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In this report, we discuss five forms of reasoning about multiple quantities that sixth-grade students
exhibited as they examined mathematical relationships within the context of science. Specifically,
students exhibited forms of sequential, transitive, dependent, and independent multivariational
reasoning as well as relational reasoning. We use data from whole-class design experiments with
students to illustrate examples of each of these forms of reasoning.
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Variation, Covariation, and Multivariation

Reasoning about variation and covariation has been studied extensively in mathematics education as
a way of supporting students’ mathematics learning (e.g., Confrey & Smith, 1995; Carlson et al.,
2002). More recently, we found that the use of variation and covariational reasoning also supported
students’ learning of science phenomena, such as the learning of gravity and the greenhouse effect
(e.g. Author, 2019; Author, 2020). Science phenomena involve a complex interaction of variables
and this provided a constructive space for students to reason about covariation in more complex
ways. In these studies, we found that by manipulating the quantities involved in those phenomena
using interactive simulations and studying what quantities are changing and how they are changing,
sixth grade students exhibited some sophisticated forms of covariational reasoning. Specifically,
students coordinated the direction of change of one quantity with the change in another quantity and
also identified the bi-direction of change of some of those quantities. Students even discussed inverse
relationships, such that as one quantity increases, the other quantity decreases, and predicted the
change of one quantity if another is varied multiplicatively. While analyzing our data, we found that
students also reasoned about more than two quantities changing simultaneously. Prior research on
multivariational reasoning only focused on undergraduate mathematics education (Kuster & Jones,
2019). Therefore, this provided an opportunity to examine students’ emerging forms of
multivariational reasoning in earlier grades. This effort could eventually respond to Thompson and
Carlson’s (2017) call for more contributions on defining the covariation construct. Specifically, we
aimed to explore: How do sixth-grade students reason about multiple quantities as they explore
complex quantitative relationships in scientific phenomena?

Theoretical Framework

We use a quantitative reasoning lens (Thompson, 1994) to discuss students’ forms of reasoning
about multiple quantities in the context of science. We use the term quantity as one’s conceived
attribute of an object or phenomenon that is measurable, whether they have carried out that
measurement or not (Thompson, 1993; 1994). In this manner, numeric or not, reasoning
quantitatively involves analyzing a situation into “a network of quantities and quantitative
relationships” (Thompson, 1993, p.1). Accordingly, Kuster and Jones (2019) defined multivariation
as a situation with more than two quantities that change in relation to each other. They used this
definition to discuss three forms of multivariational reasoning that students exhibited as they
explored differential equations: dependent, nested, and independent multivariation. Specifically, they
defined dependent multivariation as involving at least three quantities that are interdependent with
each other, in which a variation in one quantity simultaneously influences the change in other
interdependent quantities. They gave the example of reasoning that since P is a function of time, P’ is
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also a function of time. They defined nested multivariation as involving a network of quantities,
where the first quantity is embedded in the second quantity and the change in the second quantity
influences the change in the third quantity. For instance, when the differential equation P’ = 2P+2¢
was presented, a student used nested multivariation to explain that a change in ¢ influenced the
change in 2¢, then variation in 2¢ changed P’. Finally, they defined independent multivariation as
involving at least two quantities that are independent to each other and affect the change in another
quantity. They gave the example of reasoning that the solution function P(?) is dependent on ¢, but the
rate of change, P’, is not influenced by ¢ Although two independent quantities (¢ and P’) are
presented, we would argue that the example does not clearly show independent multivariation
because the student does not clearly state that P’ influences the function P(?). However, we consider
the types that Kuster and Jones presented to be foundational for initiating the discussion around the
different forms of multivariational reasoning in the earlier grades.

Forms of Multivariational Reasoning

In this paper, we report on the data from whole-class design experiments (DEs) (Cobb et al., 2003)
conducted in three different sixth-grade classrooms, each examining a specific scientific
phenomenon: the sea level rise, the water cycle, and the rock cycle. We designed a simulation to
dynamically model and study each scientific phenomenon. For example, in the rock cycle simulation
students could manipulate a rock’s depth and study the changes in its temperature and pressure. We
accompanied the simulation exploration with questions that prompted them to reason about those
quantitative relationships, such as “How would you describe the relationship between the
quantities?” and “How does the change in one quantity affect other quantities?” In the following
paragraphs, we discuss five forms of multivariational reasoning that students exhibited (Figure 1) by
providing examples of students’ episodes from all three DEs.
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Figure 1: Forms of reasoning about multiple quantities.

Sequential Multivariational Reasoning

In students’ articulations, we observed a form of multivariational reasoning that was not discussed
in the Kuster and Jones’ (2019) study. We refer to sequential multivariational reasoning (Figure 1a)
as illustrating sequential changes in quantities, where a change in the first quantity (a) influences a
change of the second quantity (b), and a change in the second quantity (b) affects a change in the
third quantity (c¢). While exploring a simulation about sea level rise, students discussed the
relationship between the global temperature rise, the height of future sea level, and the total land
area. For instance, Myra explained that “The higher the global temperature, the higher the height of
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the future sea level, and the less the total land area.” We interpret her reasoning to illustrate a
sequential image of change: that the change in global temperature rise (quantity a) impacts the height
of future sea level (quantity b), and that the change in height of sea level (quantity b) affects the
change in total land area (quantity c).

Transitive Multivariational Reasoning

Our students also exhibited what we would define transitive multivariational reasoning (Figure 1b),
a form of reasoning that supports that a change in the first quantity (a) leads to a change in the
second quantity (b), and a change in the second quantity () in turn changes a third quantity (c¢), then
a change in the first quantity (a) changes the third quantity (c¢). The difference between transitive
reasoning and sequential reasoning is that the transitive reasoning involves the coordination of
change in the first quantity (a) influencing a change in the third quantity (c), which is not illustrated
in sequential reasoning. To illustrate this form of reasoning, we provide an example from the water
cycle. The water cycle simulation presented a virtual ecosystem, in which students could manipulate
the temperatures of air, mountain, land, and lake, and relative humidity and observe the change in the
amount of water molecules in every phase of the water cycle. When asked to describe the
relationship between evaporation and runoff, Ray stated, “If the rate of evaporation is higher, there
could be higher rate of precipitation. If there’s a higher rate of precipitation, there could be more
runoff. So, the higher rate of evaporation, there can be more runoff.” We consider Ray’s coordination
of the change in three quantities to illustrate transitive multivariational reasoning. In particular, Ray
first explained how the change in evaporation (quantity a) influences precipitation (quantity b), and
how the change in precipitation (quantity b) influences runoff (quantity c¢). Then he used those two
relationships to reason about how a change in evaporation (quantity a) causes a change in runoff
(quantity c).

Dependent Multivariational Reasoning

Our students also illustrated reasoning that we would characterize as a subset of Kuster and Jones’
(2019) definition of dependent multivariational reasoning. In contrast to Kuster and Jones’ definition
in which all three quantities involved are interdependent, the students in our study coordinated a
change in an independent quantity a which simultaneously affected changes in two dependent
quantities b and ¢, while quantities b and ¢ were not related to each other (Figure 1¢). For example,
when Michael was prompted to describe what he noticed as he explored the rock cycle simulation he
stated, “I would say that, the deeper, the deeper you get, the higher the temperature is, and the higher
the pressure is.” We consider Michael’s reasoning about the relationship of depth with the
temperature and pressure to be dependent multivariational reasoning. Michael’s language “the
deeper” and “the higher” also shows an understanding of simultaneous change between the two
dependent quantities (temperature and pressure) as influenced by one independent quantity (depth).

Independent Multivariational Reasoning

Our students exhibited independent multivariational reasoning, (Figure 1d), similar to Kuster and
Jones’ (2019) definition of coordinating a change in two independent quantities (quantities a and b)
influencing the same dependent quantity (quantity c). For example, when Chloe and Justin were
asked to use the water cycle simulation to release snow by manipulating only the air temperature and
the land temperature, they reasoned that “We need both of them to be cold.” Chloe explained that “if
you just move for air temperature, it only snows a little bit, but if you put it with a land temperature,
it starts to accumulate in the ground and it produces more.” Chloe illustrated an example of
independent multivariational reasoning as she coordinated the change of land temperature and air
temperature as unrelated independent quantities with the change in snow as the dependent quantity.
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Relational Reasoning

In addition to the above four types of multivariational reasoning, we also noticed instances where
students related their explorations with quantities that were not part of the specific study. We refer to
relational reasoning (Figure le) as the form of reasoning that connects the relationship of two
quantities with a third quantity that students bring in from their prior experiences (what we refer to as
an alien quantity). Relational reasoning can be expressed together with other forms, such as
sequential multivariational reasoning. For instance, while exploring the water cycle simulation, we
asked students to explain the model. Lorna connected the relationship between the amount of
precipitation, runoff, and infiltration with the quantity of water that would go into the aquifers, which
was not identified in the simulation or module. Lorna reasoned that “the more rain there is, there’s
more runoff. And the more runoff, the more water is going to go into the aquifers.” Lorna first
reasoned about the change in the quantity of rain with change the quantity of runoff. Then she
coordinated the change in runoff with the amount of infiltrated water in the aquifer, an alien quantity
to the simulation.

Conclusions

In 2017, Thompson and Carlson argued that while there are a wealth of studies employing variation
and covariation as a framework for their investigations, these “do not contribute directly to defining
the construct” (p. 427). Investigating how students may reason about more than two quantities makes
a contribution to this call. The Kuster and Jones’ (2019) study initiated a discussion about how we
can define students’ forms of multivariational reasoning. Our study built on their work to examine
how students as young as sixth grade could reason about multiple quantities. By exploring the
sequential and simultaneous variation of quantities involved in the water cycle, rock cycle, and sea
level rise phenomena, students exhibited five different forms of reasoning about multiple quantities,
namely sequential, transitive, dependent, and independent multivariational reasoning as well as
relational reasoning.

The retrospective analysis showed that it was the students’ interaction with the simulations and the
probing questioning that provided a constructive space for them to study the variation in multiple
quantities and reason multivariationally. Our initial goal in the study was to engineer opportunities
for students to reason covariationally, therefore our tasks and questioning were restricted to only a
few prompts to connect multiple quantities. In the next iteration of our design, we plan to engineer
more opportunities of this type of reasoning. Through this process, we can examine the progression
from covariational to multivariational reasoning and the tasks, tools, and questioning that assist
students in exhibiting each specific form of reasoning about multiple quantities.
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