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Abstract

This paper develops and analyzes a fully discrete finite element method for a class
of semilinear stochastic partial differential equations (SPDEs) with multiplicative noise.
The nonlinearity in the diffusion term of the SPDEs is assumed to be globally Lipschitz
and the nonlinearity in the drift term is only assumed to satisfy a one-sided Lipschitz
condition. These assumptions are the same ones as used in [18] where numerical methods
for general nonlinear stochastic ordinary differential equations (SODEs) under “minimum
assumptions” were studied. As a result, the semilinear SPDEs considered in this paper are a
direct generalization of the SODEs considered in [18]. There are several difficulties which
need to be overcome for this generalization. First, obviously the spatial discretization,
which does not appear in the SODE case, adds an extra layer of difficulty. It turns out a
spatial discretization must be designed to guarantee certain properties for the numerical
scheme and its stiffness matrix. In this paper we use a finite element interpolation technique
to discretize the nonlinear drift term. Second, in order to prove the strong convergence
of the proposed fully discrete finite element method, stability estimates for higher order
moments of the H'-seminorm of the numerical solution must be established, which are
difficult and delicate. A judicious combination of the properties of the drift and diffusion
terms and a nontrivial technique borrowed from [28] is used in this paper to achieve the goal.
Finally, stability estimates for the second and higher order moments of the L?-norm of the
numerical solution are also difficult to obtain due to the fact that the mass matrix may not
be diagonally dominant. This is done by utilizing the interpolation theory and the higher
moment estimates for the H'-seminorm of the numerical solution. After overcoming these
difficulties, it is proved that the proposed fully discrete finite element method is convergent
in strong norms with nearly optimal rates of convergence. Numerical experiment results
are also presented to validate the theoretical results and to demonstrate the efficiency of
the proposed numerical method.
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1. Introduction

We consider the following initial-boundary value problem for general semilinear stochastic
partial differential equations (SPDEs) with function-type multiplicative noise:

du = [Au+ f(u)] dt + g(u)dW(t),  inDx (0,T), (1.1)
‘;Z 0, on 9D x (0,T), (1.2)
u(+,0) = uo(-), in D. (1.3)

Here D C R? (d = 1,2,3) is an open bounded domain with smooth boundary, W : Qx (0,T) —
R denotes the standard Wiener process on the filtered probability space (2, F,{F; : t > 0},P),
and f,g € C! are two given functions and f(u) takes the form

fu) = cou — cru® — cou® — cau” — - -+, (1.4)
where ¢; > 0,i=0,1,2,---. For the sake of clarity, we only consider the case f(u) =u — u? in
this paper, where ¢ > 3 is an odd integer (it is trivial when f(u) = cou). We remark that similar
results still hold for the general nonlinear function f(u) in (1.4), and when f(u) = % (u — u?),
(1.1) is known as the stochastic Allen-Cahn equation with function-type multiplicative noise
and interaction length e (see [28]). We also assume that g is globally Lipschitz and satisfies the
growth condition, that is, there exist constants k1 > 0 and C' > 0 such that

lg(a) — g(b)| < kila — bl (1.5)
9@ < C1+a). (1.6

By (1.6), we get
lg(a) a| < C(1+ a?). (1.7)

Under the above assumptions for the drift term and the diffusion term, it can be proved
in [15] that there exists a unique strong variational solution u such that

(0(0.6) = (0).6) ~ [ (Vats).¥0)ds + [ (). 0) ds (18)

+ / (4(u).0)dW(s) Ve H'(D)
0

holds P-almost surely. Moreover, when the initial condition ug is sufficiently smooth, the
following stability estimate for the strong solution w holds:

swp E[[lu@)3%] + sup E[Ju()]}.%] <, (1.9)
te[0,T] te[0,T]

where ¢ is the exponent in the nonlinear term of f(u) = u — u?.
Clearly, when the Aw term in (1.1) is dropped, the PDE reduces to a stochastic ODE.
A convergence theory for numerical approximations for this stochastic ODE was established
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long ago (see [29] and [30]) under the global Lipschitz assumptions on f and g. Later, the
convergence was proved in [18] under a weaker condition on f known as a one-sided Lipschitz
condition in the sense that there exists a constant p > 0 such that

(a =0, fla) — f(b)) < pla—b)*  Va,beR. (1.10)

The optimal rate of convergence was also obtained in [18] under an extra assumption that f
behaves like a polynomial. The one-sided Lipschitz condition is widely used and it has broad
applications [6,7,13,14, 33].

We also note that numerical approximations of the SPDE (1.1) with various special drift
terms and/or diffusion terms have been extensively investigated in the literature (see [10,11,
28,32]). In particular, we mention that the case f(u) =u —u3, g(u), ¢'(u), g"(u) are bounded
and g(u) is global Lipschitz continuous was studied in [28], the high moments of the H'-norm
of the numerical solution were proved to be stable, and a nearly optimal strong convergence
rate was established. A specially designed discretization is used for f(u) = u—u?, and it is not
trivial to extend the idea to the case when f(u) = u — u9 where ¢ > 3. Besides the variational
approach used in the above references, a few other results were obtained for the corresponding
stochastic ODEs (see [19,20]) and the stochastic PDEs (see [2,5,16,17,22-24,27]) based on
the semigroup approach. Specifically, in [2,5,23,24,27], additive noises were considered for the
stochastic Allen-Cahn equation; in [2], the fully discrete exponential Euler and fully discrete
implicit Euler approximations were proved to diverge for stochastic Allen-Cahn equation, which
indirectly justifies the usefulness of the proposed interpolation scheme of this paper; in [16],
the multiplicative noise was considered and the convergence of the explicit and implicit Euler
schemes was established when the drift term grows at most linearly; in [17], the convergence
without order was established for the super-linearly growing drift term for a tamed Fuler time-
stepping scheme; in [22], the first convergence result with a rate was obtained for the one-sided
Lipschitz continuity nonlinearity using a nonlinearities-stopped approximation.

The goal of this paper is to generalize the numerical SODE theory in [18] to the SPDE case.
Specifically, we want to design a fully discrete finite element method for problem (1.1)—(1.3)
which can be proved to be stable and convergent with optimal rates in strong norms under
“minimum” assumptions on nonlinear functions f and g as those used in [18]. We recall that
the “minimum” assumptions refer to that g is assumed to be global Lipschitz, and f satisfies
the one-sided Lipschitz condition (1.10) and it behaves like a polynomial. To the best of our
knowledge, such a goal has yet been achieved before in the literature.

The remainder of this paper is organized as follows. In Section 2, we establish several
Hélder continuity properties (in different norms) for the SPDE solution u and for the composite
function f(u). These properties play an important role in our error analysis. In Section 3, we
first present our fully discrete finite element method for problem (1.1)—(1.3), which consists of an
Euler-type scheme for time discretization and a nonstandard finite element method for spatial
discretization. The novelty of our spatial discretization is to approximate the nonlinear function
f by its finite element interpolation in the scheme. We then establish several key properties for
the numerical solution, among them are the stability of the second and higher order moments of
its H'-seminorm and the stability of the second and higher order moments of its L2-norm. We
note that the proofs of the stability of these higher order moments are quite involved, and they
require some special techniques and rely on the structure of the proposed numerical method.
For example, the diagonal dominance property of the stiffness matrix is needed to show the
stability of the second and higher order moments of the H'-seminorm of the numerical solution,
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however, the mass matrix may not be diagonally dominant. To circumvent this difficulty, we
use the stability of the second and higher order moments of the H'-seminorm of the numerical
solution and the interpolation theory to get the desired L?-norm stability. Finally, in this
section we prove nearly optimal order error estimates for the numerical solution by utilizing the
stability of higher order moments of the L2-norm and H'-seminorm of the numerical solution.
We like to emphasize that only sub-optimal order error estimates could be obtained should the
stability of higher order moments of the H'-seminorm of the numerical solution were not known,

3 was considered. In Section 4, we present several

see [32] where the special case f(u) =u —u
numerical experiments to validate our theoretical results, especially to verify the stability of
numerical solution using different initial conditions ug and different functions f and g. As a
special case, the stochastic Allen-Cahn equation with function-type multiplicative noise is also

tested.

2. Preliminaries and properties of the SPDE solution

Throughout this paper, we shall use C to denote a generic constant, and we take the
standard Sobolev notations in [3]. When it is the whole domain D, || - || g+ and || - ||z» are used
to simplify || - || zx(p) and || - ||L»(p) respectively, and (-, -) is used to denote the standard
inner product of L?(D). E[] denotes the expectation operator on the filtered probability space
(QF,{F:t>0}P).

In this section, we first derive the Holder continuity in time for the strong solution u with
respect to the spatial H!'-seminorm and for the composite function f(u) with respect to the
spatial L?-norm. Both results will play a key role in the error analysis (see Subsection 3.4).
The time derivatives of Vu and the composite function f(u) do not exist in the stochastic case,
so these Holder continuity results will substitute for the differentiability of Vu and f(u) with
respect to time in the error analysis.

Lemma 2.1. Let u be the strong solution to problem (1.8). Then for any s,t € [0,T] with
s < t, we have

B[V ~ w)3e] + | [ 180 — el ] < cae—o)
where

o c( sup B [ Au(Q)F] + sup B [[u(C)]3%,] + sup E[nu(on%z})-
s<C<t s<C<t

s<C<t

Proof. Applying 1t&’s formula (see [21,31]) to the functional ®(u(-)) := ||[Vu(-) — Vu(s)||3-
with fixed s € [0,T) and using integration by parts, we get

IVu(®) - Va3 = -2 [ (au(Q) - Au(s), ulg)) de (2.1)
—2 [ (Bu¢) - Au(s), £(u() d¢
" / (D) — Au(s), glu(C))) dW(C) + / IV g(u(O))P de.

The expectation of the first term on the right-hand side of (2.1) can be bounded by the
Cauchy-Schwarz inequality as follows
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~28 | [ (8u(0) - Auls), du0) ac| (22)
t
= 28] [ 1800 - AuF dc+ [ (3u(0) - duts) Bu(s)ac
< -3 ] [ 1800 - AuIE dc] + B 18u6)E:] ¢~ )

The expectation of the second term on the right-hand side of (2.1) can be bounded by

2] [ (80(6) - Buts). 00 ac] (2.3
<E|; /nAu - Buls)f s +2 [ LI de
< S&[ [ 1300 - du I de] + € sup B [jutn] ¢ )

+C s E[JuQ)I:] (0~ 9)

Next we bound the expectation of the fourth term on the right-hand side of (2.1) as follows

[ [ Ivatuo)Pac] < € sup B (1900 (-5 2.9
Then Lemma 2.1 follows from (2.1)—(2.4) and the fact that the expectation of the third term
on the right-hand side of (2.1) is zero.

Next we prove the Holder continuity result for the nonlinear term f(u(t)) — f(u(s)) with
respect to the spatial L?-norm.

Lemma 2.2. Let u be the strong solution to problem (1.8). Then for any s,t € [0,T] with
s < t, we have

E[lf(u(t) = fu(s)Z] < Calt = 5),

where

Cr=C(1+ sup E[JAu(Q)F] + sup E [Ju(Q)l}%7%))-
s<C<t s<C<t

Proof. Applying It6’s formula (see [21,31]) to ®(u(-)) == ||f(u(-)) — f(u(s))||2. with fixed
s €[0,T), we obtain

1) - S =2 [ [ (1) = Flats) 7 () 25)
x [Au(@) + F(u(©))] ded¢
. / /D(f (u(€)) = f(u(s))) ' (u())g((C)) dz AW ()
" / [ (0 = Fu) £ ()P o g
+ [ [P arac
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Taking the expectation on both sides, the first term on the right-hand side of (2.5) can be
bounded by

E [2 /t/D (f(u(Q)) = f(u(s))) f'(u(Q)) x [Au(() +f(u(g))] dmdg} (2.6)

<C(t—s)x (suwp EJu(Ql3:] + sup E[Jlu(0)l3%,] + sup E [Ju(Q)]5.2]
s<(C<t s<C<t s<C<t

+ sup E[JAu(Q)lf:] + sup E [[u(Q)l3:] + sup E[Ilu(0)I},])-
s<¢<t s<C<t s<C<t

The expectation of the second term on the right-hand side of (2.5) is zero since it is a
martingale.
The third term on the right-hand side of (2.5) can be bounded by

E [ / t /D (F@(0)) — F(u(s)) £ (w(O)]g(u(0))? da dc} (2.7)
< Cl=9)x (C+ sw B [l + sw E[lu(Ql%2]
+C+ swp B[Ju(@)]L])

The fourth term on the right-hand side of (2.5) can be bounded by the upper bound in
(2.7). Then (2.5) can be written as
E[Ilf(u(®) - fu(s)IE:] < Ct =) x (1+ sup E[JAu(Q)ll3:] + (2:8)

s<C<t

+ s Bllu(Ol% ).

The proof is complete.

Remark 2.1. For the diffusion term, the global Lipschitz condition, which is stronger than the
one-sided Lipschitz condition, is needed as in the SODE case. Using the C' assumption and the
global Lipschitz assumption, we can derive that the derivative of the diffusion term is bounded
by the Lipschitz constant &, i.e., |¢'(u)] < K, but the diffusion term itself may not be bounded.
For instance, g(u) = u, g(u) = Vu? 4+ 1, etc. Note these two assumptions are consistent with
the SODE case in [18], and they are also the conditions to guarantee the well-posedness of the
strong SODE solution [18].

3. Fully discrete finite element approximation

3.1. Formulation of the finite element method

In this section, we first construct a fully discrete finite element method for problem (1.1)-
(1.3). we then establish several stability properties for the numerical solution including the
stability of higher order moments for its H'-seminorm and L?-norm. Finally, we derive optimal
order error estimates in strong norms for the numerical solution using the stability estimates.

Let t, =n7t (n =0,1,...,N) be a uniform partition of [0,7] and T be the triangulation
of D satisfying the following assumption [35]:

1 K K
- g Kp|cotfy >0, 3.1
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where E denotes the edge of simplex K. It was proved in [35] that the stiffness matrix for the
Poisson equation with zero Dirichlet boundary is an M-matrix if and only if this assumption
holds for all edges. The stiffness matrix is diagonally dominant if the Neumann boundary
condition is considered. Note this assumption is just the Delaunay triangulation when d = 2.
In 3D, the notations in the assumption (3.1) are as follows: a;(1 < ¢ < d+1) denote the vertices
of K, E = E;; the edge connecting two vertices a; and a;, F; the (d — 1)-dimensional simplex
opposite to the vertex a;, 95 or 0% the angle between the faces F; and Fj, kB =Fn Fj | the
(d — 2)-dimensional simplex opposite to the edge E = E;;. See Figure 3.1 below.

Fig. 3.1.: 3D triangulation.

Consider the P;-Lagrangian finite element space
Vh:{UhEHI(D):Uh|K€P1(K) VKEE}, (32)

where P; denotes the space of all linear polynomials. Then the finite element approximation of
(1.8) is to seek an F;, adapted Vj,-valued process {ull}_; such that it holds P-almost surely
that
(upt op) + T(Vuptt Voy,) (3.3)
= (uh,vn) +TUnf" " on) + (9(up),vn) AWoin  Vou € Vi,

where f"H1 = u} T — (w9 AW, 11 = W(tng1) — W(tn) ~ N(0,7), and I, is the standard

nodal value interpolation operator Iy, : C(D) — V,,, i.e.,

Np,

Iy = Zv(ai)%, (3.4)

i=1
where N} denotes the number of vertices of Ty, and ; denotes the nodal basis function of

V3, corresponding to the vertex a;. The initial condition is chosen by u% = Pyug where Py, :
L?(D) — V,, is the L2-projection operator defined by

(Phw,vh) = (w,vy) vy € Vi

For all w € H*(D) for s > 3, the following well-known error estimate results can be found
in [3,8]:

|w — Pywl|z + ||V (w — Pyw)|| g2 < CR™™M25H ||| e, (3.5)
lw — Pywl|pe < Ch2™% |w]|gre. (3.6)
Finally, given vy, € V}, we define the discrete Laplace operator Ay, : Vj, — V3, by

(Ahvh,wh) = —(Vvh,th) Ywp € Vj,. (3.7)
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3.2. Stability estimates for the p-th moment of the H'-seminorm of u}

First we shall prove the second moment discrete H'-seminorm stability result, which is
necessary to establish the corresponding higher moment stability result.

Theorem 3.1. Suppose the mesh assumption in (3.1) holds. Then we have

1
sup E |||Vup + E [|V( uptt — |2 3.8
ogngpzv (Vi 2] 42 [ illzz] (3.8)
N-1
7 Y E Ay i] < C.
n=0

Proof. Testing (3.3) with —Ayut. Then

(up ™t =, = Apup ™) + r(Vuptt —VAul ) (3.9)
= 7(In ™ = Apup ™) + (g(up), —Apup ™) AW

Using the definition of the discrete Laplace operator, we get

1
(up ™ =, —Apup™) = IIV B = 5 IVuRlze (3.10)

—||V( W) 2es
T(Vup ™ =V AUt = 7| Apu 3., (3.11)
El(g(up), =Anup ™) AWni] = E[(V(Pag(upy)), V(up™ = uft)) AW,41] (3.12)

1 n n
< CTE[|Vup[[72] + JEIIV (™ = up)lIZe],

where the stability in the H!'-seminorm of the L? projection (see [1]) is used in the inequality
of (3.12).

The crucial part is to bound the first term on the right-hand side of (3.9) since it cannot be
treated as a bad term, which aligns with the continuous case. Denote u; = u}"'(a;), and then

Nh Nh
TIn ™ = Apup ™) = 7| Vup 7. = 7(V Y D ulein, VY ujp)) (3.13)
=1 Jj=1

= T||Vuh+1HL2 -7 Z u{ Vi, ujVe;)
4,j=1

= 7|V 2, — 7 Z bij(Vei, V,),
,j=1

where bij = U;IU]
Using Young’s inequality when i # j, we have

q q+1 ]- q+1
< e . 14
i 7+ PR + g1 Uy (3.14)
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Besides, since the stiffness matrix is diagonally dominant, and then

Ny, Np, Np,
q
—7 Y bi(Vei, Viy) < =1 ) bial(Veor, Veor) — o D (Vi Vi)l (3.15)
ij=1 k=1 q it
1
- — Vor, V
T 2 VT
i#k
Nh Nh
<=7 bekl(Veor, Voor) = > (Vepi, Vipr)]
k=1 'L:élk,
<0.
Then we have
T = Apu ) < 7|V 2e (3.16)

Combining (3.9)—(3.12) and (3.16), and taking the summation, we have

{—1 {—1

1 1
SEIVuhlz] + 3 DBV —up)lia] + 7 Y E[lAwup 7] (3.17)
n=0 n=0
£—1
< Cr Y E(IVapllza)
n=0

Using Gronwall’s inequality, we obtain (3.8).

Before we establish the error estimates, we need to prove the stability of the higher order
moments for the H'-seminorm of the numerical solution.

Theorem 3.2. Suppose the mesh assumption in (3.1) holds. Then for any p > 2,

sup E[|Vuf|?.] <C.
0<n<N

Proof. The proof is divided into three steps. In Step 1, we establish the bound for E||Vu ||7-.
In Step 2, we give the bound for E[|Vu} ||} ., where p = 2" and r is an arbitrary positive integer.
In Step 3, we obtain the bound for E[|Vuj||?,, where p is an arbitrary real number and p > 2.

Step 1. Based on (3.9)—(3.16), we have

SIVa R = SIVuRlSs + SV )3+ 7l An e (318)

= (g(up), =Apup ™) AWy < 7|V 2o
Note the following identity

1, 3 N 1 .
IV e + SIVuRllze =5 Ve Iz + [Vuplze) + (Ve Ee = 1Vugliz). - (3.19)
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Multiplying (3.18) by |[|[Vup ™2, + 3||Vup 2., we obtain
(||VU”+IHL2 = IVuillz2) + é(HVU"HHQLz — [Vuilz2)? (3.20)
(-||V( n = u e+ Tl Awug ) (Va2 + -||Vuh\|L2)
< IV 2 (Ve s + S IV a:)
+ (g(up), =Apuy ™) AW ([Vuy ™ 122 + %llvuﬁlliz)
The first term on the right-hand side of (3.20) can be written as
TIVuy 7 (1Vuy ™ 72 + %HVUZH%?) (3.21)

3 1
= 7l Vup L GIVe e = S (IVu T Ee = [ Vurli=)
< CT|Vuy g + 001V T Ze = [Vupllie)?,

where 61 > 0 will be determined later.
The second term on the right-hand side of (3.20) can be written as

n n 1 n
(9(up), =Anup ™) AW (V™ 7 + 3 IVuhllzz) (3.22)

= (VPg(uh), V™) AWa (196 s + 3 Ve 2)
= (VPag(up), Vup ™ = Vup) AW i
+ (VPag(uf), Vul) AW, (I 3 + 51V uR )
<(3 IVt = Vs + OV 2 (AW )?
+ (VPug(uf), Vup) AW, (I 3 + 5 VR 3.
For the right-hand side of (3.22), using the Cauchy-Schwarz inequality, we get

n A n 1 n
ClIVup |2 (AWor1) ([ Vup T 22 + —HVuhIIQLz) (3.23)

n A n n 3 n
= ClIVuR 112 (AW a)*(1Vu 72 = [Vuglize + SIIVuilze)

< Oa([Vup 7. — [IVuplie)? + ClIVup |12 (AW, 1)
+ O Vup || 72 (AW, 41)?,

where 65 > 0 will be determined later. Similarly, using the Cauchy-Schwarz inequality, we have
n 1 n
(VPhg(up), Vup) AW (VI + 5[ Vup|72) (3:24)

n n 3 n
= (VPug(up), Vur) AW ([ Vup 72 = IV 7z + 5 [ Vuhllze)
O3(IVup ™ 172 = IVuplZ2)* + ClIVup 72 (AWny1)®

l\JlCQ/—\

(VPug(up), Vi) AW, 1| Vg |22,
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where 63 > 0 will be determined later.
Choosing 61, 05, 03 such that 6, + 605 4+ 03 < 16, and then taking the summation over n from
0 to £ — 1 and taking the expectation on both sides of (3.20), we obtain

£—1
1 n n
SE[IVulz.] + 6 ZE IV 12 = I1VuglZ)?] (3.25)

+ ZE [ (G IV (™ = w7z + 7l Apuy ) (1Vuy 72 + —IIVuhHLz)

-1 -1
<CrY E[[Vupttia] + ]E[||Vuh||L2] +C7? Y E[|Vup|i:]
n=0 n=0
—1
+CT > E[[Vupllze] -
n=0

When restricting 7 < C, we have

TE [IVuglz2] + sz (Va7 = [IVuplz2)?] (3.26)
-1 1
+> E [(ZIIV(UZ“ —up)l|ze + 7 Apuy I Z) IVl THIZ2 + IIVuhHLz)
n=0
-1
<CrY E[|Vupllia] + 3 IE[IIVuhlle]
n=0

Using Gronwall’s inequality, we obtain

£—
e 1 n n
1 E [[|Vubiz=] + 6 Z (IVup 72 = I Vuplz2)?] (3.27)

+ZE (GIV R = ) + 7 A ) (Vg 3
+5IvaglEa] < c.

Step 2. Similar to Step 1, using (3.20)—(3.24), we have

1

3 n n
SUVERze = [IVuRlize) + 1o (Ve Iz = [ Vugli2)? (3.28)

n n n 1
(—IIV( =)l + Ay L) (Ve Ee + 51 VuRlEe)

< O7|Vup s + CIVap s (AWsr)* + CI Vi [42 (AW, 1)?
+ IV |4 AW, 1.

Proceed similarly as in Step 1, multiplying (3.28) with |V} ™3 + (|Vup|/., we can
obtain the 8-th moment of the H 1 -seminorm stability result of the numerical solution. Then
repeating this process, the 27-th moment of the H'-seminorm stability result of the numerical
solution can be obtained.
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Step 3. Suppose 2"~ < p < 27, and then by Young’s inequality, we have
E[IVuf5.] <E [|Vuh|:] +C < oo, (3.29)

where the second inequality follows from the results of Step 2. The proof is complete.

3.3. Stability estimates for the p-th moment of the L?>-norm of u!

Since the mass matrix may not be the diagonally dominated matrix, we cannot use the
above idea to prove the L? stability. Instead, we prove the stability results by utilizing the
above established results. The following results hold when ¢ > 3 is the odd integer in 2D case,
and when ¢ = 3 or ¢ = 5 in 3D case.

Theorem 3.3. Under the mesh assumption in (3.1), there holds

N-1 N-1
sup B [[luplzz] + D E[I(up™ —up)lze] +7 Y E[IVuptIz:]
0<n<N "m0 n=0
SN
+5 Y E |l gih] <c
n=0
Proof. Testing (3.3) with )" yields

(up ™ = uppuy ™)+ (Vg V) = (L )+ (g(up) up ) AW (3.30)

We can easily prove the following inequalities:

n ’ﬂ n ]' n
(up ™ = upyup ™) = || BT = SRl + 5 ||u Tl
El(g(uh), up™) AWpia] = ]E[(g(uh) (up ™~ UZ)) AWn+1]

< Ot + CTE[|lup|Z2] + ]E[IIU”Jr1 —uplZa],

where (1.6) is used in the inequality above.

We have the following standard interpolation result and the inverse inequality (see [8]):

- a < a B .
o= ol ags < Chl[ Tl ags (331)

+1 +1
||U||%q+1 (K) < FH’UH%Z(K)' (3.32)
h 2

K
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Using (3.31)—(3.32), and Young’s inequality, we have

T f" ™) = () = (U = L ™) (3.33)

+1||q+1

< Tluptts — llup Lat1

+1
atl T
+Orllft = Lufm | S+ gl

< Tl 3 - THuh“HthL
1
+Cr Z h (vun+1) 1 )K || h+1||qL-L-+1
KeTn
< llup e — H R e oL S i AT s
KeTn
1 +1-d izt 1
<7'||un+1||L2 - |‘uh+1||qL—L—+1 +Cr Z hg{ : ||VUZ+1||qL-g(K)-
KeTh

Note when d = 2, q+1—dq > 01if ¢ > 0, and when d = 3, q+1—dq >0if g <5.
Using the above inequalities, Theorem 3.2, taking summation over n from 0 to £ — 1, and taking
expectation on both sides of (3.30), we obtain

£— -1
1 1
E [Jlup 3] 12 [t = i) 3] + 7 3B [IVu 3] (3.34)
n=0 n=0
+3 ZE[nuz*lnqm]
-1 {—1
<Y E[lupl] + 7 > E [IVuptEt] + ¢
n=0 n=0

-1
<73 E[llufliza] + €,
n=0
where Theorem 3.2 is used in the last inequality.

The conclusion is a direct result by using Gronwall’s inequality.

To obtain the error estimates results, we need to establish a higher moment discrete L2
stability result for the numerical solution uy,.

Theorem 3.4. Suppose the mesh assumption in (3.1) holds. Then there holds for any p > 2,

sup E[|lup|?.] < C.
0<I<N

Proof. The proof is divided into three steps. In Step 1, we give the bound for E|uf 7.
Step 2, we give the bound for E||uj,||” ,, where p = 2" and r is an arbitrary positive integer. In
Step 3, we give the bound for E||ufl||[L)2, where p is an arbitrary real number and p > 2.

Step 1. Based on (3.30) and (3.33), we have

1
|| up T Ze - -IIUth +5 IIU"Jr1 —upge + I Vup e + || i (3.35)

< THU"“HLz + 7| Va2 + (g(uh), up ) AW
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Note the following identity
n+1 1 n|2 3 n+1 n||2 n+1 n|2
lup 122 + luilize =7 (lluy 72 + lluhlZ2) + (|| 72 — lluhZ2)- (3.36)

Multiplying (3.35) with [u} (|2, + 4[ju}[|2., we obtain

1
(II n L = lubllze) + (H up e = uplZe)® + Gl ™ = ui)liz (3.37)
1
1
+7Vup g + 5 H up ) Ul I + S llui172)

1
1 n
< (rllup 7 + CTIVup T (lup ™17 + 5”“}1“%2)

+ (g(uh), upy ™) AW (up ™ 172 + QHUZII%z)-

The first term on the right-hand side of (3.37) can be written as

1
1
(7l e + CTIVap I E ) (lup HIZe + S llukllze) (3.38)
< Tlluh“llm( gy 172 — (|| e VPRl (A 29)
+ CTIIVU”HIIL']+1 +7l n+1||L2 +7(llup e = llulla)?

< Crllup YL + CT VR g (lup 2. — [l 22)?,

where 61 > 0 will be determined later.
The second term on the right-hand side of (3.37) can be written as
1
(g(up),up ™) AW (lup 122 + 5 lluilZ2) (3.39)
2
n 1 n
= (g(up), UZ“ = ujy - up) AW (lup 172 + llukllz2)
1 _
< (Gl = uillge + OO+ [lup|72) (AW1a)?

n n\ A n 1 n
+ (i), un) AW 1) (lup 172 + 5 llukllZe).

For the second term on the right-hand side of (3.39), using the Cauchy-Schwarz inequality, we
get

n A n 1 n
CO+ [lun | Z2) (AWng)*(lup 72 + 5 luilz2) (3.40)

n I " 30 n
= C(1+ [Jup)122) (AW ) 2 (lup |72 — lluil7: + §||Uh||%2)
<Oz (|lup 172 — lupllz2)? + (C + Clluplz2) (AW y)*
_ 2 _
+ Cllup || 72 (AWpi1)” + Cllup |72 (AWii1)?,

where 6 > 0 will be determined later. Using (1.7), the third term on the right-hand side of
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(3.39) can be bounded by

(g(up), ui) AW (up ™72 + _Huh”L2) (3.41)
= (g(uh), up) AW (lup 17 — lullzs + 5 IIUZIIfy)
< Os(llup ™ 1z = llupllZ2)* + (C + C||”Z||L2)(AWH+1)2

3

+ 5 (g(uR), up) [uh |72 AW,

where 03 > 0 will be determined later.
Choosing 64, 05, 63 such that 67 4+ 05 4 05 < 16, and then taking the summation over n from
0 to £ — 1 and taking the expectation on both sides of (3.37), we obtain

-1
ZE [Juf 4] + sz (3 = g 32)%] + SB[l —up)lF: (3.42)

n=0
T 1, .
+ 7| VuptZ: + 5 5 llu P (lu "+1||Lz+§l\uhlliz)]
-1 3
n n 2 1
<C’7-Z]E 142 ] —i—CrZE[HV nl) 2 >} + 3B [ludlt]

{—1

+C7 Y E[|lupllfe] +C

n=0

When 7 < C, we have

-1 -1
1 n 1 n
JE [Jlupllz2] + T ZE (lup ™22 = lluhlZ2)?] + ZEKZ”(uh-H —up)llz2 (3.43)
n=0
+ 7|V e + 5 || WUz g Y172 + -||uh||L2)}

<CTZE g 22] +CTZE[|V RG] 4 2R [dte] + C.

Using Gronwall’s inequality, we obtain
n 1 n
TE [luhllze] + 75 ZE (lup ™22 = lluplz2)?] + ZE[(ZII(%“ —up)|7a (3.44)
n n n 1 n
+ 7 Vay TH|7e + —IIU Tz Nuh ™ Ize + §|Uh|iz)] <C.
Step 2. Similar to Step 1, using (3.37)—(3.41), we have
(|| up e — lluplize) + 16(|| up e = llupllze)? (3.45)
n n n n 1
( (Tt = w7z + 7l Vup 2 + 5 || Pz Qg IR + S llupliEe)
2

< CTnu"“an + 07| Va3 4 <C+C||uz||iz><AWn+1>4
+ (C+ Ol |22 (AWns1)? + (g(up), up) [ up |32 AW, g1
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Similar to Step 1, multiplying (3.45) with [|u}*"(|3. + 2 [|u}[|1., we can obtain the 8-th moment
of the L? stability result of the discrete solution. Then repeating this process, the 2"-th moment
of the L? stability result of the discrete solution can be obtained.

Step 3. Suppose 2" 1 < p < 27, and then by Young’s inequality, we have
E [|lufI7.] < E [Juflif:] + ¢ (3.46)
<C,

where the second inequality uses Step 2. The proof is complete.

3.4. Error estimates

Let e" = u(t,) —uy (n=0,1,2,...,N). In the following theorem, the L? projection is used
in the proof of the error estimates and the strong convergence rate is given.

Theorem 3.5. Letu and {u}})_, denote respectively the solutions of problem (1.8) and scheme
(3.3). Then, under the condition (1.9), there holds

sup E[[le"[7:] +E
0<n<N

N
TZ ||Ve”|%21 < C7+ Ch?*|Inhl>.

n=1

Proof. We write e = n"™ + £ where
n" = u(ty) — Pru(t,) and &":= Pyu(t,) —up, n=0,1,2,...,N.

It follows from (1.8) that for all ¢, (n > 0) there holds P-almost surely

(w(tns1),vn) = (ultn), o) + /t - (Vu(s), Vup) ds (3.47)
- [Tt [T e vue .

Subtracting (3.3) from (3.47) and setting v, = £"*1, the following error equation holds
P-almost surely,
tn+1

(€ —gn gt = (" =t et - / (Vu(s) = Vupt, vem) ds - (3.48)

tn

+ / " (Fluls)) - Dot et ds

n

+ / " (g(u(s)) - g(up)), €Y aw(s),

n

Z:Tl +T2+T3+T4

The left-hand side of (3.48) can be handled by

E[(€"+ €%, )] = SE[le" 3 €3] (3.49)

+SE[le — €3]
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Next, we bound the right-hand side of (3.48). First, since P, is the L?-projection operator,

we have E [T] = 0.
For the second term on the right-hand side of (3.48), using the Hélder continuity in Lemma

2.1, we have

n+1
-E [ — Vu(tyy1), VETTY ds] (3.50)
tn 1
|: n+l +V§n+l vé-n-‘rl) :|
'n.+1
<CE [ [Vu(s) — Vu(tni1)||3e ds]

- Z]E (Ve M) 7 + CE [ V™ 7a] 7
n 3 n
<O+ CE |V a] = JE(IVE Iz ] 7
In order to estimate the third term on the right-hand side of (3.48), we write

(u(s)) = fultngr)), &™) (3.51)
+ (f(u(tntr) f(Phu(tn+1))a€n+1)

+ (f(Prultngr)) — [0 €M)

+ (fn+1 I fn+1;€n+1)

(f(u(s)) = Inf™Hh, e ) = (f

Using the Holder continuity in Lemma 2.2, we obtain

E[(F(u(s)) — flultnsn), &) (3.52)
< CE [l £(u(s)) — f(utnsn) 3] +E [€7 2]
< Cr+E [l 2]

Next, using properties of the projection, we have

E [(f(u(tns1) = f(Phultng1)), €] (3.53)
g—1
= —E[(n" (Q_(ultur1)) (Prultnr)? ' = 1),6"1)]
i=0
< CE [ 3wtV (Pt ) = 11 o [2:] + E [ 2]
i=0

g—1

< C(E[(IPruttns) % + ultasn) 3% + 1DI7)] ) 7
< (B[] )" +E [lem+)2:]
<C (B[lrE])" +E e 2.).
The third term on the right-hand side of (3.51) can be bounded by

E [(f(Pau(tor)) = [ €] <E )€1 - (3.54)
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Using Theorem 3.2, properties of the interpolation operator, the inverse inequality, and the
fact that uZH is a piecewise linear polynomial, the fourth term on the right-hand side of (3.51)
can be handled by

E[(f = I ft enth)] (3.55)
<E[CR? 3 llaCup ) Ve Bage | + B [l 2]
} KeTh

[ 2(g—1) n
<E[cn? Y (I 13 IVus ™ e )] + B (g™ 113:]
) KeTh
[ n 2(q—1 n 2(q—1 n
<E[Chmn Y (Vw5500 + e IS IV ) ) |
B KeTy,
+E [l 2:]
<E[Chmn Y (IVup 138 ey + I 13 ey )| + B (1€ 132]
N KeTy

< E[OR| P (g 3 + 1903 5] +E [l€™32)
< Ch*|Inh|* + E [|I€"T111.] -

Combining (3.52)—(3.55) to obtain

1

E[T] < Cr + CR2| b7 + CE [l 3] 7+ C (E [l 138]) " . (3.56)

By the martingale property, the It6 isometry, the Holder continuity of w and the global
Lipschitz condition (1.5), we have

1 n+1 n||2 LT frts ny||2
BT < SE (16" — €] + B[ [ lo(uts)) — gui) ] (357)
L):,
1 P
< §E [||§n+1 _ 5””%2] + CE / lu(s) — ull]|2. ds}
1 A
< SRl =€)+ CB[ [ futo) — u(t) s ]

n

+CE [[ln" +€"lI72] 7
< SE [l — €3] + O + CE o 3:] 7
+CE [|lg"][72] 7
Taking the expectation on (3.48) and combining estimates (3.49)—(3.57), summing over

n=0,1,2..,0—1with 1 < /¢ < N, and using the properties of the L? projection and the
regularity assumption, we obtain

1 14
ZE [I€°03:] + B[ D 176" 132 (3.58)
n=1
-1

E[I€°13:]) +CE[r Y 1€")3:] + Cr + Ch2|m b 2.

n=0

l\’)l»—t
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Finally, the assertion of the theorem follows from (3.58), the discrete Gronwall’s inequality,
the L2-projection properties, the fact that € = 0 and the triangle inequality. The proof is
complete.

The following strong stability result is a direct corollary of Theorem 3.5.

Corollary 3.1. Suppose the mesh assumption in (3.1) holds and h?|Inh|?> < Ct, and then

E[ sup (Vg”,vgn)] <C.

0<n<N

Proof. For each sample point,

0<n<N

N
sup (VE",VE™) <Y (VE", VEN). (3.59)
n=0

When h?|Inh|? < Cr, taking the expectation on both sides of (3.59), and using Theorem 3.5,
we obtain

2 2
WA o
T

E[ swp (v€",VE"| <C+C
0<n<N

Remark 3.1. (a) Note that the elliptic projection cannot be used due to the first term Ty in
(3.48). In [28], it is Ot + Ch? since L? projection is used there.

(b) For the diffusion term, We need g(u) € C and g(u) to be Lipschitz continuous, which
are the same assumptions as in stochastic ODE case. [18] The analysis in [28] requires two
extra conditions: g(u) and g"”(u) are bounded. Note that g(u) = u, g(u) = Vu?+1 or some
others satisfy the assumptions in this paper, but they do not satisfy the assumptions in [28].

4. Numerical experiments

In this section, we present several two dimensional numerical examples to gauge the per-
formance of the proposed stochastic finite element scheme for the stochastic partial differential
equations satisfying the proposed assumptions for the nonlinear term and the diffusion term.
Test 1 is designed to demonstrate the error orders with respect to mesh size h for small and big
noises; Test 2 is designed to demonstrate the stability results and evolution of the stochastic
Allen-Cahn equation, which is a special case of the SPDE in this paper; Test 3 is designed
to demonstrate the stability results of the SPDE with a different initial condition; Test 4 is
designed to demonstrate the stability results of the SPDE with a different nonlinear term; Test
5 is designed to demonstrate the stability results of the SPDE with a different diffusion term.
The square domain D = [—1,1]?, and 10000 sample points are used in these tests.

Test 1 In this test, we consider the following smooth initial condition
% 4+ y? - 0.62>
\/§e ’

where € = 0.2. Time step size 7 = 1 x 1076 is used in this Test 1. The nonlinear term is
f(u) = % (u—u?), and the diffusion term is g(u) = 6 u. Table 4.1 shows the following three types

uo(x,y) = tanh ( (4.1)



mm Wondershare
PDFelement

Trial Version g

20 X. Feng, Y. Li and Y. Zhang

1 1 N 1
of errors { sup E[He””%z(m]}z, {E[ sup ||e"\|%2(1))]}27 and {E[>,_, THVG”H%Q(D)]}2 re-
0<n<N 0<n<N
spectively, and the rates of convergence. The noise intensity is 6 = 1. In the table, we use
L®EL?, EL®L? and EL?H"! to denote these three types of errors respectively.

L>®EL? error order EL>®L? error order EL2H! error order
h=0.5v2 0.2909 — 0.2900 — 2.2386 —
h =0.25v2 0.0759 1.9384 0.0757 1.9377 1.1401 0.9734
h =0.125v2 0.0202 1.9097 0.0201 1.9131 0.5919 0.9457
h = 0.0625v/2 0.0051 1.9858 0.0051 1.9786 0.2996 0.9823

Table 4.1:: Spatial errors and convergence rates of Test 1: e =0.2, 7 =1 x 1076, § = 1.

Table 4.2 shows the errors L°EL?, EL*°L? and EL?H" respectively, and the rates of con-
vergence at final time 7' = 275, The noise intensity ¢ = 50.

L>®EL? error order EL>L? error order EL?2H! error order
h=0.5v2 0.3391 — 0.2979 — 2.2723 —
h=0.25v2 0.0885 1.9380 0.0778 1.9370 1.1573 0.9734
h =0.125v2 0.0235 1.9130 0.0206 1.9171 0.6008 0.9458
h = 0.0625v/2 0.0060 1.9696 0.0053 1.9586 0.3042 0.9819

Table 4.2:: Spatial errors and convergence rates of Test 1: € = 0.2, 7 =1 x 1075, § = 50.

From these two tables, we observe that the error orders of L*EL? and EL>L? are 2, and
the error order of EL2H" is 1. Besides, the error orders keep the same when the noise intensity
increases.

In the following tests, EL? and EH' are used to denote E||u}[|3, and E|Vuj!||3, respectively.

Test 2 In this test, we consider the following initial condition

W) (4.2)

The nonlinear term is f(u) = % (u—wu?), and the diffusion term is g(u) = 6 u, which corresponds
to the stochastic Allen-Cahn equation. More tests related to the Allen-Cahn equation can be
found in [9,11,12,26,34]. Figure 4.1 shows the evolution of the zero-level sets of the solutions
under different intensity of the noise. We observe that although the circle may shrink or dilate
(depending on the sign of the diffusion term), the average zero-level sets shrink for smaller and
bigger noises. Figure 4.2 shows the EL? and EH' stability results at each time step, which
verifies the results in Theorems 3.1 and 3.3. We also observe that they are both bounded.
Figure 4.3 shows the EL? and EH" stability results for one sample point. From the graphs,
these stability results seem to be bounded although they are not sample-wise decreasing.

uo(z,y) = tanh (

Test 3 In this test, we consider the following initial condition

L
V2e

The nonlinear term is f(u) = % (u—u?), and the diffusion term is g(u) = 6 u. Figure 4.4 shows

the EL? and EH' stability results at each time step, which verifies the results in Theorems 3.1

uo(z,y) = tanh ( (V/22/0.04 + 42/0.36 — 1)(/22/0.36 + y2/0.04 — 1)). (4.3)
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(a) 5 =0.1 (b) 6 =1
Fig. 4.1.: Zero level sets of the solutions: 7 =1 x 10~%, h = 0.008, ¢ = 0.01.

—— L Stability
—— H' Stability

0 o002 o004 006 008 01 012 014 0% 018 02 0 002 o004 006 008 01 012 014 016 018 02
Time Time

(a) 6 =0.1 (b)s=1
Fig. 4.2.: Stability results (average): 7 = 2.5 x 1073,e = 0.1, and h = 0.04.

—— L? Stability
—— H' Stability

0 o002 004 006 o008 01 012 014 0% 018 02 0 002 o004 006 008 01 012 014 016 018 02
Time Time

(a) 6 =0.1 by s=1
Fig. 4.3.: Stability results (one sample point): 7 = 2.5 x 1073, ¢ = 0.1, and h = 0.04.

and 3.3. Figure 4.5 shows the EL? and EH! stability results for one sample point. Similarly,
these stability results are bounded although they are not sample-wise decreasing.

Test 4 In this test, we consider the initial condition in (4.1) with ¢ = 0.5. The nonlinear
term is f(u) = %(u — u''), and the diffusion term is g(u) = §u. Figure 4.6 shows the EL?
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2§ —— .2 Stability
—— H' Stability @ —— H' Stability

o 0005 001 0015 002 0025 o 0005 o001 0015 002 0025
Time Time

(a) 5 =0.1 (b) 6 =1
Fig. 4.4.: Stability results: 7 =5 x 1074, ¢ = 0.1, and h = 0.04.

—— L? Stability —— L? Stability
——H' Stability |~ 8 ——H' Stability

o 0005 001 0015 002 0025 o 0005 001 0015 002 0025
Time Time

(a) § = 0.1 (b) 6 =1
Fig. 4.5.: Stability results (one sample point): 7 =5 x 107%,e = 0.1, and h = 0.04.

and EH! stability results at each time step, which verifies the results in Theorems 3.1 and 3.3.
Figure 4.7 shows the EL? and EH! stability results for one sample point. We can observe some
oscillations especially when 9§ is big.

—— L2 Stability
—— H' Stability
5 5
4 af
3- 3
2- 2
1 1
3 3
o 05 01 015 oz 025 03 oas 04 o 0005 001  o00ts 002 0025 003 0035 004
Time Time
(a) 6 =0.1 (b)s=1

Fig. 4.6.: Stability results: 7 =5 x 1073, ¢ = 0.5, and h = 0.04.
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—— L.? Stability
—— H' Stability

0 005 01 015 02 025 03 035 04 o 005 01 015 02 025 03 035 04
Time Time

(a) 6 =0.1 (b)s=1
Fig. 4.7.: Stability results (one sample point): 7 =15 x 1073, ¢ = 0.5, and h = 0.04.

Test 5 In this test, we consider the initial condition in (4.1) with € = 0.5. The nonlinear term
is f(u) = %(u—u?), and the diffusion term is g(u) = 6 vVu®+ 1. Figure 4.8 shows the EL?
and EH! stability results at each time step, which verifies the results in Theorems 3.1 and 3.3.
Figure 4.9 shows the EL? and EH' stability results for one sample point. We can observe big
oscillations of the EL? stability when 6 =1 .

—— L? Stability
—— H! Stability

—— L? Stability
45 —— H* Stability| “®

0 005 o1 015 02 025 03 03 04 045 05 0 0005 001 0015 002 0025 003 0035 004 0045 005
Time Time

(a) 6 =0.1 (b)6=1
Fig. 4.8.: Stability results: 7 =5 x 1073,¢ = 0.5, and h = 0.04.

Test 6 In this test, we consider a random initial condition in Figure 4.10. The nonlinear term
is f(u) = 5 (u—1u?), and the diffusion term is g(u) = 6 u. Figure 4.11 shows the EL? and EH"
stability results at each time step, which verifies the results in Theorems 3.1 and 3.3. Figure
4.12 shows the L? and H' stability results for one sample point. We observe that the L? and
H' stability are all bounded, and they decrease very fast in the phase coarsening process.
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—— L.? Stability
—— H' Stability

0 005 01 015 02 025 03 035 04 o 005 01 015 02 025 03 035 04
Time Time

(a) 6 =0.1 (b)§=1
Fig. 4.9.: Stability results (one sample point): 7 =15 x 1073, ¢ = 0.5, and h = 0.04.
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—— H* Stability

—— L? Stability
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o —— H' Stability
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(a) 6 = 0.1 (b)s=1
Fig. 4.11.: Stability results: 7 =5 x 1074, ¢ = 0.1, and h = 0.04.
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