥ℓ2 (f(a) − βs,m) > η
2
}

and { max
u∈T

(g∗u) > ω(T)+ η
2
}. In order to utilize these two sets we combine them in the following

way. Note that if

max
u∈T

(∥u∥ℓ2 (f(a) − βs,m) + g∗u) > η + ω(T),
then we have either max

u∈T
∥u∥ℓ2 (f(a) − βs,m) > η

2
or max

u∈T
(g∗u) > ω(T) + η

2
, which implies

that

{a,g ∶ max
u∈T

(∥u∥ℓ2 f(a) + g∗u − βs,m ∥u∥ℓ2) > ω(T) + η}
is a subset of

{a,g ∶ max
u∈T

∥u∥ℓ2 (f(a) − βs,m) > η

2
}⋃{a,g ∶ max

u∈T
(g∗u) > ω(T) + η

2
}.

Using the latter together with (7.6) and (7.7) and using the independence of a and g we have

P{max
u∈T

(∥u∥ℓ2 (f(a) − βs,m) + g∗u) > ω(T) + η} ≤P{max
u∈T

∥u∥ℓ2 (f(a) − βs,m) > η

2
}

+ P{ max
u∈T

(g∗u) > ω(T) + η

2
}

≤2e− η2

8σ2(T) .

Using the definition of f(x) = sup
S⊂{1,2,...,m}, ∣S ∣=s

∥xSc∥ℓ2 , the latter statement can be rewritten in

the form

P

⎧⎪⎪⎨⎪⎪⎩ sup
S⊂{1,2,...,m}, ∣S ∣=s

max
u∈T

∥u∥ℓ2 (∥aSc∥ℓ2 − βs,m) + g∗u > ω(T) + η
⎫⎪⎪⎬⎪⎪⎭ ≤ 2e

− η2

8σ2(T) . (7.8)

As we defined the Gaussian process Z(u,S),v = ∥u∥ℓ2 (v∗ISca − βs,m) + g∗u, we can write

sup
S⊂{1,2,...,m}, ∣S ∣=s

max
u∈T , v∈Sm−s−1 Z(u,S),v = sup

S⊂{1,2,...,m}, ∣S ∣=s
max
u∈T

∥u∥ℓ2 (∥aSc∥ℓ2 − βs,m) + g∗u.

20

This together with (7.8) implies

P

⎧⎪⎪⎨⎪⎪⎩ sup
S⊂{1,2,...,m}, ∣S ∣=s

max
u∈T , v∈Sm−s−1 Z(u,S),v > ω(T) + η⎫⎪⎪⎬⎪⎪⎭ ≤ 2e

− η2

8σ2(T) .

Also, Z(u,S),v = Y(u,S),v − βs,m ∥u∥ℓ2 implies that

P

⎧⎪⎪⎨⎪⎪⎩ ⋃
S⊂{1,2,...,m}, ∣S ∣=s, u∈T ,v∈Sm−s−1

[Y(u,S),v > βs,m ∥u∥ℓ2 + ω(T) + η]
⎫⎪⎪⎬⎪⎪⎭ ≤ 2e

− η2

8σ2(T) .

As we noted that the two Gaussian processes X(u,S),v and Y(u,S),v have the three assumptions
of Slepian’s inequality, we can use Slepian’s second inequality (7.2) with ηu,v = βs,m ∥u∥ℓ2+η+ω(T).
This implies that

P

⎧⎪⎪⎨⎪⎪⎩ ⋃
S⊂{1,2,...,m}, ∣S ∣=s, u∈T ,v∈Sm−s−1

[X(u,S),v > βs,m ∥u∥ℓ2 + ω(T) + η]
⎫⎪⎪⎬⎪⎪⎭

≤P⎧⎪⎪⎨⎪⎪⎩ ⋃
∣S ∣=s, u∈T ,v∈Sm−s−1

[Y(u,S),v > βs,m ∥u∥ℓ2 + ω(T) + η]
⎫⎪⎪⎬⎪⎪⎭

≤2e− η2

8σ2(T) .

Using the fact that ∥AScu∥ℓ2 = max
v∈Sm−s−1 v∗IScAu = max

v∈Sm−s−1 X(u,S),v, So

P

⎧⎪⎪⎨⎪⎪⎩ sup
S⊂{1,2,...,m}, ∣S ∣=s

∥AScu∥ℓ2 ≥βs,m ∥u∥ℓ2 + ω(T) + η
⎫⎪⎪⎬⎪⎪⎭

=P⎧⎪⎪⎨⎪⎪⎩ ⋃
∣S ∣=s, u∈T

max
v∈Sm−s−1 X(u,S),v > ∥u∥ℓ2 βs,m + ω(T) + η

⎫⎪⎪⎬⎪⎪⎭
=P⎧⎪⎪⎨⎪⎪⎩ ⋃

∣S ∣=s, u∈T , v∈Sm−s−1
[X(u,S),v > βs,m ∥u∥ℓ2 + ω(T) + η]

⎫⎪⎪⎬⎪⎪⎭
concludes the proof.

Next, we turn our attention to proving (5.6). To this aim we begin by stating a lemma due to
Gordon [4].

Lemma 3 [Gordon’s inequality] Let (Xij) and (Yut), 1 ≤ i ≤ n, 1 ≤ j ≤ m, be Gaussian random
vectors. Assume that we have the following inequalities for all choices of indices:

E[Xi,jXi,k] ≤ E[Yi,jYi,k] for all i, j, k,

E[Xi,jXℓ,k] ≥ E[Yi,jYℓ,k] for all i ≠ ℓ and j, k,

E[X2
i,j] = E[Y 2

i,j] for all i, j. (7.9)

Then, for all real numbers λi,j ,

P{⋂
i≤n
⋃
j≤m

[Xij ≥ λij]} ≥ P{⋂
i≤n
⋃
j≤m

[Yij ≥ λij]}.

21

Consequently,

E [min
i≤n

max
j≤m

Yij] ≤ E [min
i≤n

max
j≤m

Xij].
Define ISc ∈ R

(m−s)×n as the part of the identity matrix that keeps the rows indexed by Sc. For
u ∈ T and v ∈ S

m−s−1 = {v ∈ R
m−s; ∥v∥ℓ2 = 1}, we define two Gaussian processes

X(u,S),v = v∗IScAu + ∥u∥ℓ2 g and Y(u,S),v = ∥u∥ℓ2 v∗ISca + g∗u.
Here, a ∈ R

m is distributed as N(0,Im), g ∈ R
n is distributed as N(0,In), and g ∈ R is distributed

as N(0,1). The next few steps are essentially identical to the proof of [4][Lemma 3.1] with the text
directly borrowed. We mention this part of the argument for the sake of completeness and also to
ensure that proper modifications are applied when necessary. Note that

E [X(u,S),vX(ũ,S̃),ṽ] − E [Y(u,S),vY(ũ,S̃),ṽ] =⟨u, ũ⟩⟨IT
Scv,I

T

S̃c ṽ⟩ + ∥u∥ℓ2 ∥ũ∥ℓ2 − ∥u∥ℓ2 ∥ũ∥ℓ2 ⟨IT
Scv,I

T

S̃c ṽ⟩
− ⟨u, ũ⟩
= (∥u∥ℓ2 ∥ũ∥ℓ2 − ⟨u, ũ⟩) (1 − ⟨IT

Scv,I
T

S̃c ṽ⟩)≥0
and equal to zero if (u,S) = (ũ, S̃) so that the first two inequalities in (7.9) hold. It is also trivial
to check that

E[X2
(u,S),v] = E[Y 2

(u,S),v].
Thus all three inequalities in (7.9) trivially hold. Now note that for each u ∈ T and S ⊂ {1,2, . . . ,m}
obeying ∣S ∣ = s the set

⋃
v∈Sm−s−1

[X(u,S),v ≥ λu,S] = [∥AScu∥ℓ2 + g ∥u∥ℓ2 ≥ λu,S]
is closed in the probability space {Rmn+1,P} where P is the canonical Gaussian measure of R

mn+1.
Hence

⋂
∣S ∣=s

⋂
u∈T

⋃
v∈Sm−s−1

[X(u,S),v ≥ λu,S]
is closed. The same is true about the corresponding expression with Y(u,S),v. By Lemma 3 above,

for each finite set {(ui,Si)}N1 ⊂ T × {1,2, . . . ,m} we have

P{ N⋂
i=1

⋃
v∈Sm−s−1

[X(u,S),v ≥ λu,S]} ≥ P{ N⋂
i=1

⋃
v∈Sm−s−1

[Y(u,S),v ≥ λu,S]}
and so, ordering the collection of finite subsets of T ×{1,2, . . . ,m} (denoted by F) by inclusion, we
obtain that the limits exist and satisfy the inequality

lim
F

P{ N⋂
i=1

⋃
v∈Sm−s−1

[X(u,S),v ≥ λu,S]} ≥ lim
F

P{ N⋂
i=1

⋃
v∈Sm−s−1

[Y(u,S),v ≥ λu,S]}.

22

Now using the fact that the sets

⋂
∣S ∣=s

⋂
u∈T

⋃
v∈Sm−s−1

[X(u,S),v ≥ λu,S] and ⋂
∣S ∣=s

⋂
u∈T

⋃
v∈Sm−s−1

[Y(u,S),v ≥ λu,S]
are closed and P is a regular measure, it follows easily that the two respective limits over F are
equal to and satisfy the inequality

P{ ⋂
∣S ∣=s

⋂
u∈T

⋃
v∈Sm−s−1

[X(u,S),v ≥ λu,S]} ≥ P{ ⋂
∣S ∣=s

⋂
u∈T

⋃
v∈Sm−s−1

[Y(u,S),v ≥ λu,S]}.
This immediately implies that

P{ ⋂
∣S ∣=s

⋂
u∈T

[∥AScu∥ℓ2 + g ∥u∥ℓ2 ≥ λu,S]} ≥ P{ ⋂
∣S ∣=s

⋂
u∈T

[∥u∥ℓ2 ∥aSc∥ℓ2 + g∗u ≥ λu,S]}.
Now setting

λu,S = αs,m ∥u∥ℓ2 − (ω(T) + η) ,
we conclude that

P{ ⋂
∣S ∣=s

⋂
u∈T

[∥AScu∥ℓ2 + g ∥u∥ℓ2 ≥ αs,m ∥u∥ℓ2 − (ω(T) + η)]}
≥ P{ ⋂

∣S ∣=s
⋂
u∈T

[∥u∥ℓ2 ∥aSc∥ℓ2 + g∗u ≥ αs,m ∥u∥ℓ2 − (ω(T) + η)]}
= P{⋂

u∈T

[∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 + g∗u ≥ αs,m ∥u∥ℓ2 − (ω(T) + η)]}.

(7.10)

Since taking infimum over a set is equivalent to taking intersection over all elements of that set,
we can write

P

⎧⎪⎪⎨⎪⎪⎩⋂u∈T [g
∗u ≥ −(ω(T) + η

2
)]⎫⎪⎪⎬⎪⎪⎭ =P{ infu∈T

g∗u ≥ −(ω(T) + η

2
)}

=P{ − sup
u∈T

− g∗u ≥ −(ω(T) + η

2
)},

=P{sup
u∈T

− g∗u ≤ (ω(T) + η

2
)},

≥1 − e− η2

8σ2(T) . (7.11)

In the last inequality, we used the concentration of Lipschitz functions of Gaussians and the
definition of Gaussian width.

Now define the function g(x) = inf
S⊂{1,2,...,m}, ∣S ∣=s

∥xSc∥ℓ2 and let

23

Scx = argmin
S⊂{1,2,...,m}, ∣S ∣=s

∥xSc∥ℓ2 and Scy = argmin
S⊂{1,2,...,m}, ∣S ∣=s

∥ySc∥ℓ2 .
We claim that g(x) is a Lipschitz function and then we can utilize the concentration of measure

for Gaussian random variables. Without loss of generality we assume g(x) ≥ g(y). Thus,
∣g(x) − g(y)∣ = g(x) − g(y) = ∥xSc

x
∥
ℓ2
− ∥ySc

y
∥
ℓ2
≤ ∥xSc

y
∥
ℓ2
− ∥ySc

y
∥
ℓ2
≤ ∥(x − y)Sc

y

∥
ℓ2
≤ ∥x − y∥ℓ2 .

Hence g(a) is a Lipschitz function of a Gaussian random variable. Thus, the random variable
Z ∶= g(a) obeys

Var(Z) ≤ 1 ⇒ E[Z2] − (E[Z])2 ≤ 1 ⇒ E[Z] ≥√E[Z2] − 1.
Therefore,

E [inf
S⊂{1,2,...,m}, ∣S ∣=s

∥aSc∥ℓ2] ≥
¿ÁÁÀE [inf

S⊂{1,2,...,m}, ∣S ∣=s
∥aSc∥2ℓ2] − 1

≥
¿ÁÁÀE [∥a∥2ℓ2 − sup

S⊂{1,2,...,m}, ∣S ∣=s
∥aS∥2ℓ2] − 1

=
¿ÁÁÀm − 1 − E [sup

S⊂{1,2,...,m}, ∣S ∣=s
∥aS∥2ℓ2]

≥
¿ÁÁÁÀm − 2 − E [sup

S⊂{1,2,...,m}, ∣S ∣=s
∥aS∥ℓ2]

2

(7.12)

In the last line we used the fact that sup
S⊂{1,2,...,m}, ∣S ∣=s

∥aS∥ℓ2 is a Lipschitz function of a and

therefore the random variable X ∶= sup
S⊂{1,2,...,m}, ∣S ∣=s

∥aS∥ℓ2 obeys

Var(X) ≤ 1 ⇒ E[X2] ≤ (E[X])2 + 1.
We now wish to prove that

E [sup
S⊂{1,2,...,m}, ∣S ∣=s

∥aS∥ℓ2] ≤
√

5s log (em
s
). (7.13)

To this aim first note that using (7.4) with changing m − s to s and Sc to S we have

P

⎧⎪⎪⎨⎪⎪⎩ sup
S⊂{1,2,...,m}, ∣S ∣=s

∥aS∥ℓ2 ≥ η +√s +
√

2s log (em
s
)⎫⎪⎪⎬⎪⎪⎭ ≤ e

−η2
2 .

24

To bound the expected value we use the tail bound above together with the fact that s ≥ 1 (s = 0
is trivial) to conclude that

E[X] =∫ +∞

0
P{X > t}dt

=∫
√
s+
√

2s log(em
s
)

0
P{X > t}dt + ∫ +∞

√
s+
√

2(s) log(em
s
)
P{X > t}dt

≤√s +
√

2s log (em
s
) + ∫ +∞

√
s+
√

2s log(em
s
)
e
−η2
2 dt

≤√s +
√

2s log (em
s
) + ∫ +∞

0
e
−η2
2 dt

≤√s +
√

2s log (em
s
) +√π

2

≤√s +
√

2s log (em
s
) +√πs

2

≤
√

5s log (em
s
).

concluding the proof of (7.13).
Combining (7.12) with (7.13) we arrive at

E [inf
S⊂{1,2,...,m}, ∣S ∣=s

∥aSc∥ℓ2] ≥
√

m − 2 − 5s log(em
s
) ∶= αs,m (7.14)

As mentioned earlier, g(a) is Lipschitz function of a. Thus, by concentration of Lipschitz
functions of Gaussians we have

P{g(a) ≥ E[g(a)] − η

2σ(T)} ≥ 1 − e−
η2

8σ2(T) , (7.15)

Using the fact that
∥u∥ℓ2
σ(T) ≤ 1 and together with (7.12) as well as (7.15), we can deduce that

P

⎧⎪⎪⎨⎪⎪⎩⋂u∈T [∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 ≥ ∥u∥ℓ2αs,m − η

2
]⎫⎪⎪⎬⎪⎪⎭ (7.16)

≥P⎧⎪⎪⎨⎪⎪⎩⋂u∈T [∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 ≥ ∥u∥ℓ2 E [inf

∣S ∣=s
∥aSc∥ℓ2] − η

2
]⎫⎪⎪⎬⎪⎪⎭

≥P⎧⎪⎪⎨⎪⎪⎩⋂u∈T [∥u∥ℓ2 g(a) ≥ ∥u∥ℓ2 E[g(a)] − ∥u∥ℓ2 η

2σ(T)]
⎫⎪⎪⎬⎪⎪⎭

≥1 − e− η2

8σ2(T) . (7.17)

25

So far we have obtained lower bounds on the probability of sets

⎧⎪⎪⎨⎪⎪⎩ ⋂u∈T [g
∗u ≥ − (ω(T) + η

2
)]⎫⎪⎪⎬⎪⎪⎭

and

⎧⎪⎪⎨⎪⎪⎩ ⋂u∈T [∥u∥ℓ2 inf ∣S ∣=s ∥aSc∥ℓ2 ≥ ∥u∥ℓ2 αs,m − η
2
]⎫⎪⎪⎬⎪⎪⎭ . In the following we aim to employ these two

lower bounds. Note that if

inf
u∈T
(∥u∥ℓ2 (inf∣S ∣=s

∥aSc∥ℓ2 −αs,m) + g∗u) < − (ω(T) + η) ,
then we have either inf

u∈T
∥u∥ℓ2 (inf∣S ∣=s

∥aSc∥ℓ2 − αs,m) < −η
2

or inf
u∈T
(g∗u) < − (ω(T) + η

2
) .

This implies that

{a,g ∶ inf
u∈T
(∥u∥ℓ2 (inf∣S ∣=s

∥aSc∥ℓ2 − αs,m) + g∗u) < − (ω(T) + η)},
is a subset of

{a,g ∶ inf
u∈T
∥u∥ℓ2 (inf∣S ∣=s

∥aSc∥ℓ2 −αs,m) < −η
2
}⋃{a,g ∶ inf

u∈T
(g∗u) < −(ω(T) + η

2
)}.

The latter is equivalent to

⋃
u∈T

[∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 + g∗u < αs,m ∥u∥ℓ2 − (ω(T) + η)]
⊂ (⋃

u∈T

[∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 < ∥u∥ℓ2 αs,m − η

2
])⋃(⋃

u∈T

[g∗u < −(ω(T) + η

2
)]) .

Considering the probability of these sets, we have

P{⋃
u∈T

[∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 + g∗u < αs,m ∥u∥ℓ2 − (ω(T) + η)]}
≤ P{⋃

u∈T

[∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 < ∥u∥ℓ2 αs,m − η

2
]} + P{⋃

u∈T

[g∗u < −(ω(T) + η

2
)]}.

Taking complements of both sides and using the bounds from (7.11) and (7.16) we conclude
that

P{⋂
u∈T

[∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 + g∗u ≥ αs,m ∥u∥ℓ2 − (ω(T) + η)]}
≥ P{⋂

u∈T

[∥u∥ℓ2 inf
∣S ∣=s
∥aSc∥ℓ2 ≥ ∥u∥ℓ2 αs,m − η

2
]} + P{⋂

u∈T

[g∗u ≥ −(ω(T) + η

2
)]} − 1

≥ 1 − 2e− η2

8σ2(T) . (7.18)

26

The latter inequality together with (7.10) implies that

P{ inf
∣S ∣=s

inf
u∈T
(∥AScu∥ℓ2 + g ∥u∥ℓ2 −αs,m ∥u∥ℓ2) ≥ − (ω(T) + η)}

=P{ ⋂
∣S ∣=s

⋂
u∈T

[∥AScu∥ℓ2 + g ∥u∥ℓ2 −αs,m ∥u∥ℓ2 ≥ − (ω(T) + η)]}
≥1 − 2e− η2

8σ2(T) . (7.19)

In order to find the relationship between the probability of the latter set with the probability
of the set defined in (5.6), we define the following three probabilities

p =P{ inf
∣S ∣=s

inf
u∈T
(∥AScu∥ℓ2 + g ∥u∥ℓ2 −αs,m ∥u∥ℓ2) ≥ − (ω(T) + η)},

p− =P{ inf∣S ∣=s
inf
u∈T
(∥AScu∥ℓ2 + g ∥u∥ℓ2 −αs,m ∥u∥ℓ2) ≥ − (ω(T) + η) ∣ g ≤ 0},

p+ =P{ inf∣S ∣=s
inf
u∈T
(∥AScu∥ℓ2 + g ∥u∥ℓ2 −αs,m ∥u∥ℓ2) ≥ −(ω(T) + η) ∣ g > 0},

p0 =P{ inf∣S ∣=s
inf
u∈T
(∥AScu∥ℓ2 −αs,m ∥u∥ℓ2) ≥ −(ω(T) + η) }.

Now note that by the above definitions and the independence of A and g we can conclude that

1 ≥ p+ ≥ p0 ≥ p−. (7.20)

By the law of total probability p = p−+p+
2

. Now using the fact that p+ ≤ 1 together with (7.20) we
can conclude that

1 − p = 1 − p−
2
+ 1 − p+

2
≥ 1 − p−

2
≥ 1 − p0

2
⇒ p0 ≥ 2p − 1.

The latter inequality together with (7.19) implies that

P{ inf
∣S ∣=s

inf
u∈T
(∥AScu∥ℓ2 + g ∥u∥ℓ2 − αs,m ∥u∥ℓ2) ≥ −(ω(T) + η)} ≥ 1 − 4e− η2

8σ2(T) ,

concluding the proof of (5.6).

27

	1 Introduction
	2 Problem formulation
	2.1 Setting
	2.2 The Encoded Optimization Framework
	2.3 Fundamental Resource Trade-offs

	3 Main Results
	4 Numerical Results
	5 Proofs
	6 Acknowledgements
	7 Appendix

