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We propose some new mixed finite element methods for the time-dependent stochastic Stokes equations
with multiplicative noise, which use the Helmholtz decomposition of the driving multiplicative noise.
It is known (Langa, J. A., Real, J. & Simon, J. (2003) Existence and regularity of the pressure for the
stochastic Navier–Stokes equations. Appl. Math. Optim., 48, 195–210) that the pressure solution has
low regularity, which manifests in suboptimal convergence rates for well-known inf-sup stable mixed
finite element methods in numerical simulations; see Feng X., & Qiu, H. (Analysis of fully discrete
mixed finite element methods for time-dependent stochastic Stokes equations with multiplicative noise.
arXiv:1905.03289v2 [math.NA]). We show that eliminating this gradient part from the noise in the
numerical scheme leads to optimally convergent mixed finite element methods and that this conceptual
idea may be used to retool numerical methods that are well known in the deterministic setting, including
pressure stabilization methods, so that their optimal convergence properties can still be maintained in the
stochastic setting. Computational experiments are also provided to validate the theoretical results and to
illustrate the conceptual usefulness of the proposed numerical approach.

Keywords: stochastic Stokes equations; multiplicative noise; Wiener process; Itô stochastic integral;
mixed finite element methods; inf-sup condition; error estimates; Helmholtz decomposition; pressure
stabilization.

1. Introduction

This paper is concerned with fully discrete mixed finite element approximations of the following
time-dependent stochastic Stokes equations with multiplicative noise for viscous incompressible fluids
covering the domain D = (0, L)d for d = 2, 3:

du = [Δu − ∇p + f]dt + B(u)dW(t) in DT := (0, T) × D, (1.1a)

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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div u = 0 in DT , (1.1b)

u(0) = u0 in D, (1.1c)

where u and p, respectively, denote the velocity field and the pressure of the fluid, which are spatially
periodic with period L > 0 in each coordinate direction; u0 and f denote, respectively, the prescribed
initial velocity and body force, which are spatially periodic (see Section 2 for the details). For the sake
of simplicity and ease of presentation, we assume {W(t); t ≥ 0} to be an R-valued Wiener process; see
Section 2 for further details.

When B ≡ 0, (1.1) is the well-known (deterministic) Stokes system; one motivation for studying
(1.1a)–(1.1b) with ‘random force’ f + B(u) dW

dt is to develop mathematical models of this type for
turbulent fluids (Bensoussan, 1995; Hairer & Mattingly, 2006). In addition to their importance in
applied sciences and engineering, the Stokes equations are a well-known partial differential equation
(PDE) model with saddle point structure, which requires special numerical discretizations to construct
optimally convergent methods. It should be noted that although the involved deterministic Stokes
operator is linear, system (1.1a)–(1.1b) is nonlinear due to the nonlinear function B.

The numerical analysis of the deterministic Stokes problem is well established in the literature;
see Brezzi & Fortin (1991), Girault & Raviart (1986), Heywood & Rannacher (1982). Well-known
numerical methods include: exactly divergence-free methods, which approximate the velocity in exactly
divergence-free finite element spaces; mixed finite element methods, where the (discrete) inf-sup
condition is the key criterion that distinguishes stable pairings of finite element ansatz spaces for
the velocity (with more degrees of freedom) and the pressure (with fewer degrees of freedom); and
mixed methods, which allow a more flexible, broader application if compared to exactly divergence-free
methods, thus putting them in the center of research on numerical methods for saddle point problems
in recent decades. Another class of related numerical methods are stabilization methods, which were
initiated in Hughes et al. (1986), where the incompressibility constraint (1.1b) is relaxed into

div u − εΔp = 0 in DT . (1.2)

This relaxation allows for stable pairings of equal order (nodal-based) finite element ansatz spaces for
both velocity and pressure (putting ε = O(h2), where h > 0 is the spatial mesh size). We remark that
optimal-order error estimates had been obtained for all three classes of finite element methods in the
deterministic setting (cf. Girault & Raviart, 1986; Brezzi & Fortin, 1991), where

• inf-sup stable mixed finite element methods require H1-regularity of the pressure in order to
optimally bound the best-approximation error for the pressure, which leads to optimal-order
convergence; cf. Brezzi & Fortin (1991), Girault & Raviart (1986), Heywood & Rannacher (1982);

• stabilization methods require H1-regularity of the pressure for convergence; cf. Hughes et al. (1986),
Prohl (1997).

This work contributes to the numerical analysis of the stochastic Stokes problem (1.1) (i.e.,
B �= 0). By Langa et al. (2003), even for smooth datum functions u0 and f, the (temporal)
regularity of the pressure p ∈ L1

(
Ω; W−1,∞(0, T; H1(D)/R)

)
is limited in general due to the driving

noise. In order to motivate its impact on the pressure, we here discuss the related question of
k-independent stability estimates for the pair of random variables (un+1, pn+1) of the following time-
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implicit discretization of (1.1) on a uniform mesh of [0, T] with mesh size k > 0:

un+1 − kΔun+1 + k∇pn+1 = un + kfn+1 + B(un)Δn+1W in D, (1.3a)

div un+1 = 0 in D, (1.3b)

where Δn+1W :=W(tn+1)−W(tn) ∼ N (0, k) = √
kN (0, 1) and fn+1 = f(tn+1, ·) ∈ L2(Ω , L2

per(D;Rd)).
A crucial observation for the motivation of this paper is that the pressure gradient on the left-hand side is
scaled by k, while the noise term is O(

√
k). Let us assume that estimate (3.5) in Lemma 3.2 for {Δun}n

taking values in L2(D;Rd) has already been shown, and we now look for a uniform bound for {∇pn}n
taking values in L2(D;Rd). The strategy for deriving such a stability estimate is to fix one ω ∈ Ω and to
multiply (1.3) by ∇pn+1(ω): all the terms that involve the velocity vanish due to the incompressibility
property and the periodic boundary condition, and we end up with

k

2
‖∇pn+1(ω)‖2 ≤ k‖f n+1(ω)‖2 + (

B
(
un(ω)

)
Δn+1W(ω), ∇pn+1(ω)

)
. (1.4)

Note that the term on the right-hand side does not vanish since div B(un) �= 0 for a general (Lipschitz)
nonlinear mapping B. We now take expectations E[·] on both sides, sum over all time steps and use
(3.5), the facts that B(un) and Δn+1W are independent and E

[|Δn+1W|2] ≤ Ck and Young’s inequality
(with α > 0) to obtain the estimate

k

2

N−1∑
n=0

E
[‖∇pn+1‖2] ≤ k

N−1∑
n=0

E
[‖fn+1‖2]+

N−1∑
n=0

E
[(

B(un)Δn+1W, ∇pn+1)]

≤ k
N−1∑
n=0

E
[‖fn+1‖2]+ αk

N−1∑
n=0

E
[‖B(un)‖2]+ 1

4α

N−1∑
n=0

E
[‖∇pn+1‖2].

Taking α = 1
k allows the last term on the right-hand side to be absorbed into the one on the left, but the

remaining term is
∑N−1

n=0 E
[‖B(un)‖2

] ∝ O(k−1); therefore, we end up with the following k-dependent
estimate:

k

4

N−1∑
n=0

E
[‖∇pn+1‖2] ≤ C

k
+ k

N−1∑
n=0

E
[‖fn+1‖2]. (1.5)

The above consideration crucially affects the error analysis of a space-time discretization of
(1.1a)–(1.1b):

• Exactly divergence-free methods require restricted settings of data, including the dimension,
topology and regularity of the spatial domain D. However, an optimal-order error estimate can
be proved for the velocity approximation; see Carelli & Prohl (2012), which uses the fact that no
pressure is involved in the analysis.

• The error estimate for the velocity approximation of inf-sup stable mixed finite element methods
in Feng & Qiu (2019) was obtained based on a stability bound of type (1.5) to bound the related
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best-approximation error for the pressure that appears in (an auxiliary temporal discretization of)

(1.1), thus leading to a sub-optimal error estimate for the velocity of order O(k
1
2 + hk− 1

2 ). The
computational studies in Feng & Qiu (2019) suggest that this error bound is sharp.

The first goal of the paper is to construct optimally convergent inf-sup stable mixed finite element
methods, with ‘minimum’ extra effort. Our main idea, which is partly borrowed from Carelli et al.
(2012), is to perform the Helmholtz decomposition for the noise term at each time step first and then to
determine the new velocity and pressure iterates simultaneously via the mixed finite element method.
Below we shall use the semidiscrete time-stepping scheme (1.3) to motivate our strategy. Introducing
the Helmholtz decomposition of B as:

B(un) = ∇ξn + ηηηn where divηηηn = 0 (1.6)

and setting rn+1 := pn+1 − k−1Δn+1Wξn, then (1.3) can be rewritten as

un+1 − kΔun+1 + k∇rn+1 = un + kfn+1 + ηηηnΔn+1W in D, (1.7a)

div un+1 = 0 in D. (1.7b)

In contrast to estimate (1.5) for pn+1, it can be shown that the new pressure rn+1 satisfies the following
improved stability estimate (see Lemma 3.2):

k
N−1∑
n=0

E
[‖∇rn+1‖2] ≤ k

N−1∑
n=0

E
[‖fn+1‖2], (1.8)

which is a consequence of the divergence-free property of the modified noise term (i.e., the last term on
the right-hand side of (1.7a)). Conceptually, this improved stability for the new pressure rn+1 is obtained
by removing the stochastic pressure ξn from the driving noise in (1.3a). As will be detailed in Section 4,
any inf-sup stable mixed finite element discretization of (1.7) then gives optimally convergent velocity
approximations (see Theorem 4.5, whose proof essentially relies on (1.8)). We also present optimal-error
estimates for (temporal averages of) the pressure approximations in L2, which improve corresponding
suboptimal estimates in Feng & Qiu (2019).

We therefore conclude by saying that it is essential to identify the proper role of the semidiscrete
pressures, namely {pn}n in (1.3) vs. {rn} in (1.7), for inf-sup stable mixed finite element methods for (1.1)
in order to construct optimally convergent mixed methods. Moreover, this insight also suggests how
to construct optimally convergent stabilization methods for (1.1) that circumvent the inf-sup stability
criterion for mixed element methods, and hence allow a more efficient discretization such as

un+1
ε − kΔun+1

ε + k∇rn+1
ε = un

ε + kfn+1 + ηηηn
εΔn+1W in D, (1.9a)

div un+1
ε − εΔrn+1

ε = 0 in D, (1.9b)

for which ε = O(h2) will be shown to be the optimal choice in Section 5. The error analysis in Section 5
verifies optimal-order convergence for a standard finite element discretization of (1.9) which employs
the same finite element space for approximating both un+1

ε and rn+1
ε ; see Theorem 5.3. Corresponding

computational studies in Section 6 support the conclusion that the choice of pressure in the stabilization
is crucial for achieving an optimally convergent stabilization method for (1.1).
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The remainder of this paper is organized as follows. In Section 2 we give exact assumptions on
the data in (1.1) and recall the definition and known properties of the (strong) variational solution for
problem (1.1). In Sections 3 and 4 we analyze the Helmholtz decomposition enhanced Euler–Maruyama
time-stepping scheme (1.6)–(1.7) and its mixed finite element approximations and establish optimal
convergence for both. Section 5 establishes optimal convergence for the stabilized scheme (1.9) and its
equal-order finite element approximations. Two-dimensional numerical experiments and computational
studies are given in Section 6 to validate the theoretical error bounds and to computationally evidence
that a proper selection of the pressure for the construction of optimally convergent mixed methods is
indeed necessary.

2. Preliminaries

2.1 Notation

Standard function and space notation will be adopted in this paper. For example, H	
per(D,Rd) (	 ≥ 0)

denotes the subspace of the Sobolev space H	(D,Rd) consisting of Rd-valued periodic functions with
period L in each spatial coordinate direction and (·, ·) := (·, ·)D denotes the standard L2-inner product,
with induced norm ‖·‖. Let (Ω ,F , {Ft},P) be a filtered probability space with the probability measure P,
the σ -algebra F and the continuous filtration {Ft} ⊂ F . For a random variable v defined on
(Ω ,F , {Ft},P), let E[v] denote the expected value of v. For a vector space X with norm ‖ · ‖X , and

1 ≤ p < ∞, we define the Bochner space
(
Lp(Ω , X); ‖v‖Lp(Ω ,X)

)
, where ‖v‖Lp(Ω ,X) := (

E[‖v‖p
X]
) 1

p .
Throughout this paper, unless stated otherwise we shall use C to denote a generic positive constant that
may depend on T , the datum functions u0 and f and the domain D but is independent of k and the mesh
parameter h.

We also define

H := {
v ∈ L2

per(D;Rd); div v = 0 in D
}
,

V := {
v ∈ H1

per(D;Rd); div v = 0 in D
}
.

We recall from Girault & Raviart (1986) that the (orthogonal) Helmholtz projection
P
H

: L2
per(D;Rd) → H is defined by P

H
v = ηηη for every v ∈ L2

per(D;Rd), where (ηηη, ξ) ∈ H×H1
per(D)/R

is a unique tuple such that

v = ηηη + ∇ξ

and ξ ∈ H1
per(D)/R solves the following Poisson problem (cf. Babutzka & Kunstmann, 2018):

(∇ξ , ∇q) = (v, ∇q) ∀ q ∈ H1
per(D). (2.1)

In this paper we denote the Stokes operator by A := P
H
Δ : H2(D;Rd) → H.

We assume that B : L2(Ω; H1
per(D;Rd)) → L2(Ω; H1

per(D;Rd)) is Lipschitz continuous and has

linear growth, i.e., there exists a constant C > 0 such that for all v, w ∈ L2
per(D;Rd),

‖B(v) − B(w)‖ ≤ C‖v − w‖, (2.2a)
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‖B(v)‖ ≤ C
(
1 + ‖v‖), (2.2b)

‖DB‖∗ ≤ C, (2.2c)

where DB denotes the Gateaux derivative of B and ‖ · ‖∗ is its operator norm.

2.2 Variational formulation of the stochastic Stokes equations

We first recall the solution concept for (1.1) and refer to Chow (2007), Da Prato & Zabczyk (1992) for
its existence and uniqueness.

Definition 2.1 Given (Ω ,F , {Ft},P), let W be an R-valued Wiener process on it. Suppose
u0 ∈ L2(Ω ,V) and f ∈ L2(Ω; L2((0, T); L2

per(D;Rd))). An {Ft}-adapted stochastic process {u(t);

0 ≤ t ≤ T} is called a variational solution of (1.1) if u ∈ L2
(
Ω; C([0, T];V)) ∩ L2

(
0, T; H2

per(D;Rd)
)

and satisfies P-a.s. for all t ∈ (0, T],

(
u(t), v

)+
∫ t

0

(∇u(s), ∇v
)

ds = (u0, v) +
∫ t

0

(
f(s), v

)
ds (2.3)

+
∫ t

0

(
B
(
u(s)

)
, v
)

dW(s) ∀ v ∈ V.

The following estimates from Carelli et al. (2012), Feng & Qiu (2019) establish the Hölder
continuity in time of the variational solution in various spatial norms.

Theorem 2.2 Additionally suppose u0 ∈L2
(
Ω;V∩H2

per(D;Rd)
)

and f∈L2(Ω , C
1
2 ([0, T]); H1

per(D;R)).
There exists a constant C > 0 such that the variational solution to problem (1.1) satisfies for s, t ∈ [0, T],

E
[‖u(t) − u(s)‖2]+ E

[∫ t

s
‖∇(u(τ ) − u(s)

)‖2 dτ

]
≤ C|t − s|, (2.4a)

E
[‖∇(u(t) − u(s)

)‖2]+ E

[∫ t

s
‖A
(
u(τ ) − u(s)

)‖2 dτ

]
≤ C|t − s|. (2.4b)

Remark 2.3 To avoid the technicality of tracking the required ‘minimum’ assumptions on u0 and f for
each stability and/or error estimate, unless it is stated otherwise we shall implicitly make the ‘maximum’

assumption u0 ∈ L2
(
Ω;V∩H2

per(D;Rd)
)

and f ∈ L2(Ω , C
1
2 ([0, T]); H1

per(D;R)) in the rest of the paper.
We also note that (2.4b) has only been proved for the periodic boundary condition case in the

literature, which is the main reason for restricting our attention to the periodic boundary condition case
in this paper as well.

2.3 Definition and role of the pressure

Definition 2.1 only addresses the velocity u in the stochastic PDE (1.1); a corresponding pressure that
satisfies a proper formulation (see Theorem 2.4 below) may be constructed after the existence of a
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velocity field u has been established. We therefore consider processes

U(t) :=
∫ t

0
u(s) ds , F(t) :=

∫ t

0
f(s) ds and G(t) :=

∫ t

0
B
(
u(s)

)
dW(s).

Evidently, U ∈ L2
(
Ω , L2(0, T; H2

per(D,Rd))
)

and G ∈ L2
(
Ω , L2(0, T; L2

per(D,Rd))
)
, and (2.3) therefore

implies (
u(t) − ΔU(t) − u0 − F(t) − G(t), v

) = 0 ∀ v ∈ V, t ∈ (0, T), P-a.s. (2.5)

By the Helmholtz decomposition (Langa et al., 2003, Theorem 4.1 and Remark 4.3), there exists a
unique P ∈ L2

(
Ω , L2(0, T; H1

per(D))/R
)

such that

∇P(t) = −[u(t) − ΔU(t) − u0 − F(t) − G(t)
] ∀ t ∈ (0, T), P-a.s. (2.6)

in the distributional sense. It is shown in Langa et al. (2003, Section 5) that its distributional time
derivative p := ∂tP ∈ L1

(
Ω; W−1,∞(0, T; H1

per(D)/R)
)
. As a consequence, we have the following

result.

Theorem 2.4 Let {u(t); 0 ≤ t ≤ T} be the variational solution of (1.1). There exists a unique adapted
process P ∈ L2

(
Ω , L2(0, T; H1

per(D)/R)
)

such that (u, P) satisfies P-a.s. for all t ∈ (0, T],

(
u(t), v

)+
∫ t

0

(∇u(s), ∇v
)

ds − (
div v, P(t)

)
(2.7a)

= (u0, v) +
∫ t

0

(
f(s), v

)
ds +

∫ t

0
(B(u(s)), v) dW(s) ∀ v ∈ H1

per(D;Rd),

div u, q) = 0 ∀ q ∈ L2
per(D) . (2.7b)

System (2.7) can be regarded as a mixed formulation for the stochastic Stokes system (1.1), where
the (time-averaged) pressure P is defined. Below, we also define another time-averaged ‘pressure’

R(t) := P(t) −
∫ t

0
ξ(s) dW(s),

where we use the Helmholtz decomposition B(u(t)) = ηηη(t) + ∇ξ(t), where ξ ∈ H1
per(D)/R P-a.s. such

that (∇ξ(t), ∇φ
) = (

B(u(t)), ∇φ
) ∀φ ∈ H1

per(D) . (2.8)

Then (2.6) can be rewritten as

∇R(t) = −
[

u(t) − ΔU(t) − u0 − F(t) −
∫ t

0
ηηη(s) dW(s)

]
∀ t ∈ (0, T), P-a.s. (2.9)
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The time averaged ‘pressure’ {R(t); 0 ≤ t ≤ T} will also be a target process to be approximated in our
numerical methods.

3. Semidiscretization in time

In this section we study the stability and convergence properties of a Helmholtz-decomposition-
enhanced Euler–Maruyama time discretization scheme that is based on (1.7), where the stochastic
pressure is removed from the noise term via the Helmholtz decomposition, but its V-valued velocity
approximation {un+1}n still solves the original Euler–Maruyama scheme (1.3).

3.1 Formulation of the time-stepping scheme

In the following, let N be a positive integer, k = T
N and tn = nk for n = 0, 1, . . . , N be a uniform mesh

that covers [0, T].

Algorithm 1
Let u0 = u0. For n = 0, 1, . . . , N − 1 do the following steps:
Step 1: Find ξn ∈ L2

(
Ω , H1

per(D)/R
)

by solving

(∇ξn, ∇φ
) = (

B(un), ∇φ
) ∀φ ∈ H1

per(D) . (3.1)

Step 2: Set ηηηn := B(un) − ∇ξn and find (un+1, rn+1) ∈ L2
(
Ω ,V × L2

per(D)/R
)

by solving

(
un+1, v

)+ k
(∇un+1, ∇v

)− k
(
div v, rn+1) (3.2a)

= (
un, v

)+ k
(
fn+1, v

)+ (
ηηηnΔn+1W, v

) ∀ v ∈ H1
per(D,Rd),(

div un+1, q
) = 0 ∀ q ∈ L2

per(D) . (3.2b)

Step 3: Define pn+1 := rn+1 + k−1ξnΔn+1W.

Remark 3.1 By the elliptic regularity theory (see Girault & Raviart,1986, p. 13), the solution of (3.1)
is in ξn ∈ L2

(
Ω , H2

per(D)/R
)

and satisfies Lebesgue-a.e.

−Δξn = −div B(un) in D . (3.3a)

Moreover, there exists a constant C > 0 such that

‖ξn‖H2/R ≤ C ‖div B(un)‖ . (3.4)

The solvability of Algorithm 1 is clear because a linear coercive elliptic PDE problem is solved at
each step. Step 1 in Algorithm 1 requires a Poisson problem (3.1) to be solved, which only slightly
increases the computational cost if a fast solver is used to solve them. The iterates {(un, rn)}n and {pn}n
defined in Steps 2 and 3 aim to approximate {(u(t), r(t)); 0 ≤ t ≤ T} and {p(t); 0 ≤ t ≤ T}, respectively.
See Section 3.4 for details.
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3.2 Stability estimates

In this subsection we present some stability estimates for the time-stepping scheme given in Algorithm
1. All these estimates, in particular the estimate for {∇rn+1}n, will play an important role in establishing
optimal-order error estimates for the fully mixed finite element discretization to be given in the next
section.

Lemma 3.2 Let {(un+1, rn+1)}n be generated by Algorithm 1. There exists a constant C > 0, such that

max
1≤n≤N

E
[‖∇un‖2]+ E

[
N∑

n=1

‖∇(un − un−1)‖2

]
+ E

[
k

N∑
n=1

‖Aun‖2

]
≤ C , (3.5)

E

[
k

N∑
n=1

‖∇rn‖2

]
≤ C . (3.6)

Proof. Since a proof of estimate (3.5) can be found in Carelli & Prohl (2012, Lemma 3.1) and in Feng
& Qiu (2019, Lemma 2.1), we only give a sketch of the proof for estimate (3.6) here. To prove (3.6),
multiplying (1.7a) with ∇rn+1 and integrating over D and using (1.7b) and div ηn = 0 yields

k‖∇rn+1‖2 = k
(
fn+1, ∇rn+1) ≤ k

2
‖fn+1‖2 + k

2
‖∇rn+1‖2,

hence,

k‖∇rn+1‖2 ≤ k‖fn+1‖2.

Taking the expectation and applying the summation operator
∑N−1

n=0 on both sides gives the desired
estimate. The proof is complete. �

3.3 Error estimate for the velocity approximation

Since the velocity approximation {un+1}n generated by Algorithm 1 also solves the original Euler–
Maruyama time-stepping scheme (1.3), the following optimal-order error estimate for {un+1}n was
established in Carelli & Prohl (2012), Feng & Qiu (2019).

Theorem 3.3 Let {(un+1, rn+1)}n be generated by Algorithm 1. There exists a constant C > 0, such
that

max
1≤n≤N

(
E
[‖u(tn) − un‖2]) 1

2 +
(
E

[
k

N∑
n=1

‖∇(u(tn) − un)‖2

]) 1
2

≤ Ck
1
2 . (3.7)

We note that the proof of the above error estimate crucially uses the fact that un is exactly divergence-
free for each 0 ≤ n ≤ N.
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3.4 Error estimates for the pressure approximations

An optimal-order error estimate was obtained in Feng & Qiu (2019) for {P(tn)}n via the Euler–
Maruyama time-stepping scheme (1.3). For the reader’s convenience, we give its proof here.

Theorem 3.4 Let {pn; 1 ≤ n ≤ N} be the pressure in (1.3) and {P(t); 0 ≤ t ≤ T} be defined in Theorem
2.4. There exists a constant C > 0, such that

⎛⎝E

⎡⎣∥∥∥∥∥P(tm) − k
m∑

n=1

pn

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ C k
1
2 , m = 1, 2, . . . , N . (3.8)

Proof. Consider (1.3a) and take the sum over steps 0 ≤ n ≤ m − 1. We denote Um := k
∑m−1

n=0 un+1

and Pm := k
∑m−1

n=0 pn+1 and therefore obtain

um − u0 − ΔUm + ∇Pm = k
m−1∑
n=0

f n+1 +
m−1∑
n=0

B(un)Δn+1W . (3.9)

We subtract this equation from (2.6) at time t = tm and denote Em
U := U(tm)−Um ∈ L2(Ω; H1

per(D;Rd))

and Em
P := P(tm)−Pm ∈ L2(Ω; L2

per(D)). By the stability of the divergence operator, there exists β > 0,
such that

1

β
‖Em

P ‖ ≤ sup
v∈H1

per(D;Rd)

(Em
P , div v)

‖∇v‖

≤ ‖u(tm) − um‖ + ‖∇Em
U‖ +

∥∥∥∥∥
m−1∑
n=0

(B(u(tn)) − B(un))Δn+1W

∥∥∥∥∥
+
∥∥∥∥∥

m−1∑
n=0

∫ tn+1

tn
B(u(s)) − B(u(tn)) dW(s)

∥∥∥∥∥ (3.10)

+
∥∥∥∥∥

m−1∑
n=0

∫ tn+1

tn
(f(s) − f(tn+1)) ds

∥∥∥∥∥ =: I+ · · · + V .

Taking squares on both sides and then applying expectations, Theorem 3.3 in combination with Hölder’s
inequality leads to

1

β2E[‖Em
P ‖2] ≤ Ck + E

[‖III‖2]+ E
[‖IV‖2]+ E

[‖V‖2] .
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By Ito’s isometry and (2.2a), as well as (2.4a), and Theorem 3.3, we find the bounds

E
[‖III‖2 + ‖IV‖2] ≤ CE

[
k

m−1∑
n=0

‖u(tn) − un‖2

]
+ Ck ≤ Ck ,

and by using the Cauchy–Schwarz inequality we get

E
[‖V‖2] ≤ E

[
m−1∑
n=0

∫ tn+1

tn
‖f(s) − f(tn+1)‖2 ds

]
≤ Ck,

which leads to the desired estimate (3.8). �
We now consider the pressure Rm := k

∑m−1
n=0 r n+1, where {rn}n is defined by Algorithm 1. Using

the new notation, (3.9) can be written as

um − u0 − ΔUm + ∇Rm = k
m−1∑
n=0

f n+1 +
m−1∑
n=0

(
B(un) − ∇ξn)Δn+1W . (3.11)

We again subtract this equation from (2.9) at time t = tm and adapt the error notation in (3.10),

1

β
‖Em

R ‖ ≤ sup
v∈H1

per(D;Rd)

(Em
R , div v)

‖∇v‖ ≤ I+ · · · + IV+ V+ VI ,

where V is the same as above, hence, E
[‖V‖2

] ≤ Ck, and

VI :=
∥∥∥∥∥

m−1∑
n=0

∇(ξ(tn) − ξn)Δn+1W

∥∥∥∥∥+
∥∥∥∥∥

m−1∑
n=0

∫ tn+1

tn
∇(ξ(s) − ∇ξ(tn)

)
dW(s)

∥∥∥∥∥ =: VI1 + VI2 .

By a stability result for the Poisson problems (2.8), (3.1) and property (2.2a), we easily obtain, thanks
to Theorem 3.3,

E
[‖VI1‖2] ≤ CE

[
k

m−1∑
n=0

‖u(tn) − un‖2

]
≤ Ck .

Similarly, we get E
[‖VI2‖2

] ≤ Ck. Therefore, we have the following corollary.

Corollary 3.5 Let {rn; 1 ≤ n ≤ N} be the discrete process from Algorithm 1. There exists a constant
C > 0 such that ⎛⎝E

⎡⎣∥∥∥∥∥R(tm) − k
m∑

n=1

rn

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ Ck
1
2 , m = 1, 2, . . . , N . (3.12)
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4. Fully discrete, inf-sup stable mixed finite element method

In this section we discretize Algorithm 1 in space via an inf-sup stable mixed finite element method. We
choose the prototypical Taylor–Hood mixed finite element (see, e.g., Girault & Raviart, 1986; Brezzi &
Fortin, 1991) as an example and give a detailed error analysis for the resulting fully discrete method,
but we remark that the convergence analysis below also applies to general inf-sup stable mixed finite
elements.

4.1 Preliminaries

Let Th be a quasi-uniform triangular or rectangular mesh of D ⊂ Rd with mesh size 0 < h � 1. We
define the following finite element spaces:

Xh = {
vh ∈ H1

per(D;Rd); vh|K ∈ P2(K,Rd) ∀ K ∈ Th

}
,

Wh = {
qh ∈ H1

per(D)/R; qh|K ∈ P1(K) ∀ K ∈ Th

}
,

Sh = {
φh ∈ H1

per(D)/R; φh|K ∈ P1(K) ∀ K ∈ Th

}
,

where P	(K;Rd) (	 = 1, 2) denotes the set of Rd-valued polynomials of degree less than or equal to 	

over the element K ∈ Th. Note that Sh = Wh, which could be relaxed to Sh ⊆ Wh when higher-order
Taylor–Hood elements are used.

We recall that the pair (Xh, Wh) satisfies the (discrete) inf-sup condition: there exists an
h-independent constant γ > 0 such that

sup
vh∈Xh

(
div vh, qh

)
‖∇vh‖

≥ γ ‖qh‖ ∀qh ∈ Wh . (4.1)

Next let ρh : L2
per(D) → Wh resp. Rh : H1

per(D)/R → Sh denote the L2-resp. the Ritz-projection
operators which are defined by(

φ − ρhφ, χh

) = 0 ∀φ ∈ L2
per(D), χh ∈ Wh, (4.2)(∇[ψ − Rhψ], ∇ζh

) = 0 ∀ψ ∈ H1
per(D)/R, ζh ∈ Sh . (4.3)

Then the following approximation properties are well known (cf. Girault & Raviart, 1986; Ern &
Guermond, 2004; Falk, 2008):

‖φ − ρhφ‖ + h‖∇(φ − ρhφ)‖ ≤ Chs‖φ‖Hs ∀φ ∈ Hs
per(D) , (4.4)

‖ψ − Rhψ‖ + h‖∇(ψ − Rhψ)‖ ≤ Chs‖ψ‖Hs ∀ψ ∈ Hs
per(D)/R , (4.5)

for s = 1, 2. Here, C is a positive constant independent of h.
We also consider the space Vh ⊂ Xh of discretely divergence-free functions,

Vh := {
vh ∈ Xh; (div vh, qh) = 0 ∀qh ∈ Wh

}
,
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and define the L2
per(D;Rd)-projection operator Ph : L2

per(D;Rd) → Vh by

(
v − Phv, wh

) = 0 ∀ v ∈ L2
per(D;Rd), wh ∈ Vh .

The following approximation properties are well known (cf. Heywood & Rannacher, 1982):

‖v − Phv‖ + h‖∇(v − Phv)‖ ≤ Chs‖v‖Hs ∀ v ∈ V ∩ Hs
per(D;Rd) (4.6)

for s = 1, 2. Here, C is again a positive constant independent of h.

4.2 Formulation of the fully discrete mixed finite element method

The fully discrete, inf-sup stable finite element below is a spatial discretization of Algorithm 1. We
note that since Vh �⊂ V, in general, the mixed finite element discretization requires improved stability
estimates for the semidiscrete pressure {rn+1}n as given in Lemma 3.2 in order to ensure optimal
convergence properties.

Algorithm 2
Let u0

h ∈ L2(Ω;Xh). For n = 0, 1, . . . , N − 1, we do the following steps:
Step 1: Determine ξn

h ∈ L2(Ω; Sh) by solving(∇ξn
h , ∇φh

) = (
B(un

h), ∇φh

) ∀φh ∈ Sh . (4.7)

Step 2: Set ηηηn
h := B(un

h) − ∇ξn
h . Find (un+1

h , rn+1
h ) ∈ L2

(
Ω ,Vh × Wh

)
by solving

(
un+1

h , vh

)+ k
(∇un+1

h , ∇vh

)− k
(
div vh, rn+1

h

)
(4.8a)

= (
un

h, vh

)+ k
(
fn+1, vh

)+ (
ηηηn

hΔn+1W, vh

) ∀ vh ∈ Xh ,(
div un+1

h , qh

) = 0 ∀ qh ∈ Wh . (4.8b)

Step 3: Define the Wh-valued random variable pn+1
h = rn+1

h + k−1ξn
h Δn+1W.

Remark 4.1 Because of (4.7), we have (ηηηn
h, ∇φh) = 0 for all φh ∈ Sh, P-a.s. We also note that each of

Step 1 and Step 2 solves a linear problem that is clearly well posed; in particular, the well-posedness of
(4.8) is ensured by the inf-sup property (4.1) of the mixed finite element spaces Xh and Wh.

4.3 Error estimate for the velocity approximation

The main result of this section is to prove the following optimal estimate for the velocity error un − un
h.

Theorem 4.2 Suppose that

E
[‖u0 − u0

h‖2 ] ≤ Ch2.



14 X. FENG ET AL.

Let {(un, rn); 1 ≤ n ≤ N} and {(un
h, rn

h); 1 ≤ n ≤ N} be, respectively, the solutions of Algorithms 1 and
2. Then there exists a constant C > 0 such that

max
1≤n≤N

(
E
[‖un − un

h‖2 ]) 1
2 +

(
E

[
k

N∑
n=1

‖∇(un − un
h)‖2

]) 1
2 ≤ C h . (4.9)

Proof. Define en
u = un − un

h and en
r = rn − rn

h. It is easy to check that {(en
u, en

r )}n satisfies the following
error equations P-a.s. for all tuples (vh, qh) ∈ Xh × Wh:

(en+1
u − en

u, vh) + k(∇en+1
u , ∇vh) − k(en+1

r , div vh) (4.10)

= (
[ηηηn − ηηηn

h]Δn+1W, vh

)
,(

div en+1
u , qh

) = 0 . (4.11)

Now for any fixed ω ∈ Ω , setting vh = Phen+1
u (ω) ∈ Vh in (4.10) yields

(en+1
u − en

u, Phen+1
u ) + k(∇en+1

u , ∇Phen+1
u ) − k(en+1

r , div Phen+1
u ) (4.12)

= (
[ηηηn − ηηηn

h]Δn+1W, Phen+1
u

)
.

We now estimate each term on the left-hand side of (4.12) from below. First, by the definition of Ph
we get

(
en+1

u − en
u, Phen+1

u
) = (

Ph[en+1
u − en

u], Phen+1
u

)
(4.13)

= 1

2

[
‖Phen+1

u ‖2 − ‖Phen
u‖2

]
+ 1

2
‖Ph[en+1

u − en
u]‖2 .

Next, using again the fact that Phun+1
h = un+1

h and the Schwarz inequality, we obtain

k
(∇en+1

u , ∇Phen+1
u

) = k‖∇en+1
u ‖2 − k

(∇en+1
u , ∇[un+1 − Phun+1]

)
(4.14)

≥ k

2
‖∇en+1

u ‖2 − k

2
‖∇[un+1 − Phun+1]‖2

≥ k

2
‖∇en+1

u ‖2 − C kh2‖un+1‖2
H2 ,

where we have used (4.6) to get the last inequality.
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For the next term in (4.12), using the fact that Phen+1
u takes values in Vh, and estimates (4.4), (4.5)

and (4.6), we get

−k
(
en+1

r , div Phen+1
u

) = −k
(
rn+1, div Phen+1

u
)

(4.15)

= −k
(
rn+1 − ρhrn+1, div Phen+1

u
)

≥ −k‖rn+1 − ρhrn+1‖‖div Phen+1
u ‖

≥ −Chk‖∇rn+1‖‖∇en+1
u ‖

≥ − k

4
‖∇en+1

u ‖2 − C2h2k‖∇rn+1‖2 .

Finally, we bound the only term on the right-hand side of (4.12) from above. By the independence
of the increments {Δn+1W}n, and its distribution, we get

E
[(

[ηηηn − ηηηn
h]Δn+1W, Phen+1

u
)] = E

[(
[ηηηn − ηηηn

h]Δn+1W, Ph[en+1
u − en+1

u ]
)]

(4.16)

≤ kE
[‖ηηηn − ηηηn

h‖2]+ 1

4
E
[‖Ph(e

n+1
u − en

u)‖2] ,

and because of (2.2) and (4.6), there holds

‖ηηηn − ηηηn
h‖2 ≤ 2‖B(un) − B(un

h)‖2 + 2‖∇(ξn − ξn
h )‖2 (4.17)

≤ 2C‖en
u‖2 + 2‖∇(ξn − ξn

h )‖2

= 2C‖(un − Phun) + Phen
u‖2 + 2‖∇(ξn − ξn

h )‖2

≤ Ch4‖un‖2
H2 + 4C‖Phen

u‖2 + 2‖∇(ξn − ξn
h )‖2 .

To control ‖∇(ξn − ξn
h )‖, we recall the definitions of ξn and ξn

h to get(∇[ξn − ξn
h ], ∇φh

) = (
B(un) − B(un

h), ∇φh

) ∀φh ∈ Sh .

Setting φh = Rh[ξn − ξn
h ] = (ξn − ξn

h ) − (ξn − Rhξ
n), properties (2.2a) and (4.5) yield

‖∇(ξn − ξn
h )‖2 ≤ (∇[ξn − ξn

h ], ∇[ξn − Rhξ
n]
)+ C‖en

u‖‖∇(ξn − ξn
h )‖

≤ 1

2
‖∇(ξn − ξn

h )‖2 + Ch2‖ξn‖2
H2/R

+ C‖en
u‖2 .

Hence, by (3.4) in Remark 3.1, (4.6) and (2.2c) we get

‖∇(ξn − ξn
h )‖2 ≤ Ch2‖ξn‖2

H2/R
+ C‖en

u‖2 (4.18)

≤ Ch2‖div B(un)‖2 + C‖en
u‖2

≤ Ch2‖∇un‖2 + Ch4‖un‖2
H2 + C‖Phen

u‖2.
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Therefore,

‖ηηηn − ηηηn
h‖2 ≤ C

(
h2‖∇un‖2 + h4‖un‖2

H2 + ‖Phen
u‖2

)
. (4.19)

We insert estimates (4.13)–(4.19) into (4.12), take the expectation, and apply the summation operator∑m
n=0 for any 0 ≤ m ≤ N − 1 to conclude

1

2
E
[‖Phem+1

u ‖2]+ 1

4

m∑
n=0

E
[‖Ph(e

n+1
u − en

u)‖2]+ 1

4
E

[
k

m∑
n=0

‖∇en+1
u ‖2

]
(4.20)

≤ Ck
m∑

n=0

E

[
‖Phen

u‖2
]

+ C h2
E

[
k

N−1∑
n=0

‖∇rn+1‖2

]

+ C h2
E

[
k

N−1∑
n=0

‖∇un+1‖2

]
+ C h2

E

[
k

N−1∑
n=0

‖un+1‖2
H2

]

≤ Ck
m∑

n=0

E

[
‖Phen

u‖2
]

+ C h2,

where we have used estimates (3.5) and (3.6) to obtain the last inequality.
Applying the discrete Gronwall inequality to (4.20) then leads to

1

2
E
[‖Phem+1

u ‖2]+ 1

4

m∑
n=0

E
[‖Ph(e

n+1
u − en

u)‖2]+ 1

4
E

[
k

m∑
n=0

‖∇en+1
u ‖2

]
(4.21)

≤ exp(C T) Ch2 (1 ≤ m ≤ N) .

Finally, the desired estimate (4.9) follows from an application of the triangle inequality on em+1
u =

(um+1 − Phum+1) + Phem+1
u and using (4.21) and (4.6). The proof is complete. �

4.4 Error estimates for the pressure approximations

In this subsection, we derive some error estimates for both rn − rn
h and pn − pn

h. The argumentation
parallels that in Section 3.4, and uses the inf-sup condition (4.1) in particular.

Theorem 4.3 Suppose that

E
[‖u0 − u0

h‖2 ] ≤ Ch2.

Let {(un, rn); 1 ≤ n ≤ N} and {(un
h, rn

h); 1 ≤ n ≤ N} be, respectively, the solutions of Algorithms 1 and
2. There exists a constant C > 0, such that

⎛⎝E

⎡⎣∥∥∥∥∥k
N∑

n=1

(rn − rn
h)

∥∥∥∥∥
2 ⎤⎦⎞⎠

1
2

≤ C h .
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Proof. Summing (4.10) (after lowering the index by 1) over 1 ≤ n ≤ m ≤ N leads to

(
em

u , vh

)+ k
m∑

n=1

(∇en
u, ∇vh

)− k
m∑

n=1

(
div vh, en

r

)
= (e0

u, vh) +
m∑

n=1

(
[ηηηn−1 − ηηηn−1

h ]ΔnW, vh

) ∀vh ∈ Xh .

By (4.1) we conclude (compare with (3.10))

1

3γ

∥∥∥∥∥k
m∑

n=1

en
r

∥∥∥∥∥ ≤ ‖em
u ‖ + ‖e0

u‖ +
∥∥∥∥∥k

m∑
n=1

∇em
u

∥∥∥∥∥+
∥∥∥∥∥

m∑
n=1

(ηηηn−1 − ηηηn−1
h )Δn+1W

∥∥∥∥∥ .

Taking expectations after squaring both sides, using estimates (4.17), (4.18), (4.19) and Theorem 4.2
yield the desired result. �

The following result now is a simply corollary of Theorem 4.3.

Corollary 4.4 Let {pn
h}n be the solution in Algorithm 2. Then there exists a constant C > 0, such that

⎛⎝E

⎡⎣∥∥∥∥∥k
N∑

n=1

(pn − pn
h)

∥∥∥∥∥
2 ⎤⎦⎞⎠

1
2

≤ C h .

4.5 Space-time error estimates for Algorithm 2

Theorems 3.3, 3.4, 4.2 and 4.3 and Corollaries 3.5 and 4.4 now provide the following global error
estimates.

Theorem 4.5 Let (u, P) solve (1.1), and {(un
h, rn

h, pn
h); 1 ≤ n ≤ N} solve Algorithm 2. There exists a

constant C > 0 such that

(i) max
1≤n≤N

(
E
[‖u(tn) − un

h‖2 ]) 1
2 +

(
E

[
k

N∑
n=1

‖∇(u(tn) − un
h)‖2

]) 1
2

≤ C
(
k

1
2 + h

)
,

(ii)

⎛⎝E

⎡⎣∥∥∥∥∥R(tm) − k
m∑

n=1

rn
h

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

+
⎛⎝E

⎡⎣∥∥∥∥∥P(tm) − k
m∑

n=1

pn
h

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ C
(
k

1
2 + h

)
,

for all 1 ≤ m ≤ N.

5. Stabilization methods for (1.1)

The scheme in Section 4 requires inf-sup stable pairings (Xh, Wh) of which the Taylor–Hood mixed
finite element is one example. By recalling its definition in Section 4.1, we observe that the dimension
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of Xh exceeds that of Wh. The motivation for the stabilization methods in Hughes et al. (1986) is to relax
the inf-sup stability criterion for pairings of ansatz spaces in order to allow for equal-order ansatz spaces
for both velocity and pressure approximates; see Brezzi & Fortin (1991), Ern & Guermond (2004),
Girault & Raviart (1986), Hughes et al. (1986) for further details.

Below we replace Xh defined in Section 4.1 by

Yh = {
vh ∈ H1

per(D;Rd); vh|K ∈ P1(K,Rd) ∀ K ∈ Th

}
,

to which we associate the L2
per-projection operator Qh : L2

per(D;Rd) → Yh by

(v − Qhv, wh) = 0 ∀ v ∈ L2
per(D;Rd), wh ∈ Yh ,

which satisfies the following approximation property (cf. Ern & Guermond, 2004):

‖v − Qhv‖ + h‖∇(v − Qhv)‖ ≤ Chs‖v‖Hs ∀ v ∈ Hs
per(D;Rd) (5.1)

for s = 1, 2. Here, C > 0 is a constant independent of h. Moreover, let Wh be the same as in Section 4,
and let R̃h denote the Ritz projection from H1

per(D)/R to Wh. Again, we take Sh = Wh in this section.
In this section we consider the equal-order pairing (Yh, Wh) to discretize (1.1) based on

(1.9a)–(1.9b), which violates the inf-sup condition. In fact, the following estimate is known to hold
(cf. Hughes et al., 1986): there exists δ > 0 independent of h > 0, such that

1

δ2 ‖qh‖2 ≤ sup
vh∈Yh

|(qh, div vh)|2
‖∇vh‖2 + h2‖∇qh‖2 ∀ qh ∈ Wh . (5.2)

Equation (5.2) can be regarded as the reason why this pairing still performs optimally when applied
to the Stokes problem, where ε = O(h2). Below we show that such a strategy can again be successful
for the stochastic Stokes problem (1.1) if the proper pressure is chosen for the perturbation and that
using the Helmholtz projection of the noise provides such an approach.

To prepare for the analysis, we start with a modification of Algorithm 1 that perturbs the
incompressibility constraint.

Algorithm 3
Let 0 < ε � 1 and u0

ε = u0. For n = 0, 1, . . . , N − 1, do the following steps:
Step 1: Find ξn

ε ∈ L2
(
Ω , H1

per(D)/R
)

by solving

(∇ξn
ε , ∇φ

) = (
B(un

ε), ∇φ
) ∀φ ∈ H1

per(D) . (5.3)

Step 2: Set ηηηn
ε := B(un

ε) − ∇ξn
ε , and find (un+1

ε , rn+1
ε ) ∈ L2

(
Ω , H1

per(D;Rd) × H1
per(D)/R

)
by

solving

(
un+1

ε , v
)+ k

(∇un+1
ε , ∇v

)− k
(
div v, rn+1

ε

)
(5.4a)
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= (
un

ε , v
)+ k

(
fn+1, v

)+ (
ηηηn

εΔn+1W, v
) ∀ v ∈ H1

per(D;Rd) ,(
div un+1

ε , q
)+ ε

(∇rn+1
ε , ∇q

) = 0 ∀q ∈ H1
per(D) . (5.4b)

Step 3: Define pn+1
ε := rn+1

ε + k−1ξn
ε Δn+1W.

Because each step involves a coercive linear problem, Algorithm 3 has a unique solution. The lemma
below establishes an energy estimate for the solution.

Lemma 5.1 Let {(un
ε , rn

ε )}n≥0 be the solution of Algorithm 3. Then there exists a constant C > 0, such
that

max
0≤n≤N−1

1

2
E
[‖un+1

ε ‖2]+ k
N−1∑
n=0

E
[‖∇un+1

ε ‖2 + ε‖∇rn+1
ε ‖2] (5.5)

≤ C
(
E
[‖u0‖2]+ k

N−1∑
n=0

E
[‖fn+1‖2]) .

Proof. By fixing one ω ∈ Ω and choosing (v, q) = (
un+1

ε (ω), rn+1
ε (ω)

)
in (5.4a), we then obtain the

identity

1

2

(
‖un+1

ε ‖2 − ‖un
ε‖2 + ‖un+1

ε − un
ε‖2

)
(5.6)

+ k

2
‖∇un+1

ε ‖2 + kε‖∇rn+1
ε ‖2 = Ck

2
‖fn+1‖2 + (

ηηηn
εΔn+1W, un+1

ε

)
.

Taking expectations, applying the summation operator
∑m

n=0 for any 0 ≤ m ≤ N − 1 and using the
independence of the increments {Δn+1W}n yields

E
[(

ηηηn
εΔn+1W, un+1

ε

)] = E
[(

ηηηn
εΔn+1W, [un+1

ε − un
ε]
)]

(5.7)

≤ kE
[‖ηηηn

ε‖2]+ 1

4
E
[‖un+1

ε − un
ε‖2] .

By (5.3) and (2.2b) we have

E
[‖∇ξn

ε ‖2] ≤ E
[‖B(un

ε)‖2] ≤ C(1 + E[‖un
ε‖2]) ;

therefore the first term on the right-hand side of (5.7) can be bounded as

kE[‖ηηηn
ε‖2] ≤ Ck(1 + E[‖un

ε‖2]).

We insert these auxiliary estimates into (5.6), take expectations, sum over all time steps and use the
discrete Gronwall inequality to get the desired estimate. �

Note that the estimate for {∇rn+1} is scaled by ε > 0, which is too weak in the following to verify
optimal error estimates for a spatial discretization of Algorithm 3. The following stability result therefore
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sharpens the estimate (5.5); its proof crucially exploits again the fact that each ηηηn
ε is an H-valued random

variable.

Lemma 5.2 Let {(un
ε , rn

ε )}n be the solution of Algorithm 3. Then there exists a constant C > 0, such
that

max
1≤n≤N

E
[‖∇un

ε‖2]+ k
N∑

n=1

E
[‖Δun

ε‖2] + k
N∑

n=1

E
[‖∇rn

ε‖2] ≤ C. (5.8)

Proof. Step 1: We adapt the argumentation from Carelli et al. (2012, Theorem 3.1) and interpret
problem (1.9)—with ηηηn being replaced by ηηηn

ε—as perturbation of problem (1.7). Subtracting the
corresponding equations of both systems and denoting en+1

u := un+1 − un+1
ε resp. en+1

r := rn+1 − rn+1
ε

yields

en+1
u − kΔen+1

u + k∇en+1
r = en

u + [ηηηn − ηηηn
ε]Δn+1W in D , (5.9a)

div en+1
u − εΔen+1

r = −εΔrn+1 in D . (5.9b)

Now fix one ω ∈ Ω , test (5.9a) with v = en+1
u (ω), and (5.9b) with q = en+1

r (ω), and afterwards sum
both equations; we then conclude

1

2

(
‖en+1

u ‖2 − ‖en
u‖2 + ‖en+1

u − en
u‖2

)
+ k‖∇en+1

u ‖2 + kε‖∇en+1
r ‖2 (5.10)

= (
[ηηηn − ηηηn

ε]Δn+1W, en+1
u

)+ kε(∇rn+1, ∇en+1
r ) .

Using Young’s inequality, hiding one part of the last term in the corresponding term on the left-hand
side, using the independence of Δn+1W and en

u, Δn+1W as well as of [ηηηn − ηηηn
ε], and utilizing (2.2), we

obtain

E
[(

[ηηηn − ηηηn
ε]Δn+1W, en+1

u
)] = E

[(
[ηηηn − ηηηn

ε]Δn+1W, en+1
u − en

u
)]

≤ kE
[‖ηηηn − ηηηn

ε‖2]+ 1

2
E
[‖en+1

u − en
u‖2]

≤ Ck
(
E[‖en

u‖2] + E
[‖∇(ξn − ξn

ε )‖2])+ 1

2
E
[‖en+1

u − en
u‖2] .

Subtracting (5.3) from (3.1) and using (2.2) we get

‖∇(ξn − ξn
ε )‖ ≤ ‖B(un) − B(uε)‖ ≤ C‖en

u‖ .
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Hence, we then conclude from (5.10) with the help of the discrete Gronwall inequality, and
(3.6) that

1

2
E
[‖em+1

u ‖2]+
m∑

n=0

E
[‖en+1

u − en
u‖2]+ k

m∑
n=0

E
[‖∇en+1

u ‖2 + ε‖∇en+1
r ‖2]

≤ Cεk
m∑

n=0

E
[‖∇rn+1‖2] ≤ Cε (0 ≤ m ≤ N) .

Consequently, by (3.6) we conclude that

k
N∑

n=0

E
[‖∇en+1

r ‖2 ] ≤ C implies k
N∑

n=0

E
[‖∇rn+1

ε ‖2 ] ≤ C.

Step 2: Fix one ω ∈ Ω in (1.9a), multiply the equation by −Δun+1
ε (ω), integrate, perform an integration

by parts on the last term and use the periodicity of ηηηn
ε and un+1

ε ; we get

1

2
E

[
‖∇un+1

ε ‖2 − ‖∇un
ε‖2 + ‖∇(un+1

ε − un
ε)‖2 + k‖Δun+1

ε ‖2
]

(5.11)

≤ kE
[‖∇rn+1

ε ‖2]+ E

[∫
D

Δn+1W∇ηηηn
ε · ∇(un+1

ε − un
ε) dx

]
.

To bound the last term above, we use the Schwarz inequality, the fact that ηηηn
ε = B(un

ε) − ∇ξn
ε , (2.2)

and (3.4) to get

E

[∫
D

Δn+1W∇ηηηn
ε · ∇(un+1

ε − un
ε) dx

]
≤ 1

4
E
[‖∇(un+1

ε − un
ε)‖2] (5.12)

+ CkE
[‖∇un‖2].

Substituting (5.12) into (5.11), summing over all time steps, and using (5.5) and the result of Step 1 we
get the desired estimate (5.8). The proof is complete. �

From Step 1 of the above proof we also obtain the following result.

Theorem 5.3 Let {(un+1, rn+1)}n and {(un
ε , rn

ε )}n be the solutions of Algorithms 1 and 3, respectively.
Then there exists a constant C > 0, such that

max
1≤n≤N

E
[‖un − un

ε‖2]+ k
N∑

n=1

E
[‖∇(un − un

ε)‖2 + ε‖∇(rn − rn
ε )‖2] ≤ Cε . (5.13)

We are ready to bound the error between the pressures {rn}n and {rn
ε}n; the proof of it uses (5.9) after

summation in time, and follows along the lines of the proof of Theorem 3.4, using the stability of the
divergence operator (cf. estimate (3.10)), and Theorem 5.3.
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Theorem 5.4 Let {rn; 1 ≤ n ≤ N} be generated by Algorithm 1 and {rn
ε ; 1 ≤ n ≤ N} by Algorithm 3.

There exists a constant C > 0, such that for m = 1, 2, . . . , N,

⎛⎝E

⎡⎣∥∥∥∥∥k
m∑

n=1

(
rn − rn

ε

)∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ Cε .

The above estimate and the algebraic relation in Step 3 of Algorithm 3 immediately imply the
following estimate for pn − pn

ε .

Corollary 5.5 Let {pn; 1 ≤ n ≤ N} be generated by Algorithm 1 and {pn
ε ; 1 ≤ n ≤ N} by Algorithm

3. There exists a constant C > 0, such that for m = 1, 2, . . . , N,

⎛⎝E

⎡⎣∥∥∥∥∥k
m∑

n=1

(
pn − pn

ε

)∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ Cε .

Next we present the following modification of Algorithm 2.
Algorithm 4

Let 0 < ε � 1 and u0
ε,h ∈ L2(Ω;Yh). For n = 0, 1, . . . , N − 1, do the following steps:

Step 1: Determine ξn
ε,h ∈ L2(Ω; Sh) from

(∇ξn
ε,h, ∇φh

) = (
B(un

ε,h), ∇φh

) ∀φh ∈ Sh . (5.14)

Step 2: Set ηηηn
ε,h := B(un

ε,h) − ∇ξn
ε,h. Find (un+1

ε,h , rn+1
ε,h ) ∈ L2

(
Ω ,Yh × Wh

)
by solving

(un+1
ε,h , vh)+ k(∇un+1

ε,h , ∇vh) − k(div vh, rn+1
ε,h ) (5.15a)

= (un
ε,h, vh) + k

(
fn+1, vh

)+ (ηηηn
ε,hΔn+1W, vh) ∀ vh ∈ Yh ,

(div un+1
ε,h ,qh) + ε(∇un+1

ε,h , ∇qh) = 0 ∀ qh ∈ Wh . (5.15b)

Step 3: Define the Wh-valued random variable pn+1
ε,h = rn+1

ε,h + k−1ξn
ε,hΔn+1W.

The main result of this section is the following estimate for the velocity error un
ε − un

ε,h.

Theorem 5.6 Suppose

E
[‖u0 − u0

ε,h‖2] ≤ Ch2.
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Let {(un
ε , rn

ε ); 1 ≤ n ≤ N} and {(un
ε,h, rn

ε,h); 1 ≤ n ≤ N} be the solutions of Algorithms 3 and 4,
respectively. Then there exists a constant C > 0, such that

max
1≤n≤N

(
E
[‖un

ε − un
ε,h‖2]) 1

2 +
(
E

[
k

N∑
n=1

‖∇(un
ε − un

ε,h)‖2

]) 1
2

(5.16)

≤ C

(
h + h2

√
ε

)
.

This estimate suggests that ε = O(h2) is the optimal choice of ε.

Proof. Let en+1
u := un+1

ε −un+1
ε,h and en+1

r := rn+1
ε − rn+1

ε,h . Then {(en
u, en

r )}n satisfies the following error
equations P-a.s. for all tuples (vh, qh) ∈ Yh × Wh:

(en+1
u − en

u, vh) + k(∇en+1
u , ∇vh) + k(∇en+1

r , vh) = ([ηηηn
ε − ηηηn

ε,h]Δn+1W, vh), (5.17)

(
div en+1

u , qh

)+ ε(∇en+1
r , ∇qh) = 0 . (5.18)

Now consider (5.17)–(5.18) for ω ∈ Ω fixed, and choose

(vh, qh) = (
Qhen+1

u (ω), R̃hen+1
r (ω)

) ∈ Yh × Wh ;

we then deduce

(en+1
u − en

u, Qhen+1
u ) + k(∇en+1

u , ∇Qhen+1
u ) − k(en+1

r , div Qhen+1
u ) (5.19)

= (
[ηηηn

ε − ηηηn
ε,h]Δn+1W, Qhen+1

u
)

.

We can adopt the corresponding arguments in (4.13) and (4.14), and use Lemma 5.2 to treat the first
two terms in (5.19), and also the argument around (4.16) may easily be adopted to the present setting.
But a different treatment is required to deal with the last term on the left-hand side of (5.19) because it
involves the error in the pressure. We rewrite this term as follows:

II :=
(

en+1
r , div

[
en+1

u + (Qhun+1
ε − un+1

ε )
])

= (
R̃hen+1

r , div en+1
u

)+ (
rn+1
ε − R̃hrn+1

ε , div en+1
u

)+ (
en+1

r , div [Qhun+1
ε − un+1

ε ]
)

=: II1 + II2 + II3 .

We estimate II2 with the help of (4.5) and using Lemma 5.2,

E
[|II2|

] ≤ Ch2
E[‖∇rn+1

ε ‖2] + 1

4
E
[‖∇en+1

u ‖2] .
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Integrating by parts in II3, using (5.1) and again Lemma 5.2 yields

|II3| = ∣∣(R̃hen+1
r , div [Qhun+1

ε − un+1
ε ]

)∣∣+ ∣∣(rn+1
ε − R̃hrn+1

ε , div [Qhun+1
ε − un+1

ε ]
)∣∣

≤ ε

4
‖∇R̃hen+1

r ‖2 + Ch4

ε
‖Δun+1

ε ‖2 + Ch2‖∇rn+1
ε ‖‖Δun+1

ε ‖ .

Because of (5.18) we have

II1 = −ε
(∇en+1

r , ∇[R̃hen+1
r ]

) = −ε‖∇R̃hen+1
r ‖2 .

Putting the above auxiliary estimates together, we obtain that there exists some h- and ε-independent
constant C > 0 such that

1

2
E
[‖Qhem+1

u ‖2]+ 1

4

m∑
n=0

E
[‖Qh(e

n+1
u − en

u)‖2] (5.20)

+ 1

4
k

m∑
n=0

E
[‖∇en+1

u ‖2 + ε‖∇R̃hen+1
r ‖2] ≤ C

(
h2 + h4

ε

)

for every 0 ≤ m ≤ N. The desired estimate (5.16) then follows from an application of the discrete
Gronwall inequality. The proof is complete. �

The last result gives an estimate for the pressure approximation error. Using (5.2), equation (5.17)
after taking a summation in n, and Lemma 5.2, we obtain the following theorem.

Theorem 5.7 Let {rn
ε ; 1 ≤ n ≤ N} be the pressure in Algorithm 3 and {rn

ε,h; 1 ≤ n ≤ N} be the pressure
in Algorithm 4. There exists a constant C > 0, such that for all 1 ≤ m ≤ N,⎛⎝E

⎡⎣∥∥∥∥∥k
m∑

n=1

(
rn
ε − rn

ε,h

)∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ C

(
h + h2

√
ε

)
.

The above estimate and the algebraic relation in Step 3 of Algorithm 4 immediately imply the
following estimate for pn

ε − pn
ε,h.

Corollary 5.8 Let {pn
ε ; 1 ≤ n ≤ N} be the pressure in Algorithm 3 and {pn

ε,h; 1 ≤ n ≤ N} be the
pressure in Algorithm 4. There exists a constant C > 0, such that for all 1 ≤ m ≤ N,⎛⎝E

⎡⎣∥∥∥∥∥k
m∑

n=1

(
pn
ε − pn

ε,h

)∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ C

(
h + h2

√
ε

)
.

To sum up the results in this section, we have shown the following error estimates for Algorithm 4.
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Theorem 5.9 Let (u, P) be the solution of (1.1) and {(un
ε,h, rn

ε,h, pn
ε,h); 1 ≤ n ≤ N} be the solution of

Algorithm 4. There exists a constant C > 0, such that

(i) max
1≤n≤N

(
E
[‖u(tn) − un

ε,h‖2 ]) 1
2 +

(
E

[
k

N∑
n=1

‖∇(u(tn) − un
ε,h)‖2

]) 1
2

≤ C

(
k

1
2 + h + h2

√
ε

)
,

(ii)

⎛⎝E

⎡⎣∥∥∥∥∥R(tm) − k
m∑

n=1

rn
ε,h

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

+
⎛⎝E

⎡⎣∥∥∥∥∥P(tm) − k
m∑

n=1

pn
ε,h

∥∥∥∥∥
2
⎤⎦⎞⎠

1
2

≤ C

(
k

1
2 + h + h2

√
ε

)
.

6. Computational experiments

We present computational results to validate the theoretical error estimates in Theorems 4.5 and 5.9,
and evidence how crucial the numerical treatment of the pressure part in the noise is to obtain an
optimally convergent mixed method for (1.1). Our computations are done using the software packages
FreeFem++ (Hecht et al. 2008) and Matlab, and the physical domain of all experiments is taken to be
D = (0, 1)2, i.e., L = 1.

Specifically, we use Algorithm 2 to compute the solution of the following initial-(Dirichlet)
boundary value problem:

du = [
Δu − ∇p + f

]
dt + B(u)dW(t) in DT := (0, T) × D, (6.1a)

div u = 0 in DT , (6.1b)

u = 0 on ∂DT := (0, T) × ∂D, (6.1c)

u(0) = u0 in D, (6.1d)

and use Algorithm 4 to compute the solution of the pressure stabilization of the above system which is
obtained by replacing (6.1b) by the following two conditions:

div u − εΔp = 0 in DT , (6.2a)

∂np = 0 on ∂DT , (6.2b)

where ∂np stands for the normal derivative of p.

Test 1. Let u0 = (0, 0), f = (1, 1)T and B(u1, u2) = (
(u2

1 + 1)
1
2 , (u2

2 + 1)
1
2
)
, which is nonsolenoidal. We

choose W in (1.1) to be an R
J-valued Wiener process, with increment

WJ(tn+1, x) − WJ(tn, x) = k
J∑

j=1

J∑
j1=1

√
λj1j2 gj1j2(x)ξn

j1j2 , (6.3)
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where x = (x1, x2) ∈ D, ξn
j1j2

∼ N (0, 1), λj1j2 = 1
j21+j22

and

gj1j2(x) = 2 sin(j1πx1) sin(j2πx2) . (6.4)

We use the following parameters: J = 4 and T = 1, and take Np = 501 to be the number of realizations
in this test.

Let k0 and k denote the fine and regular time-step sizes that are used to generate the numerical
true solution and a computed solution, clearly k0 � k. Moreover, (un

h(τ ), pn
h(τ )) denotes the numerical

solution at time step tn using the time-step size τ ; below, τ = k0 or k. For any 1 ≤ n ≤ N we use the
following numerical integration formulas:

EEEn
u,0 :=

(
E

[
‖u(tn) − un

h(k)‖2
]) 1

2 ≈
⎛⎝ 1

Np

Np∑
	=1

‖un
h(k0, ω	) − un

h(k, ω	)‖2

⎞⎠
1
2

,

EEEn
u,1 :=

(
E

[
‖∇(u(tn) − un

h(k))‖2
]) 1

2 ≈
⎛⎝ 1

Np

Np∑
	=1

‖∇(un
h(k0, ω	) − un

h(k, ω	))‖2

⎞⎠
1
2

,

EN
p,av :=

⎛⎜⎝E

⎡⎢⎣
∥∥∥∥∥∥∥
∫ T

0
p(s) ds − k

T
k∑

n=1

pn
h(k)

∥∥∥∥∥∥∥
2⎤⎥⎦
⎞⎟⎠

1
2

≈

⎛⎜⎜⎝ 1

Np

Np∑
	=1

∥∥∥∥∥∥∥k0

T
k0∑

n=1

pn
h(k0, ω	) − k

T
ki∑

n=1

pn
h(k, ω	)

∥∥∥∥∥∥∥
2
⎞⎟⎟⎠

1
2

and

En
p,0 :=

(
E

[
‖p(tn) − pn

h(k)‖2
]) 1

2 ≈
( 1

Np

Np∑
	=1

‖pn
h(k0, ω	) − pn

h(k, ω	)‖2
) 1

2
.

The definitions of EN
r,av and EN

r,0 are similar.
We then implement Algorithm 2 and verify the convergence orders of the time and spatial

discretizations proved in Theorem 4.5.
To generate a numerical exact solution for computing the orders of convergence, we use k0 = 1

600
and h0 = 1

100 as fine mesh sizes to compute such a solution. Then to compute the convergence order
of the time discretization for the velocity, we fix h = 1

100 and then compute the numerical solution
with following time mesh sizes: k = 1

5 , 1
10 , 1

20 , 1
40 . The errors in the L2-norm (EEEn

u,0) and H1-norm

(EEEn
u,1) are shown in Table 1. The numerical results verify the convergence order O(k

1
2 ) that is stated

in Theorem 4.5.
Tables 2 and 3 display, respectively, the L2-norm errors (EN

α,av) and (EN
α,0) (α = r and p) of the

time-averaged pressure approximations using time mesh sizes k = 1
5 , 1

10 , 1
20 , 1

40 . The numerical results
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Table 1 Algorithm 2: time discretization errors for the velocity {un
h}n

k EEEn
u,0 Order EEEn

u,1 Order

1/5 0.16253 0.25558
1/10 0.11521 0.496 0.18050 0.5018
1/20 0.08145 0.5002 0.12580 0.5209
1/40 0.05730 0.5073 0.08758 0.5225

Table 2 Algorithm 2: time discretization errors for the pressure {rn
h}n

k EN
r,av Order EN

r,0 Order

1/5 0.06352 0.08013
1/10 0.04486 0.5019 0.06231 0.3629
1/20 0.03161 0.5049 0.04842 0.3639
1/40 0.02219 0.5102 0.03734 0.3745

Table 3 Algorithm 2: time discretization errors for the pressure approximation {pn
h}n

k EN
p,av Order EN

p,0 Order

1/5 0.00217 0.0967
1/10 0.00154 0.4947 0.0722 0.3211
1/20 0.00109 0.4986 0.0579 0.3184
1/40 0.00077 0.5014 0.0461 0.3288

Table 4 Algorithm 2: spatial discretization errors for the velocity approximation {un
h}n

h EEEn
u,0 Order EEEn

u,1 Order

1/5 0.07981 0.50832
1/10 0.04034 0.9844 0.25315 1.0057
1/20 0.02016 1.0007 0.12662 0.9995
1/40 0.01007 1.0014 0.06322 1.0021

indicate the convergence rate O(k
1
2 ) that was predicted in Theorem 4.5. We also present the standard

L2-norm errors EN
r,0 and EN

p,0 in Tables 2 and 3, respectively, for comparison purposes, for which we
observe a significantly slower rate. It should be noted that our convergence theory does not conclude
such convergence behavior.

To verify the convergence rate O(h) for the velocity approximation, we fix k = 1
200 and use

different spatial mesh sizes h = 1
5 , 1

10 , 1
20 , 1

40 to compute the errors EEEn
u,0 and EEEn

u,1. Table 4 contains
the computational results, which verify a first-order convergence rate for both, as stated in Theorem 4.5.

To verify the convergence rate for the pressure approximation, we fix k = 1
200 and use different

spatial mesh sizes h = 1
5 , 1

10 , 1
20 , 1

40 . Tables 5 and 6 display the error EN
p,av of the pressure approximation.

It is evident that EN
p,av converges linearly in h as stated in Theorem 4.5. For comparison purposes, we
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Table 5 Algorithm 2: spatial discretization errors for the pressure approximation {rn
h}n

h EN
p,av Order EN

p,0 Order

1/5 0.04289 0.30972
1/10 0.02145 0.9997 0.23572 0.3939
1/20 0.01071 1.0022 0.17977 0.3901
1/40 0.00534 1.0038 0.13620 0.3972

Table 6 Algorithm 2: spatial discretization errors for the pressure {pn
h}n

h EN
p,av Order EN

p,0 Order

1/5 0.127620 0.44524
1/10 0.068161 0.9048 0.36504 0.2865
1/20 0.036068 0.9182 0.29707 0.2973
1/40 0.019262 0.9049 0.24189 0.2965

also compute the error EN
p,0 and include it in Tables 5 and 6. The numerical results suggest that the error

EN
p,0 converges with a slower rate.

Test 2. In this test, we use Algorithm 2 to solve the driven cavity problem with stochastic forcing, which
is described by system (1.1a)–(1.1b) with the following nonhomogeneous boundary condition:

u(x1, x2) =
{

(1, 0), x2 = 1, 0 < x1 < 1,

0 otherwise.

Let W be the Wiener process as in (6.3), and B ≡ (1, 1)T, i.e., the noise is additive. We use the
following parameters in the test: T = 1, h = 1

20 , k = 0.01 and the number of realizations is Np = 1001.

Figure 1 displays the expected values of the computed stochastic velocity uN
h and pressure pN

h ;
as expected, they behave similarly to their deterministic counterparts. On the other hand, individual
realizations of the computed stochastic velocity uN

h and pressure pN
h given in Figs 2–4 show quite

different behaviors from their deterministic counterparts.

Test 3. In this test we study the stabilization method in Section 5. Specifically, we implement Algorithm
4 with the same function B as in Test 1, and {W(t); 0 ≤ t ≤ T} is chosen as an R-valued Wiener process.
We also add a constant forcing term f ≡ (1, 1)T to (1.1a) in order to construct an exact solution to system
(1.1). We also take u0 = (0, 0), T = 1, the number of realizations Np = 800 and the minimum time step

k0 = 1
4096 . The computations are done on a uniform mesh of D with mesh size h = 1

100 .
In order to verify the optimal convergence rate O(h) of Theorem 5.6, we fix k = 1

256 and ε = h2,
and then compute the numerical solutions for different values of h. The standard L2-errors EEEN

u,0 and EN
p,0

for the velocity and pressure approximations are presented in Table 7. The numerical results verify the
first-order convergence rate for the spatial approximation of the velocity as stated in Theorem 5.6.

For comparison purposes, we also implement the ‘standard’ stabilization method, which is based
on (1.2) instead of (1.9a)–(1.9b), with the same noise and parameters as above. Table 8 displays the
L2-errors EEEN

u,0 and EN
p,0 of the velocity and pressure approximations. The numerical results indicate that
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Fig. 1. Test 2: (a) The expected value of {uN
h }n. (b) Level-lines of the expected value of {pN

h }n. (c) The streamlines of the expected

value of {uN
h }n.

Fig. 2. First realization of (a) the velocity {uN
h }n, (b) the pressure {pN

h }n and (c) the streamline of {uN
h }n.

Table 7 Algorithm 4: spatial discretization errors for the velocity {un
ε,h}n and pressure {pn

ε,h}n

h EEEN
u,0 Order EN

p,0 Order

1/5 0.018392 0.147406
1/10 0.009083 1.0178 0.092913 0.6658
1/20 0.004095 1.1493 0.052611 0.8205
1/40 0.002279 0.8454 0.044723 0.2344

Table 8 Standard stabilization method: spatial discretization errors for the velocity {un
ε,h}n and

pressure {pn
ε,h}n

h EEEN
u,0 Order EN

p,0 Order

1/5 0.037658 0.735843
1/10 0.025586 0.5576 0.888352 -0.2717
1/20 0.019342 0.4036 0.579818 0.6155
1/40 0.011412 0.7611 0.442691 0.3893

the velocity approximation is also convergent but at a slower rate. This confirms the advantages of the
proposed Helmholtz decomposition enhanced stabilization method (Algorithm 4) over the ‘standard’
stabilization method.
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Fig. 3. Second realization of (a) the velocity {uN
h }n, (b) the pressure {pN

h }n and (c) the streamline of {uN
h }n.

Fig. 4. Third realization of (a) the velocity {uN
h }n, (b) the pressure {pN

h }n and (c) the streamline of {uN
h }n.
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