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MOTION OF GRAIN BOUNDARIES WITH DYNAMIC LATTICE
MISORIENTATIONS AND WITH TRIPLE JUNCTIONS DRAG*

YEKATERINA EPSHTEYNT, CHUN LIU%, AND MASASHI MIZUNO#

Abstract. Most technologically useful materials are polycrystalline microstructures composed
of a myriad of small monocrystalline grains separated by grain boundaries. The energetics and
connectivities of grain boundaries play a crucial role in defining the main characteristics of materials
across a wide range of scales. In this work, we propose a model for the evolution of the grain
boundary network with dynamic boundary conditions at the triple junctions, triple junctions drag,
and with dynamic lattice misorientations. Using the energetic variational approach, we derive system
of geometric differential equations to describe motion of such grain boundaries. Next, we relax
curvature effect of the grain boundaries to isolate the effect of the dynamics of lattice misorientations
and triple junctions drag, and we establish local well-posedness result for the considered model.

Key words. Grain growth, grain boundary network, texture development, lattice misorienta-
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1. Introduction. Most technologically useful materials are polycrystalline mi-
crostructures composed of a myriad of small monocrystalline grains separated by grain
boundaries. The energetics and connectivities of grain boundaries play a crucial role
in defining the main characteristics of materials across a wide range of scales. More
recent mesoscale experiments and simulations provide large amounts of information
about both geometric features and crystallography of the grain boundary network in
material microstructures.

For the time being, we will focus on a planar grain boundary network. A classical
model, due to Mullins and Herring [18, 28, 29], for the evolution of grain boundaries
in polycrystalline materials is based on the motion by mean curvature [10, 11, 16] as
the local evolution law. Under the assumption that the total grain boundary energy
depends only on the surface tension of the grain boundaries, the motion by mean
curvature is consistent with the dissipation principle for the total grain boundary
energy. In addition, to have a well-posed model of the evolution of the grain boundary
network, one has to impose a separate condition at the triple junctions where three
grain boundaries meet [20]. Note, that at equilibrium state, the energy is minimized,
which implies that a force balance, known as the Herring Condition, holds at the
triple junctions. Herring condition is the natural boundary condition for the system
at the equilibrium. However, during the evolution of the grain boundaries, the normal
velocity of the boundary is proportional to a driving force. Therefore, unlike the
equilibrium state, there is no natural boundary condition for an evolutionary system,
and one must be stated. A standard choice is the Herring condition [8, 9, 19, 20], and
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2 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

reference therein. There are several mathematical studies about the motion by mean
curvature of grain boundaries with the Herring condition at the triple junctions, see for
example [1, 2, 3,4, 5, 6, 17, 20, 22, 23, 24, 25, 26, 27]. There are some computational
studies too [2, 4, 12, 13, 14, 21].

A basic assumption in the theory and simulations of the grain growth is the mo-
tion of the grain boundaries themselves and not the motion of the triple junctions.
However, recent experimental studies indicate that the motion of triple junctions to-
gether with anisotropy of the grain boundary network can have an important effect
on the grain growth [6], see also work on molecular dynamics simulation [33, 34] and
a recent work on dynamics of line defects [32, 35, 36]. In this work, to investigate the
evolution of the anisotropic network of grain boundaries, we propose a new model that
assumes that interfacial /grain boundary energy density is a function of dynamic lat-
tice misorientations. Moreover, we impose a dynamic boundary condition at the triple
junctions, a triple junctions drag. The proposed model can be viewed as a multiscale
model containing the local and long-range interactions of the lattice misorientations
and the interactions of the triple junctions of the grain boundaries. Using the ener-
getic variational approach, we derive the system of geometric differential equations to
describe the motion of such grain boundaries. Next, we relax the curvature effect of
the grain boundaries to isolate the effect of the dynamics of lattice misorientations and
triple junctions drag, and we establish local well-posedness result for the considered
model. Note that, the current work is motivated and closely related to the work [20]
(where well-posedness of the grain boundary network model with Herring condition
at the triple junctions and with no misorientation effect was established), and to the
work [2, 3, 4] (where a reduced 1D model based on the dynamical system was studied
for texture evolution and was used to identify texture evolution as a gradient flow).

The paper is organized as follows. In Section 2 we derive a new model for the
grain boundaries. In Sections 3-6 we show local well-posedness of the proposed model
under the assumption of a single triple junction. Finally, in Section 7, we extend
the obtained results for a system with a single triple junction to the grain boundary
network with multiple junctions.

2. Derivation of the model. In this section, we present the derivation of the
model with dynamic lattice misorientations and with triple junctions drag. This is
further extension of the model in [20], and it is motivated by the work in [2, 3, 4].

First, we obtain our model for the evolution of the grain boundaries using the
energy dissipation principle for the system. Note, while critical events (such as, disap-
pearance of the grains and/or grain boundaries during coarsening of the system) pose
a great challenge on the modeling, simulation and analysis, see Fig. 1, here we start
with a system of one triple junction to obtain a consistent model, see Fig. 2. Thus,
we start the derivation by considering the system of three curves only, that meet at a
single point — a triple junction a(t), see Fig. 2:

1. ¢0)(s,t), 0<s<1, t>0, j=1,23.

These curves satisfy the following conditions at the triple junction and at the end
points of the curves,

a(t) :=£1(0,t) =£20,t) =£P(0,¢), and ¢YV(1,1) =2, j=1,2,3
Here, we assume that curves I‘Ej ), j = 1,2,3 are sufficiently smooth functions of pa-
rameter s (not necessarily the arc length) and time ¢. Also, for now we assume
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MOTION OF GRAIN BOUNDARIES 3

that endpoints of the curves (/) € R? are fixed points, see Fig. 2. We define a
tangent vector bl) = 59 ) and a normal vector nt) = Rb() (not necessarily the
unit vectors) to each curve, where R is the rotation matrix through 7/2. We denote
Iy = Fgl) U F?) U Ff’). We also consider below a standard euclidean vector norm
denoted | - |.

Fic. 1. Time instance from the simulation of the 2D grain boundary network with
dynamic/time-dependent orientation (zoom view).

Now, for j = 1,2,3, let a¥) = aU)(t) be the lattice orientation angle of the
grain which is enclosed between grain boundaries F,Ej ) and ng H), and we set that
F§4) = Fgl) for the simplicity of the notation. Similar to work [2, 3, 4, 5, 15], we assume
here that the orientation o) is a bounded scalar since we consider a planar grain
boundary network. In this work, we make an assumption that lattice orientations
are functions of time ¢ (we assume that during grain growth, grains can change their
lattice orientations due to rotation), but independent of the parameter s. Next, we

define, the surface energy density or interfacial grain boundary energy of ng ) as
o= g(n(j)’a(jfl) _ a(j)) — U(n(j),Aa(j)) >0,

where we denote Aal) := aU~D — o) to be misorientation angle across the grain
boundary (a common boundary for two neighboring grains with orientations al=1
and oz(j))7 and we set for convenience a?) := a(3), see Fig. 2. See also Remark 5.5 in
Section 5.

The total grain boundary energy of the system I'; can be obtained as

3 3 1
(2.1) E(t) = Z/(_) o(nY, AaW)dH = Z/ o(n'9, Aa)[bY)| ds,
=Ty j=170

where H! is the 1-dimensional Hausdorff measure, (see Fig. 2). Next, we use the
coordinate (n,0) € R? x R for the surface energy density o(n, ) and assume that
o is taken to be positively homogeneous of degree 0 in m. Note, that in general,
grain boundaries are identified by lattice misorientation and the orientation of the
normal vector to the grain boundary. For simplicity of notations, we denote o) :=
o(n, Aal?)).

Let us now define grain boundary motion that will result in the dissipation of the
total grain boundary energy (2.1). Denote by ~ the normalization operator of vectors,

This manuscript is for review purposes only.
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4 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

20

(4)

FIG. 2. The model of grain boundaries/curves 'y’ with triple junction a(t) and with orienta-
tions angles (scalars) o).

e.g. ) = % Then, we can compute the rate of change in energy at time ¢ due

to grain boundary motion as follows:

d 1 dn@) o p@ gp)
Lpwy =3 o) b9 d / 0 0 d
ar ) j1</0 Vo2 =g P ds e e g

LS d(Aa) .
/ aéj)d( @ )|b(J)| ds)
0

+

dt
3 1 :
. ) o db(d)
_ ) |t W) 1 oDpW) .
> </O (|b 'RV ,0) 4+ 6W)b ) - ds

LS d(Aa) ,
+/ o dBa’) )|b<ﬂ>|ds).

(2.2)

Next, consider a polar angle ¢U) and set n/) = (cosp(),sin¢)). Since o) is
positively homogeneous of degree 0 in n9), we have

Vno n=0, 'RVno=("RVno a)n, o) =[b0[RV,0),

and, thus, we define the vector T¥) known as the line tension or capillary stress
vector,

TG .— O-g)ﬁ(j) +0DpD = [pD 'RV, o) + ¢DpU).
Now, using the change of variable

dp(d) d deW)
dt — ds dt’

This manuscript is for review purposes only.
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MOTION OF GRAIN BOUNDARIES 5

we can rewrite (2.2) as:

d v d de@ Lo yd(Aad)y o

LR = TG . L9874 DAYy g

PRl ;(/0 ds dt H/O 05— |07 lds
3

3 1 j 1 i
~ deW) S d(Aa@) )
(2.3) = — E /0 Ts(ﬂ) : i—tds+ E / agﬂ%w@ms
j=1

j=1
3
- da
_ () 22 (8.
> T8
j=1
For the reader’s convenience, we will recall below the following property for a diver-

gence of the capillary stress vector TV,

LeEMMA 2.1. Let k) is the curvature of ng). Then
(2.4) TU) = |b(j)|(0éﬂ<2 + o@D RH).,

Proof. From the Frenet-Serret formula for the non-arc length parameter,
(2.5) b)) = bW |xDpG) Al = —|p0)|x0)p0).
Thus we obtain,

T = (vnaéﬁ _ngﬁ) O Ug)ﬁgﬂ n (Vna(j) .ngj)> bY) 1 5 (pW)
(2.6) - (thngfij) B & |b<j>‘g<j>,{(j>) Al
n (—‘b(j)|0'((bj)li(j) +'RV,,o) .bgﬂ) b

Since ¢¥) and O‘((j)j ) are positively homogeneous of degree 0 in n9), we have,
(2.7) o' = pD RV 0D, oA = bV 'RV o).

Using the orthogonal relation b\) - 72(7) = 0 and the Frenet-Serret formula (2.5), we
obtain,

(2.8) bYW .l = —pl) . pl) = |pl)|2.0), O

Plugging (2.7) and (2.8) into (2.6), we derive (2.4).

Next, to ensure that the entire system of grain boundaries is dissipative, i.e.

d
—FE(t) <
SE(D) <0,

we impose Mullins theory (curvature driven growth) [29, 30] as the local evolution law

stating that the normal velocity v,(f ) of a grain boundary of I’gj ) (the rate of growth

of area adjacent to the boundary FEJ )), is proportional to the line force Ts(j ) (to the

work done through deforming the curve), through the factor of the mobility p9) > 0 :

‘b(j)|Ts(]) — H(J)(géﬂg +oNad  on F§J)7 j=1,2,3.

(2.9) WA = 40)

Tha anuscript is for review purpose: 0y,
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6 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

Note, that using variation of the energy E with respect to the curve £€), namely,

G 9

N p0) — _
U= T e )

n

one can derive the following relation for the line force T [20],

(2.10) n@ |b(1j)|T5(j) = 1D (o) +oD)kDa® onTP, j=1,2,3.

. j @ s .
Since v = % -7, we obtain that,

L deW) 1 ) )
(2.11) T . g™ = — @ 12p)| > 0,
and, thus, the first term on the right-hand side of (2.3) is non-positive. Next, we con-
sider the second term on the right-hand side of (_2.3) which depends on the derivative
of lattice misorientation, we have that (since o) is independent of s),

S0 ) 3 1, . ()
() d(Aa'?) b | ds = / G+ 1+ _ ;D 1pG) 1) g do
S [, o S as = 30 (oo o607 as) S

j=1

where we used that o(*) = ¢(1). To ensure, 4 F(t) <0 in (2.3), we make an assump-

tion that for a constant v > 0, we have the following relation for the rate of change
of the lattice orientations,

da¥) Lo , N
(2.12) Zt =y (/ (o—gﬂ“)|b<ﬂ+1>| - J§J)|b<ﬂ>|) ds), j=1,2,3
0
since the relation (2.12) results in the condition,
3 1 : 3 N2
yd(Aald)) 1 da)
2.13 / o) D=0 ds = —~ <0
(213) s LR P

on the second term in the right-hand side of (2.3). Note, that the proposed relation
(2.12) can also be derived using variation of the energy E with respect to lattice
orientation o), namely,

da9 __ OE
it~ sal)
Remark 2.2. 1. As we discussed, the misorientations are defined using the orien-

tations, o) as, Aal) = al—1) — o). Conversely, if the sum of the misorientations
is zero, namely, Aa® + Aa(? + Aa®) =0, then the following linear relation,

a® — oM = Aq®),
a® Z 0@ Z Aq®@),

a®@ 0B Z A®
can be solved in terms of a(?), and the (inverse) mapping,

(Aa(l), Aa?), Aa(?’)) — (c— Ao, ¢+ Aal®), c) = (a(l), a®), a(?’))

Tha anuscript is for review purpose: 0y,
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MOTION OF GRAIN BOUNDARIES 7

gives the orientations from the misorientations Aa). Here ¢ is an arbitrary param-
eter. Thus, if we would formulate/derive equations for the misorientation evolution,
instead of the equation for the orientation (2.12), we would have to impose additional
constraint, (Aa™) +Aa® +Aa®)(0) = 0. Furthermore, in that case, the orientation
of each grain may not be determined uniquely due to the arbitrary parameter ¢. On
the other hand, from (2.12) it follows directly that,

%(a(l) +a? +a®) =o.

Hence, the sum of the orientations a(®) + a(® 4+ a(®) has to be a constant. This con-
straint for the orientations is easily determined by the initial configuration, and both
the orientations and the misorientations can be determined from the equation (2.12).
2. As discussed above, in our work, we consider the orientation as the primary vari-
able, and we enforce dissipation in the system by assuming relation (2.12) through the
orientation. Note that, we consider the rate of the change on the orientation (rather
than on the misorientation) since we study system before critical events/disappearance
events. Moreover, this choice of the orientation as the primary variable is also consis-
tent with a case of grain boundary energy o(n), Aal¥). In addition, note that, the
traditional texture distribution is the orientation distribution. However, in general,
one can obtain the misorientation distribution, by considering the convolution of the
orientation distribution with itself, or see the above remark.

We also note that (2.12) is not a unique way to ensure dissipative system, and
other relations for the rate of change of the lattice orientations which enforce dissipa-
tion may be possible. In this work, the particular assumption on the rate of change of
the lattice orientation (2.12) is motivated by the approximation to the gradient flow
dynamics near equilibrium [3, 2]. Experimental study of the dynamics of the lattice
orientations/misorientations will be part of future research.

Finally, as a part of < E(t) < 0 condition in (2.3), we also assume the dynamic
boundary conditions for the triple junctions, namely, for a constant n > 0,

da 3 .
2.14 =) = TG (0,4), t>0.
(2.14) i (t) n; 0,t), t>0

This assumption implies that the last term in (2.3) satisfies,

da
dt

(t)

3 ) da 1
(2.15) — ;T (0.8) - —-(t) = o

Therefore, we obtain from (2.11), (2.13), and (2.15), that the entire system of
grain boundaries FE] ) is dissipative, namely,

2 da)

ol

1
’Y

216) L) = 23:/ Lyt~ 1
' at T o e pl) Un

We combine assumptions (2.9), (2.12), and (2.14) to obtain the following system
of geometric evolution differential equations to describe motion of grain boundaries

Tha anuscript is for review purpose: 0y,
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8 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

Fij),j = 1,2, 3 together with a motion of the triple junction a(t):
(2.17)
vﬁlj) = u(j)(ang —‘rJ(‘j))li(j), on I‘,EJ), t>0, 7=1,2,3,

da@) Lo , N
‘jh =—7(/ (o DO = o ) s ). =123

3
= _nZT(k 0,8) =10 (6Wa® + oM™ (0,1), t>0,
k=1

ng):é()(s,t), 0<s<1, t>0, j=1,2,3,
a(t) =£M(0,6) =€2(0,1) =¢P(0,1), and £V (1,1) =2, j=1,2,3.

Remark 2.3. The entire system (2.17) satisfies energy dissipation principle (2.16).
However, it is important to note, that there are three independent relaxation time
scales in the system (2.17), namely, 9,y and 7 (length, misorientation and position
of the triple junction). Classical approach is to let v — oo and n — oc.

In this work, we let () — 0o, and set v = = 1 to study the effect of the dynamics
of lattice orientations a(j)(t), j =1,2,3 together with the effect of the dynamics of a
triple junction a(t) on a grain boundary motion. Then, in this limit, I‘E] ) becomes
a line segment from the triple junction a(t) to the boundary point ). Hence, we

have

(s, t) =a(t)+sb (), 0<s<1, t>0, j=1,23,
H+b ) =2, j=1,23.
)+ () =2V, j=123

We assume that the surface tension o is independent of the normal vector n. Here-
after, we further assume the following three conditions for the surface tension o. First,
we assume positivity, namely, there exists a positive constant C7 > 0 such that,

(2.18) o(0) > Cq,

for 6 € R. Second, we assume convexity, for all § € R,
(2.19) og(0)0 > 0.
Furthermore, we assume,

(2.20) o9(#) = 0 if and only if 6 = 0.

Remark 2.4. 1. In this work we assume a more general surface energy U(Aa(j))
(2.18), (2.20), since we consider a non-equilibrium state at time scale ) — oo and
v =n = 1. Note that a different example of Read-Shockley type surface energy [31]
is the classical example of the grain boundary energy derived under the assumption
of small misorientation angle Aa), and the assumption of the equilibrium state for
a single fixed grain boundary at time scale u¥) — 0o, — 0o and v = 0.

2. In this work, for simplicity we consider cases of surface tensions without normal
dependence. This assumption is not as restrictive since our model is in terms of the
orientation, instead of misorientation, as we had discussed in Remark 2.2. Note also,
that the convexity condition (2.19) is not needed for local existence results and dis-
sipation estimates for the energy, Sections 4 -5 and Section 7. The condition (2.19)
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MOTION OF GRAIN BOUNDARIES 9

is essentially used to show the misorientation/orientation estimates, see Sections 3, 5
and 7, and, as a part of future work, we will investigate possibility of relaxing this
assumption to derive similar estimates. In addition, in this work, to show unique-
ness of the solution to (4.1), we proceed using misorientation/orientation estimates
from Section 5. However, one can obtain uniqueness result without the use of those
estimates, and instead using the estimate (4.21), in proof of Theorem 4.1. Thus,
the system of geometric evolution differential equations (2.17) becomes the following
system of ordinary differential equations (ODE):

da@) . . . .
(jlt - _(UG(AQ(J+1))|b(J+1)‘ _ Ge(Aa(J))|b(J)|>7 j=1,2,3,
()
(2.21) da .y _ (1)
I (t) ZO‘(AQ )|b(j)|’ t>0,

at)+ b)) =2, j=1,2,3.

Below, we continue with a study of the local well-posedness of the problem (2.21)

with the initial data given by oy () a(()2), oz(()g),

Remark 2.5. 1. Note, that the reduced model (2.21) is not a standard ODE sys-
tem. This is the ODE system where each variable is locally constrained. Moreover,
local well-posedness result (e.g. local existence result) for the original model (2.17)
will not imply local well-posedness result for the reduced system (2.21) (it is unknown
if the reduced model (2.21) is actually a small perturbation of (2.17).).

2. The reduced model (2.21) captures the dynamics of the orientations
/misorientations and the triple junctions, and at the same time is more accessible
for the analysis than the model (2.17). In addition, the system (2.21) is consis-
tent /motivated by the model in [3, 4]. The well-posedness analysis of (2.21) is a step
towards similar analysis for the model in [3, 4], as well as for the original system
(2.17).

3. Equilibrium. We study an associated equilibrium solution of the system
(2.21), namely,

0= (Go(Aal )LL) ay(Aa) D)),

(4)
. b
() o0

Ao +bY) =2 j=1,2,3.

(3.1) 0

I
.
_

To consider the equilibrium system (3.1), we assume that each Dirichlet point a()
does not coincide with the other Dirichlet point.

LEMMA 3.1. Let (ag),agﬁ)7aé§),am) be a solution of equilibrium system (3.1).
Assume (2.19) and (2.20). Then ald) =a? =ald.

Proof. We multiply the first equation of (3.1) by oY) and sum to ji=1,2.3, to
obtain
(32)

3 3
Z( (AaU D) [BGHV| — go(Aad))|bY )am Z(”ﬁ (Al b(j)vo‘g)'

j=1 j=1

This manuscript is for review purposes only.
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10 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

Note that, at least two of the terms |b£,2)\, 7 = 1,2,3 are non zero, otherwise it will
contradict the assumption that the Dirichlet points (/) are distinct. Hence, from
(2.19)-(2.20), we obtain that o) =l =af. o

From Lemma 3.1, it follows that, in the equilibrium state, there is no lattice
misorientation between neighboring grains that have grain boundaries meeting at
that triple junction. As a consequence, the equilibrium system (3.1) becomes,

(3.3)
Ao +bY) =2 ;=123

The equation (3.3) is related to the Fermat-Torricelli problem. More precisely, if we
have that, for each i = 1,2, 3,

3. L) _ ()

64 PR
J=1, i#j

then a., is the unique minimizer of the function,
3

(3.5) f@=Yla-aV|, ack,
j=1

and as # V) for j = 1,2,3 (See [7, Theorem 18.28]). Note, that the assumption
(3.4) satisfies if and only if all three angles of the triangle, formed by vertices located
at the nodes (M), £, (3 are less than 120°.

4. Local existence. Here, we discuss local existence which validates the consis-
tency of the proposed model. Let /) € R?, o = (aél), a((f), 04(()3)) € R?, and ag € R?
be given initial data and we consider the local existence of the problem of (2.21),
namely

() . . , ,
d(Zt _ _(ag(Aa(J+1))\b(J+1)| _ O.G(AO[(J))“)(])‘)) j=1,2,3,
3 .
da L bl
—(t)=> o(AaP) ' t>0
(4.) ai = 2B gy 20

at) = (a(l)(t),a(Q) (t),a(3) (t)), t>0,
at) +b9 (1) =20, t>0, j=1,2,3,
a(0) = ag, a(0) = ao.

Q 8

Assume for each 1 = 1,2, 3,
3 () — @)
T T
(4.2) ,Z:.E@iEmT>L
Jj=1, i#j

We denote by @ # x7) for each j = 1, 2,3, a solution to the system,

(4.3) =2 o

Tha anuscript is for review purpose: 0y,
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MOTION OF GRAIN BOUNDARIES 11

The point a, is a triple junction point (see Section 3).

THEOREM 4.1 (Local existence). Let W, 2@ 20 e R2 ay € R2, and o €
R3 be given initial data. Assume condition (4.2) for i = 1,2,3, and let as be a
solution of (4.3). Further, assume that for all j =1,2,3,

1 .
(44) a0 — | < 5 [bY)].
Then, there exists a local in time solution (o, a) of (4.1) on [0, Tmas), such that
(4.5) la(t) — aso| < [BY)| forall j=1,2,3, and 0 <t < Tppas.
Furthermore, the mazimal existence time Tp,q. of the solution is estimated by
. | lag — ax|
Toaz > mln{ — ,
p A(My +8Mafexol) 23, (6] 3Mo
12M;° I S
UMy Y 62| ~2|a0—ac|
where
01) — oy (6
Myi= swp fo(@)], Mi= suwp [op(®)], Moo= sup  (2OUZ 00l
16]<4oxo| 0] <4lexo| 011,102 <dleo| |01 = O2]

Remark 4.2. The Theorem 4.1 provides not only existence of the local in time
solution for the model (4.1), but it also gives the local existence of the triple junction.
The estimate (4.5) guarantees that a(t) is the position of the triple junction formed
by the grain boundaries /) — a(t). Note, if a(t) is sufficiently far from the position
of the triple junction as of the equilibrium state, for instance if () — x*) is a part
of a(t) — ™, then a(t) might not be the triple junction. Further, (4.6) gives the
explicit dependence of the maximal existence time Tynax On |@g — @oo|. This is an
important result for the analysis of the global in time solution which will be part of
a forthcoming work.

To show Theorem 4.1, we construct a contraction mapping on a complete metric
space. Let Cs, C5 > 0 and T' > 0 be positive constants that we will define later, and
denote,

Xr = {(e,a) € C([0,T]; R® x R?), [lerll o)) < C2, [la — asslleqo,ry < Cs}-

Note that in the definition of the space X7, we use the position of the triple
junction as, at the equilibrium state as the point of reference, rather than the position
of the triple junction a( at the initial time as one would consider in the classical ODE
theory. Such definition of the space X7 is employed in order to obtain the estimates
on the position of the triple junctions from the one of the equilibrium state ao, (4.5),
as well as to derive the maximal existence time estimate (4.6).

Next, define for (a,a) € X7, i=1,2,3, and t > 0

(4.7)

o0 (a,a)(t) == af’ - / (ae(AaU“)<T>>\b<f+”<7>|—oa(Aa<j><T>>|b<j><T>|) dr,

b(J (1)
U(a,a) 7a0+2/ |b(J)(7')| dr,

Tha anuscript is for review purpose: 0y,
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where bU) (1) = ) — a(r). Our goal now is to show that (& = (), ) &G)) )
is a contraction mapping on Xp for the appropriate choice of positive constants Cs,
Cs, and T > 0. Hereafter we define,

01) — ag(0
My := sup |o(8)|, M;:= sup |og(0)|], Msy:= sup [76(61) — 00(62)]
l0]<2Cs l6]<2C5 61 ],10s]<205 |00 — 02|

Later, the constant Cy will be taken to be 2|ay|. Next, two Lemmas 4.3, 4.4 show
that ® and ¥ is a map on Xp.

LEMMA 4.3. If the conditions below are satisfied,

(4.8) 2|ag| < Oy,
and

1
(4.9) (2M; + AMCo) (bS] + B + (2| +3C5)T < 5C,

then |®(e, a)| < Cy for all (a,a) € Xr.
Proof of Lemma 4.3. By the triangle inequality, for 0 < ¢ < T,

|®(c, a)(t)]

3
< |Oéo| + Z
i=1

[ (ou(2at 2o 1)) = (30 ()1 (1))

<Jaol + 3 ([ lon(Aat D (0) = oa( 8 )[1p ) 5) dr

t
+ [ o@D @[ [65 )] - 69| df).
0
Next, using that |AaU)| < 205, and that,

|09(Aa(j+1)(7)) — Ug(Aa(j)(T))| < M2|Aoz(j+1)(7') — Aa(j)(7)| < 4M5Cs,

we have that,

3
|®(a,a)(t)| < |ao| + (2M +4M202)TZ sup [6Y)(7)].

=1 0<r<T
On the other hand, for j = 1,2, 3,
(4.10) 169D (1) = |29 — s + @ — a(t)]| < [bY)] + Cs.

Therefore, from (4.8) and (4.9),

[@(er, a)(t)] < Jexo| + (2M1 + 4MaCa) (1B ] + [62)| + b +3C5)T < C. O

LEMMA 4.4. Assume for j = 1,2,3 we have that,

(4.11) Cs < |bY)].

Thi. 1script 15 f ly.
This manuscript is for review purposes only
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Then, 0 < |b£{3| — O3 < bYW ()] < |bg;)| + Cs, forall j =1,2,3, (a,a) € Xr, and
0 <t <T. Further if

(4.12) 2|lap — ax| < Cj,
and

1
(4.13) SMoT < 5Cs,

then |[¥(a, a)(t) — ac| < Cs, for all (o,a) € Xp and 0 <t <T.
Proof of Lemma 4.4. For (a,a) € Xp,and 0 <t <T

b = |29 — a(t) + a(t) — ace| < [BD(1)] +|a(t) — ace| < BV (1)] + Cs,

thus we obtain 0 < \bg))| — O3 < |[bY(t)]. And [pU)(t)| < |b((,£)| + Cj5 follows from
(4.10). To show estimate |U(ex,a)(t) — as| < C5, we use the assumptions (4.12) and
(4.13), to obtain that for any (a,a) € Xr,

3
(e, a)(t) — ace| < lao —ace| +

Jj=1

3
1 X
—CO5 + sup o(AaD ()T
<50 ]E:losng ( (7))

N

1
5Cs +3MT < Cs,

forall0 <t <T. 0
The next two Lemmas 4.5 and 4.6 give the Lipschitz property of the map (&, V).

IN

LEMMA 4.5 (Lipschitz estimates). For (o, a1), (a2, az) € Xr, we have that
(4.14)
[®(a1,a1) — (e, a2)llc (o,
< AM (|| + B2 | + B + 3C5)T | oy — az||c(o,r) + 6MiT||ar — azl|lco,r)-

Proof of Lemma /.5. For 0 <t < T, by the Lipschitz continuity of oy we obtain
that

~ ou(Aa§ V0§ |+ a0 ) ar

t
+1 +1 +1
<37 [ (Jotaatr O 0 -
j=1

+ |oo(Aa) — oy(Aaf V)| pFV]) dr

+> / (Jro(aat)| |61 = B8] + |oa(aaf?) ~ go(2a§")| (b5 dr.
j=1

This manuscript is for review purposes only.
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Next, using b(]) x) — ay,, Aal) = o= — o) and (4.10), we have,

[®(a1,a1)(t) — ®(az, a2)(t)]
< 6MiT||lay — azlcqo,r)) + 4M2(168Y) | + 8] + [BY)| + 3C3)T |t — ezl (o, 1) -

Thus, we obtain the inequality (4.14). O
LEMMA 4.6 (Lipschitz estimates). Assume condition (4.11) holds true. Then

for (a1,a1), (a,a2) € X, we have that

¥ (e, ar)(t) — ¥(e, a2)(t)ll o,
< 6M1 T — e,

(4.15)

+ 2M ! + ! + ! Tlla; — as||
0 1 — az2|lc(o,1])-
O =5 -5 pY| -y (010

Proof of Lemma 4.6. For k = 1,2, denote O'(J)( t) = G(Aa,gj)(t)). For 0 <t<T,
we can obtain the following estimate

D))y 28
|\11(a1,a1)(t) (a2aa'2 ‘* Z/ ( |b(J)(T)‘ ( )( )b(J)(T)|) dr
- ) (4) ’
<z/ ( ) (J)( )L()

(J)
02 T .
b“><r>| 65 (7))

SZ/@ ’0§j)(7)—0éj)(7)‘ dr

1
3 (4) (4)
b b
3 [ o | L B o
j=170 b7 ()] [bg (7)]

Since (a, ar) € X, we have

o(7) = of(7)| = o(2af? (7)) = r(Aaf (7))

< M1|Aa§j)(7) — Aaéj)(Tﬂ
< 2M ||l — ellego,rm)-

Hence, we derive that
Z/ ‘UEJ)(T) - O'éj)(T) dr < 6M1T||a1 — ag||c([0’T]).

Next, due to condition (4.11), we can apply Lemma 4.4. Therefore, we have that
|b,(€])(7')\ #0for j=1,2,3, k=1,2, and 0 < 7 < T. By direct calculations, we have

This manuscript is for review purposes only.
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385 that
(4.16)
b(j)( ) b(j)( ) 1 ) |b(j)( NIRE
1 \T) 0 T) | (J)_lTb(J)
@) ) ETC) 0(7) =5 5 ()
by (7)o (7)) by (7)] b5 (7)]
©))
1 () () 167" (D .6
< - b () =b (D) +||1- =—"L|b (1
. o () () - 6 (7)| |b(j)m| 9(r)
(J) (J) () ()
<
*|b§ s (e -2 o]+ [ (1= 0]
(J) (J)

387 Again, using Lemma 4.4, and due to uniqueness of the point a., (see Section 3), we
388  have that 0 < |b<(fo)| —C3 < |b(1j)(7')\ for j =1,2,3, and 0 < 7 < T. Thus, we derive
389  that

(4) (4)
390 b(lj)(T) - b?j)(T) |— (])2 Hal_a2||c([07T])7
16y (7)|  [b3” ()| |bss'| — C

391 and,

3 /T 0 (| B0 85 (0)

5 . .
= (@) (b5 (7))
3 T
2M,

392 < / —————||a1 — az|cgo. ) dT

j; 0 \b(()]o)|—03 ([o,7)

1 1 1
< 2M, + + Tlla1 — azl|lcqo,r))-
(bé?|—os 62| - Cy béi>|—03>

393 Hence, we obtain the desired estimate,

|V (a1, a1)(t) — V(az, az)(t)]
< 6MT||ar — azlleo,1))

394 O
+ 2M ! + ! ! T|a; — as||
0 1 — @z2{{c((o,17)-
b0 ¢y B¢ - C o
395 Proof of Theorem /J.1. We start with given constants Cy and Cj3 for, Cy := 2|ay|

306 and C3 := 2|ag — ax|. Note, that due to assumption (4.4), we obtain that C3 < |b§3|
397 for all j =1,2,3, and hence, we have that,

308 D]+ (62 + 6] +3Cs < 2(1bL | + 6|+ b)),

399  Next, we will find the bound for the existence time T which will guarantee the con-
100 traction mapping on Xp. Take time T > 0 as defined below,
(4.17)

Cs Cs 1 1
S(M; +4MyCo) 37, [ 6Mo” 12M17 8My 37

401 T := min
=1 ‘b(J)l Cs
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16 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

Recall, that the space X (see Section 4) is a complete metric space endowed with a
distance

dx,((a1,a1), (a2, a2)) = [ — aallcqor)) + lar — azllcqo,m)-

In addition, definition of constants Cs and C5 above implies conditions (4.8), (4.11),
and (4.12) in Lemmas 4.3-4.4. Moreover, since we selected T', as

T< C 3 ) andTﬁﬁ7
8(M1 + 4M202) Zj:l ‘bojo | 6]\40

we also have that,

(2M; + AMoCo) (16Y) | + (62| + ()] + 3C5)T

< 4(M;y + 4M202)(|b<(>?| + |b<(>?| + |b<(>i)|)T
1

<=

= 2027

and )
3MyT < 503.

Thus, the other conditions (4.9) and (4.13) in Lemmas 4.3-4.4 are also satisfied. There-
fore, we can employ Lemmas 4.3 and 4.4 to show that the mapping

X7 3 (a,a) — (P(e,a),¥(a,a)) € X1

is well-defined. Next, combining estimates (4.14) and (4.15) in Lemmas 4.5-4.6 to-
gether, we obtain that,

(4.18)
dx ((®(a1,a1),Y(ai1,a1)), (P(az, az), ¥ (o, az)))

< (6M1 +8Ma (|| + b)) + |b<(>§>)|)) Tllay — el (o))

1 1 1
+ [ 6, + 20, + + Tllar — azllc(o,r
( <|b<;3|—03 v -y |béi>|—03>> o

for (a1, a1), (g, as) € Xp. Next, since we selected time T as in (4.17) we have that,

C 1 1
(4.19) T < 2 o < 5 < ,
8(M1 + 4]\4202) Zj:l |boj<> ‘ 32M, Zj:l |boj<> ‘ 12M,
and,
—1

3 1
(4.20) T<|8My» ——r

=Y -c

Using the above estimates on time T, (4.19)-(4.20) in (4.18) we obtain that,

dX((<I’(a1, al), ‘1/(041, al)), (<I>(a2, ag), \I/(Oég,ag)) < de((al, al), (ag, ag)).
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MOTION OF GRAIN BOUNDARIES 17

Therefore, by the contraction mapping principle, there is a fixed point (o, a) € Xr,
such that
a=9%a,a), a=VY¥(xa),

which is a solution of the system of differential equations (4.1).
Moreover, we obtain the following estimates:

lellego,r) < 2lawl,  [la—ax|lcqom) < 2la—as],
Tonax > min{ 2 =, (B0 G|
(4.21) A(My + 8Maao) S0, (BT 3Mo
1 1 }
12My" 8My Y3, TCH—— ’
where T« is a maximal existence time of the solution (o, a). 1]

Remark 4.7. Note, that once some a priori estimates for ||a|c(o,7)) and |la —
Al (o,r)) are deduced, a global solution of (4.1) can be obtained using the estimate
of a maximal existence time Ty ax-

5. A priori estimates. We first derive the energy dissipation principle for the
system (4.1). The system does not depend on parametrization s, hence the energy of
the system (4.1) is given by

3
(5.1) => o(AaD (1)[pD(1)).
j=1

PROPOSITION 5.1 (Energy dissipation). Let (a,a) be a solution of (4.1) for
0<t<T. Then, for all0 <t < T, we have the local dissipation equality,

2 t
d7+/
0

Proof of Proposition 5.1. Let us first compute the rate of the dissipation of the
energy of the system (4.1) at time ¢,

do 2
ar —(7)

(1) o dr = E(0).

(5.2) E(t) + / t

dali dad) p@  gpl@
—E (A _ b (A () L
(5.3) Zog al ( o ) | |—|—Z a )|b(3)| o

Since (o, a) is a solution of the system (4.1), the right hand side of (5.3) can be
calculated as,

3 i—1
S 0p(2a®) (dO‘Zt : do‘(”>| ol

=1
3
Z(U‘) (AaU+ D) [BUHD| = 5o(AaD)[b! J)|>7

< dt
3 ldaW |
T Z dt |’
J=1
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and
3 ; ; 2
L b g d
Y o(Aa) 2 __ |2
; [bU)]  dt dt
j=1
Thus, we obtain the energy dissipation for the system,
d da|®  |dal|’
4 — = _| = =
(54) th(t) dt dt

Next, integrating (5.4) with respect to t, we have the local dissipation equality (5.2).0
From the energy dissipation and the assumption (2.18), we obtain,
COROLLARY 5.2. Let (a,a) be a solution of (4.1) for 0 <t < T. Then, for all
0<t<T,

; 1
(5-5) b (#)] < aE(O)-

PROPOSITION 5.3 (Maximum principle). Let (a,a) be a solution of the system
(4.1) for 0 <t <T. Then, for all 0 <t < T, we have,

(5.6) () < Jexol*.

Proof of Proposition 5.3. Multiplying the first equation of (2.21) by a¥) and tak-
ing the sum for j = 1,2, 3, we obtain,

3
%%Ia(t)IQ _ Z (aa(Aa<j+1>)|b<H1>| _ gg(Aa<i>)\b<J'>|) NE))
J=1

3
(5.7) — Z (O’g(Aa(j))|b(j)|) (a(jfl) _ a(j))

j=1
3
= (og(Aa(j))|b(j)|) Ao
Jj=1

Next, integrating with respect to ¢, and using the assumption (2.19), we obtain the
result (5.6). 0

PROPOSITION 5.4 (Misorientation estimates). Let (o, a) be a solution of (4.1)
for 0 <t < T. Then, for all 0 < t < T, we have the following estimate for the
misorientation,

3 3
(5.8) Z (A (1))? < Z (Aa9)(0
Jj=1 Jj=1

Proof of Proposition 5./. We take a derivative on the misorientation Aa'?) with
respect to t,

d , . _
Z Aol = agj 1 _ agj)

(5.9) dt
— _QJG(Aa(j))|b(j)| + O'Q(Aa(j_l))|b(j_l)| + ag(Aa(j+1))|b(j+1)\.
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MOTION OF GRAIN BOUNDARIES 19
Next we multiply (5.9) by Aa') and take the sum for j = 1,2, 3, we obtain,

(5.10)

3
Y (Aa(t))?

j=1

t

Il
. N | =
M =~

(_QUG(Aa<j>)|b<j>| + 09 (AU D) [BUD| 1 gy (AQUTD) D ‘) Aa)

<
Il
—

M-

go(Aat)) b)) (7%@@) 1L AU+ o Aa(a‘ﬂ))
1

J

3
— _3 Z oo(Aa) b9 | A0,

j=1
Next, integrating (5.10) with respect to ¢, we obtain,
3

3 t
(AaW) (1)) + 62/ 7o(Aa) 6P| AalD) dr =" (Aal?(0))2.
j=170

j=1

3
(5.11)

Jj=1

Similar to the Proposition 5.3, we use the convexity assumption (2.19), hence we
obtain final result (5.8). |

Remark 5.5. 1. Usually, the misorientations are assumed to be bounded by some

constant, hence the orientations are also bounded. In 2D case, it is reasonable to
consider misorientations in the interval between —m/4 and 7/4 (see, for example, [3]).
In this case, one can consider the orientations within —7 /8 and /8.
2. Proposition 5.4 guarantees consistency for misorientations, which is —w/4 <
AaV)(t) < /4, see work, for example, ([2, 3, 4, 5, 15]) for bounds on misorien-
tation in 2D. Indeed, if the [? sum of three initial misorientations is bounded by /4,
that is (Z?Zl(AaU)(O)F)% < /4, then the magnitude of the misorientation has the
same bounds |Aa) (t)| < w/4 for t > 0.

6. Uniqueness and continuous dependence. In this section, we show
uniqueness and continuous dependence on the initial data of the solution of the system
(4.1).

LEMMA 6.1. For m(l), m(2), B e R2, ag1, a2 € R2, and oy, ogs € R3, assume
that (a1 (t),a1(t)) and (aa(t),ax(t)) are classical solutions of (4.1) on time interval
0 <t < T, associated with the given initial data (o1, ag1) and (a2, ags), respectively.

Next, assume that there exists a constant Cy > 0 such that |b§€j)(t)| >Cyfor0<t<T,
j=1,2,3 and k = 1,2. Here, b (t) := ) — ay(t), j = 1,2,3 and k = 1,2. Then,

d
(6.1) %(|a1 — as? +|a; — azf’) < Cs(lag — al® + |ay — as]?)

holds, where Cs > 0 is a positive constant that is independent of (a1, aq1) and (a2, as).

Remark 6.2. To be precise, the constant C5 > 0, in Lemma 6.1, depends on C1,
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Cy, E1(0) = Y7, o(Aai” (0)[6)(0)], and

log(61) —o9(02)]
|01 — 0s]

M = sup{|a(9)| + |oa(0)| +
(6.2) s |
61,1611, 102] < max (" |Aa§3><o>|2>%}.

,2

Proof of Lemma 6.1. Using the equation (4.1), we have that,

ﬁ(agj) _ a(QJ)) - _ (O—G(Aa§]+l))|b§]+l)| _ Ue(Aozgj+1))|b§]+l)|>

+ (oo (Bal)bf”| - ou(Aaf”)b5"))

and, hence, multiplying by agj) — aéj) and taking the sum for j = 1,2, 3, we obtain,
(6.3)
3
1d " 1 - " . ,
sl — = =7 (au(Aal )| - o(Aaf )by V] ) (ol - af)

j=1
3
+3 (020 B = oy (205 (0l ~ o).
j=1

The estimate for the first term on the right hand side of (6.3) is obtained using
Lipschitz continuity of oy, (5.5), and (5.6),

(Ge(Aagj+1))|b§j+1)| _ Ua(Aagj+1))|bgj+1)|) (agj) _ Ozéj))
< lag — ag|

% (|ro(2af D) = oo(Aaf )| BT+ |ou(aal ) D~ b))

M . .
<oy — as| (CEl(O) ’Aa&jﬂ) - Aaéﬁﬂ)’ + M|a; — a2|)
1
2M
S aEl(OHal — a2|2 + M|a1 — 042”61,1 — CLQ|7

where the constant M > 0 is given by (6.2) and E;(0) = Z?Zl U(Aagj)(O))\b(j)(O)L
The second term on the right hand side of (6.3) can be handled the same way. Next,
using the Young’s inequality for the estimate in the right-hand side of (6.3), we deduce,
d 2 4 2 2
(6.4) £|a1—a2| <6M FE(O)—i_l |y — as|” + 6M|a; — as|”.
1

Similarly, from the equation (4.1), we have that,

3 ) )
d (), bi )y b3
— (a1 —aq) = E o(Aa)’)— — o(Aay’)—%
dt = Y ey

)

3 (4) ()
zz(g(mgﬁ)w(mgﬁ)) by +Za(Aa§j>)( i by )

Y| = B by
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MOTION OF GRAIN BOUNDARIES 21

Hence, we obtain,

S lar —a

2t M "
3 _ _ ()

=3 (o(a0f) — o(aad) (L (a1 - an)
— b(J)|
j=1 | 1

: oy (8 Y
(6.5) + ZU(AQ2 ) |b§j)‘ - |b(2j)| : (al - a2)

bg]) b;j)

3 3
<> M|AaY — AaY||ar — as| + D o(Aad)

~ — |a1 — as
= = o171 65|
: Gy | b by
S6M|a17(12‘|(1170,2|+20'(A042J) b(j) 7@ |a17a2|.
=1 bl by

Next, let us estimate the second term on the right-hand side of the (6.5). Applying
(4.16), and using that \b,(cj)(t)| > Cy, bl(j)(t) =2 —ay(t) forj=1,2,3and k = 1,2,
we have that,

e ) 5 o
J(Aaéj)) %j) — —?j) la; —az| = 5 U(Aagj)) ‘bgj) — bgj)‘ lar — as
b7’ [b3”] b7
< 2M | |2
—|la; —as|”.
=g o 2
Hence, we have that,
d 9 9 2 9
(6.6) —la; —as|" <6M|ay — |+ 6M | — + 1) |a; — as
dt Cy

Therefore, by (6.4) and (6.6), we have,

d
S(lea = as|? +lar — asl?) < Cslag — as|?® + Crla; — as)?,

where,

Cs == 12M (2E(O) + 1> . Cpi=12M (1 + 1> .

Cy Cy 0

By the neighboring inequality, we can now show uniqueness of the classical solu-
tion to the system (4.1).

THEOREM 6.3 (Uniqueness). Consider W, 2@ 26 e R2?, and initial data
ag € R? and oy € R3. Assume also, that there exists a constant Cg > 0, such that
|b’(€J)(t)| >Cs for0<t<T,j=1,2,3 and k = 1,2. Then, there exists a unique
classical solution (a(t),a(t)) 0 <t < T of the system (4.1).

Note that, C5 stays bounded when (a1, ag1) — (o2, ap2). Thus, we obtain,

THEOREM 6.4 (Continuous dependence on the initial data).  For ), 2@,
) € R2, ap1,ap2 € R? and agr, ogs € R3, let (a1,a1) and (g, asz) be two classical
solutions of the system (4.1) on 0 < t < T, associated with the given initial data
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(o1, a01) and (az, ap2), respectively. Assume, that there exists a constant Cy > 0,
such that |b](€])(t)| >Co for0<t<T,j=1,2,3 and k =1,2. Then,

(6.7) lag — ol + |a; — asf* < 605t(|0é()1 —apl* + |ag — apl?)

holds, where C5 > 0 is a positive constant given in Lemma 6.1. In particular, contin-
uous dependence on the initial data holds, namely,

ler — azlleqo,m) + llar — azlleqo,r) — 0

as (a01,a01) — (01027(102)'

7. Evolution of grain boundary network. In this section, we extend the
results obtained above for a system with a single junction to a network of grains

that have lattice orientations {a(®}2° grain boundaries {I'\’ )}éy:GlB and the triple

junctions {a(l)}{iTlJ. We identify the lattice a(*) with the single grain k. Hence, the

grain boundary energy of the entire network is defined now as,

NGB
(7.1) E(t)=> o(n, AW ) dH?,

: @

J=1 t
where AW is a difference between the lattice orientions of the two grains that share
the same grain boundary T'¥), The difference AU)q is called a misorientation of the
grain boundary I'). Next, using the same argument as in Section 2 for a system
with a single triple junction, we obtain similar expression for the dissipation rate of
the energy of the grain boundary network,

(7.2)
NGB NSG NT.

J
d d, i OF da®  da®
el - _ 2 ) 1 Y= = (€) tati
S E() §' :/m TV dH +Zaa(k) = > K .
j=1 7T k=1 I=1 qer®

Here,
(7.3) TG — O-((i)j)ﬁ(j) L o@Wp@),

and a® denotes the triple junction where three grain boundaries meet (we assume
in our model that only triple junctions are stable). Note that, the line tension vector
T points toward an inward direction of the grain boundary at the triple junction
O]
a'’.
Next, similar to Section 2, we obtain the following system of differential equations
to ensure that the entire system is dissipative:

o0 = L) fO. 1, NGB

ds
da(*) §F s
(74) dt :*750[(]6), k:].,,N s
l
dZi):n S To, I=1,...,N",
a(l)Efgj)
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r{2)

a®

)
T3

a®

Fic. 3. Ezample of T (k1:k2))

where ), ~,n > 0 are positive constants. For simplicity of the calculations below,
we further assume that the energy density o(n,0) is an even function with respect to
the misorientation 8 = A q, that is, the misorientation effects are symmetric with
respect to the difference between the lattice orientations. For the two grains k; and
ko with orientations a*1) and a(¥2), respectively, we introduce notation that will be
helpful for calculations below, I'7) := T'G(*1.52)) 5 grain boundary which is formed by
grains ky and ko (See Figure 3). We also assume, that if grains k; and ko have no
common interface/grain boundary, then we just set [U(k1k2)) — (). Then,

NSG

oF oy /
— (G(k:ED)) (k) _ o (K)) 1
da(k) k/z—; P (i (k) oo(n @ ot ) di

K #k

(7.5)

We let ul9) — oo, v = n = 1 and as before, we consider surface tension (2.18)-
(2.20) without normal dependence.
Then, the problem (7.4) is turned into,

I‘Ej)is a line segment between some a') and a%:2), j=1,...,NCB,
SG
da®) N ,
= Z IDIEED 5 () — o))y, k=1,..., N5,
(7.6) k=1,
k' #k
da) _ et I=1,...,NV
= Z , =1,..., ,
a®ert

Due to the convexity assumption (2.19), we obtain the maximum principle for
a®) . In fact, for a fixed j = 1,..., NGB, there are only two grains ki, kj, €
{1,..., NS5} such that ') is formed between grains k;, and kj,. Using this fact, we
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find that,

NSG NSG

Z Z ‘ng(k,k/))m(a(k) — o))k

k=1 k'=1,
k' #k

NGB
(7.7) — Z |I‘£j)| (Ue(a(kf=1) _ a(km))a(kj,l) + Jg(a(kj’Z) _ a(kj.l))a(kj,2)>
j=1

NGB
= Z |I‘§j)|09(a(k9‘.1) — olki2)) (a(ka‘,l) — a(’%‘z)) > 0.
j=1

Thus, we can proceed now using the same arguments as in Sections 4-6. To show the
existence of solution of (7.6), we integrate (7.6) and rewrite in the form of integral
equations. After that, we can make a contraction mapping argument as it was done
in Section 4 for a single triple junction. The key ingredient in this approach is to
show a priori lower bounds for the distance of two triple junctions, similar to Lemma
4.4. If an initial grain boundary network is sufficiently close to some equilibrium
state, then any triple junction is close to its associated initial position (moreover, no
critical events happen during short enough time interval). Thus, we can obtain a
priori lower bounds for the distance between the two triple junctions. The uniqueness
and continuous dependence on the initial data can be obtained in a similar way as
discussed in Theorem 6.3 and 6.4. Indeed, as in Remark 2.4, the convexity assumption
(2.19) is not needed to show the uniqueness and continuous dependence. Nevertheless,
the convexity assumption (2.19) and its consequence, the result (7.7) are important if
one would like to guarantee the maximum principle type result for the orientations,
similar to Proposition 5.3. Therefore, we obtain,

THEOREM 7.1. In a grain boundary network with lattice orientations, if triple
junctions at the initial state are sufficiently close to triple junctions at the equilibrium
state, then the problem (7.6) has a unique time local solution and the magnitude of
the orientation of each grain is bounded by the 1> sum of the initial orientations of
the grains in the network, that is, (a*)(1))> < 3, (a®™(0))? for t > 0.

Remark 7.2. Note, that the proposed model of dynamic orientations (7.4) (and,
hence, dynamic misorientations, (7.6), or Langevin type equation if critical events
/grain boundaries disappearance events are taken into account) is reminiscent of the
recently developed theory for the grain boundary character distribution (GBCD) [5,
3, 4, 2], which suggests that the evolution of the GBCD satisfies a Fokker-Planck
Equation (GBCD is an empirical distribution of the relative length (in 2D) or area
(in 3D) of interface with a given lattice misorientation and normal). More details will
be presented in future studies.

Large time asymptotic analysis of the model proposed in the current work will be
presented in the forthcoming paper.
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