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1. Introduction. Most technologically useful materials are polycrystalline mi-16

crostructures composed of a myriad of small monocrystalline grains separated by grain17

boundaries. The energetics and connectivities of grain boundaries play a crucial role18

in defining the main characteristics of materials across a wide range of scales. More19

recent mesoscale experiments and simulations provide large amounts of information20

about both geometric features and crystallography of the grain boundary network in21

material microstructures.22

For the time being, we will focus on a planar grain boundary network. A classical23

model, due to Mullins and Herring [18, 28, 29], for the evolution of grain boundaries24

in polycrystalline materials is based on the motion by mean curvature [10, 11, 16] as25

the local evolution law. Under the assumption that the total grain boundary energy26

depends only on the surface tension of the grain boundaries, the motion by mean27

curvature is consistent with the dissipation principle for the total grain boundary28

energy. In addition, to have a well-posed model of the evolution of the grain boundary29

network, one has to impose a separate condition at the triple junctions where three30

grain boundaries meet [20]. Note, that at equilibrium state, the energy is minimized,31

which implies that a force balance, known as the Herring Condition, holds at the32

triple junctions. Herring condition is the natural boundary condition for the system33

at the equilibrium. However, during the evolution of the grain boundaries, the normal34

velocity of the boundary is proportional to a driving force. Therefore, unlike the35

equilibrium state, there is no natural boundary condition for an evolutionary system,36

and one must be stated. A standard choice is the Herring condition [8, 9, 19, 20], and37
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reference therein. There are several mathematical studies about the motion by mean38

curvature of grain boundaries with the Herring condition at the triple junctions, see for39

example [1, 2, 3, 4, 5, 6, 17, 20, 22, 23, 24, 25, 26, 27]. There are some computational40

studies too [2, 4, 12, 13, 14, 21].41

A basic assumption in the theory and simulations of the grain growth is the mo-42

tion of the grain boundaries themselves and not the motion of the triple junctions.43

However, recent experimental studies indicate that the motion of triple junctions to-44

gether with anisotropy of the grain boundary network can have an important effect45

on the grain growth [6], see also work on molecular dynamics simulation [33, 34] and46

a recent work on dynamics of line defects [32, 35, 36]. In this work, to investigate the47

evolution of the anisotropic network of grain boundaries, we propose a new model that48

assumes that interfacial/grain boundary energy density is a function of dynamic lat-49

tice misorientations. Moreover, we impose a dynamic boundary condition at the triple50

junctions, a triple junctions drag. The proposed model can be viewed as a multiscale51

model containing the local and long-range interactions of the lattice misorientations52

and the interactions of the triple junctions of the grain boundaries. Using the ener-53

getic variational approach, we derive the system of geometric differential equations to54

describe the motion of such grain boundaries. Next, we relax the curvature effect of55

the grain boundaries to isolate the effect of the dynamics of lattice misorientations and56

triple junctions drag, and we establish local well-posedness result for the considered57

model. Note that, the current work is motivated and closely related to the work [20]58

(where well-posedness of the grain boundary network model with Herring condition59

at the triple junctions and with no misorientation effect was established), and to the60

work [2, 3, 4] (where a reduced 1D model based on the dynamical system was studied61

for texture evolution and was used to identify texture evolution as a gradient flow).62

The paper is organized as follows. In Section 2 we derive a new model for the63

grain boundaries. In Sections 3-6 we show local well-posedness of the proposed model64

under the assumption of a single triple junction. Finally, in Section 7, we extend65

the obtained results for a system with a single triple junction to the grain boundary66

network with multiple junctions.67

2. Derivation of the model. In this section, we present the derivation of the68

model with dynamic lattice misorientations and with triple junctions drag. This is69

further extension of the model in [20], and it is motivated by the work in [2, 3, 4].70

First, we obtain our model for the evolution of the grain boundaries using the71

energy dissipation principle for the system. Note, while critical events (such as, disap-72

pearance of the grains and/or grain boundaries during coarsening of the system) pose73

a great challenge on the modeling, simulation and analysis, see Fig. 1, here we start74

with a system of one triple junction to obtain a consistent model, see Fig. 2. Thus,75

we start the derivation by considering the system of three curves only, that meet at a76

single point – a triple junction a(t), see Fig. 2:77

Γ
(j)
t : ξ(j)(s, t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3.78

These curves satisfy the following conditions at the triple junction and at the end79

points of the curves,80

a(t) := ξ(1)(0, t) = ξ(2)(0, t) = ξ(3)(0, t), and ξ(j)(1, t) = x(j), j = 1, 2, 3.81

Here, we assume that curves Γ
(j)
t , j = 1, 2, 3 are sufficiently smooth functions of pa-82

rameter s (not necessarily the arc length) and time t. Also, for now we assume83
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MOTION OF GRAIN BOUNDARIES 3

that endpoints of the curves x(j) ∈ R2 are fixed points, see Fig. 2. We define a84

tangent vector b(j) = ξ
(j)
s and a normal vector n(j) = Rb(j) (not necessarily the85

unit vectors) to each curve, where R is the rotation matrix through π/2. We denote86

Γt := Γ
(1)
t ∪ Γ

(2)
t ∪ Γ

(3)
t . We also consider below a standard euclidean vector norm87

denoted | · |.

Instance of the simulation (zoom view)

Fig. 1. Time instance from the simulation of the 2D grain boundary network with
dynamic/time-dependent orientation (zoom view).

88
Now, for j = 1, 2, 3, let α(j) = α(j)(t) be the lattice orientation angle of the89

grain which is enclosed between grain boundaries Γ
(j)
t and Γ

(j+1)
t , and we set that90

Γ
(4)
t = Γ

(1)
t for the simplicity of the notation. Similar to work [2, 3, 4, 5, 15], we assume91

here that the orientation α(j) is a bounded scalar since we consider a planar grain92

boundary network. In this work, we make an assumption that lattice orientations93

are functions of time t (we assume that during grain growth, grains can change their94

lattice orientations due to rotation), but independent of the parameter s. Next, we95

define, the surface energy density or interfacial grain boundary energy of Γ
(j)
t as96

σ = σ(n(j), α(j−1) − α(j)) = σ(n(j),∆α(j)) ≥ 0,97

where we denote ∆α(j) := α(j−1) − α(j) to be misorientation angle across the grain98

boundary (a common boundary for two neighboring grains with orientations α(j−1)99

and α(j)), and we set for convenience α(0) := α(3), see Fig. 2. See also Remark 5.5 in100

Section 5.101

The total grain boundary energy of the system Γt can be obtained as102

(2.1) E(t) =
3∑
j=1

∫
Γ
(j)
t

σ(n(j),∆α(j)) dH1 =
3∑
j=1

∫ 1

0

σ(n(j),∆α(j))|b(j)| ds,103

where H1 is the 1-dimensional Hausdorff measure, (see Fig. 2). Next, we use the104

coordinate (n, θ) ∈ R2 × R for the surface energy density σ(n, θ) and assume that105

σ is taken to be positively homogeneous of degree 0 in n. Note, that in general,106

grain boundaries are identified by lattice misorientation and the orientation of the107

normal vector to the grain boundary. For simplicity of notations, we denote σ(j) :=108

σ(n(j),∆α(j)).109

Let us now define grain boundary motion that will result in the dissipation of the110

total grain boundary energy (2.1). Denote by ˆ the normalization operator of vectors,111
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Fig. 2. The model of grain boundaries/curves Γ
(j)
t with triple junction a(t) and with orienta-

tions angles (scalars) α(j).

e.g. n̂(j) = n(j)

|n(j)| . Then, we can compute the rate of change in energy at time t due112

to grain boundary motion as follows:113

d

dt
E(t) =

3∑
j=1

(∫ 1

0

∇nσ(j) · dn
(j)

dt
|b(j)| ds+

∫ 1

0

σ(j) b
(j)

|b(j)|
· db

(j)

dt
ds

+

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

)
=

3∑
j=1

(∫ 1

0

(
|b(j)|tR∇nσ(j) + σ(j)b̂(j)

)
· db

(j)

dt
ds

+

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

)
.

(2.2)114

Next, consider a polar angle φ(j) and set n̂(j) = (cosφ(j), sinφ(j)). Since σ(j) is115

positively homogeneous of degree 0 in n(j), we have116

∇nσ · n = 0, tR∇nσ = (tR∇nσ · n̂)n̂, σ
(j)
φ n̂(j) = |b(j)|tR∇nσ(j),117

and, thus, we define the vector T (j) known as the line tension or capillary stress118

vector,119

T (j) := σ
(j)
φ n̂(j) + σ(j)b̂(j) = |b(j)|tR∇nσ(j) + σ(j)b̂(j).120

Now, using the change of variable121

db(j)

dt
=

d

ds

dξ(j)

dt
,122
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MOTION OF GRAIN BOUNDARIES 5

we can rewrite (2.2) as:123

d

dt
E(t) =

3∑
j=1

(∫ 1

0

T (j) · d
ds

dξ(j)

dt
ds+

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

)

= −
3∑
j=1

∫ 1

0

T (j)
s · dξ

(j)

dt
ds+

3∑
j=1

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

−
3∑
j=1

T (j)(0, t) · da
dt

(t).

(2.3)124

For the reader’s convenience, we will recall below the following property for a diver-125

gence of the capillary stress vector T (j).126

127

Lemma 2.1. Let κ(j) is the curvature of Γ
(j)
t . Then128

(2.4) T (j)
s = |b(j)|(σ(j)

φφ + σ(j))κ(j)n̂(j).129

Proof. From the Frenet-Serret formula for the non-arc length parameter,130

(2.5) b̂(j)
s = |b(j)|κ(j)n̂(j), n̂(j)

s = −|b(j)|κ(j)b̂(j).131

Thus we obtain,132

T (j)
s =

(
∇nσ(j)

φ · n
(j)
s

)
n̂(j) + σ

(j)
φ n̂(j)

s +
(
∇nσ(j) · n(j)

s

)
b̂(j) + σ(j)b̂(j)

s

=
(
tR∇nσ(j)

φ · b
(j)
s + |b(j)|σ(j)κ(j)

)
n̂(j)

+
(
−|b(j)|σ(j)

φ κ(j) + tR∇nσ(j) · b(j)
s

)
b̂(j).

(2.6)133

Since σ(j) and σ
(j)
φ are positively homogeneous of degree 0 in n(j), we have,134

(2.7) σ
(j)
φ n̂(j) = |b(j)|tR∇nσ(j), σ

(j)
φφ n̂

(j) = |b(j)|tR∇nσ(j)
φ .135

Using the orthogonal relation b(j) · n̂(j) = 0 and the Frenet-Serret formula (2.5), we136

obtain,137

(2.8) b(j)
s · n̂(j) = −b(j) · n̂(j)

s = |b(j)|2κ(j).138

Plugging (2.7) and (2.8) into (2.6), we derive (2.4).139

Next, to ensure that the entire system of grain boundaries is dissipative, i.e.140

d

dt
E(t) ≤ 0,141

we impose Mullins theory (curvature driven growth) [29, 30] as the local evolution law142

stating that the normal velocity v
(j)
n of a grain boundary of Γ

(j)
t (the rate of growth143

of area adjacent to the boundary Γ
(j)
t ), is proportional to the line force T

(j)
s (to the144

work done through deforming the curve), through the factor of the mobility µ(j) > 0 :145

(2.9) v(j)
n n̂(j) = µ(j) 1

|b(j)|
T (j)
s = µ(j)(σ

(j)
φφ + σ(j))κ(j)n̂(j) on Γ

(j)
t , j = 1, 2, 3.146
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Note, that using variation of the energy E with respect to the curve ξ(j), namely,147

v(j)
n n̂(j) = −µ(j) δE

δξ(j)
,148

one can derive the following relation for the line force T
(j)
s [20],149

(2.10) µ(j) 1

|b(j)|
T (j)
s = µ(j)(σ

(j)
φφ + σ(j))κ(j)n̂(j) on Γ

(j)
t , j = 1, 2, 3.150

Since v
(j)
n = dξ(j)

dt · n̂
(j), we obtain that,151

(2.11) T (j)
s · dξ

(j)

dt
=

1

µ(j)
|v(j)
n |2|b(j)| ≥ 0,152

and, thus, the first term on the right-hand side of (2.3) is non-positive. Next, we con-153

sider the second term on the right-hand side of (2.3) which depends on the derivative154

of lattice misorientation, we have that (since α(j) is independent of s),155

3∑
j=1

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds =

3∑
j=1

(∫ 1

0

(
σ

(j+1)
θ |b(j+1)| − σ(j)

θ |b
(j)|
)
ds

)
dα(j)

dt
,156

where we used that σ(4) = σ(1). To ensure, d
dtE(t) ≤ 0 in (2.3), we make an assump-157

tion that for a constant γ > 0, we have the following relation for the rate of change158

of the lattice orientations,159

(2.12)
dα(j)

dt
= −γ

(∫ 1

0

(
σ

(j+1)
θ |b(j+1)| − σ(j)

θ |b
(j)|
)
ds

)
, j = 1, 2, 3160

since the relation (2.12) results in the condition,161

(2.13)

3∑
j=1

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds = − 1

γ

3∑
j=1

∣∣∣∣dα(j)

dt

∣∣∣∣2 ≤ 0162

on the second term in the right-hand side of (2.3). Note, that the proposed relation163

(2.12) can also be derived using variation of the energy E with respect to lattice164

orientation α(j), namely,165

dα(j)

dt
= −γ δE

δα(j)
.166

Remark 2.2. 1. As we discussed, the misorientations are defined using the orien-167

tations, α(j) as, ∆α(j) = α(j−1) − α(j). Conversely, if the sum of the misorientations168

is zero, namely, ∆α(1) + ∆α(2) + ∆α(3) = 0, then the following linear relation,169 
α(3) − α(1) = ∆α(1),

α(1) − α(2) = ∆α(2),

α(2) − α(3) = ∆α(3)

170

can be solved in terms of α(j), and the (inverse) mapping,171 (
∆α(1), ∆α(2), ∆α(3)

)
7→
(
c−∆α(1), c+ ∆α(3), c

)
=
(
α(1), α(2), α(3)

)
172
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MOTION OF GRAIN BOUNDARIES 7

gives the orientations from the misorientations ∆α(j). Here c is an arbitrary param-173

eter. Thus, if we would formulate/derive equations for the misorientation evolution,174

instead of the equation for the orientation (2.12), we would have to impose additional175

constraint, (∆α(1) +∆α(2) +∆α(3))(0) = 0. Furthermore, in that case, the orientation176

of each grain may not be determined uniquely due to the arbitrary parameter c. On177

the other hand, from (2.12) it follows directly that,178

d

dt
(α(1) + α(2) + α(3)) = 0.179

Hence, the sum of the orientations α(1) + α(2) + α(3) has to be a constant. This con-180

straint for the orientations is easily determined by the initial configuration, and both181

the orientations and the misorientations can be determined from the equation (2.12).182

2. As discussed above, in our work, we consider the orientation as the primary vari-183

able, and we enforce dissipation in the system by assuming relation (2.12) through the184

orientation. Note that, we consider the rate of the change on the orientation (rather185

than on the misorientation) since we study system before critical events/disappearance186

events. Moreover, this choice of the orientation as the primary variable is also consis-187

tent with a case of grain boundary energy σ(n(j),∆α(j)). In addition, note that, the188

traditional texture distribution is the orientation distribution. However, in general,189

one can obtain the misorientation distribution, by considering the convolution of the190

orientation distribution with itself, or see the above remark.191

We also note that (2.12) is not a unique way to ensure dissipative system, and192

other relations for the rate of change of the lattice orientations which enforce dissipa-193

tion may be possible. In this work, the particular assumption on the rate of change of194

the lattice orientation (2.12) is motivated by the approximation to the gradient flow195

dynamics near equilibrium [3, 2]. Experimental study of the dynamics of the lattice196

orientations/misorientations will be part of future research.197

Finally, as a part of d
dtE(t) ≤ 0 condition in (2.3), we also assume the dynamic198

boundary conditions for the triple junctions, namely, for a constant η > 0,199

(2.14)
da

dt
(t) = η

3∑
j=1

T (j)(0, t), t > 0.200

This assumption implies that the last term in (2.3) satisfies,201

(2.15) −
3∑
j=1

T (j)(0, t) · da
dt

(t) = −1

η

∣∣∣∣dadt (t)

∣∣∣∣2 ≤ 0.202

Therefore, we obtain from (2.11), (2.13), and (2.15), that the entire system of203

grain boundaries Γ
(j)
t is dissipative, namely,204

(2.16)
d

dt
E(t) = −

3∑
j=1

∫
Γ
(j)
t

1

µ(j)
|v(j)
n |2 dH1 − 1

η

∣∣∣∣dadt (t)

∣∣∣∣2 − 1

γ

3∑
j=1

∣∣∣∣dα(j)

dt

∣∣∣∣2 ≤ 0.205

We combine assumptions (2.9), (2.12), and (2.14) to obtain the following system206

of geometric evolution differential equations to describe motion of grain boundaries207
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Γ
(j)
t , j = 1, 2, 3 together with a motion of the triple junction a(t):208

(2.17)

v(j)
n = µ(j)(σ

(j)
φφ + σ(j))κ(j), on Γ

(j)
t , t > 0, j = 1, 2, 3,

dα(j)

dt
= −γ

(∫ 1

0

(
σ

(j+1)
θ |b(j+1)| − σ(j)

θ |b
(j)|
)
ds

)
, j = 1, 2, 3,

da

dt
(t) = η

3∑
k=1

T (k)(0, t) = η
3∑
k=1

(σ
(k)
φ n̂(k) + σ(k)b̂(k))(0, t), t > 0,

Γ
(j)
t : ξ(j)(s, t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3,

a(t) = ξ(1)(0, t) = ξ(2)(0, t) = ξ(3)(0, t), and ξ(j)(1, t) = x(j), j = 1, 2, 3.

209

210

Remark 2.3. The entire system (2.17) satisfies energy dissipation principle (2.16).211

However, it is important to note, that there are three independent relaxation time212

scales in the system (2.17), namely, µ(j), γ and η (length, misorientation and position213

of the triple junction). Classical approach is to let γ →∞ and η →∞.214

In this work, we let µ(j) →∞, and set γ = η = 1 to study the effect of the dynamics215

of lattice orientations α(j)(t), j = 1, 2, 3 together with the effect of the dynamics of a216

triple junction a(t) on a grain boundary motion. Then, in this limit, Γ
(j)
t becomes217

a line segment from the triple junction a(t) to the boundary point x(j). Hence, we218

have219 {
ξ(j)(s, t) = a(t) + sb(j)(t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3,

a(t) + b(j)(t) = x(j), j = 1, 2, 3.
220

We assume that the surface tension σ is independent of the normal vector n. Here-221

after, we further assume the following three conditions for the surface tension σ. First,222

we assume positivity, namely, there exists a positive constant C1 > 0 such that,223

(2.18) σ(θ) ≥ C1,224

for θ ∈ R. Second, we assume convexity, for all θ ∈ R,225

(2.19) σθ(θ)θ ≥ 0.226

Furthermore, we assume,227

(2.20) σθ(θ) = 0 if and only if θ = 0.228

Remark 2.4. 1. In this work we assume a more general surface energy σ(∆α(j))229

(2.18), (2.20), since we consider a non-equilibrium state at time scale µ(j) → ∞ and230

γ = η = 1. Note that a different example of Read-Shockley type surface energy [31]231

is the classical example of the grain boundary energy derived under the assumption232

of small misorientation angle ∆α(j), and the assumption of the equilibrium state for233

a single fixed grain boundary at time scale µ(j) →∞, η →∞ and γ = 0.234

2. In this work, for simplicity we consider cases of surface tensions without normal235

dependence. This assumption is not as restrictive since our model is in terms of the236

orientation, instead of misorientation, as we had discussed in Remark 2.2. Note also,237

that the convexity condition (2.19) is not needed for local existence results and dis-238

sipation estimates for the energy, Sections 4 -5 and Section 7. The condition (2.19)239
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is essentially used to show the misorientation/orientation estimates, see Sections 3, 5240

and 7, and, as a part of future work, we will investigate possibility of relaxing this241

assumption to derive similar estimates. In addition, in this work, to show unique-242

ness of the solution to (4.1), we proceed using misorientation/orientation estimates243

from Section 5. However, one can obtain uniqueness result without the use of those244

estimates, and instead using the estimate (4.21), in proof of Theorem 4.1. Thus,245

the system of geometric evolution differential equations (2.17) becomes the following246

system of ordinary differential equations (ODE):247

(2.21)



dα(j)

dt
= −

(
σθ(∆α

(j+1))|b(j+1)| − σθ(∆α(j))|b(j)|
)
, j = 1, 2, 3,

da

dt
(t) =

3∑
j=1

σ(∆α(j))
b(j)

|b(j)|
, t > 0,

a(t) + b(j)(t) = x(j), j = 1, 2, 3.

248

Below, we continue with a study of the local well-posedness of the problem (2.21)249

with the initial data given by α
(1)
0 , α

(2)
0 , α

(3)
0 ,a0.250

Remark 2.5. 1. Note, that the reduced model (2.21) is not a standard ODE sys-251

tem. This is the ODE system where each variable is locally constrained. Moreover,252

local well-posedness result (e.g. local existence result) for the original model (2.17)253

will not imply local well-posedness result for the reduced system (2.21) (it is unknown254

if the reduced model (2.21) is actually a small perturbation of (2.17).).255

2. The reduced model (2.21) captures the dynamics of the orientations256

/misorientations and the triple junctions, and at the same time is more accessible257

for the analysis than the model (2.17). In addition, the system (2.21) is consis-258

tent/motivated by the model in [3, 4]. The well-posedness analysis of (2.21) is a step259

towards similar analysis for the model in [3, 4], as well as for the original system260

(2.17).261

3. Equilibrium. We study an associated equilibrium solution of the system262

(2.21), namely,263

(3.1)



0 =
(
σθ(∆α

(j+1)
∞ )|b(j+1)

∞ | − σθ(∆α(j)
∞ )|b(j)

∞ |
)
,

0 =
3∑
j=1

(
σ(∆α(j)

∞ )
) b

(j)
∞

|b(j)
∞ |

,

a∞ + b(j)
∞ = x(j), j = 1, 2, 3.

264

To consider the equilibrium system (3.1), we assume that each Dirichlet point x(j)265

does not coincide with the other Dirichlet point.266

Lemma 3.1. Let (α
(1)
∞ , α

(2)
∞ , α

(3)
∞ ,a∞) be a solution of equilibrium system (3.1).267

Assume (2.19) and (2.20). Then α
(1)
∞ = α

(2)
∞ = α

(3)
∞ .268

Proof. We multiply the first equation of (3.1) by α
(j)
∞ and sum to j = 1, 2, 3, to269

obtain270

(3.2)

0 =

3∑
j=1

(
σθ(∆α

(j+1)
∞ )|b(j+1)

∞ | − σθ(∆α(j)
∞ )|b(j)

∞ |
)
α(j)
∞ =

3∑
j=1

(
σθ(∆α

(j)
∞ )|b(j)

∞ |
)

∆α(j)
∞ .271
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Note that, at least two of the terms |b(j)
∞ |, j = 1, 2, 3 are non zero, otherwise it will272

contradict the assumption that the Dirichlet points x(j) are distinct. Hence, from273

(2.19)-(2.20), we obtain that α
(1)
∞ = α

(2)
∞ = α

(3)
∞ .274

From Lemma 3.1, it follows that, in the equilibrium state, there is no lattice275

misorientation between neighboring grains that have grain boundaries meeting at276

that triple junction. As a consequence, the equilibrium system (3.1) becomes,277

(3.3)


0 =

3∑
j=1

b
(j)
∞

|b(j)
∞ |

,

a∞ + b(j)
∞ = x(j), j = 1, 2, 3.

278

The equation (3.3) is related to the Fermat-Torricelli problem. More precisely, if we279

have that, for each i = 1, 2, 3,280

(3.4)

∣∣∣∣∣∣
3∑

j=1, i 6=j

x(j) − x(i)

|x(j) − x(i)|

∣∣∣∣∣∣ > 1,281

then a∞ is the unique minimizer of the function,282

(3.5) f(a) =

3∑
j=1

|a− x(j)|, a ∈ R2,283

and a∞ 6= x(j) for j = 1, 2, 3 (See [7, Theorem 18.28]). Note, that the assumption284

(3.4) satisfies if and only if all three angles of the triangle, formed by vertices located285

at the nodes x(1), x(2), x(3), are less than 120◦.286

4. Local existence. Here, we discuss local existence which validates the consis-287

tency of the proposed model. Let x(j) ∈ R2, α0 = (α
(1)
0 , α

(2)
0 , α

(3)
0 ) ∈ R3, and a0 ∈ R2288

be given initial data and we consider the local existence of the problem of (2.21),289

namely290

(4.1)



dα(j)

dt
= −

(
σθ(∆α

(j+1))|b(j+1)| − σθ(∆α(j))|b(j)|
)
, j = 1, 2, 3,

da

dt
(t) =

3∑
j=1

σ(∆α(j))
b(j)

|b(j)|
, t > 0,

α(t) = (α(1)(t), α(2)(t), α(3)(t)), t > 0,

a(t) + b(j)(t) = x(j), t > 0, j = 1, 2, 3,

α(0) = α0, a(0) = a0.

291

Assume for each i = 1, 2, 3,292

(4.2)

∣∣∣∣∣∣
3∑

j=1, i 6=j

x(j) − x(i)

|x(j) − x(i)|

∣∣∣∣∣∣ > 1.293

We denote by a∞ 6= x(j) for each j = 1, 2, 3, a solution to the system,294

(4.3)


0 =

3∑
j=1

b
(j)
∞

|b(j)
∞ |

,

a∞ + b(j)
∞ = x(j), j = 1, 2, 3.

295
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The point a∞ is a triple junction point (see Section 3).296

Theorem 4.1 (Local existence). Let x(1), x(2), x(3) ∈ R2, a0 ∈ R2, and α0 ∈297

R3 be given initial data. Assume condition (4.2) for i = 1, 2, 3, and let a∞ be a298

solution of (4.3). Further, assume that for all j = 1, 2, 3,299

(4.4) |a0 − a∞| <
1

2
|b(j)
∞ |.300

Then, there exists a local in time solution (α,a) of (4.1) on [0, Tmax), such that301

(4.5) |a(t)− a∞| < |b(j)
∞ | for all j = 1, 2, 3, and 0 ≤ t < Tmax.302

Furthermore, the maximal existence time Tmax of the solution is estimated by303

Tmax ≥ min

{
|α0|

4(M1 + 8M2|α0|)
∑3
j=1 |b

(j)
∞ |

,
|a0 − a∞|

3M0
,

1

12M1
,

1

8M0

∑3
j=1

1

|b(j)∞ |−2|a0−a∞|

}
,

(4.6)304

where305

M0 := sup
|θ|≤4|α0|

|σ(θ)|, M1 := sup
|θ|≤4|α0|

|σθ(θ)|, M2 := sup
|θ1|,|θ2|≤4|α0|

|σθ(θ1)− σθ(θ2)|
|θ1 − θ2|

.306

Remark 4.2. The Theorem 4.1 provides not only existence of the local in time307

solution for the model (4.1), but it also gives the local existence of the triple junction.308

The estimate (4.5) guarantees that a(t) is the position of the triple junction formed309

by the grain boundaries x(j) − a(t). Note, if a(t) is sufficiently far from the position310

of the triple junction a∞ of the equilibrium state, for instance if x(j) − x(k) is a part311

of a(t) − x(k), then a(t) might not be the triple junction. Further, (4.6) gives the312

explicit dependence of the maximal existence time Tmax on |a0 − a∞|. This is an313

important result for the analysis of the global in time solution which will be part of314

a forthcoming work.315

To show Theorem 4.1, we construct a contraction mapping on a complete metric316

space. Let C2, C3 > 0 and T > 0 be positive constants that we will define later, and317

denote,318

XT := {(α,a) ∈ C([0, T ] ; R3 × R2), ‖α‖C([0,T ]) ≤ C2, ‖a− a∞‖C([0,T ]) ≤ C3}.319

Note that in the definition of the space XT , we use the position of the triple320

junction a∞ at the equilibrium state as the point of reference, rather than the position321

of the triple junction a0 at the initial time as one would consider in the classical ODE322

theory. Such definition of the space XT is employed in order to obtain the estimates323

on the position of the triple junctions from the one of the equilibrium state a∞, (4.5),324

as well as to derive the maximal existence time estimate (4.6).325

Next, define for (α,a) ∈ XT , i = 1, 2, 3, and t > 0326

Φ(i)(α,a)(t) := α
(i)
0 −

∫ t

0

(
σθ(∆α

(j+1)(τ))|b(j+1)(τ)| − σθ(∆α(j)(τ))|b(j)(τ)|
)
dτ,

Ψ(α,a)(t) := a0 +
3∑
j=1

∫ t

0

σ(α(τ))
b(j)(τ)

|b(j)(τ)|
dτ,

(4.7)

327
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12 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

where b(j)(τ) = x(j) − a(τ). Our goal now is to show that (Φ = (Φ(1),Φ(2),Φ(3)),Ψ)328

is a contraction mapping on XT for the appropriate choice of positive constants C2,329

C3, and T > 0. Hereafter we define,330

M0 := sup
|θ|≤2C2

|σ(θ)|, M1 := sup
|θ|≤2C2

|σθ(θ)|, M2 := sup
|θ1|,|θ2|≤2C2

|σθ(θ1)− σθ(θ2)|
|θ1 − θ2|

.331

Later, the constant C2 will be taken to be 2|α0|. Next, two Lemmas 4.3, 4.4 show332

that Φ and Ψ is a map on XT .333

Lemma 4.3. If the conditions below are satisfied,334

(4.8) 2|α0| ≤ C2,335

and336

(4.9) (2M1 + 4M2C2)(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3)T ≤ 1

2
C2,337

then |Φ(α,a)| ≤ C2 for all (α,a) ∈ XT .338

Proof of Lemma 4.3. By the triangle inequality, for 0 ≤ t ≤ T ,339

|Φ(α,a)(t)|

≤ |α0|+
3∑
j=1

∣∣∣∣∫ t

0

(
σθ(∆α

(j+1)(τ))|b(j+1)(τ)| − σθ(∆α(j)(τ))|b(j)(τ)|
)
dτ

∣∣∣∣
≤ |α0|+

3∑
j=1

(∫ t

0

|σθ(∆α(j+1)(τ))− σθ(∆α(j)(τ))||b(j+1)(τ)| dτ

+

∫ t

0

|σθ(∆α(j)(τ))|
∣∣∣|b(j+1)(τ)| − |b(j)(τ)|

∣∣∣ dτ).
340

Next, using that |∆α(j)| ≤ 2C2, and that,341

|σθ(∆α(j+1)(τ))− σθ(∆α(j)(τ))| ≤M2|∆α(j+1)(τ)−∆α(j)(τ)| ≤ 4M2C2,342

we have that,343

|Φ(α,a)(t)| ≤ |α0|+ (2M1 + 4M2C2)T

3∑
j=1

sup
0≤τ≤T

|b(j)(τ)|.344

On the other hand, for j = 1, 2, 3,345

(4.10) |b(j)(t)| = |x(j) − a∞ + a∞ − a(t)| ≤ |b(j)
∞ |+ C3.346

Therefore, from (4.8) and (4.9),347

|Φ(α,a)(t)| ≤ |α0|+ (2M1 + 4M2C2)(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3)T ≤ C2.348

Lemma 4.4. Assume for j = 1, 2, 3 we have that,349

(4.11) C3 < |b(j)
∞ |.350
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Then, 0 < |b(j)
∞ | − C3 ≤ |b(j)(t)| ≤ |b(j)

∞ | + C3, for all j = 1, 2, 3, (α,a) ∈ XT , and351

0 ≤ t ≤ T . Further if352

(4.12) 2|a0 − a∞| ≤ C3,353

and354

(4.13) 3M0T ≤
1

2
C3,355

then |Ψ(α,a)(t)− a∞| ≤ C3, for all (α,a) ∈ XT and 0 ≤ t ≤ T .356

Proof of Lemma 4.4. For (α,a) ∈ XT , and 0 ≤ t ≤ T357

|b(j)
∞ | = |x(j) − a(t) + a(t)− a∞| ≤ |b(j)(t)|+ |a(t)− a∞| ≤ |b(j)(t)|+ C3,358

thus we obtain 0 < |b(j)
∞ | − C3 ≤ |b(j)(t)|. And |b(j)(t)| ≤ |b(j)

∞ | + C3 follows from359

(4.10). To show estimate |Ψ(α,a)(t)− a∞| ≤ C3, we use the assumptions (4.12) and360

(4.13), to obtain that for any (α,a) ∈ XT ,361

|Ψ(α,a)(t)− a∞| ≤ |a0 − a∞|+
3∑
j=1

∣∣∣∣∫ t

0

σ(∆α(j)(τ))
b(j)(τ)

|b(j)(τ)|
dτ

∣∣∣∣
≤ 1

2
C3 +

3∑
j=1

sup
0≤τ≤T

σ(∆α(j)(τ))T

≤ 1

2
C3 + 3M0T ≤ C3,

362

for all 0 ≤ t ≤ T .363

The next two Lemmas 4.5 and 4.6 give the Lipschitz property of the map (Φ,Ψ).364

Lemma 4.5 (Lipschitz estimates). For (α1,a1), (α2,a2) ∈ XT , we have that365

‖Φ(α1,a1)− Φ(α2,a2)‖C([0,T ])

≤ 4M2(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3)T‖α1 −α2‖C([0,T ]) + 6M1T‖a1 − a2‖C([0,T ]).

(4.14)

366

Proof of Lemma 4.5. For 0 ≤ t ≤ T , by the Lipschitz continuity of σθ we obtain367

that368

|Φ(α1,a1)(t)− Φ(α2,a2)(t)|

≤
3∑
j=1

∣∣∣∣ ∫ t

0

(
σθ(∆α

(j+1)
1 )|b(j+1)

1 | − σθ(∆α(j)
1 )|b(j)

1 |

− σθ(∆α(j+1)
2 )|b(j+1)

2 |+ σθ(∆α
(j)
2 )|b(j)

2 |
)
dτ

∣∣∣∣
≤

3∑
j=1

∫ t

0

( ∣∣∣σθ(∆α(j+1)
1 )

∣∣∣ ∣∣∣|b(j+1)
1 | − |b(j+1)

2 |
∣∣∣

+
∣∣∣σθ(∆α(j+1)

1 )− σθ(∆α(j+1)
2 )

∣∣∣ |b(j+1)
2 |

)
dτ

+
3∑
j=1

∫ t

0

(∣∣∣σθ(∆α(j)
1 )
∣∣∣ ∣∣∣|b(j)

1 | − |b
(j)
2 |
∣∣∣+
∣∣∣σθ(∆α(j)

1 )− σθ(∆α(j)
2 )
∣∣∣ |b(j)

2 |
)
dτ.

369
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Next, using b
(j)
k = x(j) − ak, ∆α(j) = α(j−1) − α(j) and (4.10), we have,370

|Φ(α1,a1)(t)− Φ(α2,a2)(t)|
≤ 6M1T‖a1 − a2‖C([0,T ]) + 4M2(|b(1)

∞ |+ |b(2)
∞ |+ |b(3)

∞ |+ 3C3)T‖α1 −α2‖C([0,T ]).
371

Thus, we obtain the inequality (4.14).372

Lemma 4.6 (Lipschitz estimates). Assume condition (4.11) holds true. Then373

for (α1,a1), (α2,a2) ∈ XT , we have that374

‖Ψ(α1,a1)(t)−Ψ(α2,a2)(t)‖C([0,T ])

≤ 6M1T‖α1 −α2‖C([0,T ])

+ 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

)
T‖a1 − a2‖C([0,T ]).

(4.15)375

Proof of Lemma 4.6. For k = 1, 2, denote σ
(j)
k (t) := σ(∆α

(j)
k (t)). For 0 ≤ t ≤ T ,376

we can obtain the following estimate377

|Ψ(α1,a1)(t)−Ψ(α2,a2)(t)| =

∣∣∣∣∣∣
3∑
j=1

∫ t

0

(
σ

(j)
1 (τ)

b
(j)
1 (τ)

|b(j)
1 (τ)|

− σ(j)
2 (τ)

b
(j)
2 (τ)

|b(j)
2 (τ)|

)
dτ

∣∣∣∣∣∣
≤

3∑
j=1

∫ T

0

∣∣∣∣∣σ(j)
1 (τ)

b
(j)
1 (τ)

|b(j)
1 (τ)|

− σ(j)
2 (τ)

b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ dτ
≤

3∑
j=1

∫ T

0

∣∣∣σ(j)
1 (τ)− σ(j)

2 (τ)
∣∣∣ dτ

+
3∑
j=1

∫ T

0

σ
(j)
2 (τ)

∣∣∣∣∣ b(j)
1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ dτ.

378

Since (αk,ak) ∈ XT , we have379 ∣∣∣σ(j)
1 (τ)− σ(j)

2 (τ)
∣∣∣ = |σ(∆α

(j)
1 (τ))− σ(∆α

(j)
2 (τ))|

≤M1|∆α(j)
1 (τ)−∆α

(j)
2 (τ)|

≤ 2M1‖α1 −α2‖C([0,T ]).

380

Hence, we derive that381

3∑
j=1

∫ T

0

∣∣∣σ(j)
1 (τ)− σ(j)

2 (τ)
∣∣∣ dτ ≤ 6M1T‖α1 −α2‖C([0,T ]).382

Next, due to condition (4.11), we can apply Lemma 4.4. Therefore, we have that383

|b(j)
k (τ)| 6= 0 for j = 1, 2, 3, k = 1, 2, and 0 ≤ τ ≤ T . By direct calculations, we have384
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that385

∣∣∣∣∣ b(j)
1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ =
1

|b(j)
1 (τ)|

∣∣∣∣∣b(j)
1 (τ)− |b

(j)
1 (τ)|
|b(j)

2 (τ)|
b

(j)
2 (τ)

∣∣∣∣∣
≤ 1

|b(j)
1 (τ)|

(∣∣∣b(j)
1 (τ)− b(j)

2 (τ)
∣∣∣+

∣∣∣∣∣
(

1− |b
(j)
1 (τ)|
|b(j)

2 (τ)|

)
b

(j)
2 (τ)

∣∣∣∣∣
)

≤ 1

|b(j)
1 (τ)|

(∣∣∣b(j)
1 (τ)− b(j)

2 (τ)
∣∣∣+
∣∣∣|b(j)

2 (τ)| − |b(j)
1 (τ)|

∣∣∣)
≤ 2

|b(j)
1 (τ)|

∣∣∣b(j)
1 (τ)− b(j)

2 (τ)
∣∣∣ .

(4.16)

386

Again, using Lemma 4.4, and due to uniqueness of the point a∞ (see Section 3), we387

have that 0 < |b(j)
∞ | − C3 ≤ |b(j)

1 (τ)| for j = 1, 2, 3, and 0 ≤ τ ≤ T . Thus, we derive388

that389 ∣∣∣∣∣ b(j)
1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ ≤ 2

|b(j)
∞ | − C3

‖a1 − a2‖C([0,T ]),390

and,391

3∑
j=1

∫ T

0

σ
(j)
2 (τ)

∣∣∣∣∣ b(j)
1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ dτ
≤

3∑
j=1

∫ T

0

2M0

|b(j)
∞ | − C3

‖a1 − a2‖C([0,T ]) dτ

≤ 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

)
T‖a1 − a2‖C([0,T ]).

392

Hence, we obtain the desired estimate,393

|Ψ(α1,a1)(t)−Ψ(α2,a2)(t)|
≤ 6M1T‖α1 −α2‖C([0,T ])

+ 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

)
T‖a1 − a2‖C([0,T ]).

394

Proof of Theorem 4.1. We start with given constants C2 and C3 for, C2 := 2|α0|395

and C3 := 2|a0−a∞|. Note, that due to assumption (4.4), we obtain that C3 < |b(j)
∞ |396

for all j = 1, 2, 3, and hence, we have that,397

|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3 ≤ 2(|b(1)

∞ |+ |b(2)
∞ |+ |b(3)

∞ |).398

Next, we will find the bound for the existence time T which will guarantee the con-399

traction mapping on XT . Take time T > 0 as defined below,400

(4.17)

T := min

 C2

8(M1 + 4M2C2)
∑3
j=1 |b

(j)
∞ |

,
C3

6M0
,

1

12M1
,

1

8M0

∑3
j=1

1

|b(j)∞ |−C3

 .401
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Recall, that the space XT (see Section 4) is a complete metric space endowed with a402

distance403

dXT
((α1,a1), (α2,a2)) = ‖α1 −α2‖C([0,T ]) + ‖a1 − a2‖C([0,T ]).404

In addition, definition of constants C2 and C3 above implies conditions (4.8), (4.11),405

and (4.12) in Lemmas 4.3-4.4. Moreover, since we selected T , as406

T ≤ C2

8(M1 + 4M2C2)
∑3
j=1 |b

(j)
∞ |

and T ≤ C3

6M0
,407

we also have that,408

(2M1 + 4M2C2)(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3)T

≤ 4(M1 + 4M2C2)(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |)T

≤ 1

2
C2,

409

and410

3M0T ≤
1

2
C3.411

Thus, the other conditions (4.9) and (4.13) in Lemmas 4.3-4.4 are also satisfied. There-412

fore, we can employ Lemmas 4.3 and 4.4 to show that the mapping413

XT 3 (α,a) 7→ (Φ(α,a),Ψ(α,a)) ∈ XT414

is well-defined. Next, combining estimates (4.14) and (4.15) in Lemmas 4.5-4.6 to-415

gether, we obtain that,416

dX((Φ(α1,a1),Ψ(α1,a1)), (Φ(α2,a2),Ψ(α2,a2)))

≤
(

6M1 + 8M2(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |)

)
T‖α1 −α2‖C([0,T ])

+

(
6M1 + 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

))
T‖a1 − a2‖C([0,T ])

(4.18)

417

for (α1,a1), (α2,a2) ∈ XT . Next, since we selected time T as in (4.17) we have that,418

(4.19) T ≤ C2

8(M1 + 4M2C2)
∑3
j=1 |b

(j)
∞ |
≤ 1

32M2

∑3
j=1 |b

(j)
∞ |

, T ≤ 1

12M1
,419

and,420

(4.20) T ≤

8M0

3∑
j=1

1

|b(j)
∞ | − C3

−1

.421

Using the above estimates on time T , (4.19)-(4.20) in (4.18) we obtain that,422

dX((Φ(α1,a1),Ψ(α1,a1)), (Φ(α2,a2),Ψ(α2,a2)) ≤ 3

4
dX((α1,a1), (α2,a2)).423
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Therefore, by the contraction mapping principle, there is a fixed point (α,a) ∈ XT ,424

such that425

α = Φ(α,a), a = Ψ(α,a),426

which is a solution of the system of differential equations (4.1).427

Moreover, we obtain the following estimates:428

‖α‖C([0,T ]) ≤ 2|α0|, ‖a− a∞‖C([0,T ]) ≤ 2|a− a∞|,

Tmax ≥ min

{
|α0|

4(M1 + 8M2|α0|)
∑3
j=1 |b

(j)
∞ |

,
|a0 − a∞|

3M0
,

1

12M1
,

1

8M0

∑3
j=1

1

|b(j)∞ |−2|a0−a∞|

}
,

(4.21)429

where Tmax is a maximal existence time of the solution (α,a).430

Remark 4.7. Note, that once some a priori estimates for ‖α‖C([0,T ]) and ‖a −431

a∞‖C([0,T ]) are deduced, a global solution of (4.1) can be obtained using the estimate432

of a maximal existence time Tmax.433

5. A priori estimates. We first derive the energy dissipation principle for the434

system (4.1). The system does not depend on parametrization s, hence the energy of435

the system (4.1) is given by436

(5.1) E(t) =
3∑
j=1

σ(∆α(j)(t))|b(j)(t)|.437

Proposition 5.1 (Energy dissipation). Let (α,a) be a solution of (4.1) for438

0 ≤ t ≤ T . Then, for all 0 < t ≤ T , we have the local dissipation equality,439

(5.2) E(t) +

∫ t

0

∣∣∣∣dαdt (τ)

∣∣∣∣2 dτ +

∫ t

0

∣∣∣∣dadt (τ)

∣∣∣∣2 dτ = E(0).440

Proof of Proposition 5.1. Let us first compute the rate of the dissipation of the441

energy of the system (4.1) at time t,442

(5.3)
d

dt
E(t) =

3∑
j=1

σθ(∆α
(j))

(
dα(j−1)

dt
− dα(j)

dt

)
|b(j)|+

3∑
j=1

σ(∆α(j))
b(j)

|b(j)|
· db

(j)

dt
.443

Since (α,a) is a solution of the system (4.1), the right hand side of (5.3) can be444

calculated as,445

3∑
j=1

σθ(∆α
(j))

(
dα(j−1)

dt
− dα(j)

dt

)
|b(j)|

=
3∑
j=1

(
σθ(∆α

(j+1))|b(j+1)| − σθ(∆α(j))|b(j)|
)dα(j)

dt

= −
3∑
j=1

∣∣∣∣dα(j)

dt

∣∣∣∣2 ,
446
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18 Y. EPSHTEYN, C. LIU, AND M. MIZUNO

and447
3∑
j=1

σ(∆α(j))
b(j)

|b(j)|
· db

(j)

dt
= −

∣∣∣∣dadt
∣∣∣∣2 .448

Thus, we obtain the energy dissipation for the system,449

(5.4)
d

dt
E(t) = −

∣∣∣∣dαdt
∣∣∣∣2 − ∣∣∣∣dadt

∣∣∣∣2 .450

Next, integrating (5.4) with respect to t, we have the local dissipation equality (5.2).451

From the energy dissipation and the assumption (2.18), we obtain,452

Corollary 5.2. Let (α,a) be a solution of (4.1) for 0 ≤ t ≤ T . Then, for all453

0 < t ≤ T ,454

(5.5) |b(j)(t)| ≤ 1

C1
E(0).455

Proposition 5.3 (Maximum principle). Let (α,a) be a solution of the system456

(4.1) for 0 ≤ t ≤ T . Then, for all 0 < t ≤ T , we have,457

(5.6) |α(t)|2 ≤ |α0|2.458

Proof of Proposition 5.3. Multiplying the first equation of (2.21) by α(j) and tak-459

ing the sum for j = 1, 2, 3, we obtain,460

1

2

d

dt
|α(t)|2 = −

3∑
j=1

(
σθ(∆α

(j+1))|b(j+1)| − σθ(∆α(j))|b(j)|
)
α(j)

= −
3∑
j=1

(
σθ(∆α

(j))|b(j)|
)

(α(j−1) − α(j))

= −
3∑
j=1

(
σθ(∆α

(j))|b(j)|
)

∆α(j).

(5.7)461

Next, integrating with respect to t, and using the assumption (2.19), we obtain the462

result (5.6).463

Proposition 5.4 (Misorientation estimates). Let (α,a) be a solution of (4.1)464

for 0 ≤ t ≤ T . Then, for all 0 < t ≤ T , we have the following estimate for the465

misorientation,466

(5.8)
3∑
j=1

(∆α(j)(t))2 ≤
3∑
j=1

(∆α(j)(0))2.467

Proof of Proposition 5.4. We take a derivative on the misorientation ∆α(j) with468

respect to t,469

d

dt
∆α(j) = α

(j−1)
t − α(j)

t

= −2σθ(∆α
(j))|b(j)|+ σθ(∆α

(j−1))|b(j−1)|+ σθ(∆α
(j+1))|b(j+1)|.

(5.9)470
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Next we multiply (5.9) by ∆α(j) and take the sum for j = 1, 2, 3, we obtain,471

1

2

d

dt

 3∑
j=1

(∆α(j)(t))2


=

3∑
j=1

(
−2σθ(∆α

(j))|b(j)|+ σθ(∆α
(j−1))|b(j−1)|+ σθ(∆α

(j+1))|b(j+1)|
)

∆α(j)

=
3∑
j=1

σθ(∆α
(j))|b(j)|

(
−2∆α(j) + ∆α(j+1) + ∆α(j−1)

)

= −3
3∑
j=1

σθ(∆α
(j))|b(j)|∆α(j).

(5.10)

472

Next, integrating (5.10) with respect to t, we obtain,473

(5.11)

3∑
j=1

(∆α(j)(t))2 + 6

3∑
j=1

∫ t

0

σθ(∆α
(j))|b(j)|∆α(j) dτ =

3∑
j=1

(∆α(j)(0))2.474

Similar to the Proposition 5.3, we use the convexity assumption (2.19), hence we475

obtain final result (5.8).476

Remark 5.5. 1. Usually, the misorientations are assumed to be bounded by some477

constant, hence the orientations are also bounded. In 2D case, it is reasonable to478

consider misorientations in the interval between −π/4 and π/4 (see, for example, [3]).479

In this case, one can consider the orientations within −π/8 and π/8.480

2. Proposition 5.4 guarantees consistency for misorientations, which is −π/4 ≤481

∆α(j)(t) ≤ π/4, see work, for example, ([2, 3, 4, 5, 15]) for bounds on misorien-482

tation in 2D. Indeed, if the l2 sum of three initial misorientations is bounded by π/4,483

that is (
∑3
j=1(∆α(j)(0))2)

1
2 ≤ π/4, then the magnitude of the misorientation has the484

same bounds |∆α(j)(t)| < π/4 for t > 0.485

6. Uniqueness and continuous dependence. In this section, we show486

uniqueness and continuous dependence on the initial data of the solution of the system487

(4.1).488

Lemma 6.1. For x(1), x(2), x(3) ∈ R2, a01,a02 ∈ R2, and α01,α02 ∈ R3, assume489

that (α1(t),a1(t)) and (α2(t),a2(t)) are classical solutions of (4.1) on time interval490

0 ≤ t ≤ T , associated with the given initial data (α01,a01) and (α02,a02), respectively.491

Next, assume that there exists a constant C4 > 0 such that |b(j)
k (t)| ≥ C4 for 0 ≤ t ≤ T ,492

j = 1, 2, 3 and k = 1, 2. Here, b
(j)
k (t) := x(j) − ak(t), j = 1, 2, 3 and k = 1, 2. Then,493

(6.1)
d

dt
(|α1 −α2|2 + |a1 − a2|2) ≤ C5(|α1 −α2|2 + |a1 − a2|2)494

holds, where C5 > 0 is a positive constant that is independent of (α1,a1) and (α2,a2).495

Remark 6.2. To be precise, the constant C5 > 0, in Lemma 6.1, depends on C1,496
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C4, E1(0) =
∑3
j=1 σ(∆α

(j)
1 (0))|b(j)(0)|, and497

M := sup

{
|σ(θ)|+ |σθ(θ)|+

|σθ(θ1)− σθ(θ2)|
|θ1 − θ2|

:

|θ|, |θ1|, |θ2| ≤ max
k=1,2

(
3∑
j=1

|∆α(j)
k (0)|2)

1
2

}
.

(6.2)498

Proof of Lemma 6.1. Using the equation (4.1), we have that,499

d

dt
(α

(j)
1 − α

(j)
2 ) = −

(
σθ(∆α

(j+1)
1 )|b(j+1)

1 | − σθ(∆α(j+1)
2 )|b(j+1)

2 |
)

+
(
σθ(∆α

(j)
1 )|b(j)

1 | − σθ(∆α
(j)
2 )|b(j)

2 |
)
,

500

and, hence, multiplying by α
(j)
1 − α

(j)
2 and taking the sum for j = 1, 2, 3, we obtain,501

1

2

d

dt
|α1 −α2|2 = −

3∑
j=1

(
σθ(∆α

(j+1)
1 )|b(j+1)

1 | − σθ(∆α(j+1)
2 )|b(j+1)

2 |
)

(α
(j)
1 − α

(j)
2 )

+
3∑
j=1

(
σθ(∆α

(j)
1 )|b(j)

1 | − σθ(∆α
(j)
2 )|b(j)

2 |
)

(α
(j)
1 − α

(j)
2 ).

(6.3)

502

The estimate for the first term on the right hand side of (6.3) is obtained using503

Lipschitz continuity of σθ, (5.5), and (5.6),504 (
σθ(∆α

(j+1)
1 )|b(j+1)

1 | − σθ(∆α(j+1)
2 )|b(j+1)

2 |
)

(α
(j)
1 − α

(j)
2 )

≤ |α1 −α2|

×
(∣∣∣σθ(∆α(j+1)

1 )− σθ(∆α(j+1)
2 )

∣∣∣ |b(j+1)
1 |+

∣∣∣σθ(∆α(j+1)
2 )

∣∣∣ |b(j+1)
1 − b(j+1)

2 |
)

≤ |α1 −α2|
(
M

C1
E1(0)

∣∣∣∆α(j+1)
1 −∆α

(j+1)
2

∣∣∣+M |a1 − a2|
)

≤ 2M

C1
E1(0)|α1 −α2|2 +M |α1 −α2||a1 − a2|,

505

where the constant M > 0 is given by (6.2) and E1(0) =
∑3
j=1 σ(∆α

(j)
1 (0))|b(j)(0)|.506

The second term on the right hand side of (6.3) can be handled the same way. Next,507

using the Young’s inequality for the estimate in the right-hand side of (6.3), we deduce,508

(6.4)
d

dt
|α1 −α2|2 ≤ 6M

(
4

C1
E(0) + 1

)
|α1 −α2|2 + 6M |a1 − a2|2.509

Similarly, from the equation (4.1), we have that,510

d

dt
(a1 − a2) =

3∑
j=1

σ(∆α
(j)
1 )

b
(j)
1

|b(j)
1 |
− σ(∆α

(j)
2 )

b
(j)
2

|b(j)
2 |

=
3∑
j=1

(
σ(∆α

(j)
1 )− σ(∆α

(j)
2 )
) b

(j)
1

|b(j)
1 |

+
3∑
j=1

σ(∆α
(j)
2 )

(
b

(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

)
.

511
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Hence, we obtain,512

1

2

d

dt
|a1 − a2|2

=
3∑
j=1

(
σ(∆α

(j)
1 )− σ(∆α

(j)
2 )
)( b

(j)
1

|b(j)
1 |
· (a1 − a2)

)

+
3∑
j=1

σ(∆α
(j)
2 )

(
b

(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

)
· (a1 − a2)

≤
3∑
j=1

M |∆α(j)
1 −∆α

(j)
2 | |a1 − a2|+

3∑
j=1

σ(∆α
(j)
2 )

∣∣∣∣∣ b(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

∣∣∣∣∣ |a1 − a2|

≤ 6M |α1 −α2| |a1 − a2|+
3∑
j=1

σ(∆α
(j)
2 )

∣∣∣∣∣ b(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

∣∣∣∣∣ |a1 − a2| .

(6.5)513

Next, let us estimate the second term on the right-hand side of the (6.5). Applying514

(4.16), and using that |b(j)
k (t)| ≥ C4, b

(j)
k (t) = x(j)−ak(t) for j = 1, 2, 3 and k = 1, 2,515

we have that,516

σ(∆α
(j)
2 )

∣∣∣∣∣ b(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

∣∣∣∣∣ |a1 − a2| =
2

|b(j)
1 |

σ(∆α
(j)
2 )

∣∣∣b(j)
1 − b

(j)
2

∣∣∣ |a1 − a2|

≤ 2M

C4
|a1 − a2|2 .

517

Hence, we have that,518

(6.6)
d

dt
|a1 − a2|2 ≤ 6M |α1 −α2|2 + 6M

(
2

C4
+ 1

)
|a1 − a2|2 .519

Therefore, by (6.4) and (6.6), we have,520

d

dt
(|α1 −α2|2 + |a1 − a2|2) ≤ C6|α1 −α2|2 + C7|a1 − a2|2,521

where,522

C6 := 12M

(
2

C1
E(0) + 1

)
, C7 := 12M

(
1

C4
+ 1

)
.

523

By the neighboring inequality, we can now show uniqueness of the classical solu-524

tion to the system (4.1).525

Theorem 6.3 (Uniqueness). Consider x(1), x(2), x(3) ∈ R2, and initial data526

a0 ∈ R2 and α0 ∈ R3. Assume also, that there exists a constant C8 > 0, such that527

|b(j)
k (t)| ≥ C8 for 0 ≤ t ≤ T , j = 1, 2, 3 and k = 1, 2. Then, there exists a unique528

classical solution (α(t),a(t)) 0 ≤ t ≤ T of the system (4.1).529

Note that, C5 stays bounded when (α01,a01)→ (α02,a02). Thus, we obtain,530

Theorem 6.4 (Continuous dependence on the initial data). For x(1), x(2),531

x(3) ∈ R2, a01,a02 ∈ R2 and α01,α02 ∈ R3, let (α1,a1) and (α2,a2) be two classical532

solutions of the system (4.1) on 0 ≤ t ≤ T , associated with the given initial data533
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(α01,a01) and (α02,a02), respectively. Assume, that there exists a constant C9 > 0,534

such that |b(j)
k (t)| ≥ C9 for 0 ≤ t ≤ T , j = 1, 2, 3 and k = 1, 2. Then,535

(6.7) |α1 −α2|2 + |a1 − a2|2 ≤ eC5t(|α01 −α02|2 + |a01 − a02|2)536

holds, where C5 > 0 is a positive constant given in Lemma 6.1. In particular, contin-537

uous dependence on the initial data holds, namely,538

‖α1 −α2‖C([0,T ]) + ‖a1 − a2‖C([0,T ]) → 0539

as (α01,a01)→ (α02,a02).540

7. Evolution of grain boundary network. In this section, we extend the541

results obtained above for a system with a single junction to a network of grains542

that have lattice orientations {α(k)}NSG

k=1 , grain boundaries {Γ(j)
t }N

GB

j=1 and the triple543

junctions {a(l)}NTJ

l=1 . We identify the lattice α(k) with the single grain k. Hence, the544

grain boundary energy of the entire network is defined now as,545

(7.1) E(t) =
NGB∑
j=1

∫
Γ
(j)
t

σ(n(j),∆(j)α) dH1,546

where ∆(j)α is a difference between the lattice orientions of the two grains that share547

the same grain boundary Γ(j). The difference ∆(j)α is called a misorientation of the548

grain boundary Γ(j). Next, using the same argument as in Section 2 for a system549

with a single triple junction, we obtain similar expression for the dissipation rate of550

the energy of the grain boundary network,551

d

dt
E(t) = −

NGB∑
j=1

∫
Γ(j)

d

ds
T (j) dH1 +

NSG∑
k=1

∂E

∂α(k)

dα(k)

dt
−
NTJ∑
l=1

∑
a(l)∈Γ

(j)
t

T (j) · da
(l)

dt
.

(7.2)

552

Here,553

(7.3) T (j) = σ
(j)
φ n̂(j) + σ(j)b̂(j),554

and a(l) denotes the triple junction where three grain boundaries meet (we assume555

in our model that only triple junctions are stable). Note that, the line tension vector556

T (j) points toward an inward direction of the grain boundary at the triple junction557

a(l).558

Next, similar to Section 2, we obtain the following system of differential equations559

to ensure that the entire system is dissipative:560

(7.4)

v(j) = µ(j) d

ds
T (j) · n̂(j), j = 1, . . . , NGB,

dα(k)

dt
= −γ δE

δα(k)
, k = 1, . . . , NSG,

da(l)

dt
= η

∑
a(l)∈Γ

(j)
t

T (j), l = 1, . . . , NTJ,

561
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Fig. 3. Example of Γ(j(k1,k2))

where µ(j), γ, η > 0 are positive constants. For simplicity of the calculations below,562

we further assume that the energy density σ(n, θ) is an even function with respect to563

the misorientation θ = ∆(j)α, that is, the misorientation effects are symmetric with564

respect to the difference between the lattice orientations. For the two grains k1 and565

k2 with orientations α(k1) and α(k2), respectively, we introduce notation that will be566

helpful for calculations below, Γ(j) := Γ(j(k1,k2)) a grain boundary which is formed by567

grains k1 and k2 (See Figure 3). We also assume, that if grains k1 and k2 have no568

common interface/grain boundary, then we just set Γ(j(k1,k2)) = ∅. Then,569

(7.5)
δE

δα(k)
=

NSG∑
k′=1,
k′ 6=k

∫
Γ
(j(k,k′))
t

σθ(n
(j(k,k′)), α(k) − α(k′)) dH1.570

We let µ(j) → ∞, γ = η = 1 and as before, we consider surface tension (2.18)-571

(2.20) without normal dependence.572

Then, the problem (7.4) is turned into,573

(7.6)

Γ
(j)
t is a line segment between some a(lj,1) and a(lj,2), j = 1, . . . , NGB,

dα(k)

dt
= −

NSG∑
k′=1,
k′ 6=k

|Γ(j(k,k′))
t |σθ(α(k) − α(k′)), k = 1, . . . , NSG,

da(l)

dt
=

∑
a(l)∈Γ

(j)
t

T (j), l = 1, . . . , NTJ,

574

Due to the convexity assumption (2.19), we obtain the maximum principle for575

α(k). In fact, for a fixed j = 1, . . . , NGB, there are only two grains kj1 , kj2 ∈576

{1, . . . , NSG} such that Γ(j) is formed between grains kj1 and kj2 . Using this fact, we577
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find that,578

NSG∑
k=1

NSG∑
k′=1,
k′ 6=k

|Γ(j(k,k′))
t |σθ(α(k) − α(k′))α(k)

=
NGB∑
j=1

|Γ(j)
t |
(
σθ(α

(kj,1) − α(kj,2))α(kj,1) + σθ(α
(kj,2) − α(kj,1))α(kj,2)

)

=
NGB∑
j=1

|Γ(j)
t |σθ(α(kj,1) − α(kj,2))

(
α(kj,1) − α(kj,2)

)
≥ 0.

(7.7)579

Thus, we can proceed now using the same arguments as in Sections 4-6. To show the580

existence of solution of (7.6), we integrate (7.6) and rewrite in the form of integral581

equations. After that, we can make a contraction mapping argument as it was done582

in Section 4 for a single triple junction. The key ingredient in this approach is to583

show a priori lower bounds for the distance of two triple junctions, similar to Lemma584

4.4. If an initial grain boundary network is sufficiently close to some equilibrium585

state, then any triple junction is close to its associated initial position (moreover, no586

critical events happen during short enough time interval). Thus, we can obtain a587

priori lower bounds for the distance between the two triple junctions. The uniqueness588

and continuous dependence on the initial data can be obtained in a similar way as589

discussed in Theorem 6.3 and 6.4. Indeed, as in Remark 2.4, the convexity assumption590

(2.19) is not needed to show the uniqueness and continuous dependence. Nevertheless,591

the convexity assumption (2.19) and its consequence, the result (7.7) are important if592

one would like to guarantee the maximum principle type result for the orientations,593

similar to Proposition 5.3. Therefore, we obtain,594

Theorem 7.1. In a grain boundary network with lattice orientations, if triple595

junctions at the initial state are sufficiently close to triple junctions at the equilibrium596

state, then the problem (7.6) has a unique time local solution and the magnitude of597

the orientation of each grain is bounded by the l2 sum of the initial orientations of598

the grains in the network, that is, (α(k′)(t))2 ≤
∑
k(α(k)(0))2 for t > 0.599

Remark 7.2. Note, that the proposed model of dynamic orientations (7.4) (and,600

hence, dynamic misorientations, (7.6), or Langevin type equation if critical events601

/grain boundaries disappearance events are taken into account) is reminiscent of the602

recently developed theory for the grain boundary character distribution (GBCD) [5,603

3, 4, 2], which suggests that the evolution of the GBCD satisfies a Fokker-Planck604

Equation (GBCD is an empirical distribution of the relative length (in 2D) or area605

(in 3D) of interface with a given lattice misorientation and normal). More details will606

be presented in future studies.607

Large time asymptotic analysis of the model proposed in the current work will be608

presented in the forthcoming paper.609
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