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ABSTRACT

We present a semi-Bayesian hierarchical modeling framework for conducting space-time frequency analysis of
precipitation extremes over a large domain. In this framework, the data layer, the precipitation extreme - i.e.,
seasonal maximum precipitation, at each station in each year is modeled using a generalized extreme value
(GEV) distribution with temporally varying parameters, which are decomposed as linear functions of covariates.
The coefficients of the covariates are estimated via maximum likelihood (ML). In the process layer, the estimated
ML coefficients of each of the covariates across the stations are spatially modeled with a Gaussian multivariate
process which enables capturing the spatial structure and correlation between the spatial model parameters.
Suitable priors are used for the spatial model hyperparameters to complete the Bayesian formulation. Since the
Bayesian formulation is only at the second level, our model is semi-Bayesian and thus, the posteriors are con-
ditional posterior distributions. With the conditional posterior distribution of spatial fields of the GEV parameters
for each time, conditional posterior distribution of the nonstationary space-time return levels of the precipitation
extremes are obtained. We demonstrate this framework by application to summer precipitation extreme at 73
stations covering a large domain of Southwest US consisting of Arizona, New Mexico, Colorado, and Utah. The
results from fitting and cross-validation indicate that our model captures the historical variability at the stations
very well. Conditional posterior distributions of return levels are simulated on a grid over the domain, which will
be of immense utility in management of natural resources and infrastructure.

1. Introduction

Extreme precipitation leads to extreme flow - i.e., flood events

Although for modeling extreme precipitation some studies have used
log-normal and Gumbel distributions (Hershfield, 1961; Wilks, 1993),
the Generalized Extreme Value (GEV) distribution, which is theoreti-

leading to loss of lives and severe damage to infrastructure. Thus, it is
crucial for the engineering design of infrastructure, such as flood pro-
tection, dams, and management of water supply, and flood control to
understand and model the variability of extreme precipitation in both
space and time. A common practice is to perform frequency analysis on
block (i.e. seasonal or annual) precipitation extreme using statistical
distributions. A single set of distribution parameters are estimated
assuming stationarity, in that the precipitation variability in the future
will be similar to that of the past (Jakob, 2013). The fitted distributions
are used to estimate occurrence probabilities (i.e., return period) of rare
events of desired magnitudes and return levels of desired risks — all,
useful in infrastructure design (Coles, 2001).

cally more appropriate, is widely used (e.g., Dupuis and Field, 1998;
Gellens, 2002; Wilks, 1993) due to its ability to capture a wide range of
tail behaviors, and also it is consistent with extreme value theory (EVT)
(Coles, 2001).

There are two main problems related to this single site stationary
frequency analysis approach: the stationarity assumption may not be
valid since diverse modeling and empirical studies have shown that the
frequency and intensity of extreme climatic events are increasing and
will continue to do in the foreseeable future due to climate variability
and change (Barnett et al., 2006; Frich et al., 2002; IPCC, 2007; Milly
et al., 2008; Schmidli and Frei, 2005); and the need for estimating
extreme precipitation at several locations where data is not available for
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designing of infrastructure or hazard mitigation. These motivate the
need for modeling approaches that capture the variability of extremes in
space and time. Temporal variability of extremes is modeled by varying
the parameters of the statistical distribution as a function of covariates
by a Generalized Linear Modeling (McCullagh and Nelder, 1989)
approach. An early approach for modeling the temporal variability of
parameters of GEV as functions of time, was proposed in Katz et al.
(2002).

This led to plethora of studies that applied this approach at indi-
vidual sites with time-varying covariates besides time trend, to modeling
the temporal nonstationarity of precipitation extremes around the
world. As mentioned, linear time trend to model the time-varying GEV
parameters is the simplest nonstationary model (Fowler et al., 2010; van
Haren et al., 2013; Katz et al., 2002). Other time-varying covariates have
been used to model precipitation extremes in Asia (Agilan and Uma-
mahesh, 2017; Gao et al., 2016), North America (El Adlouni et al., 2007;
Um et al., 2017), Europe (Vasiliades et al., 2015), Australia (Agilan and
Umamahesh, 2016), and elsewhere.

Extensions of this in a Bayesian approach have been developed
(Cannon, 2010; Cheng and Aghakouchak, 2014; Ouarda and El-Adlouni,
2011) which captures the uncertainties in the parameters and conse-
quently in the return levels, robustly, via their posterior distributions.
However, most of these studies are single-site analyses or assume spatial
independence, thus, cannot provide estimates at any arbitrary ungauged
location.

To address this, studies have extend extreme value analysis and other
methods to model inter-site dependency. These include - regional fre-
quency analysis such as the index-flood method (Wazneh et al., 2013);
max-stable processes (Coles, 1993; Coles and Tawn, 1996; Davison et al.,
2012; Stephenson et al., 2016); spatial modeling of marginal GEV pa-
rameters by univariate spatial Gaussian processes (Dyrrdal et al., 2015;
Yan and Moradkhani, 2015; Yan and Moradkhani, 2016; Reza Najafi and
Moradkhani, 2013); capturing the spatial dependency by both Gaussian
copulas and spatial modeling of marginal GEV parameters, and quan-
tifying uncertainties of variables by hierarchical Bayesian processes of
the latent parameters (Bracken et al., 2016; Renard, 2011).

Despite these advances, limited studies have offered models for
spatial and temporal nonstationarity of climate extremes, especially
precipitation extremes. Hanel et al. (2009) modeled the nonstationarity
in extreme precipitation over the Rhine basin using a spatial extreme
value model based on the index-flow method that divided the domain
into homogeneous regions where the GEV coefficients are assumed to be
constant. Lima et al. (2016) used a hierarchical Bayesian GEV model for
flood quantile estimates in which spatial dependency is captured by
scaling the GEV parameters independently according to their drainage
area, i.e., independent normal prior distributions are considered for the
GEV parameters. Other authors have used the same approach to model
extreme precipitation (Apputhurai and Stephenson, 2013; Steinsch-
neider and Lall, 2015). Ahn et al. (2017) introduced a hierarchical
Bayesian model for regionalized seasonal forecasts where the spatial
dependency is captured by modeling the probability distribution pa-
rameters with a multivariate Gaussian field. Bracken et al. (2018) and
Sun et al. (2014) implemented a multivariate nonstationary Bayesian
hierarchical model for hydrologic frequency analysis, in which the
dependence between variables was captured by a Gaussian elliptical
copula in the data layer. While these are very good approaches, some
general issues remain - such as, limited ability to capture spatial de-
pendencies over the entire domain if GEV parameters are kept constant
over homogeneous regions; estimation issues with Copulas as the
domain size increases; inability to capture relationships between the
parameters as each parameter is modeled separately in space; these
work well for smaller spatial domains or fewer variables, but become
computationally intensive and have convergence issues as the domain
increases, to name a few.

Our research in this paper is motivated by the need to address these
issues and have the ability to obtain estimates of return levels and their
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uncertainties at ungauged locations. To this end, we propose a semi-
Bayesian Hierarchical framework to model multi-site spatio-temporal
variability of precipitation extremes.

We demonstrate this framework by its application to extreme sum-
mer precipitation at 73 stations from the Southwest US- Arizona, New
Mexico, Colorado, and Utah. The paper is organized as follows. In Sec-
tion 2, the framework, in general, is described. The application set up for
the Southwest US extreme precipitation is then described, followed by
the specific form of the model structure and fitting method in Section 3.
The results are described in Section 4, and Section 5 presents a sumamry
and discussion of the results.

2. Proposed framework

The proposed spatial-temporal multivariate semi-Bayesian hierar-
chical framework is comprised of three components: the model struc-
ture, the estimation strategy, and estimation of nonstationary return
levels.

2.1. General model structure

In general, we wish to conduct a nonstationary frequency analysis of
extreme precipitation at m locations over k years, and then use a spatial
model that allows us to estimate return levels and their uncertainty over
a grid or at stations with missing data. In this context, it is assumed that
extreme precipitation series at each station follows a GEV distribution
(Coles, 2001; Katz, 2013). The spatial dependence is captured through a
spatial multivariate Gaussian process on the GEV parameters. The first
layer of the hierarchical model structure, also known as the data layer,
corresponds to the GEV distribution assumed at each location s; and time
point t which is

Y(si,t) ~ GEV (u(s;, ),

o(si,1),E(si,1)), i=1,...,m (@)

where y € (—o0,00) is the location parameter, ¢ >0 is the scale
parameter, and ¢ € (—oo,00) is the shape parameter. Under the
nonstationary assumption, distribution parameters can vary in space
and time. Thus, the three GEV parameters could be modeled as functions
of time-dependent large-scale climate variables, and regional mean
covariates:

(s, 1) = ao(s +Z(xﬂ, Z(1), i=1,...,m 2

+ Zauj

log(a(si, 7)) = so(s i=1,..m 3)

E(si, 1) = ago(s *Z“ Ci=1,...,m )

where a,,a,, and a; are the regression coefficients, and Z;(t) is covariate j
at the time t. log(s) is modeled to ensure positive scale parameters. The
regression coefficients are estimated using Maximum Likelihood (ML)
approach (Katz et al., 2002). Specific choices for covariates in our data
analysis will be discussed in Section 3.2.

While in many studies, ¢ is modeled as a single value per study area
or per region within the study area (Apputhurai and Stephenson, 2013;
Atyeo and Walshaw, 2012; Cooley et al., 2007; Renard, 2011), others
consider that this parameter varies spatially along with the other GEV
parameters, but considering a specific range of variation for it (Bracken
et al., 2016; Cooley and Sain, 2010). Here, because we are interested in
capturing the correlation between GEV parameters, no a priori restric-
tion on its domain is imposed.

The Bayesian formulation starts in the process layer, which is the
second layer of the hierarchy, assumes a multivariate spatial Gaussian
process for the GEV regression coefficients obtained via ML as
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mentioned above. Compared to a univariate spatial Gaussian process (e.
g., Yan and Moradkhani, 2015; Sun et al., 2014), this process can ac-
count for cross-correlation in the regression coefficients. The covariates
selected for modeling the GEV parameters in the first level exhibit
spatial correlation, thus, the GEV regression coefficients are likely to be
correlated. Therefore, the multivariate spatial Gaussian Process formu-
lation is appropriate and general, regardless of the strength of the spatial
correlation. Thus, the GEV regression coefficients at the location s; are
modeled as

a(s) = B"X(s:) +w(s:) +<(s1) )

where a(s;) = (@0, (si), @s(si), @:(s;)] is a vector of 3(n+1)x1 GEV
regression coefficients at the location s;; g = [,,8,,8;] is a matrix of
4 x 3(n+1) spatial regression coefficients which are constant in space
and time; X(s;) is a 4 x 1 vector of regressors with the elements corre-
sponding to the unity, coordinates, and elevation at the location s;; and
w(s;) and e(s;) are vectors of 3(n+1) x 1 spatial and uncorrelated re-
siduals at location s;, respectively. We assume the parameters can be
defined through a latent multivariate process comprised of two com-
ponents: a spatial term, w, that follows a mean 0, stationary, anisotropic
Gaussian process specification with a covariance function C, and inde-
pendent white-noise process, <.

Considering m locations, we have that spatial and uncorrelated re-
siduals are

w = [w(s;), w(s2), ..., w(sn)]" 6)

€= [E(Sl)ﬂE(SZ)ﬂ"'7E(S171)]T (7)

The spatial residuals vector, w, follows a MVN(0, X;), where X; is the
mp x mp covariance matrix and p = 3(n + 1). The covariance matrix is
defined as
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Cll A Clp
= | o (8)
Cpl Cpp

where Cy is a (m x m) cross-covariance matrix. When k = [, it corre-
sponds to a covariance matrix. We consider an exponential covariance
function with parameters &% (the partial sill or marginal variance), ¢y
(the spatial decay parameter). The parametric form of the covariance
and cross-covariance functions is

Cu(siv55) = daexp( = dullsi = sil)) )

This specification is a particular type of multivariate Matérn
(Gneiting et al., 2010); there are some restrictions on parameters that
result in a valid, i.e., nonnegative definite covariance matrix, see
Gneiting et al. (2010) or Apanasovich et al. (2012) for details.

For the uncorrelated residuals, we have € ~ MVN(0, X,), where X
is mp x mp diagonal covariance matrix

21 0 - 0

0 I - 0
o=, .. (10)

2

0 0 - oI

where 77 is the nugget effect related to the kth GEV regression coeffi-
cient, and I is a (m x m) identity matrix.

A conceptual sketch of the spatial-temporal multivariate semi-
Bayesian hierarchical framework is shown in Fig. 1 which shows the
data layer (maximum likelihood estimation of the GEV regression co-
efficients) and the process layer (multivariate spatial Gaussian process
for the GEV regression coefficients obtained in the data layer).
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Fig. 1. Conceptual sketch of the spatial-temporal multivariate semi-Bayesian hierarchical framework. (s, t;) = [u(si,t;),logo(si, t;),€(si, tj) |
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2.2. Estimation strategy

First, GEV regression coefficients of the data layer are estimated from
Egs. (1)-(4) using maximum likelihood. Then, the conditional posterior
distribution of the spatial regression coefficients, §, and residuals pa-
rameters, 52,4),12, given maximum likelihood estimates (MLEs) of the
GEV regression coefficients, @, which are assumed as the true values of
the GEV regression coefficients, and spatial regressors X, are obtained
using the multivariate Bayesian model. By Bayes’ rule, the posterior
distribution is

p(B.w.5$.7]@.X)op (@]6.w.8. .2 X) p (B.w.8%. . |X) = p (@], w. 7

here term p(w|6%,¢) = fivn(W|0,Zs); farvn(W|0,Z;) represents the
probability density of a multivariate normal distribution with mean 0
and covariance X (see Eq. 8); p(f) = fMVN(ﬂ|ﬂ/,, Z5); I and X; are the
spatial regression coefficient estimates and their covariance matrix ob-
tained from a linear model fitting (Eq. 5) using maximum likelihood;
p(5%), p(¢), and p(z?) are the priors of the other parameters, which
based on Finley et al. (2015) are assumed to be independent and follow
the following distributions

& ~ invWishart(v,S), ¢ ~ Unif(l,w,), 7 ~ InvGamma(x,y) (12)
where v and S are the degrees of freedom and scale matrix of the inverse-
Wishart distribution; /; and u; are the lower and upper limits vectors of
the uniform distribution; ¥ and y are the shape and scale hyper-
parameters vectors of the inverse-Gamma distribution. The term
p(a|g,w,7?,X) is the likelihood of MLEs of the GEV regression co-
efficients, &, conditional on the dependence of the uncorrelated re-
siduals, the regression coefficients = [g,,5,,8;], and spatial residuals.
The likelihood of @ is defined as a multivariate normal

p(@|p,w,7,X) = fuw (@ X"B +w,Z,) (13)

where X is a known m x p matrix of spatial regressors.

2.3. Nonstationary return levels

According to Read and Vogel (2015), it is important to be clear when
discussing nonstationary return levels and return periods since there are
several definitions (Cheng et al., 2014; Salas and Obeysekera, 2014;
Katz, 2013). For a stationary GEV distribution the return level, T, is
defined as the p = (1 —1/T)th quantile
4y :ﬂ+§[(*logp)’5* 1] a4

Here, we use the definition for nonstationary return levels provided
by Cheng et al. (2014), which states that in a nonstationary setting when
the GEV parameters may be time-varying, the return level can be
computed at each year, which is known as the effective return level

9p (t) = u(t) +@ [( = Tlogp) ™ — 1]

15
&) (1%

3. Application

The Southwest US region comprising of the four states -Arizona, New
Mexico, Colorado, and Utah- is the hottest and driest region of the
United States. Most of the precipitation arrives during the winter season,
but the summer precipitation makes a significant contribution to the

)
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reliability of water resources and the health of ecology. However,
summer precipitation and its extremes, over this region exhibit a high
degree of spatial and temporal variability (Sheppard et al., 2002). We
demonstrate the utility of our proposed framework presented in the
previous section by its application to summer precipitation extremes at
73 stations from this region.

3.1. Precipitation data

Daily summer, June through September, precipitation data were
obtained from the Global Historical Climatology Network (GHCN)

X)-p(w,8%,¢)-p(7)p() =p(@|,w,7,X)-p(W|6>,¢)-p(8°)-p()-p(°) ()

an

(Menne et al., 2012). We selected stations with a full record of data for
the period 1964 to 2018 or those with no more than 10% of data missing
or no more than three years of missing data in a row. This resulted in 73
stations for which climatology of the extreme seasonal precipitation is
shown in Fig. 2 along with an elevation grid. Summer season 3-day
maximum precipitation was computed for each year at each station.
For a station with missing year values, these values were substituted
with the median value of the station.

3.2. Covariates

Some studies (Higgins et al., 1999; Mamalakis et al., 2018; McCabe
et al., 2004) have shown that there is a weak statistical relationship
between Southwest US summer precipitation and large-scale climate
indices capturing drivers in tropical Pacific - El Nino Southern Oscilla-
tion (ENSO), Northern Pacific — Pacific Decadal Oscillation (PDO), and
Atlantic — Atlantic Multidecadal Oscillation (AMO). Since our objective
is to demonstrate our framework, we rely on these prior researches, and
considered these large-scale climate indices as potential covariates,
albeit with a somewhat weaker association, for the nonstationary GEV
distribution in the framework. However, users can develop tailored
covariates for their specific data to enhance model performance.

For modeling the temporal nonstationarity of the GEV parameters
(see Egs. (2)-(4)), first, we considered summer season average ENSO
and PDO indices, and the standardized spatial average of summer sea-
sonal precipitation (SASP) over the entire region as potential covariates.
We obtained values of the multivariate ENSO index (MEI) (Wolter and
Timlin, 1993; Wolter and Timlin, 1998; Wolter and Timlin, 2011) from
http://www.esrl.noaa.gov/psd/enso/mei/. The PDO values (Zhang
et al., 1997) were obtained from http://research.jisao.washington.
edu/pdo/. The average summer season precipitation, SASP, was
computed from the GHCN (Menne et al., 2012).

We assess the strength of the relationship between the covariates and
the summer precipitation extreme by computing the Spearman’s rank
correlations, shown in Fig. 3. It can be seen that SASP exhibits significant
correlation with summer precipitation extreme across at almost all the
locations over the domain. However, ENSO and PDO indices present a
weaker correlation with precipitation extremes and significant at only
few locations. Previous studies mentioned earlier in this section inves-
tigated relationship between these indices and seasonal total precipita-
tion in this region and found them to stronger. But, from our analysis,
the indices ride a weaker signature on the precipitation extremes. We
selected the best nonstationary GEV model using total Akaike informa-
tion criteria (AIC) (Akaike, 1974) and total Bayesian information crite-
rion (BIC) (Schwarz, 1978). In this, the nonstationary model is fitted to
the precipitation extreme at each location and the AIC and BIC values of
all the individual location models are added to obtain the total AIC and
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BIC values. These are computed for a suite of candidate models with
various combinations of the covariates and the model with the minimum
total AIC or BIC is selected.

For modeling the GEV regression coefficients spatially, we included
covariates of latitude, longitude, and elevation. Covariates were ob-
tained at station locations and a 0.5-degree grid throughout the study
area. We obtained the elevation data from the NASA Land Data Assim-
ilation Systems (NLDAS) (Xia et al., 2012) (https://ldas.gsfc.nasa.gov/
nldas/elevation).

3.3. Model structure for the Southwest US

For the structure of the model for the Southwest US, we incorporated
the above covariates for spatial and temporal modeling. We model the
location and scale parameters of the GEV at each location, nonsta-
tionary. Shape parameters are generally more variable, leading to
convergence issues in ML estimation, thus, most studies in literature

Table 1

Total AIC and BIC values for different sets of covariates. for each case the same
covariates are considered for location and scale parameters, and the shape

parameter is considered stationary.

Covariates AIC BIC
ENSO 33856.7 34589.4
PDO 33858.9 34591.5
SASP 33529.0 34261.7
ENSO, PDO 33977.4 35003.2
ENSO, SASP 33657.7 34683.5
PDO, SASP 33672.4 34698.2
ENSO, PDO, SASP 33672.4 34698.2

generally keep this stationary. Following this, the shape parameter was
keep stationary at each location. Based on both, the total AIC and BIC
values, shown in Table 1, the best model selected uses only SASP as
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covariate to model the location and scale parameters. The next best
model, though, includes ENSO. The priors on the spatial regression co-
efficients and residuals parameters used are:

B~ MVN(u,, 2) 8° ~ invWishart(v,S) a6)
¢ ~ Unif(l,w)) 7 ~ InvGamma(x,y)
where f(si) = [B,,8,,B:], #y and X are the spatial regression coefficient
estimates and their covariance matrix obtained from a linear model
fitting (Eq. 5) on the maximum likelihood estimates of a, for each GEV
regression coefficient separately. Based on the recommendations from
Banerjee et al. (2004) and Cooley et al. (2007), informative priors were
considered for the spatial residuals parameters, ¢, 62, and non-
informative priors were considered for the uncorrelated residuals pa-
rameters, 2. We set hyperparameter values of ¢ as [} = [0.2]¢,, u; =
[14]¢,1, which corresponds to the range of distances for the domain
considered here.

For 62, we set the priors based on sample variograms from the pre-
dicted residuals obtained from the linear model fitting on the maximum
likelihood estimates of @, along with a exponential model which is
consistent with the covariance and cross-covariance functions consid-
ered here (for more details see Cressie, 1993). Sample variograms are
shown in Fig. 4. Thus, based on the exponential models fitted to the
variograms, we considered the diagonal of the matrix S, which is (5 x 5)
matrix, equal to [36,5,0.06,0.05,0.3] and v = 6 (number of rows of S
plus 1). Finally, we set the hyperpameter values of 72 as x = [1]4,; and
y =10.01]g,4-

Note that the priors of both spatial regression coefficients and spatial
residuals are assumed to be independent. We expect the model capture
the correlation in these parameters if it exists in the posterior. This
would not be possible with univariate spatial Gaussian process. Since the
Bayesian formulation is only at the second level with the spatial model
of the ML estimates, our model is semi-Bayesian and thus, the posteriors
are conditional posterior distributions. With the conditional posterior
distribution of spatial fields of the GEV parameters for each time, con-
ditional posterior distribution of the nonstationary space-time return
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levels of the precipitation extremes are obtained.
3.4. Implementation and model fitting

The model was implemented in R using the extRemes package (Gil-
leland and Katz, 2016) for the data layer and the spBayes package
(Finley et al.,, 2015) for the process layer. The parameters of the
nonstationary GEV parameters at each location were estimated via
maximum likelihood. The spatial Bayesian multivariate model was fit
using a Markov Chain Monte Carlo (MCMC) method, specifically, Gibbs
sampling and random walk Metropolis steps (Robert and Casella, 2004).
One chain of length 120,000 was run, with the first 60,000 iterations
discarded as warmup, and a sample thinning factor of 12, resulting in
5000 samples for each parameter. To assess convergence, trace plots
were visually inspected, and also a Metropolis sampling acceptance
percent above 80% was checked.

3.5. Computation of return levels

With the model fitted from the steps above, posterior distributions of
each GEV parameter for each year are obtained at station locations or on
the 0.5-degree grid by evaluating Egs. (2)-(5). Thus, generated param-
eter values are used to compute nonstationary return levels at each
station or grid point using Eq. (15). The steps for this procedure are as
follows:

1. Select a single conditional posterior sample of all model parameters
B,6%,¢,72).

. Simulate spatial and nonspatial residuals, w and e.

. Compute regression coefficients for GEV parameters, Eq. (5).

. Compute GEV parameters at each location i and year t, Egs. (2)-(4).

. Compute nonstationary return levels at each location i and year t, Eq.
(15).

6. Repeat steps 1-5 for each posterior sample.
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Fig. 4. Sample variograms from the predicted residuals obtained from the linear model fitting on the maximum likelihood estimates of the GEV regression co-
efficients, a. Solid lines represent the least squares estimation of the exponential model of the variogram.
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3.6. Model comparison

To highlight the advantages of our framework, we compare it with
another model. The models are as follows:

1. Semi-Bayesian univariate: A univariate nonstationary GEV distribu-
tion is fit to each location using MLE, where the location parameter is
allowed to vary over time according to covariates specified in Section
3.2. Then, the spatial dependence is captured through a spatial
univariate Gaussian process on each GEV parameter.

2. Semi-Bayesian multivariate: The spatial-temporal semi-Bayesian
multivariate hierarchical framework described in this study.

4. Results
4.1. Model fits

Fig. 5 shows the Q-Q plot, the empirical Probability Density Function
(PDF) and the PDF of the nonstationary GEV distribution fitted, and time
series of nonstationary of the MLE return levels for different return pe-
riods for the extreme summer precipitation at Pasamonte station in New
Mexico (see Fig. 2). The empirical PDF in Fig. 5b is obtained by a kernel
density estimator which smooths the histogram (e.g., Bowman and
Azzalini, 1997). It can be seen that in general, model and sample
quantiles fall close to the 1:1 line (Fig. 5a), and the fitted GEV distri-
bution captures the shape of the empirical PDF very well (Fig. 5b).
However, there is an overestimation of the upper tail, i.e., high values. In
Fig. 5c it can be seen that the nonstationary return levels capture the

Journal of Hydrology 600 (2021) 126499

inter-annual variability of the observed precipitation extremes very
well, in that, the return levels shift up and down in concert with the
historical values. A similar or even better performance showed in Fig. 5
was seen at all the other stations.

Fig. 6 shows the conditional posterior median of the regression co-
efficients corresponding to the covariates for the location, shape, and
scale parameters of GEV over the 0.5-degree grid from the 5000 simu-
lations. The median of the intercept of the location parameter (Fig. 6a)
shows higher values in the eastern part of the region and lower in the
western. This is consistent with the climatology of the seasonal extreme
precipitation (see Fig. 2) — in that the western parts are arid and semi-
arid and hence lower precipitation. The conditional posterior median
of SASP coefficients of the location (Fig. 6b) is higher in the east, and it is
positive over most of the region with small negative regions in the
middle of the domain. This can be explained by the orographic effect due
to the presence of the mountain ranges. The conditional posterior me-
dian for the intercept of log of the scale parameter (Fig. 6¢) also shows
similar spatial variability as the intercept of the location, indicating that
regions with higher extreme rainfall have higher variability. The con-
ditional posterior median of SASP coefficients of log of the scale
parameter (Fig. 6d) shows similar spatial variability as the SASP co-
efficients of the location, i.e., higher values in the east and regions with
negative values in the middle of the domain. The conditional posterior
median of the shape parameter (Fig. 6e) indicates heavy tail distribution
(i.e. positive shape parameter) in the arid and semi-arid regions in the
west part. However, its range of variation is small.

Fig. 7 shows the scatter plots of the conditional posterior spatial
regression coefficients f, ,, (intercept of a;) vs. f; ,, (longitude slope of
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Fig. 5. (a) Q-Q plot, (b) PDF of the GEV distribution fitting, and (c) time series of nonstationary of the MLE return levels for different return periods for extreme
summer precipitation at Pasamonte station, NM. In panel (b), the data are first transformed to an appropriate standardized GEV scale. The empirical PDF is obtained
by a kernel density estimator. In panel (c), the black line corresponds to the observed.
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ay) for the semi-Bayesian univariate model (Fig. 7a) and semi-Bayesian
multivariate model (Fig. 7b). It is seen that contrary to semi-Bayesian
univariate model, semi-Bayesian multivariate model can capture the
cross-correlation between spatial regression coefficients for different
GEV regression coefficients even when we set up uncorrelated priors for
them. The same feature was observed for other spatial regression
coefficients.

The same feature is observed for the residuals. This is shown in Fig. 8
that displays Sample cross-variograms (for more details see Ver Hoef and
Cressie, 1993) of @, -a,, from the predicted residuals obtained from the
linear model fitting on the maximum likelihood estimates (MLE) of the
GEV regression coefficients (Fig. 8a), the conditional posterior residuals
obtained from the semi-Bayesian univariate model (Fig. 8b), and the
conditional posterior residuals obtained from the semi-Bayesian multi-
variate model (Fig. 8c). Solid lines represent the least squares estimation
of the exponential model of cross-variogram. It is seen that for semi-

Bayesian multivariate case, posterior residuals can capture the spatial
cross-correlation between the residuals observed for the MLE case, the
observed residuals in our case. This feature is not captured by the semi-
Bayesian univariate model again. The same was observed for a, —;,
and a,, .

Thus, by capturing cross-correlation between spatial coefficients and
residuals with our framework is possible to obtain more consistent
simulations of the GEV regression coefficients, and consequently, reduce
the uncertainty of the extreme precipitation return levels estimates.

4.2. Spatial variability of return levels

To assess the ability of the model to capture the spatial patterns of the
summer precipitation extremes, we present results of 2-year return
levels along with the associated observations. Fig. 9 shows the spatial
map of the conditional posterior median of the 2-year return level of
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summer precipitation extremes along with the median of the observed
extremes at the station locations and also for representative wet and dry
years. Fig. 9a shows the conditional posterior median of the 2-year re-
turn level over all the years and the corresponding 95% credible interval
width in Fig. 9b. The median of historical precipitation extremes at the
stations — comparable to the posterior median of the 2-year return level -
are shown in Fig. 9a as colored circles. It can be seen that the median
values are lower in the arid and semi-arid western regions of the domain
and higher in the eastern parts, which are consistent with the historical
median values at the stations (the colors in the circles are consistent with
that of the background from the simulations). The credible intervals
widths do not show any spatial pattern. We selected a wet year (1997) in
the record and show the conditional posterior median of the 2-year re-
turn level in Fig. 9c and the historical observed values at the stations are
consistent with the simulations, more so in the western part of the
domain. However, in the eastern part of the domain, with high precip-
itation, the simulations are slightly lower than the observations. The
spatial pattern of the credible interval width (Fig. 9d) is similar to that in
Fig. 9b. For a representative dry year (2001), the conditional posterior
median of the 2-year return level and observed correspond very well
(Fig. 9e) with a similar spatial pattern of credible interval width (Fig. 9f)
to that of the simulations over the entire time domain (Fig. 9b).

Fig. 10 shows the conditional posterior median of the 100-year re-
turn level of summer precipitation extreme and its 95% confidence in-
terval width. In Fig. 10a can be seen that this, too, shows a similar spatial
pattern to that of the 2-year return level, i.e., higher precipitation in the
east and lower in the west. This is consistent with the spatial pattern of

the intercepts of the location and log of the scale parameters (see Fig. 6).
As in the case of 2-year return levels, the credible intervals widths do not
show any spatial pattern (Fig. 10b).

4.3. Temporal variability of return levels

To assess the performance of the temporal variability of the
nonstationary framework, we compared them (semi-Bayesian multi-
variate model) to the return levels from the MLE estimates of the GEV
coefficientes, which are consider as the true values in this case, and to
those return levels from the semi-Bayesian univariate model. In Fig. 11
we show the boxplots of the nonstationary 100-year return level for each
year at Pasamonte station, NM from the semi-Bayesian univariate model
(Fig. 11a) and the framework proposed here (semi-Bayesian multivar-
iate, Fig. 11b) along with those from the MLE estimates of the GEV co-
efficients (red line). The whiskers show the 95% credible intervals, the
boxes the interquartile range, and the horizontal lines inside the boxes,
the median. The nonstationary framework proposed here shows a sig-
nificant reduction in the uncertainty compared to the semi-Bayesian
univariate model. This can be explained by the ability of the frame-
work proposed here to capture the cross-correlation between the spatial
regression coefficients and between the spatial residuals (see Figs. 7 and
8). So, this allow to preserve the cross-correlation at site of MLE esti-
mates of the GEV regression coefficients for each simulation of the
coefficients.
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4.4. Cross-validation

To test the out-of-sample predictability of the model, cross-
validation was carried out by dropping 10% of the total stations (i.e.,
7 out of 73 stations), and the model was fit on the remaining 66 stations.
Stations dropped are shown in Fig. 12 (red circles), and were chosen to
represent distinct climatological behaviors, as well as geographical
sampling. To quantify the skill in a prediction mode, we made two
different predictions: at the dropped stations and spatial validations.
First, we predict the distributions at the dropped stations, and randomly
generated 5000 samples of extreme precipitation values at the dropped
locations for each year. In this case, we created boxplots for the 7 sta-
tions dropped for the validation model dropping 10% of the data (subset
data model) and observed data. Next, we generated predictive posterior
distributions over the 0.5-degreed grid using this model based on subset
data (66 stations), and subsequently, generated 5000 samples of 100-
year returns level over the same grid according to the Section 3.5. We
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computed the difference between the median return level from the full
data model (Fig. 10) and this subset data model. .

Fig. 13 shows predicted summer precipitation extremes for the
period (1964-2018) at stations dropped for the validation model drop-
ping 10% of the data for the semi-Bayesian univariate model (light gray
boxes), semi-Bayesian multivariate model (gray boxes) and the observed
data (yellow boxes). The distribution from the semi-Bayesian multi-
variate model captures the historical distribution quite well as the box
and whiskers are comparable between the two, indicating acceptable
predictability, offering prospects for this approach to be used in a pre-
dictive mode. Also, it shows a better performance in capturing the his-
torical distribution than the semi-Bayesian univariate model and a lower
uncertainty. Overall, the same feature is seen for dry (2001) and wet
(1997) year cases (Fig. 14). Station 5 shows the worst performance, but
in general, the performance is acceptable for almost all the station
(yellow circles fall into the boxes).

Fig. 15 shows the difference between the conditional posterior
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median 100-year return levels from the full data model and the subset
data model over the 0.5-degree grid. In general, the difference map does
not show spatial patterns except for a bias in the south of Arizona. This
bias can be caused by poor data in this region and that two of the stations
dropped (stations 3 and 6) are located in this region. However, the
differences are not high compared to the magnitude of 100-year return
levels (Fig. 10), so the performance of the model could be considered
well.

5. Summary and discussion

In this study, we presented a spatial-temporal multivariate semi-
Bayesian hierarchical framework for conducting nonstationary fre-
quency analysis of precipitation extremes at ungauged locations. The
framework assumes the marginal distribution of each location is a
generalized extreme value (GEV) distribution, where the distribution
parameters can vary in time as a function of covariates, whose co-
efficients are estimated via maximum likelihood. To get estimates at
ungauged locations or over a grid, the spatial dependence is captured by
modeling spatially the coefficients of the covariates at each station using
spatial Gaussian multivariate processes.

We applied this framework to conduct nonstationary frequency
analysis of extreme summer precipitation at 73 stations from the
Southwest US. This application incorporated large-scale climate indexes
such as ENSO and PDO and the standardized spatial average of summer
seasonal precipitation (SASP) over the region as potential covariates.
Based on the lowest total AIC and BIC, we selected the best model which
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only considers SASP as covariate for the location and scale paremeters,
and stationary shape parameter. We found that the multivariate semi-
Bayesian approach can capture the cross-correlation between the
spatial regression coefficients and the residuals, provided a robust esti-
mation of uncertainties of the return levels due to the spatial interpo-
lation compared to univariate semi-Bayesian model, and capture the
spatial patterns of the observed data.

In the application presented here, we only considered three potential
covariates, and the shape parameter was assumed to be stationary for
simplicity. However, Additional Skillful covariates can further improve
the estimates of space-time variability. In the case of that, the frame-
work can be applied to a local scale, and local covariates can be included
to capture well local patterns.

The spatial modeling of the process level parameters by incorpo-
rating correlation among the parameters makes a new contribution.
Besides, this correlation enables to reduce the parameter uncertainty
related to the spatial interpolation. We recognize that the uncertainty
captured by our model does not represent the total uncertainty, as we
are employing the Bayesian framework on the ML estimates of the GEV
coefficients. The uncertainty in the ML estimates is not captured
explicitly. Of course, one could include this estimation in the first layer,
inside of the Bayesian framework, to capture this additional uncertainty.
However, over a large spatial domain such as the Southwest U.S., this
makes the model computationally intensive and with no guarantees of
convergence. The semi-Bayesian model presented here, makes this
tradeoff to enable an efficient model capture most of the uncertainties. A
fully Bayesian framework with efficient computational methods will be
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a natural extension.

The model performance skill will be dependent on the strength of the
temporal covariates in their association with the variability of the ex-
tremes field. In the application here, we were motivated by our ongoing
research on the summer precipitation over southwest US. It is generally
known that the summer precipitation and the extremes in this region
exhibits high degree of variability and weaker connection with large
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scale forcings compared to their winter counterpart. However, the user
can develop tailored covariates to their application. If the covariates are
lagged in time (say a season head), this modeling framework can be used
to provide projections of seasonal extremes that will be of help in
operational planning and management of natural resources ahead of the
active season of extremes. Furthermore, with multi-decadal projections
of the covariates, say under a global warming scenarios, projections of
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extreme summer precipitation (Fig. 10).

climate extremes for these scenarios can be made, for use by policy
makers. Extensions of this framework to other fields of extremes such as
streamflow, temperature, pollution concentrations in space etc., and to
threshold exceedances, can be easily enabled.
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Appendix A. Abbreviations and acronyms
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The MEI index is downloaded from the National Oceanic and Atmo-
spheric Administration (NOAA) Earth Systems Research Laboratory
(ESRL) Physical Sciences Division http://www.esrl.noaa.gov/psd/
enso/mei/. The PDO index is available from the University of Wash-
ington http://research.jisao.washington.edu/pdo/. The elevation data
were downloaded from the NASA Land Data Assimilation Systems htt
ps://ldas.gsfc.nasa.gov/nldas/elevation.

PDF Probability Density Function

GEV Generalized extreme value

ML Maximum likelihood

MLE Maximum likelihood estimates

AIC Akaike information criteria

BIC Bayesian information criterion

MCMC Markov Chain Monte Carlo

GHCN Global Historical Climatology Network
ENSO El Nino Southern Oscillation

PDO Pacific Decadal Oscillation

AMO Atlantic Multidecadal Oscillation

SASP Standardized spatial average of summer seasonal precipitation
MEIL Multivariate ENSO Index

NLDAS NASA Land Data Assimilation Systems
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