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a b s t r a c t 

Self-assembly of proteins towards amyloid aggregates is a significant event in many neu- 

rodegenerative diseases. Aggregates of low-molecular weight called oligomers are largely 

the primary toxic agents in many of these maladies. Therefore, there is an increasing in- 

terest in understanding their formation and behavior. In this paper, we build on our previ- 

ously established theoretical investigations on the interactions between A β and lipids (L) 

that induces off-pathway aggregates under the control of L concentrations. Here, our pre- 

viously developed competing game theoretic framework between the on- and off-pathway 

dynamics has been expanded to understand the underlying network topological structures 

in the reaction kinetics of amyloid formation. The mass-action based dynamical systems 

are solved to identify dominant pathways in the system with fixed initial conditions, and 

variations in the occurrence of these dominant pathways are identified as a function of 

various seeding conditions. The mechanistic approach is supported by thermodynamic free 

energy computations which helps identify stable reactions. The resulting analysis provides 

possible intervention strategies that can draw the dynamics away from the off-pathways 

and potential toxic intermediates. We also draw upon the classic literature on network 

thermodynamics to suggest new approaches to better understand such complex systems. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

Aggregation of misfolded or disordered proteins and concomitant amyloid formation is a key pathogenic event in many 

neurodegenerative and other maladies [3] . Amyloid aggregation is a nucleation-dependent process in which a rate-limiting 

formation of an aggregate with a specific mass and conformation is a critical step for the kinetically-favored elongation 

process that follows [3] . Molecular details involved during the pre-nucleation events remain unclear, but are believed to be 

stochastic, especially for intrinsically disordered proteins such as amyloid- β (A β) and α-synuclein ( αS), which are involved 

in Alzheimer disease (AD) and Parkinson disease (PD), respectively. In several neurodegenerative disorders, low molecular 

weight oligomers formed along the aggregation pathway are known to be the most neurotoxic species [3,23] , making the

rate-limiting step of nucleus formation to be one of the key events in the etiology of these diseases. Highly stochastic reac-

tions during the prenucleation phase renders proetins to adopt multiple aggregation pathways (on- and off-) and different 
∗ Corresponding author. 

E-mail address: vaidyaa@mail.montclair.edu (A. Vaidya). 

https://doi.org/10.1016/j.amc.2020.125778 

0 096-30 03/© 2020 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2020.125778
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2020.125778&domain=pdf
mailto:vaidyaa@mail.montclair.edu
https://doi.org/10.1016/j.amc.2020.125778


P. Ghosh, J. Pateras, V. Rangachari et al. Applied Mathematics and Computation 393 (2021) 125778 

Fig. 1. A schematic of the aggregation pathways and the corresponding reactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

oligomer conformations depending on the reactions conditions, such as the presence of membrane lipids [7,9,13,17,21] . More- 

over, multiple pathways can generate different oligomer and fibrillar structures with varying toxicities. A growing number 

of studies seem to indicate that polymorphism and heterogeneity in the structure of the aggregates seems to contribute 

to phenotypes observed in AD patients [19] . Therefore, it is important to understand the dynamics of aggregation in the

perspective of factors controlling multiple pathways not just in AD but also in many other neurodegenerative diseases. The 

phenomenon of seeding among amyloid proteins has been well-established. Addition of sub-stochiometric amounts of pre- 

formed amyloid aggregates as seeds accelerates aggregation [8,14,22] . Such seeding reactions further present the possibility 

of propagating distinct aggregate structures. 

Recently, using a six-species model for A β aggregation along competing pathways, we determined which pathway dom- 

inates as a function of lipid concentrations using a game theoretic mathematical formulation [5] . In this paper, we extend

this approach by examining in detail how the network of pathways could predominate a feasible reaction pathway, and 

what thermodynamic weight such pathways may endure. 

We begin with laying out the modeling approach and the kinetic model system. We also introduce the underlying com- 

petitive elements of this model between the on- and off- pathways to aggregation; our modeled network competition reveals 

itself through the underlying network topological structure in the system, which is discussed in Section 2.3 . The identifi-

cation of the network structure and resulting definitions allow us to lay out the fundamental questions being investigated 

in a clear manner. Section 3 is devoted to the results of the aggregation kinetics computations and an analysis of the var-

ious steady state, dominant phases or winning topological structures. A thermodynamic analysis of these various states in 

Section 3.2 allows for a determination of stability of these states. The discussion in Section 4 , provides a synthesis of the

different mechanistic and energetic elements that we have identified - via a categorial analysis. A set-based categorization 

of the network topological paths helps to identify underlying patterns and unravel the complexity of our chosen system. 

2. Mathematical modeling approach 

Major obstacles to investigating amyloid systems is that they are complex and stochastic. Complex amyloid systems pre- 

clude a meaningful full-scale mathematical analysis. Therefore, analyzing every step of the model and comparing to actual 

data is not only difficult and time consuming but also unlikely to yield meaningful solutions. The model presented here is

simplified, consisting of only six species of Aβ with the objective of understanding the dynamics of the system at a rudi-

mentary level. The six-species model can be considered as a characterization of three bins each for the on and off-pathways;

the first bin represents monomeric species, the second bin (denoted by the subscript n, represents the nucleus (small olig- 

moers) and the final bin, denoted by subscript m, stands for larger oligomers. However, despite the apparent simplicity, 

the model provides a wealth of biophysical insights, as previously demonstrated [5,20] . Furthermore, the simplified model 

(shown in Fig. 1 ) also correlates well with experimental data and larger scale models. In this paper, the problem of amyloid

aggregation is analyzed in several phases. In the first stage, the model system and appropriate reaction equations and rates 

are identified. This results in a system of differential equations based on mass-action principles. 

Even with just six species (see Fig. 1 ) there are infinitely many rate regimes that one could investigate, most of which

could be physically insignificant. Thus, an exhaustive sweep of all parameter values was not made. Instead a select few 

have been chosen to experiment with physically meaningful rate regimes about which we vary our key parameters. In the 

following model, oligomers can react with lipids L to create off-pathway oligomers, as demonstrated in our previous work 

[21] . The system of chemical reactions in our model consists of the non-prime species, A 1 , A n , and A m 

representing on-

pathway A β monomers and oligomers; whereas the prime species, A 

′ 
1 , A 

′ 
n , and A 

′ 
m 

, are the off-pathway species which are

created through a reaction with the fatty acid micelles, L . In the computations to follow, for each species, n = 12 and m = 24

unless otherwise specified; which denotes the order of oligomer [6] . 
2 
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2.1. Reaction equations 

Using the Law of Mass Action Kinetics, the system of differential equations was formulated as follows [5] 

dA 1 

dt 
= nk −2 A n − nk + 2 A 

n 
1 + k −1 A 

′ 
1 − k + 1 A 1 L (1) 

dA 

′ 
1 

dt 
= nk −3 A 

′ 
n − nk + 3 A 

′ n 
1 + k + 1 A 1 L − k −1 A 

′ 
1 (2) 

dA n 

dt 
= k + 2 A 

n 
1 + 

m 

n 

k −5 A m 

+ k −4 A 

′ 
n − k −2 A n − k + 4 A n L − m 

n 

k + 5 A 

m 
n 

n (3) 

dA 

′ 
n 

dt 
= k + 3 A 

′ n 
1 + k + 4 A n L + 

m 

n 

k −6 A 

′ 
m 

− k −3 A 

′ 
n −

m 

n 

k + 6 A 

′ m n 
n − k −4 A 

′ 
n (4) 

dA m 

dt 
= k + 5 A 

m 
n 

n − k −5 A m 

(5) 

dA 

′ 
m 

dt 
= k + 6 A 

′ m n 
n − k −6 A 

′ 
m 

(6) 

This system is then put into non-dimensional form. Using A 0 as the characteristic concentration of monomers and 

1 
k −

1 

the characteristic time, the dimensionless species were defined as follows 

B 1 = 

A 1 

A 0 

; B n = 

A n 

A 0 

; B m 

= 

A m 

A 0 

; B 

′ 
1 = 

A 

′ 
1 

A 0 

; B 

′ 
n = 

A 

′ 
n 

A 0 

; B 

′ 
m 

= 

A 

′ 
m 

A 0 

(7) 

The reaction constants are defined as follows: 

α1 = 

k −
2 

k −
1 

;α2 = 

k + 
2 

A 

n −1 
0 

k −
1 

;α3 = 

k + 
1 

L 

k −
1 

;α4 = 

k + 
4 

L 

k −
1 

;α5 = 

k −
5 

k −
1 

;α6 = 

k + 
6 

A 

m 
n −1 

0 

k −
1 

(8) 

β1 = 

k −
3 

k −
1 

;β2 = 

k + 
3 

A 

n −1 
0 

k −
1 

;β3 = 

k + 
5 

A 

m 
n −1 

0 

k −
1 

;β4 = 

k −
4 

k −
1 

;β5 = 

k −
6 

k −
1 

(9) 

Note that both α3 and α4 have a factor L which is responsible for off-pathway aggregation. These are the bridge variables

between on- and off-pathway species in the analysis which follows. The dimensionless system can be written as 

dB 1 

ds 
= nα1 B n − nα2 B 

n 
1 + B 

′ 
1 − α3 B 1 (10) 

dB 

′ 
1 

ds 
= nβ1 B 

′ 
n − nβ2 B 

′ n 
1 + α3 B 1 − B 

′ 
1 (11) 

dB n 

ds 
= α2 B 

n 
1 − α1 B n + 

m 

n 

α5 B m 

+ β4 B 

′ 
n − α4 B n − m 

n 

β3 B 

m 
n 

n (12) 

dB 

′ 
n 

ds 
= β2 B 

′ n 
1 − β1 B 

′ 
n + α4 B n + 

m 

n 

β5 B 

′ 
m 

− m 

n 

α6 B 

′ m n 
n − β4 B 

′ 
n (13) 

dB m 

ds 
= β3 B 

m 
n 

n − α5 B m 

(14) 

dB 

′ 
m 

ds 
= α6 B 

′ m n 
n − β5 B 

′ 
m 

(15) 

The governing Eqs. (10) –(15) contain a plethora of parameters, which include 12 rate constants and the parameters m 

and n which are indicative of the oligomer/nucleus and fibril size, adding to the complexity of the problem. Based on pre-

vious studies [5,6,20] , sample non-dimensional rate constants are defined for the study, as indicated in Table 1 . The Type

1 model is a symmetric setup whose base case was previously investigated [5] , while the Type 2 model is based on more

biophysically relevant considerations, studied by Powers and Powers [17] . While the values of the rate constants here are

somewhat arbitrary, the ratios for the forward to backward rate constants chosen are based on sound biophysical reason- 

ing and considering the rate constant estimates from more detailed simulation models (considering many more oligomer 

species) in our prior work [5] . In both models the non-dimensionalization is performed such that one of the bridge param-

eters is set to unity, ultimately leaving us with two non-dimensional free bridge-parameters, α and α which are varied 
3 4 

3 
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Table 1 

Table shows two sets of parameters used in the modeling. The first, Model 1, is based 

on a symmetric distribution of rate constants where all forward and backward rates 

in the on and off pathways are taken to be the same, respectively. The second model, 

Model 2, is more biophysically relevant and the distribution is based on the suggestion 

by Powers and Powers [17] . 

Model Type α1 α2 α5 β1 β2 β3 β4 β5 α6 

1 0.001 1 0.001 0.001 1 1 1 0.001 1 

2 0.001 1 0.0001 0.005 10 1 1 0.005 10 

Fig. 2. This figure shows a contour plot of the ratio of B m /B ′ m for (a) the Type 2 base model with IC = (1 , 0 , 0 , 0 , 0 , 0) and (b) Type 2 seeded model with 

IC = (1 , 0 , 0 , 0 , 1 . 5 , 0) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

between 0 and 2. This rate range is indicative of lipid addition to the system, where a maximum of 2 sufficiently displays

the possible dynamics in the system. 

The system of Eqs. (10) –(15) is also highly sensitive to perturbations of initial conditions. An initial conditions vector will 

often be referred to, whose values take the following order IC = (B 0 
1 
, B ′ 0 

1 
, B 0 n , B 

′ 0 
n , B 

0 
m 

, B ′ 0 m 

) . Here, B 0 
1 
= 1, since our characteristic

monomer concentration A 0 = A 1 was chosen. The effect of initial conditions on our system by ’seeding’ different species was

studied. In other words, the seeded species’ initial concentration B 0 
i 

will be chosen such that B 0 
i 

> B 0 
1 

= 1 and B 0 
j 
= 0 for all

j � = i and j � = 1 . (eg., IC = (1 , 0 , 0 , 0 , 1 . 5 , 0) is the B m 

seeded case). 

2.2. Pathway competition 

Our previous work [5] has revealed the importance of a game-theoretic approach. One can analyze the problem of on and

off pathway persistence through an investigation of the conditions which foster the domination of these pathways. To define 

this problem from a game-theoretic perspective, the individual players are identified as the species B 1 , B 
′ 
1 
, B n , B 

′ 
n , B m 

, B ′ m 

. Two

major pathways are defined: (1) On-Pathway which is the collection ( B 1 , B n , B m 

) and (b) Off-Pathway, denoted by ( B ′ 
1 
, B ′ n , B ′ m 

).

The game is determined by the Eqs. (10) –(15) and the winner of either pathway is ultimately chosen by which of B m 

or B ′ m 

dominates. 

An apt way to study the problem is to specifically look at the ratio S m 

= 

B m 
B ′ m 

where S m 

> 1 suggests domination of the

on-pathway while, S m 

< 1 is indicative of the reverse. The Fig. 2 shows two instances of variations in S m 

for the Type 2

model, for changing values of α3 and α4 , which control the phase change. Fig. 2 (a), (b) correspond to two different initial

conditions which have particular relevance for this study and will be discussed in greater detail in subsequent sections. In 

the Fig. 2 , the dark blue regions correspond to S m 

< 1 while in all other regions of the graph, S m 

> 1 . The data suggests that

in case (a), with initial condition IC = (1 , 0 , 0 , 0 , 0 , 0) , the outcome of the competition is mostly independent of the first

bridge, α3 but strongly depends on α4 . However, even with a small change in the initial conditions IC = (1 , 0 , 0 , 0 , 1 . 5 , 0) ,

the S m 

contour changes to reveal a single victor in this domain, namely B m 

. Even though S m 

reveals the endgame, the

process of arriving at this fibril stage along any pathway is more nuanced. Fig. 2 does not reveal anything about the nature

of domination of the monomers or other oligomers along the pathway. A more detailed study of the competition between 

all like-species in the system is needed. 

2.3. Network topologies 

Next, we identify embedded network structures corresponding to aggregation paths. As mentioned earlier, the biophys- 

ical problem of protein aggregation being modeled is a complex, large reaction network. Even if one were to approximate 
4 
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Table 2 

This table depicts the number of possible 

distinct aggregation pathways (or network 

topologies) in an n̄ × m̄ system. This pa- 

per examines a 2 × 3 system which con- 

tains eight distinct pathways. 

# Paths → 1 2 n̄ 

# Species per path ↓ 
1 1 2 n̄ 

2 1 4 n̄ 2 

3 1 8 © n̄ 3 

m̄ 1 2 m̄ n̄ m̄ 

Fig. 3. This figure shows the 8 different network topologies or reaction paths that can be identified for this system. Each path is identified by three 

different kinds of labels which will be utilized in different context in the rest of the paper. It is important to note that the color scheme adopted, which 

will be used consistently throughout the paper. 

 

 

 

 

 

 

 

 

 

 

the dynamics using a binary model of on- and off-pathway, the number of species and reactions remain computationally ex- 

pensive. The Table 2 shows the complexity of paths which exists for any n̄ × m̄ system, where n̄ is the number of pathways 

and m̄ is the number of species per pathway. 

Our previous work based upon four species [20] and six species [5] models have shown to yield fruitful results in com-

parison with experiments. In this paper, we continue to focus our attention on the six species model with greater em-

phasis on the reaction network aspect of the problem which offers a lot of room for meaningful exploration of the in-

finitely possible dimensionalities of our system, demonstrated by Table 2 . Other choices of n and m have been explored (see

Appendix B and also [5] ) and the outcomes are seen to be qualitatively similar to the one shown here. Thus we choose to

present a reasonably simple representative case. In the entire phase space ( 0 < α3 < 2 , 0 < α4 < 2 ) taken up by each of the

paths, with changes to the pair ( n, m ), small changes regarding a path’s domination at any given bridge-rate combination

were seen. The path’s resiliency to changes in n and m reveal their ubiquity and theoretical significance. Before proceeding 

further, we first define the topological features of our model and the language used to describe them. These definitions

allow us to discuss features of this problem in a more consistent manner. 

Definition 2.1. We define the dominant path for an n̄ × m̄ system by ( γ (1) 
i 

, γ (2) 
i 

, ..., γ ( ̄n ) 
i 

) where 1 ≤ i ≤ n̄ ̄m . Here γ (1) 
i 

is the

collection of network paths that end in the on-pathway fibril while all other γ (k ) 
i 

( k � = 1 ) ends in the off-pathway. In the

special case of n̄ = 2 and m̄ = 3 , we have the following definitions in accordance with Fig. 3 , with γ (2) 
i 

= ˜ γi : 

γ1 = OOO ; γ2 = F OO ; γ3 = OF O ; γ4 = F F O ;
˜ γ1 = F F F ; ˜ γ2 = OF F ; ˜ γ3 = F OF ; ˜ γ4 = OOF ;

Definition 2.2. We define an n̄ × m̄ pathway-label by P ( ̄m , ̄n ) as follows 

P( m̄ , n̄ ) = 

n̄ m̄ ∑ 

i =1 

n̄ ∑ 

k =1 

p (k ) 
i 

γ (k ) 
i 

(16) 
5 
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Fig. 4. This figure shows the phase diagram for the base case for the two models (see Table 1 ). Panel (a) and (b) depict the emergence of different 

dominant topologies as a function of α3 and α4 , for type 1 and 2 models respectively. Panels (c) and (d) show the distribution of the various network 

paths in the phase space α3 - α4 . 

1  

 

 

Q

Q

Q

Q

 

 

 

 

 

1 = 

n̄ m̄ ∑ 

i =1 

(
p (1) 

i 
γ (1) 

i 
+ p (2) 

i 
γ (2) 

i 
+ · · · + p ( ̄n ) 

i 
γ ( ̄n ) 

i 

)
(17) 

 = p (1) 
1 

γ (1) 
1 

+ p (2) 
1 

γ (2) 
1 

+ · · · + p ( ̄n ) 
1 

γ ( ̄n ) 
1 

+ p (1) 
2 

γ (1) 
2 

+ p (2) 
2 

γ (2) 
2 

+ · · · + p ( ̄n ) 
2 

γ ( ̄n ) 
2 

+ p (1) 

2 ̄m 
γ (1) 

2 ̄m 
+ p (2) 

2 ̄m 
γ (2) 

2 ̄m 
+ · · · + p ( ̄n ) 

2 ̄m 
γ ( ̄n ) 

2 ̄m 
(18)

where p (k ) 
i 

, 1 ≤ k ≤ n̄ represent the probability of the dominant path and are computed using the solutions of the Eqs. (10) –

(15) . 

Definition 2.3. We define the set of dominant networks as follows: 

S IC = 

{
γ (k ) 

i 
| 1 ≤ k ≤ n̄ , 1 ≤ i ≤ n̄ 

m̄ 

}
(19) 

with the default baseline case S ( 1 , 0 , 0 , 0 , 0 , 0 ) ≡ S 0 . 

It is worth noting that the rate constants αk , βk ( 1 ≤ k ≤ 6 ) determine the nature of the sets S ( IC ) and the probabilities

depend strongly upon the initial conditions, i.e. ( B 0 
1 
, B ′ 0 

1 
, B 0 n , B 

′ 0 
n , B 

0 
m 

, B ′ 0 m 

). With these definitions in hand, the central questions

that we address in this paper can be restated in the topological language we introduce here. More specifically, 

1 : How do we identify the elements of S? 

2 : Can we define the mapping � such that � : S i → S j , where i � = j? 

3 : Under what conditions do the various network topologies dominate? 

4 : What are the conditions under which specific paths remain stable? 

In our recent paper [5] , the idea of analyzing this problem from a game-theoretic point of view was introduced. This

entails examining the concentration of the different species under conditions of dynamic equilibrium along the two different 

pathways and accordingly identifying the dominant paths in the system. The players in the game are the paths, γ (k ) 
i 

, whose

concentrations are controlled by the various parameters in the problem. The outcome of such a ’game’ is best visualized

using a phase diagram (see Fig. 4 ) which shows the dominant topologies as a function of the bridge parameters α3 and α4 .

Each pathway is identified using a different color, shown in Fig. 3 and also identified using a three-letter code comprising

of ’O’ and ’F’ which respectively denote the domination of an on-pathway or off-pathway species. Our computations were 
6 
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Table 3 

Probabilities of the dominant pathways as a function of seeding. 

Model Seeding p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 

(1,0,0,0,0,0) 0.272 0.229 0.000 0.002 0.270 0.227 0.000 0.000 

(1,0,1.5,0,0,0) 0.272 0.274 0.000 0.000 0.249 0.227 0.000 0.000 

Type 1 (1,0,0,1.5,0,0) 0.249 0.227 0.000 0.000 0.272 0.274 0.000 0.000 

(1,0,0,0,1.5,0) 0.272 0.274 0.023 0.025 0.224 0.204 0.000 0.000 

(1,0,0,0,0,1.5) 0.247 0.204 0.000 0.000 0.274 0.249 0.023 0.002 

(1,0,0,0,0,0) 0.270 0.227 0.054 0.068 0.181 0.199 0.000 0.000 

(1,0,1.5,0,0,0) 0.240 0.240 0.245 0.227 0.023 0.025 0.000 0.000 

Type 2 (1,0,0,1.5,0,0) 0.247 0.229 0.068 0.045 0.204 0.206 0.000 0.000 

(1,0,0,0,1.5,0) 0.274 0.249 0.247 0.229 0.000 0.000 0.000 0.000 

(1,0,0,0,0,1.5) 0.249 0.227 0.050 0.045 0.206 0.222 0.000 0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conducted by solving the Eqs. (10) –(15) for α3 and α4 between 0 and 2 in increments of 0.1. The phase diagram is uniquely

dependent upon the initial conditions chosen, which we also refer to as ’seeding’. Variations in the phase diagrams provide 

valuable information about bifurcations and emergence of new structures. 

3. Results 

We examined the evolution of network topologies and their emergence and disappearance under various conditions, 

which are best visualized by means of a ’phase diagram’. We also examined the possible control mechanisms that move 

the phase diagrams in desirable ways. First, the ’base-case’ for the Type 1 and Type 2 models described in Table 1 was

examined, with the initial conditions such that B 0 
1 

= 1 with all others set to zero. The approach adopted in this section

specifically addresses questions Q1 –Q3 , at least in part. 

3.1. Analysis of topological phase diagrams 

Understanding network topologies is significant in the context of strain generation among amyloid aggregates. Not only 

do aggregates generated via different networks and pathways differ in their temporal resolutions, they may also do so 

in their thermodynamic stabilities. Therefore, understanding network topologies in conjunction with delineating energetic- 

mechanistic landscape is critical to identify thermodynamically stable off-pathway aggregates. Such a contour will enable 

predictions of strain generation as a function of temporal parameters. 

As in our previous work [5] , it is instructive to examine the phase diagram which depicts the dominant network paths

in the system as a function of the bridge parameters. Fig. 4 shows the dominant phases in the 0 ≤ α3 , α4 ≤ 2 space, for the

base case of the Type 1 and 2 models along with the distributions of the respective components. 

The Fig. 4 (c) and (d) show stark contrast; while the Type 1 base model only permits essentially four network paths,

i.e. S T ype 1 
0 

= { γ1 , γ2 , ˜ γ1 , ˜ γ2 } , for the Type 2 model, S T ype 2 
0 

= { γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 } . The emergence of the new paths in a

substantial manner is primarily due to the choice of rate constants. The path labels allow us to represent the system more

compactly with the respective probabilities, 

P 

T ype 1 
0 

= 0 . 27 γ1 + 0 . 23 γ2 + 0 . 27 ̃  γ1 + 0 . 23 ̃  γ2 

P 

T ype 2 
0 

= 0 . 27 γ1 + 0 . 23 γ2 + 0 . 05 γ3 + 0 . 07 γ4 + 0 . 18 ̃  γ1 + 0 . 2 ̃  γ2 

Next are seeding studies, which were computed with various initial conditions. In each of the studies, B 0 
1 

is at unity,

however one of the other species deviates from the base case and contains a non-zero initial concentration ranging from 0 to

1.5 times B 0 
1 
. The Fig. 5 shows the phase diagrams corresponding to various seedings: (a) B 0 n = 1 . 5 , (b) B ′ 0 n = 1 . 5 , (c) B 0 m 

= 1 . 5

and (d) B ′ 0 m 

= 1 . 5 . The related Fig. 6 shows the respective fractions of the dominant pathways in each of the phase diagrams.

Of particular importance is the change in the percent of the ˜ γi pathways and the emergence of new pathways which are

not observed in the base cases in either of the Type 1 or 2 models. The Table 3 provides the path probabilities for the Type

1 and 2 models with various seeding. The table clearly shows the impact of the rate constants upon the probabilities but

also how seeding controls the emergence of the network paths. Of particular importance is the cell highlighted in green, 

which correspond to seeding via B n and B m 

, i.e. along the on-pathway. Clearly these seedings are significant and result in

the depletion or elimination of all network paths which terminate in the off-pathway. 

3.2. Thermodynamics of aggregation pathways 

It seems that a correlation exists between thermodynamic stabilities of aggregates and their cellular effects and toxicities. 

It is well known that aggregates such as fibrils, profibrils and low-molecular weight oligomers differ in their stabilities and 

show differential effect on cells. Therefore, it is prudent to understand aggregate stabilities formed along the networks. In 

our previous work [5] , we discussed the outcome of a linearized stability analysis for the same six-species system. Here, an
7 
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Fig. 5. This figure shows the phase diagram for Type 2 model under different seedings, beyond the base case : (a) B 0 n = 1 . 5 ; (b) B 0 m = 1 . 5 ; (c) B ′ 0 n = 1 . 5 ; (d) 

B ′ 0 m = 1 . 5 . 

Fig. 6. Histogram of path probabilities as a function of various seedings for the Type 2 model: (a) B 0 1 = 1 , B 0 n = 1 . 5 ; (b) B 0 1 = 1 , B ′ 0 n = 1 . 5 ; (c) B 0 1 = 1 , 

B 0 m = 1 . 5 ; (d) B 0 1 = 1 , B ′ 0 m = 1 . 5 . 
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Table 4 

Construction of the different topologies as a union of sub-paths. 

Path γ1 n γnm γ1 ′ n ′ γn ′ m ′ γ11 ′ γnn ′ γnm ′ γn ′ m 

γ1 + + 

γ2 + + + –

γ3 + + + 

γ4 + + + 

˜ γ1 + + + 

˜ γ2 + + + 

˜ γ3 + + – + 

˜ γ4 + + 

 

 

 

 

 

alternative approach to understanding the stability of this complex system was taken by investigating the thermodynamics 

of the system under variations of the bridge parameters, through the analysis of quantities such as fluxes, forces and entropy

production (see [10] ). For ease of computation, the network paths are further sub-divided into sub-paths as indicated in 

Table 4 . 

Each pathway in Fig. 3 is the union of single paths which can be constructed in accordance with Table 4 . For instance,

γ1 := γ1 n ∪ γnm 

and γ2 := γ11 ′ ∪ γ1 ′ n ′ ∪ γn ′ n ∪ γnm 

, where γn ′ n is the reverse path of γnn ′ . The path-matrix can be defined as

follows: 

C = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 0 0 0 0 0 0 

0 1 1 0 1 −1 0 0 

1 0 0 0 0 1 0 −i 
0 0 1 0 1 0 0 −i 
0 0 1 1 1 0 0 0 

1 0 0 1 0 1 0 0 

0 0 1 0 1 −1 i 0 

1 0 0 0 0 0 i 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

The matrix can be further decomposed into C 
ab 

= C (re ) 
ab 

+ i C (im ) 
ab 

, where 

C (im ) 

ab 
= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 −1 

0 0 0 0 0 0 0 −1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

;C (re ) 

ab 
= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 0 0 0 0 0 0 

0 1 1 0 1 −1 0 0 

1 0 0 0 0 1 0 0 

0 0 1 0 1 0 0 0 

0 0 1 1 1 0 0 0 

1 0 0 1 0 1 0 0 

0 0 1 0 1 −1 0 0 

1 0 0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

where C (im ) 
ab 

is indicative of emergent pathways , namely γnm 

′ and γn ′ m 

which are not physical reaction paths in the origi- 

nal system ( Fig. 1 ). The emergence of these ’diagonal’ paths can be accounted for using certain isomorphisms, which are

identified in Fig. 7 which essentially state the following identities, in terms of sub-paths: 

γ3 ≡ γ1 i ∪ γnn ′ ∪ γnm 

γ4 ≡ γ11 ′ ∪ γ1 ′ n ′ ∪ γn ′ m 

˜ γ3 ≡ γ11 ′ ∪ γ1 ′ n ′ ∪ γn ′ n ∪ γn ′ m 

′ 

˜ γ4 ≡ γ1 n ∪ γnm 

′ . 

This equivalency permits computation of several thermodynamic quantities since rate constants for these isomorphic paths 

are well defined. These isomorphic paths are chosen such that: (a) there is no re-tracing of steps and (b) the terminal

diagonal path is replaced by an appropriate direct one. 

As a result, the path-matrix C can be redefined as 

C = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 0 0 0 0 0 0 

0 1 1 0 1 1 0 0 

1 1 0 0 0 1 0 0 

0 1 1 0 1 1 0 0 

0 0 1 1 1 0 0 0 

1 0 0 1 0 1 0 0 

0 0 1 1 1 −1 0 0 

1 0 0 1 0 −1 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
9 
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Fig. 7. This figure shows isomorphic versions of the emergent network paths γ3 , γ4 , ˜ γ3 and ˜ γ4 , respectively. 
Similarly, the fluxes corresponding to these pathways can be constructed following the equation 

J = C · J 
sub 

(20) 

or in expanded form ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J 1 
J 2 
J 3 
J 4 
˜ J 1 
˜ J 2 
˜ J 3 
˜ J 4 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 0 0 0 0 0 0 

0 1 1 0 1 1 0 0 

1 1 0 0 0 1 0 0 

0 1 1 0 1 1 0 0 

0 0 1 1 1 0 0 0 

1 0 0 1 0 1 0 0 

0 0 1 1 1 −1 0 0 

1 0 0 1 0 −1 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J 1 n 
J nm 

J 1 ′ n ′ 
J n ′ m 

′ 
J 11 ′ 
J nn ′ 
J nm 

′ 
J n ′ m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

Here the fluxes along the individual paths are given by J sub = R b − R a where R b refers to the forward reaction flux and R a 

is the backward reaction flux. As a result, the individual fluxes can be written in terms of sub-path fluxes as 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J 1 n 
J nm 

J 1 ′ n ′ 
J n ′ m 

′ 
J 11 ′ 
J nn ′ 
J nm 

′ 
J n ′ m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α2 B 

n 
1 − α1 B n 

β3 B 

m/n 
n − α5 B m 

β2 B 

′ 
1 

n − β1 B 

′ 
n 

α6 B 

′ 
n 

m/n − β5 B 

′ 
m 

α3 B 1 − B 

′ 
1 

α4 B n − β4 B 

′ 
n 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

Similarly, the forces corresponding to the different pathways can be expressed in terms of the reaction affinities or forces 

which is given by the expression 

F = C · F sub (21) 

where F sub = RT ln 

(
R b 

R a 

)
and the force along each sub-path is given by 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

F 1 n 
F nm 

F 1 ′ n ′ 
F n ′ m 

′ 
F 11 ′ 
F nn ′ 
F nm 

′ 
F n ′ m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α2 B 
n 
1 

α1 B n 
β3 B 

m/n 
n 

α5 B m 
β2 B 

′ 
1 

n 

β1 B 
′ 
n 

α6 B 
′ 
n 

m/n 

β5 B 
′ 
m 

α3 B 1 
B ′ 

1 
α4 B n 
β4 B 

′ 
n 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
10 
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Fig. 8. This figure shows the values of �G for changing α3 and α4 , corresponding to the baseline case (Type 2). The panels (a)-(e) indicate the values of 

�G for different cuts of the phase plane as indicated in panel (f), namely (a) α3 = 0 ; (b) α3 = 2 , (b) α0 = 0 . (d) (b) α4 = 2 and (e) α3 = α4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These reaction affinities are related to the Gibbs free energy of the system by 

−�G i = F i = RT ln K eq (22) 

where K eq is the equilibrium constant for the reaction. If the change in �G is negative (i.e. change in entropy is positive),

then the chemical reaction occurs spontaneously at constant pressure and temperature. Given that the essence of this study 

is to understand the biophysics of competition between the on and off pathways, the �G profiles for the different pathways, 

under different conditions in the phase space were examined. In particular, �G for five slices or cuts of the α3 - α4 plane: (a)

α3 = 0 ; (b) α3 = 2 , (b) α0 = 0 . (d) (b) α4 = 2 and (e) α3 = α4 were studied as a means for examining the thermodynamic

stability fo the system and in particular the stability and spontaneity of the different network paths. The �G values (colored

according to the definition in Fig. 3 ) indicate the specific conditions under which specific pathways become spontaneous. 

Equally important to note is that, for specific values of α3 and α4 , �G become positive for some pathways indicating that

they are no longer stable (i.e. they terminate). Often, the coexistence of multiple spontaneous paths was observed. From a 

game-theoretic perspective this signifies a kind of cooperative game where multiple agents (in this case pathways) co-exist. 

The results of two different sets of computations are shown in Figs. 8 and 9 and correspond respectively to the baseline

Type 2 model and the case of seeding with B 0 m 

= 1 . 5 . Both figures show �G to be sensitive to changes in α3 and α4 and

the dominant network paths in the corresponding phase diagram, which is indicated in panel (f) of both figures. Since the

different networks share one or more sub-paths, it is understandable that more than one network path prevails for any 

given condition. It should also be made clear that while computation is a good tool to gauge which path is spontaneous,

one cannot necessarily determine the strength of the reaction based on the magnitude of the respective �G s. 

As Table 3 indicates, the network paths γ3 , γ4 , ˜ γ3 and ˜ γ4 emerge in a dominant manner only in selective cases, de-

pending on the model type. In cases where they are present, the �G values corresponding to these paths overlap with

their surrogate paths , i.e. one that follows closely with one or more regularly dominant paths. In some special cases, such

as the Type 2 baseline model, all eight paths are distinguishable (see Fig. 10 ). Panel (a) of this figure shows the free en-

ergy changes for all paths with changing α3 and α4 = 0 . Panel (b) of Fig. 10 depicts a similar graph for Type 2 model with

seeding B 0 m 

= 1 . 5 . 

4. Discussion 

Results obtained here provide some unique and distinct insights on the network of pathways and thermodynamic stabil- 

ities of the aggregates formed. 
11 
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Fig. 9. This figure shows the values of �G for changing α3 and α4 , corresponding to the case of Type 2 with seeding B 0 m = 1 . 5 . The panels (a)-(e) indicate 

the values of �G for different cuts of the phase plane as indicated in panel (f), namely (a) α3 = 0 ; (b) α3 = 2 , (b) α0 = 0 . (d) (b) α4 = 2 and (e) α3 = α4 . 

Fig. 10. This figure shows the values of �G for changing α3 and α4 = 0 , corresponding to (a) the base case Type 2 model and (b) the seeded case for Type 

2 with B 0 m = 1 . 5 . As in earlier graphs Figs. 8 and 9 , the colors indicate the respective network path. The solid black curve represents the path ˜ γ4 and the 

dashed black curve represents ˜ γ3 . 

 

 

 

 

4.1. Categories and maps 

It is important to find a map � that moves us from the subset of dominant paths in the base case, to the subset of

dominant paths in a seeded case. For example, let �μ be the mapping from the base case to the B m 

seeded case defined by

�μ : S 0 → S M 

where: 

S 0 = { γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 } , S M 

= { γ1 , γ2 , γ3 , γ4 } 
The morphing caused by each seeding offers unique challenges when defining a mapping. In the B m 

seeded case, two-

pathways cease to exist as dominant, and the other four grow in domination. It follows that regions of ’bridge-rate space’

which were once dominated by the vanished pathways, will make way for the pathways growing in dominance. Thus our 

mapping must capture ˜ γ1 and ˜ γ2 going to γ1 , γ2 , γ3 , and γ4 . The competition tradeoffs occurring can be quantififed by 

examining the base and B m 

seeded case probability distributions. 

P m 

− P 0 = 0 . 004 γ1 + 0 . 022 γ2 + 0 . 193 γ3 + 0 . 161 γ4 + (−0 . 181) ˜ γ1 + (−0 . 199) ˜ γ2 
12 
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Fig. 11. A schematic of the transformation from set S 0 → S m showing the infeasibility of the map. 

 

 

 

 

 

 

 

 

 

 

This difference suggests that the map �μ : S 0 → S m 

must, beyond the identity map, contain arrows going into paths with

positive coefficients which came out of paths with negative coefficients. In other words, path morphisms are determined by 

pairing donor paths with recipient paths, those with negative and positive coefficients in the above difference, respectively. 

Thus, in order to define a valid map, the domain must be expanded to contain ”hybrid” species which capture the competi-

tive tradeoff happening in pathway domination. In this case, paths like γ1 are denoted as recipient species and ˜ γ2 as donor 

paths. Donor and recipient paths were then paired by coupling species that are synchronous-active according to �G values 

in various rate combinations. 

Since, a zero-sum game was played, with the probabilities (see Table 2 ) determining the dominant persistent network 

paths, the exchanges during a transformation need to be identified. For instance, in the case of the transformation S 0 → S m 

,

the exchanges illustrated in Fig. 11 can be identified 

While such a map is not mathematically possible, a formal map can be identified with the help of the phase-diagrams

and the �G graphs, Figs. (4) , ( 5 b) and (9) . This requires a rearrangement of the co-domain S 0 . Before we formulate ap-

propriate mathematical transformations between the sets of network topologies, we will need to define a ‘hybrid network 

path’. 

Definition 4.1. A hybrid network path is defined as an element union of the union of two or more paths to which a distinct

network path contributes. We label such a hybrid path γ b 
a where a represents the donor path ( γa ) and b, the recipient path

( γb ). 

A mathematically correct domain set can be be defined with the help of the hybrid paths. We therefore write the modi-

fied co-domain, S 0 M 

as 

S 0 M 

= 

{
γ1 , γ2 , γ3 , γ4 , γ

2 
˜ 1 
, γ 4 

˜ 1 
, γ 1 

˜ 2 
, γ 3 

˜ 2 

}
with corresponding path label written as 

P 0 ,m 

= 0 . 270 γ1 + 0 . 227 γ2 + 0 . 054 γ3 + 0 . 068 γ4 + 0 . 21 γ 2 
˜ 1 

+ 0 . 160 γ 4 
˜ 1 

+ 0 . 003 γ 1 
˜ 2 

+ 0 . 198 γ 3 
˜ 2 

where the net probability can be seen to be conserved. The mapping, �m 

: S 0 M 

→ S m 

is therefore well defined. Similarly the

mapping for the remaining seedings �n ( S 0 N → S n ), �n ′ ( S 0 N ′ → S n ′ ), �m 

′ ( S 0 M 

′ → S m 

′ ) discussed earlier is given by 

�n : 
{
γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 , γ

2 
1 , γ

3 
1 , γ

1 
˜ 2 
, γ 3 

˜ 2 

}
→ { γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 } 

�n ′ : 

{ 

γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 , γ
2 

1 , γ
3 

1 , γ
˜ 4 

1 , γ
˜ 1 

4 

} 

→ { γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 } 
�m 

′ : 
{
γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 , γ

2 
1 , γ

4 
1 , γ

1 
˜ 2 
, γ 3 

˜ 2 

}
→ { γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 } 

which defines the mapping between the set, with respective path labels given by 

P 0 ,n = 0 . 240 γ1 + 0 . 227 γ2 + 0 . 054 γ3 + 0 . 068 γ4 + 0 . 023 ˜ γ1 + 0 . 025 ˜ γ2 + 0 . 013 γ 2 
1 + 0 . 017 γ 3 

1 + 0 . 158 γ 4 
˜ 1 

+ 0 . 174 γ 3 
˜ 2 

P 0 ,n ′ = 0 . 247 γ1 + 0 . 227 γ2 + 0 . 054 γ3 + 0 . 045 γ4 + 0 . 181 ˜ γ1 + 0 . 199 ˜ γ2 + 0 . 002 γ 2 
1 + 0 . 014 γ 3 

1 + 0 . 007 γ
˜ 2 

1 + 0 . 023 γ
˜ 1 

4 

P 0 ,m 

′ = 0 . 249 γ1 + 0 . 227 γ2 + 0 . 054 γ3 + 0 . 068 γ4 + 0 . 181 ˜ γ1 + 0 . 199 ˜ γ2 + 0 . 021 γ
˜ 2 

1 + 0 . 002 γ
˜ 1 

3 + 0 . 002 γ
˜ 2 

3 + 0 . 023 γ
˜ 1 

4 

Finally, we define the domain set S 0 = S 0 N ∪ S 0 M 

∪ S 0 N ′ ∪ S 0 M 

′ ; therefore: 

S 0 = 

{ 

γ1 , γ2 , γ3 , γ4 , ˜ γ1 , ˜ γ2 , γ
2 
˜ 1 
, γ 4 

˜ 1 
, γ 1 

˜ 2 
, γ 3 

˜ 2 
, γ 2 

1 , γ
3 

1 , γ
˜ 1 

3 , γ
˜ 2 

3 , γ
˜ 2 

1 , γ
˜ 1 

4 

} 

allowing for distinct seeding maps, as depicted in Fig. 12 . 

Such a categorization addresses the questions Q1 and Q2 posed in Section 2.3 . Note that the definition of S 0 is not

unique and other equivalent or perhaps more convenient definitions are possible, which will be investigated in our future 

work. This suggests that a recognition of a suitable categorization of the network topologies and their maps is possible 

(see for instance [1,2] ). Of particular significance here are the hybrid network paths which reveal the underlying internal 

complexity or sub-structure in the system. 
13 
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Fig. 12. Unique seeding maps based on the identification of the right domain set S 0 . 

 

 

 

 

 

 

 

 

 

 

 

4.2. Thermodynamics and stability 

Next, in the context of the emergence of pathological phenotypes, conformationally distinct and thermodynamically sta- 

ble aggregates are significant. The work presented here shows theoretical possibilities along the thermodynamic landscape 

that enable identification of stable ’strain’ generation that may lead to phenotypic outcomes. 

From the thermodynamic standpoint alone, much can be said about this problem. A significant point to be noted is that,

while the system under investigation is in mechanical steady-state, it remains out of thermodynamic equilibrium. There is 

sufficient evidence that chemical dissipative systems extremize their entropy production [11,18,24] . Therefore, principles of 

non-equilibrium thermodynamics are most appropriate for the investigation of such systems [15] . Furthermore, the approach 

adopted in this paper follows the Network Thermodynamic theory [12,15,16] , which allows for the investigation of irreversible 

biological, physical and chemical processes through a melding of dynamical systems, network theory and non-equilibrium 

thermodynamics. Such an approach permits the identification of underlying topologies in the system which helps us un- 

derstand relations and underlying complexity of the larger system. Non-equilibrium systems rely on the rate of entropy 

production to characterize its behavior. In this problem, given the Eqs. (20) and (21) , the local rate of entropy production,

denoted σ, corresponding to the various network pathways can be computed using the equation 

σ = 

1 

T 

∑ 

k 

F k J k (23) 

where T is the ambient temperature and k = 1 − 8 , corresponding to the different paths. The entropy production rate σ
is the negative of the free energy rate and has been identified as a potential measure of stability and a pattern selection

principle in complex systems [4,11] which are out of thermodynamic equilibrium. A particularly useful and somewhat dif- 

ferent interpretation of the entropy production principle proposed in [4] appears to be relevant here as well and needs to

be further investigated; in the context of a complex fluid-solid mixture, stable patterns observed appear to correspond to 

the state of maximum entropy production. The maximum here is not in time, but considered over a set of all allowable

states that the system can assume; it is a pattern selection principle. A linearized stability argument for the model system,

Eqs. (10) –(15) was reported in our previous paper [5] . While such an analysis is useful in determining the nature of the

steady states, it speaks less about the physics of the biophysical system. For this reason, we take a free energy approach

to determining the stability of the various reactions here. This network thermodynamic approach additionally, allows a cat- 

egorization of the reaction pathways ( Section 4.1 ) through a holistic examination of the thermo-mechanics of the system. 

The questions Q3 and Q4 are successfully addressed through the hybrid approach. The Figs. 8 –10 and Eq. (23) defines the

appropriate dominant, stable reaction networks. While we do not pursue the entropy based argument in the current paper, 

the match between �G and the dominant paths in the current study bodes well for entropy production based argument as

well which will be pursued further in our future work. 

5. Conclusions 

In this paper we have modeled the problem of amyloid aggregation with the added complexity of a phase transition 

induced alternative, off-pathway aggregation. The problem of amyloid aggregation along multiple pathways is well suited 

to kinetic, mass-action based models, which has been adequately revealed in our previous studies [5] where control mech- 

anisms for transitioning from on- to off-pathway and vice versa were identified. The current work also contains an added 

layer of thermodynamic analysis, rooted in the Gibbs free energy of the system. Together, they tell us about the complex

steady states in the system and their stability. 
14 
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Specifically, the network thermodynamic approach founded upon the underlying topological structures allows us to iden- 

tify the dominant reaction pathways for variations of the bridge parameters. The results obtained here, especially under 

conditions of seeding, brings to light new, emergent network pathways (see Fig. 10 ) which are strongly dependent on the

reaction rates. The biophysical significance of these diverse pathways and their categorization showcases intervention strate- 

gies, through appropriate seeding, to control the aggregation process and divert the system towards the less pathological 

conditions (on-pathway). The particular novelty of this paper lies in bringing a diverse set of theoretical tools to analyze 

this problem. Our previous theoretical treatments have revealed to be physically insightful and we believe that the outcome 

of this analysis point us towards futher novel and creative experiments which will be taken up as a natural consequence of

this paper. 
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Appendix A. 

The Fig. 13 shows the phase-diagram for Type 1 model under various conditions of seeding. This should be compared

with the Fig. 4 to note the changes between the two models discussed in the paper. Here again, one sees the emergence of

new network paths due to seeding. 

Fig. 13. Changes in phase diagram for Type 1 model under different seedings: (a) B 0 1 = 1 , B 0 n = 1 . 5 ; (b) B 0 1 = 1 , B ′ 0 n = 1 . 5 ; (c) B 0 1 = 1 , B 0 m = 1 . 5 ; (d) B 0 1 = 1 ,

B ′ 0 m = 1 . 5 . 

Appendix B. 

The figures below show the variations in probabilities of the various dominant pathways for the Type 2 model for various

choices of m and n . The Fig. 14 clearly shows that the outcomes of the study are minimally quantitatively affected by the
15 

https://doi.org/10.13039/100000097
https://doi.org/10.13039/100000057


P. Ghosh, J. Pateras, V. Rangachari et al. Applied Mathematics and Computation 393 (2021) 125778 

 

 

 

 

 

 

 

 

 

choices of m and n and qualitatively remains very similar, showing the emergence of identical paths. The greatest variability 

occurs for the emergent paths FFO and OFO for higher ratios of m/n . A study on the impact of size of m, n and optimal

complexity of the system is currently being conducted and will be reported in our future work. 

Fig. 14. Percentage of the phase space occupied by different pathways in the six-species system as the choice of ( n, m ) varies. The panels (a) corresponds to

path OOO, (b) to FOO, (c) to FFF, (d) to OFF, (e) to FFO and (f) to OFO. The different cases in the x -axis are to be interpreted as follows: case A: n = 2 , m = 4 ;

case B: n = 4 , m = 8 ; case C: n = 8 , m = 40 and case D: n = 12 , m = 24 . 
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