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Abstract

This paper develops and analyzes a fully discrete finite element method for a class

of semilinear stochastic partial differential equations (SPDEs) with multiplicative noise.

The nonlinearity in the diffusion term of the SPDEs is assumed to be globally Lipschitz

and the nonlinearity in the drift term is only assumed to satisfy a one-sided Lipschitz

condition. These assumptions are the same ones as used in [18] where numerical methods

for general nonlinear stochastic ordinary differential equations (SODEs) under “minimum

assumptions” were studied. As a result, the semilinear SPDEs considered in this paper are a

direct generalization of the SODEs considered in [18]. There are several difficulties which

need to be overcome for this generalization. First, obviously the spatial discretization,

which does not appear in the SODE case, adds an extra layer of difficulty. It turns out a

spatial discretization must be designed to guarantee certain properties for the numerical

scheme and its stiffness matrix. In this paper we use a finite element interpolation technique

to discretize the nonlinear drift term. Second, in order to prove the strong convergence

of the proposed fully discrete finite element method, stability estimates for higher order

moments of the H1-seminorm of the numerical solution must be established, which are

difficult and delicate. A judicious combination of the properties of the drift and diffusion

terms and a nontrivial technique borrowed from [28] is used in this paper to achieve the goal.

Finally, stability estimates for the second and higher order moments of the L2-norm of the

numerical solution are also difficult to obtain due to the fact that the mass matrix may not

be diagonally dominant. This is done by utilizing the interpolation theory and the higher

moment estimates for the H1-seminorm of the numerical solution. After overcoming these

difficulties, it is proved that the proposed fully discrete finite element method is convergent

in strong norms with nearly optimal rates of convergence. Numerical experiment results

are also presented to validate the theoretical results and to demonstrate the efficiency of

the proposed numerical method.
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1. Introduction

We consider the following initial-boundary value problem for general semilinear stochastic

partial differential equations (SPDEs) with function-type multiplicative noise:

du =
[
∆u+ f(u)

]
dt+ g(u) dW (t), in D × (0, T ), (1.1)

∂u

∂ν
= 0, on ∂D × (0, T ), (1.2)

u(·, 0) = u0(·), in D. (1.3)

Here D ⊂ Rd (d = 1, 2, 3) is an open bounded domain with smooth boundary, W : Ω×(0, T ) →
R denotes the standard Wiener process on the filtered probability space (Ω,F , {Ft : t ≥ 0},P),
and f, g ∈ C1 are two given functions and f(u) takes the form

f(u) = c0u− c1u
3 − c2u

5 − c3u
7 − · · · , (1.4)

where ci ≥ 0, i = 0, 1, 2, · · · . For the sake of clarity, we only consider the case f(u) = u− uq in

this paper, where q ≥ 3 is an odd integer (it is trivial when f(u) = c0u). We remark that similar

results still hold for the general nonlinear function f(u) in (1.4), and when f(u) = 1
ε2 (u− u3),

(1.1) is known as the stochastic Allen-Cahn equation with function-type multiplicative noise

and interaction length ε (see [28]). We also assume that g is globally Lipschitz and satisfies the

growth condition, that is, there exist constants κ1 > 0 and C > 0 such that

|g(a)− g(b)| ≤ κ1|a− b|, (1.5)

|g(a)|2 ≤ C(1 + a2). (1.6)

By (1.6), we get

|g(a) a| ≤ C(1 + a2). (1.7)

Under the above assumptions for the drift term and the diffusion term, it can be proved

in [15] that there exists a unique strong variational solution u such that

(u(t), φ) = (u(0), φ)−
∫ t

0

(
∇u(s),∇φ

)
ds+

∫ t

0

(
f(u(s)), φ

)
ds (1.8)

+

∫ t

0

(g(u), φ) dW (s) ∀φ ∈ H1(D)

holds P-almost surely. Moreover, when the initial condition u0 is sufficiently smooth, the

following stability estimate for the strong solution u holds:

sup
t∈[0,T ]

E
[
‖u(t)‖2qH2

]
+ sup

t∈[0,T ]

E
[
‖u(t)‖4q−2

L4q−2

]
≤ C, (1.9)

where q is the exponent in the nonlinear term of f(u) = u− uq.

Clearly, when the ∆u term in (1.1) is dropped, the PDE reduces to a stochastic ODE.

A convergence theory for numerical approximations for this stochastic ODE was established
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long ago (see [29] and [30]) under the global Lipschitz assumptions on f and g. Later, the

convergence was proved in [18] under a weaker condition on f known as a one-sided Lipschitz

condition in the sense that there exists a constant µ > 0 such that

(a− b, f(a)− f(b)) ≤ µ(a− b)2 ∀a, b ∈ R. (1.10)

The optimal rate of convergence was also obtained in [18] under an extra assumption that f

behaves like a polynomial. The one-sided Lipschitz condition is widely used and it has broad

applications [6, 7, 13,14,33].

We also note that numerical approximations of the SPDE (1.1) with various special drift

terms and/or diffusion terms have been extensively investigated in the literature (see [10, 11,

28, 32]). In particular, we mention that the case f(u) = u− u3, g(u), g′(u), g′′(u) are bounded

and g(u) is global Lipschitz continuous was studied in [28], the high moments of the H1-norm

of the numerical solution were proved to be stable, and a nearly optimal strong convergence

rate was established. A specially designed discretization is used for f(u) = u−u3, and it is not

trivial to extend the idea to the case when f(u) = u− uq where q > 3. Besides the variational

approach used in the above references, a few other results were obtained for the corresponding

stochastic ODEs (see [19, 20]) and the stochastic PDEs (see [2, 5, 16, 17, 22–24, 27]) based on

the semigroup approach. Specifically, in [2,5,23,24,27], additive noises were considered for the

stochastic Allen-Cahn equation; in [2], the fully discrete exponential Euler and fully discrete

implicit Euler approximations were proved to diverge for stochastic Allen-Cahn equation, which

indirectly justifies the usefulness of the proposed interpolation scheme of this paper; in [16],

the multiplicative noise was considered and the convergence of the explicit and implicit Euler

schemes was established when the drift term grows at most linearly; in [17], the convergence

without order was established for the super-linearly growing drift term for a tamed Euler time-

stepping scheme; in [22], the first convergence result with a rate was obtained for the one-sided

Lipschitz continuity nonlinearity using a nonlinearities-stopped approximation.

The goal of this paper is to generalize the numerical SODE theory in [18] to the SPDE case.

Specifically, we want to design a fully discrete finite element method for problem (1.1)–(1.3)

which can be proved to be stable and convergent with optimal rates in strong norms under

“minimum” assumptions on nonlinear functions f and g as those used in [18]. We recall that

the “minimum” assumptions refer to that g is assumed to be global Lipschitz, and f satisfies

the one-sided Lipschitz condition (1.10) and it behaves like a polynomial. To the best of our

knowledge, such a goal has yet been achieved before in the literature.

The remainder of this paper is organized as follows. In Section 2, we establish several

Hölder continuity properties (in different norms) for the SPDE solution u and for the composite

function f(u). These properties play an important role in our error analysis. In Section 3, we

first present our fully discrete finite element method for problem (1.1)–(1.3), which consists of an

Euler-type scheme for time discretization and a nonstandard finite element method for spatial

discretization. The novelty of our spatial discretization is to approximate the nonlinear function

f by its finite element interpolation in the scheme. We then establish several key properties for

the numerical solution, among them are the stability of the second and higher order moments of

its H1-seminorm and the stability of the second and higher order moments of its L2-norm. We

note that the proofs of the stability of these higher order moments are quite involved, and they

require some special techniques and rely on the structure of the proposed numerical method.

For example, the diagonal dominance property of the stiffness matrix is needed to show the

stability of the second and higher order moments of the H1-seminorm of the numerical solution,
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however, the mass matrix may not be diagonally dominant. To circumvent this difficulty, we

use the stability of the second and higher order moments of the H1-seminorm of the numerical

solution and the interpolation theory to get the desired L2-norm stability. Finally, in this

section we prove nearly optimal order error estimates for the numerical solution by utilizing the

stability of higher order moments of the L2-norm and H1-seminorm of the numerical solution.

We like to emphasize that only sub-optimal order error estimates could be obtained should the

stability of higher order moments of the H1-seminorm of the numerical solution were not known,

see [32] where the special case f(u) = u − u3 was considered. In Section 4, we present several

numerical experiments to validate our theoretical results, especially to verify the stability of

numerical solution using different initial conditions u0 and different functions f and g. As a

special case, the stochastic Allen-Cahn equation with function-type multiplicative noise is also

tested.

2. Preliminaries and properties of the SPDE solution

Throughout this paper, we shall use C to denote a generic constant, and we take the

standard Sobolev notations in [3]. When it is the whole domain D, ‖ · ‖Hk and ‖ · ‖Lp are used

to simplify ‖ · ‖Hk(D) and ‖ · ‖Lp(D) respectively, and (· , ·) is used to denote the standard

inner product of L2(D). E[·] denotes the expectation operator on the filtered probability space

(Ω,F , {Ft : t ≥ 0},P).
In this section, we first derive the Hölder continuity in time for the strong solution u with

respect to the spatial H1-seminorm and for the composite function f(u) with respect to the

spatial L2-norm. Both results will play a key role in the error analysis (see Subsection 3.4).

The time derivatives of ∇u and the composite function f(u) do not exist in the stochastic case,

so these Hölder continuity results will substitute for the differentiability of ∇u and f(u) with

respect to time in the error analysis.

Lemma 2.1. Let u be the strong solution to problem (1.8). Then for any s, t ∈ [0, T ] with

s < t, we have

E
[
‖∇(u(t)− u(s))‖2L2

]
+ E

[∫ t

s

‖∆(u(ζ)− u(s))‖2L2 dζ

]
≤ C1(t− s),

where

C1 = C

(
sup

s≤ζ≤t
E
[
‖∆u(ζ)‖2L2

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖2qL2q

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖2L2

])
.

Proof. Applying Itô’s formula (see [21, 31]) to the functional Φ(u(·)) := ‖∇u(·)−∇u(s)‖2L2

with fixed s ∈ [0, T ) and using integration by parts, we get

‖∇u(t)−∇u(s)‖2L2 = −2

∫ t

s

(∆u(ζ)−∆u(s),∆u(ζ)) dζ (2.1)

− 2

∫ t

s

(
∆u(ζ)−∆u(s), f(u(ζ))

)
dζ

− 2

∫ t

s

(∆u(ζ)−∆u(s), g(u(ζ))) dW (ζ) +

∫ t

s

‖∇g(u(ζ))‖2 dζ.

The expectation of the first term on the right-hand side of (2.1) can be bounded by the

Cauchy-Schwarz inequality as follows
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− 2E
[∫ t

s

(∆u(ζ)−∆u(s),∆u(ζ)) dζ

]
(2.2)

= −2E
[∫ t

s

‖∆u(ζ)−∆u(s)‖2L2 dζ +

∫ t

s

(∆u(ζ)−∆u(s),∆u(s)) dζ

]
≤ −3

2
E
[∫ t

s

‖∆u(ζ)−∆u(s)‖2L2 dζ

]
+ E

[
‖∆u(s)‖2L2

]
(t− s).

The expectation of the second term on the right-hand side of (2.1) can be bounded by

−2E
[∫ t

s

(
∆u(ζ)−∆u(s), f(u(ζ))

)
dζ

]
(2.3)

≤ E
[
1

2

∫ t

s

‖∆u(ζ)−∆u(s)‖2L2 dζ + 2

∫ t

s

‖f(u(ζ))‖2L2 dζ

]
≤ 1

2
E
[∫ t

s

‖∆u(ζ)−∆u(s)‖2L2 dζ

]
+ C sup

s≤ζ≤t
E
[
‖u(ζ)‖2qL2q

]
(t− s)

+ C sup
s≤ζ≤t

E
[
‖u(ζ)‖2L2

]
(t− s).

Next we bound the expectation of the fourth term on the right-hand side of (2.1) as follows

E
[∫ t

s

‖∇g(u(ζ))‖2dζ
]
≤ C sup

s≤ζ≤t
E
[
‖∇u(ζ)‖2L2

]
(t− s). (2.4)

Then Lemma 2.1 follows from (2.1)–(2.4) and the fact that the expectation of the third term

on the right-hand side of (2.1) is zero.

Next we prove the Hölder continuity result for the nonlinear term f(u(t)) − f(u(s)) with

respect to the spatial L2-norm.

Lemma 2.2. Let u be the strong solution to problem (1.8). Then for any s, t ∈ [0, T ] with

s < t, we have

E
[
‖f(u(t))− f(u(s))‖2L2

]
≤ C2(t− s),

where

C2 = C
(
1 + sup

s≤ζ≤t
E
[
‖∆u(ζ)‖2L2

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖4q−2

L4q−2

])
.

Proof. Applying Itô’s formula (see [21, 31]) to Φ(u(·)) := ‖f(u(·)) − f(u(s))‖2L2 with fixed

s ∈ [0, T ), we obtain

‖f(u(t))− f(u(s))‖2L2 = 2

∫ t

s

∫
D

(
f(u(ζ))− f(u(s))

)
f ′(u(ζ)) (2.5)

×
[
∆u(ζ) + f(u(ζ))

]
dx dζ

+ 2

∫ t

s

∫
D

(
f(u(ζ))− f(u(s))

)
f ′(u(ζ))g(u(ζ)) dx dW (ζ)

+

∫ t

s

∫
D

(
f(u(ζ))− f(u(s))

)
f ′′(u(ζ))|g(u(ζ))|2 dx dζ

+

∫ t

s

∫
D
[f ′(u(ζ))]2|g(u(ζ))|2 dx dζ.
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Taking the expectation on both sides, the first term on the right-hand side of (2.5) can be

bounded by

E
[
2

∫ t

s

∫
D

(
f(u(ζ))− f(u(s))

)
f ′(u(ζ))×

[
∆u(ζ) + f(u(ζ))

]
dx dζ

]
(2.6)

≤ C(t− s)×
(

sup
s≤ζ≤t

E
[
‖u(ζ)‖2L2

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖2qL2q

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖4q−2

L4q−2

]
+ sup

s≤ζ≤t
E
[
‖∆u(ζ)‖2L2

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖2L2

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖2qL2q

])
.

The expectation of the second term on the right-hand side of (2.5) is zero since it is a

martingale.

The third term on the right-hand side of (2.5) can be bounded by

E
[∫ t

s

∫
D

(
f(u(ζ))− f(u(s))

)
f ′′(u(ζ))|g(u(ζ))|2 dx dζ

]
(2.7)

≤ C(t− s)×
(
C + sup

s≤ζ≤t
E
[
‖u(ζ)‖2qL2q

]
+ sup

s≤ζ≤t
E
[
‖u(ζ)‖4q−2

L4q−2

]
+ C + sup

s≤ζ≤t
E
[
‖u(ζ)‖4L4

])
.

The fourth term on the right-hand side of (2.5) can be bounded by the upper bound in

(2.7). Then (2.5) can be written as

E
[
‖f(u(t))− f(u(s))‖2L2

]
≤ C(t− s)×

(
1 + sup

s≤ζ≤t
E
[
‖∆u(ζ)‖2L2

]
+ (2.8)

+ sup
s≤ζ≤t

E
[
‖u(ζ)‖4q−2

L4q−2

])
.

The proof is complete.

Remark 2.1. For the diffusion term, the global Lipschitz condition, which is stronger than the

one-sided Lipschitz condition, is needed as in the SODE case. Using the C1 assumption and the

global Lipschitz assumption, we can derive that the derivative of the diffusion term is bounded

by the Lipschitz constant κ, i.e., |g′(u)| ≤ κ, but the diffusion term itself may not be bounded.

For instance, g(u) = u, g(u) =
√
u2 + 1, etc. Note these two assumptions are consistent with

the SODE case in [18], and they are also the conditions to guarantee the well-posedness of the

strong SODE solution [18].

3. Fully discrete finite element approximation

3.1. Formulation of the finite element method

In this section, we first construct a fully discrete finite element method for problem (1.1)–

(1.3). we then establish several stability properties for the numerical solution including the

stability of higher order moments for its H1-seminorm and L2-norm. Finally, we derive optimal

order error estimates in strong norms for the numerical solution using the stability estimates.

Let tn = nτ (n = 0, 1, . . . , N) be a uniform partition of [0, T ] and Th be the triangulation

of D satisfying the following assumption [35]:

1

d(d− 1)

∑
K⊃E

|κK
E | cot θKE ≥ 0, (3.1)
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where E denotes the edge of simplex K. It was proved in [35] that the stiffness matrix for the

Poisson equation with zero Dirichlet boundary is an M -matrix if and only if this assumption

holds for all edges. The stiffness matrix is diagonally dominant if the Neumann boundary

condition is considered. Note this assumption is just the Delaunay triangulation when d = 2.

In 3D, the notations in the assumption (3.1) are as follows: ai(1 ≤ i ≤ d+1) denote the vertices

of K, E = Eij the edge connecting two vertices ai and aj , Fi the (d− 1)-dimensional simplex

opposite to the vertex ai, θ
K
ij or θKE the angle between the faces Fi and Fj , κ

K
E = Fi ∩ Fj , the

(d− 2)-dimensional simplex opposite to the edge E = Eij . See Figure 3.1 below.

Fig. 3.1.: 3D triangulation.

Consider the P1-Lagrangian finite element space

Vh =
{
vh ∈ H1(D) : vh|K ∈ P1(K) ∀K ∈ Th

}
, (3.2)

where P1 denotes the space of all linear polynomials. Then the finite element approximation of

(1.8) is to seek an Ftn adapted Vh-valued process {un
h}Nn=1 such that it holds P-almost surely

that

(un+1
h , vh) + τ(∇un+1

h ,∇vh) (3.3)

= (un
h, vh) + τ(Ihf

n+1, vh) + (g(un
h), vh) ∆̄Wn+1 ∀ vh ∈ Vh,

where fn+1 := un+1
h − (un+1

h )q, ∆̄Wn+1 = W (tn+1)−W (tn) ∼ N (0, τ), and Ih is the standard

nodal value interpolation operator Ih : C(D̄) −→ Vh, i.e.,

Ihv :=

Nh∑
i=1

v(ai)ϕi, (3.4)

where Nh denotes the number of vertices of Th, and ϕi denotes the nodal basis function of

Vh corresponding to the vertex ai. The initial condition is chosen by u0
h = Phu0 where Ph :

L2(D) −→ Vh is the L2-projection operator defined by(
Phw, vh

)
= (w, vh) vh ∈ Vh.

For all w ∈ Hs(D) for s > 3
2 , the following well-known error estimate results can be found

in [3, 8]:

‖w − Phw‖L2 + h‖∇(w − Phw)‖L2 ≤ Chmin{2,s}‖w‖Hs , (3.5)

‖w − Phw‖L∞ ≤ Ch2− d
2 ‖w‖H2 . (3.6)

Finally, given vh ∈ Vh, we define the discrete Laplace operator ∆h : Vh −→ Vh by

(∆hvh, wh) = −(∇vh,∇wh) ∀wh ∈ Vh. (3.7)
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3.2. Stability estimates for the p-th moment of the H1-seminorm of un
h

First we shall prove the second moment discrete H1-seminorm stability result, which is

necessary to establish the corresponding higher moment stability result.

Theorem 3.1. Suppose the mesh assumption in (3.1) holds. Then we have

sup
0≤n≤N

E
[
‖∇un

h‖2L2

]
+

1

4

N−1∑
n=0

E
[
‖∇(un+1

h − un
h)‖2L2

]
(3.8)

+ τ

N−1∑
n=0

E
[
‖∆hu

n+1
h ‖2L2

]
≤ C.

Proof. Testing (3.3) with −∆hu
n+1
h . Then

(un+1
h − un

h,−∆hu
n+1
h ) + τ(∇un+1

h ,−∇∆hu
n+1
h ) (3.9)

= τ(Ihf
n+1,−∆hu

n+1
h ) + (g(un

h),−∆hu
n+1
h ) ∆̄Wn+1.

Using the definition of the discrete Laplace operator, we get

(un+1
h − un

h,−∆hu
n+1
h ) =

1

2
‖∇un+1

h ‖2L2 −
1

2
‖∇un

h‖2L2 (3.10)

+
1

2
‖∇(un+1

h − un
h)‖2L2 ,

τ(∇un+1
h ,−∇∆hu

n+1
h ) = τ‖∆hu

n+1
h ‖2L2 , (3.11)

E[(g(un
h),−∆hu

n+1
h ) ∆̄Wn+1] = E[(∇(Phg(u

n
h)),∇(un+1

h − un
h)) ∆̄Wn+1] (3.12)

≤ CτE[‖∇un
h‖2L2 ] +

1

4
E[‖∇(un+1

h − un
h)‖2L2 ],

where the stability in the H1-seminorm of the L2 projection (see [1]) is used in the inequality

of (3.12).

The crucial part is to bound the first term on the right-hand side of (3.9) since it cannot be

treated as a bad term, which aligns with the continuous case. Denote ui = un+1
h (ai), and then

τ(Ihf
n+1,−∆hu

n+1
h ) = τ‖∇un+1

h ‖2L2 − τ(∇
Nh∑
i=1

uq
iϕi,∇

Nh∑
j=1

ujϕj) (3.13)

= τ‖∇un+1
h ‖2L2 − τ

Nh∑
i,j=1

(uq
i∇ϕi, uj∇ϕj)

= τ‖∇un+1
h ‖2L2 − τ

Nh∑
i,j=1

bij(∇ϕi,∇ϕj),

where bij = uq
iuj .

Using Young’s inequality when i 6= j, we have

|bij | ≤
q

q + 1
uq+1
i +

1

q + 1
uq+1
j . (3.14)
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Besides, since the stiffness matrix is diagonally dominant, and then

−τ

Nh∑
i,j=1

bij(∇ϕi,∇ϕj) ≤ −τ

Nh∑
k=1

bkk[(∇ϕk,∇ϕk)−
q

q + 1

Nh∑
i=1,
i 6=k

|(∇ϕi,∇ϕk)| (3.15)

− 1

q + 1

Nh∑
j=1,
j 6=k

|(∇ϕk,∇ϕj)|]

≤ −τ

Nh∑
k=1

bkk[(∇ϕk,∇ϕk)−
Nh∑
i=1,
i 6=k

(∇ϕi,∇ϕk)]

≤ 0.

Then we have

τ(Ihf
n+1,−∆hu

n+1
h ) ≤ τ‖∇un+1

h ‖2L2 . (3.16)

Combining (3.9)–(3.12) and (3.16), and taking the summation, we have

1

2
E
[
‖∇u`

h‖2L2

]
+

1

4

`−1∑
n=0

E
[
‖∇(un+1

h − un
h)‖2L2

]
+ τ

`−1∑
n=0

E
[
‖∆hu

n+1
h ‖2L2

]
(3.17)

≤ Cτ

`−1∑
n=0

E[‖∇un
h‖2L2 ].

Using Gronwall’s inequality, we obtain (3.8).

Before we establish the error estimates, we need to prove the stability of the higher order

moments for the H1-seminorm of the numerical solution.

Theorem 3.2. Suppose the mesh assumption in (3.1) holds. Then for any p ≥ 2,

sup
0≤n≤N

E
[
‖∇un

h‖
p
L2

]
≤ C.

Proof. The proof is divided into three steps. In Step 1, we establish the bound for E‖∇u`
h‖4L2 .

In Step 2, we give the bound for E‖∇u`
h‖

p
L2 , where p = 2r and r is an arbitrary positive integer.

In Step 3, we obtain the bound for E‖∇u`
h‖

p
L2 , where p is an arbitrary real number and p ≥ 2.

Step 1. Based on (3.9)–(3.16), we have

1

2
‖∇un+1

h ‖2L2 −
1

2
‖∇un

h‖2L2 +
1

2
‖∇(un+1

h − un
h)‖2L2 + τ‖∆hu

n+1
h ‖2L2 (3.18)

− (g(un
h),−∆hu

n+1
h ) ∆̄Wn+1 ≤ τ‖∇un+1

h ‖2L2 .

Note the following identity

‖∇un+1
h ‖2L2 +

1

2
‖∇un

h‖2L2 =
3

4
(‖∇un+1

h ‖2L2 + ‖∇un
h‖2L2) +

1

4
(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2). (3.19)
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Multiplying (3.18) by ‖∇un+1
h ‖2L2 +

1
2‖∇un

h‖2L2 , we obtain

3

8
(‖∇un+1

h ‖4L2 − ‖∇un
h‖4L2) +

1

8
(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2)2 (3.20)

+ (
1

2
‖∇(un+1

h − un
h)‖2L2 + τ‖∆hu

n+1
h ‖2L2)(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2)

≤ τ‖∇un+1
h ‖2L2(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2)

+ (g(un
h),−∆hu

n+1
h ) ∆̄Wn+1(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2).

The first term on the right-hand side of (3.20) can be written as

τ‖∇un+1
h ‖2L2(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2) (3.21)

= τ‖∇un+1
h ‖2L2(

3

2
‖∇un+1

h ‖2L2 −
1

2
(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2))

≤ Cτ‖∇un+1
h ‖4L2 + θ1(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2)2,

where θ1 > 0 will be determined later.

The second term on the right-hand side of (3.20) can be written as

(g(un
h),−∆hu

n+1
h ) ∆̄Wn+1(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2) (3.22)

= (∇Phg(u
n
h),∇un+1

h ) ∆̄Wn+1(‖∇un+1
h ‖2L2 +

1

2
‖∇un

h‖2L2)

= ((∇Phg(u
n
h),∇un+1

h −∇un
h)∆̄Wn+1

+ (∇Phg(u
n
h),∇un

h)∆̄Wn+1)(‖∇un+1
h ‖2L2 +

1

2
‖∇un

h‖2L2)

≤ (
1

4
‖∇un+1

h −∇un
h‖2L2 + C‖∇un

h‖2L2(∆̄Wn+1)
2

+ (∇Phg(u
n
h),∇un

h)∆̄Wn+1)(‖∇un+1
h ‖2L2 +

1

2
‖∇un

h‖2L2).

For the right-hand side of (3.22), using the Cauchy-Schwarz inequality, we get

C‖∇un
h‖2L2(∆̄Wn+1)

2(‖∇un+1
h ‖2L2 +

1

2
‖∇un

h‖2L2) (3.23)

= C‖∇un
h‖2L2(∆̄Wn+1)

2(‖∇un+1
h ‖2L2 − ‖∇un

h‖2L2 +
3

2
‖∇un

h‖2L2)

≤ θ2(‖∇un+1
h ‖2L2 − ‖∇un

h‖2L2)2 + C‖∇un
h‖4L2(∆̄Wn+1)

4

+ C‖∇un
h‖4L2(∆̄Wn+1)

2,

where θ2 > 0 will be determined later. Similarly, using the Cauchy-Schwarz inequality, we have

(∇Phg(u
n
h),∇un

h)∆̄Wn+1(‖∇un+1
h ‖2L2 +

1

2
‖∇un

h‖2L2) (3.24)

= (∇Phg(u
n
h),∇un

h)∆̄Wn+1(‖∇un+1
h ‖2L2 − ‖∇un

h‖2L2 +
3

2
‖∇un

h‖2L2)

≤ θ3(‖∇un+1
h ‖2L2 − ‖∇un

h‖2L2)2 + C‖∇un
h‖4L2(∆̄Wn+1)

2

+
3

2
(∇Phg(u

n
h),∇un

h)∆̄Wn+1‖∇un
h‖2L2 ,
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where θ3 > 0 will be determined later.

Choosing θ1, θ2, θ3 such that θ1 + θ2 + θ3 ≤ 1
16 , and then taking the summation over n from

0 to `− 1 and taking the expectation on both sides of (3.20), we obtain

3

8
E
[
‖∇u`

h‖4L2

]
+

1

16

`−1∑
n=0

E
[
(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2)2

]
(3.25)

+

`−1∑
n=0

E
[
(
1

4
‖∇(un+1

h − un
h)‖2L2 + τ‖∆hu

n+1
h ‖2L2)(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2)

]

≤ Cτ

`−1∑
n=0

E
[
‖∇un+1

h ‖4L2

]
+

3

8
E
[
‖∇u0

h‖4L2

]
+ Cτ2

`−1∑
n=0

E
[
‖∇un

h‖4L2

]
+ Cτ

`−1∑
n=0

E
[
‖∇un

h‖4L2

]
.

When restricting τ ≤ C, we have

1

4
E
[
‖∇u`

h‖4L2

]
+

1

16

`−1∑
n=0

E
[
(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2)2

]
(3.26)

+

`−1∑
n=0

E
[
(
1

4
‖∇(un+1

h − un
h)‖2L2 + τ‖∆hu

n+1
h ‖2L2)(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2)

]

≤ Cτ

`−1∑
n=0

E
[
‖∇un

h‖4L2

]
+

3

8
E
[
‖∇u0

h‖4L2

]
.

Using Gronwall’s inequality, we obtain

1

4
E
[
‖∇u`

h‖4L2

]
+

1

16

`−1∑
n=0

E
[
(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2)2

]
(3.27)

+

`−1∑
n=0

E
[
(
1

4
‖∇(un+1

h − un
h)‖2L2 + τ‖∆hu

n+1
h ‖2L2)(‖∇un+1

h ‖2L2

+
1

2
‖∇un

h‖2L2)
]
≤ C.

Step 2. Similar to Step 1, using (3.20)–(3.24), we have

3

8
(‖∇un+1

h ‖4L2 − ‖∇un
h‖4L2) +

1

16
(‖∇un+1

h ‖2L2 − ‖∇un
h‖2L2)2 (3.28)

+ (
1

4
‖∇(un+1

h − un
h)‖2L2 + τ‖∆hu

n+1
h ‖2L2)(‖∇un+1

h ‖2L2 +
1

2
‖∇un

h‖2L2)

≤ Cτ‖∇un+1
h ‖4L2 + C‖∇un

h‖4L2(∆̄Wn+1)
4 + C‖∇un

h‖4L2(∆̄Wn+1)
2

+ C‖∇un
h‖4L2∆̄Wn+1.

Proceed similarly as in Step 1, multiplying (3.28) with ‖∇un+1
h ‖4L2 + 1

2‖∇un
h‖4L2 , we can

obtain the 8-th moment of the H1-seminorm stability result of the numerical solution. Then

repeating this process, the 2r-th moment of the H1-seminorm stability result of the numerical

solution can be obtained.
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Step 3. Suppose 2r−1 ≤ p ≤ 2r, and then by Young’s inequality, we have

E
[
‖∇u`

h‖
p
L2

]
≤ E

[
‖∇u`

h‖2
r

L2

]
+ C < ∞, (3.29)

where the second inequality follows from the results of Step 2. The proof is complete.

3.3. Stability estimates for the p-th moment of the L2-norm of un
h

Since the mass matrix may not be the diagonally dominated matrix, we cannot use the

above idea to prove the L2 stability. Instead, we prove the stability results by utilizing the

above established results. The following results hold when q ≥ 3 is the odd integer in 2D case,

and when q = 3 or q = 5 in 3D case.

Theorem 3.3. Under the mesh assumption in (3.1), there holds

sup
0≤n≤N

E
[
‖un

h‖2L2

]
+

N−1∑
n=0

E
[
‖(un+1

h − un
h)‖2L2

]
+ τ

N−1∑
n=0

E
[
‖∇un+1

h ‖2L2

]
+

τ

2

N−1∑
n=0

E
[
‖un+1

h ‖q+1
Lq+1

]
≤ C.

Proof. Testing (3.3) with un+1
h yields

(un+1
h − un

h, u
n+1
h ) + τ(∇un+1

h ,∇un+1
h ) = τ(Ihf

n+1, un+1
h ) + (g(un

h), u
n+1
h ) ∆̄Wn+1. (3.30)

We can easily prove the following inequalities:

(un+1
h − un

h, u
n+1
h ) =

1

2
‖un+1

h ‖2L2 −
1

2
‖un

h‖2L2 +
1

2
‖un+1

h − un
h‖2L2 ,

E[(g(un
h), u

n+1
h ) ∆̄Wn+1] = E[(g(un

h), (u
n+1
h − un

h)) ∆̄Wn+1]

≤ Cτ + CτE[‖un
h‖2L2 ] +

1

4
E[‖un+1

h − un
h‖2L2 ],

where (1.6) is used in the inequality above.

We have the following standard interpolation result and the inverse inequality (see [8]):

‖v − Ihv‖
L

q+1
q (K)

≤ ChK‖∇v‖
L

q+1
q (K)

, (3.31)

‖v‖q+1
Lq+1(K) ≤

C

h
d· q−1

2

K

‖v‖q+1
L2(K). (3.32)
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Using (3.31)–(3.32), and Young’s inequality, we have

τ(Ihf
n+1, un+1

h ) = τ(fn+1, un+1
h )− τ(fn+1 − Ihf

n+1, un+1
h ) (3.33)

≤ τ‖un+1
h ‖2L2 − τ‖un+1

h ‖q+1
Lq+1

+ Cτ‖fn+1 − Ihf
n+1‖

q+1
q

L
q+1
q

+
τ

4
‖un+1

h ‖q+1
Lq+1

≤ τ‖un+1
h ‖2L2 − τ‖un+1

h ‖q+1
Lq+1

+ Cτ
∑

K∈Th

h
q+1
q

K

(
(un+1

h )
q2−1

q , (∇un+1
h )

q+1
q
)
K
+

τ

4
‖un+1

h ‖q+1
Lq+1

≤ τ‖un+1
h ‖2L2 −

τ

2
‖un+1

h ‖q+1
Lq+1 + Cτ

∑
K∈Th

hq+1
K ‖∇un+1

h ‖q+1
Lq+1(K)

≤ τ‖un+1
h ‖2L2 −

τ

2
‖un+1

h ‖q+1
Lq+1 + Cτ

∑
K∈Th

h
q+1−d q−1

2

K ‖∇un+1
h ‖q+1

L2(K).

Note when d = 2, q + 1 − d q−1
2 ≥ 0 if q ≥ 0, and when d = 3, q + 1 − d q−1

2 ≥ 0 if q ≤ 5.

Using the above inequalities, Theorem 3.2, taking summation over n from 0 to `−1, and taking

expectation on both sides of (3.30), we obtain

1

4
E
[
‖u`

h‖2L2

]
+

1

4

`−1∑
n=0

E
[
‖(un+1

h − un
h)‖2L2

]
+ τ

`−1∑
n=0

E
[
‖∇un+1

h ‖2L2

]
(3.34)

+
τ

2

`−1∑
n=0

E
[
‖un+1

h ‖q+1
Lq+1

]
≤ τ

`−1∑
n=0

E
[
‖un

h‖2L2

]
+ Cτ

`−1∑
n=0

E
[
‖∇un+1

h ‖q+1
L2

]
+ C

≤ τ

`−1∑
n=0

E
[
‖un

h‖2L2

]
+ C,

where Theorem 3.2 is used in the last inequality.

The conclusion is a direct result by using Gronwall’s inequality.

To obtain the error estimates results, we need to establish a higher moment discrete L2

stability result for the numerical solution uh.

Theorem 3.4. Suppose the mesh assumption in (3.1) holds. Then there holds for any p ≥ 2,

sup
0≤`≤N

E
[
‖u`

h‖
p
L2

]
≤ C.

Proof. The proof is divided into three steps. In Step 1, we give the bound for E‖u`
h‖4L2 . In

Step 2, we give the bound for E‖u`
h‖

p
L2 , where p = 2r and r is an arbitrary positive integer. In

Step 3, we give the bound for E‖u`
h‖

p
L2 , where p is an arbitrary real number and p ≥ 2.

Step 1. Based on (3.30) and (3.33), we have

1

2
‖un+1

h ‖2L2 −
1

2
‖un

h‖2L2 +
1

2
‖un+1

h − un
h‖2L2 + τ‖∇un+1

h ‖2L2 +
τ

2
‖un+1

h ‖q+1
Lq+1 (3.35)

≤ τ‖un+1
h ‖2L2 + Cτ‖∇un+1

h ‖q+1
L2 + (g(un

h), u
n+1
h ) ∆̄Wn+1.
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Note the following identity

‖un+1
h ‖2L2 +

1

2
‖un

h‖2L2 =
3

4
(‖un+1

h ‖2L2 + ‖un
h‖2L2) +

1

4
(‖un+1

h ‖2L2 − ‖un
h‖2L2). (3.36)

Multiplying (3.35) with ‖un+1
h ‖2L2 +

1
2‖u

n
h‖2L2 , we obtain

3

8
(‖un+1

h ‖4L2 − ‖un
h‖4L2) +

1

8
(‖un+1

h ‖2L2 − ‖un
h‖2L2)2 + (

1

2
‖(un+1

h − un
h)‖2L2 (3.37)

+ τ‖∇un+1
h ‖2L2 +

τ

2
‖un+1

h ‖q+1
Lq+1)(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2)

≤ (τ‖un+1
h ‖2L2 + Cτ‖∇un+1

h ‖q+1
L2 )(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2)

+ (g(un
h), u

n+1
h ) ∆̄Wn+1(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2).

The first term on the right-hand side of (3.37) can be written as

(τ‖un+1
h ‖2L2 + Cτ‖∇un+1

h ‖q+1
L2 )(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2) (3.38)

≤ τ‖un+1
h ‖2L2(

3

2
‖un+1

h ‖2L2 −
1

2
(‖un+1

h ‖2L2 − ‖un
h‖2L2))

+ Cτ‖∇un+1
h ‖2(q+1)

L2 + τ‖un+1
h ‖4L2 + τ(‖un+1

h ‖2L2 − ‖un
h‖2L2)2

≤ Cτ‖un+1
h ‖4L2 + Cτ‖∇un+1

h ‖2(q+1)
L2 + θ1(‖un+1

h ‖2L2 − ‖un
h‖2L2)2,

where θ1 > 0 will be determined later.

The second term on the right-hand side of (3.37) can be written as

(g(un
h), u

n+1
h ) ∆̄Wn+1(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2) (3.39)

= (g(un
h), u

n+1
h − un

h + un
h) ∆̄Wn+1(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2)

≤ (
1

4
‖un+1

h − un
h‖2L2 + C(1 + ‖un

h‖2L2)(∆̄Wn+1)
2

+ (g(un
h), u

n
h)∆̄Wn+1)(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2).

For the second term on the right-hand side of (3.39), using the Cauchy-Schwarz inequality, we

get

C(1 + ‖un
h‖2L2)(∆̄Wn+1)

2(‖un+1
h ‖2L2 +

1

2
‖un

h‖2L2) (3.40)

= C(1 + ‖un
h‖2L2)(∆̄Wn+1)

2(‖un+1
h ‖2L2 − ‖un

h‖2L2 +
3

2
‖un

h‖2L2)

≤ θ2
(
‖un+1

h ‖2L2 − ‖un
h‖2L2)2 + (C + C‖un

h‖4L2)(∆̄Wn+1)
4

+ C‖un
h‖4L2(∆̄Wn+1

)2
+ C‖un

h‖2L2(∆̄Wn+1)
2,

where θ2 > 0 will be determined later. Using (1.7), the third term on the right-hand side of
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(3.39) can be bounded by

(g(un
h), u

n
h)∆̄Wn+1(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2) (3.41)

= (g(un
h), u

n
h)∆̄Wn+1(‖un+1

h ‖2L2 − ‖un
h‖2L2 +

3

2
‖un

h‖2L2)

≤ θ3(‖un+1
h ‖2L2 − ‖un

h‖2L2)2 + (C + C‖un
h‖4L2)(∆̄Wn+1)

2

+
3

2
(g(un

h), u
n
h)‖un

h‖2L2∆̄Wn+1,

where θ3 > 0 will be determined later.

Choosing θ1, θ2, θ3 such that θ1 + θ2 + θ3 ≤ 1
16 , and then taking the summation over n from

0 to `− 1 and taking the expectation on both sides of (3.37), we obtain

3

8
E
[
‖u`

h‖4L2

]
+

1

16

`−1∑
n=0

E
[
(‖un+1

h ‖2L2 − ‖un
h‖2L2)2

]
+

`−1∑
n=0

E
[
(
1

4
‖(un+1

h − un
h)‖2L2 (3.42)

+ τ‖∇un+1
h ‖2L2 +

τ

2
‖un+1

h ‖q+1
Lq+1)(‖un+1

h ‖2L2 +
1

2
‖un

h‖2L2)
]

≤ Cτ

`−1∑
n=0

E
[
‖un+1

h ‖4L2

]
+ Cτ

`−1∑
n=0

E
[
‖∇un+1

h ‖2(q+1)
L2

]
+

3

8
E
[
‖u0

h‖4L2

]
+ Cτ

`−1∑
n=0

E
[
‖un

h‖4L2

]
+ C.

When τ ≤ C, we have

1

4
E
[
‖u`

h‖4L2

]
+

1

16

`−1∑
n=0

E
[
(‖un+1

h ‖2L2 − ‖un
h‖2L2)2

]
+

`−1∑
n=0

E
[
(
1

4
‖(un+1

h − un
h)‖2L2 (3.43)

+ τ‖∇un+1
h ‖2L2 +

τ

2
‖un+1

h ‖4L4)(‖un+1
h ‖2L2 +

1

2
‖un

h‖2L2)
]

≤ Cτ

`−1∑
n=0

E
[
‖un

h‖4L2

]
+ Cτ

`−1∑
n=0

E
[
‖∇un+1

h ‖2(q+1)
L2

]
+

3

8
E
[
‖u0

h‖4L2

]
+ C.

Using Gronwall’s inequality, we obtain

1

4
E
[
‖u`

h‖4L2

]
+

1

16

`−1∑
n=0

E
[
(‖un+1

h ‖2L2 − ‖un
h‖2L2)2

]
+

`−1∑
n=0

E
[
(
1

4
‖(un+1

h − un
h)‖2L2 (3.44)

+ τ‖∇un+1
h ‖2L2 +

τ

2
‖un+1

h ‖4L4)(‖un+1
h ‖2L2 +

1

2
‖un

h‖2L2)

]
≤ C.

Step 2. Similar to Step 1, using (3.37)–(3.41), we have

3

8
(‖un+1

h ‖4L2 − ‖un
h‖4L2) +

1

16
(‖un+1

h ‖2L2 − ‖un
h‖2L2)2 (3.45)

+ (
1

4
‖(un+1

h − un
h)‖2L2 + τ‖∇un+1

h ‖2L2 +
τ

2
‖un+1

h ‖4L4)(‖un+1
h ‖2L2 +

1

2
‖un

h‖2L2)

≤ Cτ‖un+1
h ‖4L2 + Cτ‖∇un+1

h ‖2(q+1)
L2 + (C + C‖un

h‖4L2)(∆̄Wn+1)
4

+ (C + C‖un
h‖4L2)(∆̄Wn+1)

2 + (g(un
h), u

n
h)‖un

h‖2L2∆̄Wn+1.
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Similar to Step 1, multiplying (3.45) with ‖un+1
h ‖4L2 +

1
2‖u

n
h‖4L2 , we can obtain the 8-th moment

of the L2 stability result of the discrete solution. Then repeating this process, the 2r-th moment

of the L2 stability result of the discrete solution can be obtained.

Step 3. Suppose 2r−1 ≤ p ≤ 2r, and then by Young’s inequality, we have

E
[
‖u`

h‖
p
L2

]
≤ E

[
‖u`

h‖2
r

L2

]
+ C (3.46)

≤ C,

where the second inequality uses Step 2. The proof is complete.

3.4. Error estimates

Let en = u(tn)−un
h (n = 0, 1, 2, . . . , N). In the following theorem, the L2 projection is used

in the proof of the error estimates and the strong convergence rate is given.

Theorem 3.5. Let u and {un
h}Nn=1 denote respectively the solutions of problem (1.8) and scheme

(3.3). Then, under the condition (1.9), there holds

sup
0≤n≤N

E
[
‖en‖2L2

]
+ E

[
τ

N∑
n=1

‖∇en‖2L2

]
≤ Cτ + Ch2| lnh|2.

Proof. We write en = ηn + ξn where

ηn := u(tn)− Phu(tn) and ξn := Phu(tn)− un
h, n = 0, 1, 2, ..., N.

It follows from (1.8) that for all tn (n ≥ 0) there holds P-almost surely

(
u(tn+1), vh)− (u(tn), vh

)
+

∫ tn+1

tn

(
∇u(s),∇vh

)
ds (3.47)

=

∫ tn+1

tn

(
f(u(s)), vh

)
ds+

∫ tn+1

tn

(
g(u(s)), vh

)
dW (s) ∀ vh ∈ Vh.

Subtracting (3.3) from (3.47) and setting vh = ξn+1, the following error equation holds

P-almost surely,

(ξn+1 − ξn, ξn+1) = −(ηn+1 − ηn, ξn+1)−
∫ tn+1

tn

(
∇u(s)−∇un+1

h ,∇ξn+1
)
ds (3.48)

+

∫ tn+1

tn

(
f(u(s))− Ihf

n+1, ξn+1
)
ds

+

∫ tn+1

tn

(
(g(u(s))− g(un

h)), ξ
n+1

)
dW (s),

:= T1 + T2 + T3 + T4.

The left-hand side of (3.48) can be handled by

E
[
(ξn+1 − ξn, ξn+1)

]
=

1

2
E
[
‖ξn+1‖2L2 − ‖ξn‖2L2

]
(3.49)

+
1

2
E
[
‖ξn+1 − ξn‖2L2

]
.
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Next, we bound the right-hand side of (3.48). First, since Ph is the L2-projection operator,

we have E [T1] = 0.

For the second term on the right-hand side of (3.48), using the Hölder continuity in Lemma

2.1, we have

E [T2] = −E
[∫ tn+1

tn

(∇u(s)−∇u(tn+1),∇ξn+1) ds

]
(3.50)

− E
[∫ tn+1

tn

(∇ηn+1 +∇ξn+1,∇ξn+1) ds

]
≤ CE

[∫ tn+1

tn

‖∇u(s)−∇u(tn+1)‖2L2 ds

]
− 3

4
E
[
‖∇ξn+1‖2L2

]
τ + CE

[
‖∇ηn+1‖2L2

]
τ

≤ Cτ2 + CE
[
‖∇ηn+1‖2L2

]
τ − 3

4
E
[
‖∇ξn+1‖2L2

]
τ.

In order to estimate the third term on the right-hand side of (3.48), we write(
f(u(s))− Ihf

n+1, ξn+1
)
=

(
f(u(s))− f(u(tn+1)), ξ

n+1
)

(3.51)

+
(
f(u(tn+1)− f(Phu(tn+1)), ξ

n+1
)

+
(
f(Phu(tn+1))− fn+1, ξn+1

)
+
(
fn+1 − Ihf

n+1, ξn+1
)
.

Using the Hölder continuity in Lemma 2.2, we obtain

E
[(
f(u(s))− f(u(tn+1)), ξ

n+1
)]

(3.52)

≤ CE
[
‖f(u(s))− f(u(tn+1))‖2L2

]
+ E

[
‖ξn+1‖2L2

]
≤ Cτ + E

[
‖ξn+1‖2L2

]
.

Next, using properties of the projection, we have

E
[(
f(u(tn+1)− f(Phu(tn+1)), ξ

n+1
)]

(3.53)

= −E
[(
ηn+1

(q−1∑
i=0

(u(tn+1))
i(Phu(tn+1))

q−1−i − 1
)
, ξn+1

)]
≤ CE

[
‖
q−1∑
i=0

(u(tn+1))
i(Phu(tn+1))

q−1−i − 1‖2L∞ × ‖ηn+1‖2L2

]
+ E

[
‖ξn+1‖2L2

]
≤ C

(
E
[(

‖Phu(tn+1)‖2qL∞ + ‖u(tn+1)‖2qL∞ + |D|
2q

q−1

)]) q−1
q

×
(
E
[
‖ηn+1‖2qL2

]) 1
q

+ E
[
‖ξn+1‖2L2

]
≤ C

(
E
[
‖ηn+1‖2qL2

]) 1
q

+ E
[
‖ξn+1‖2L2

]
.

The third term on the right-hand side of (3.51) can be bounded by

E
[(
f(Phu(tn+1))− fn+1, ξn+1

)]
≤ E

[
‖ξn+1‖2L2

]
. (3.54)
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Using Theorem 3.2, properties of the interpolation operator, the inverse inequality, and the

fact that un+1
h is a piecewise linear polynomial, the fourth term on the right-hand side of (3.51)

can be handled by

E
[(
fn+1 − Ihf

n+1, ξn+1
)]

(3.55)

≤ E
[
Ch2

∑
K∈Th

‖q(un+1
h )q−1∇un+1

h ‖2L2(K)

]
+ E

[
‖ξn+1‖2L2

]
≤ E

[
Ch2

∑
K∈Th

(
‖un+1

h ‖2(q−1)
L∞(K)‖∇un+1

h ‖2L2(K)

)]
+ E

[
‖ξn+1‖2L2

]
≤ E

[
Ch2| lnh|2

∑
K∈Th

(
(‖∇un+1

h ‖2(q−1)
L2(K) + ‖un+1

h ‖2(q−1)
L2(K) )‖∇un+1

h ‖2L2(K)

)]
+ E

[
‖ξn+1‖2L2

]
≤ E

[
Ch2| lnh|2

∑
K∈Th

(
‖∇un+1

h ‖2qL2(K) + ‖un+1
h ‖2qL2(K)

)]
+ E

[
‖ξn+1‖2L2

]
≤ E

[
Ch2| lnh|2(‖un+1

h ‖2qL2 + ‖∇un+1
h ‖2qL2)

]
+ E

[
‖ξn+1‖2L2

]
≤ Ch2| lnh|2 + E

[
‖ξn+1‖2L2

]
.

Combining (3.52)–(3.55) to obtain

E [T3] ≤ Cτ2 + Ch2| lnh|2τ + CE
[
‖ξn+1‖2L2

]
τ + C

(
E
[
‖ηn+1‖2qL2

]) 1
q

τ. (3.56)

By the martingale property, the Itô isometry, the Hölder continuity of u and the global

Lipschitz condition (1.5), we have

E[T4] ≤
1

2
E
[
‖ξn+1 − ξn‖2L2

]
+

1

2
E
[∫ tn+1

tn

‖g(u(s))− g(un
h)‖2L2 ds

]
(3.57)

≤ 1

2
E
[
‖ξn+1 − ξn‖2L2

]
+ CE

[∫ tn+1

tn

‖u(s)− un
h‖2L2 ds

]
≤ 1

2
E
[
‖ξn+1 − ξn‖2L2

]
+ CE

[∫ tn+1

tn

‖u(s)− u(tn)‖2L2 ds
]

+ CE
[
‖ηn + ξn‖2L2

]
τ

≤ 1

2
E
[
‖ξn+1 − ξn‖2L2

]
+ Cτ2 + CE

[
‖ηn‖2L2

]
τ

+ CE
[
‖ξn‖2L2

]
τ.

Taking the expectation on (3.48) and combining estimates (3.49)–(3.57), summing over

n = 0, 1, 2, ..., ` − 1 with 1 ≤ ` ≤ N , and using the properties of the L2 projection and the

regularity assumption, we obtain

1

4
E
[
‖ξ`‖2L2

]
+

1

4
E
[
τ
∑̀
n=1

‖∇ξn‖2L2

]
(3.58)

≤ 1

2
E
[
‖ξ0‖2L2

]
+ CE

[
τ

`−1∑
n=0

‖ξn‖2L2

]
+ Cτ + Ch2| lnh|2.
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Finally, the assertion of the theorem follows from (3.58), the discrete Gronwall’s inequality,

the L2-projection properties, the fact that ξ0 = 0 and the triangle inequality. The proof is

complete.

The following strong stability result is a direct corollary of Theorem 3.5.

Corollary 3.1. Suppose the mesh assumption in (3.1) holds and h2| lnh|2 ≤ Cτ , and then

E
[

sup
0≤n≤N

(∇ξn,∇ξn)
]
≤ C.

Proof. For each sample point,

sup
0≤n≤N

(∇ξn,∇ξn) ≤
N∑

n=0

(∇ξn,∇ξn). (3.59)

When h2| lnh|2 ≤ Cτ , taking the expectation on both sides of (3.59), and using Theorem 3.5,

we obtain

E
[

sup
0≤n≤N

(∇ξn,∇ξn)
]
≤ C + C

h2| lnh|2

τ
≤ C.

Remark 3.1. (a) Note that the elliptic projection cannot be used due to the first term T1 in

(3.48). In [28], it is Cτ + Ch2 since L2 projection is used there.

(b) For the diffusion term, We need g(u) ∈ C1 and g(u) to be Lipschitz continuous, which

are the same assumptions as in stochastic ODE case. [18] The analysis in [28] requires two

extra conditions: g(u) and g′′(u) are bounded. Note that g(u) = u, g(u) =
√
u2 + 1 or some

others satisfy the assumptions in this paper, but they do not satisfy the assumptions in [28].

4. Numerical experiments

In this section, we present several two dimensional numerical examples to gauge the per-

formance of the proposed stochastic finite element scheme for the stochastic partial differential

equations satisfying the proposed assumptions for the nonlinear term and the diffusion term.

Test 1 is designed to demonstrate the error orders with respect to mesh size h for small and big

noises; Test 2 is designed to demonstrate the stability results and evolution of the stochastic

Allen-Cahn equation, which is a special case of the SPDE in this paper; Test 3 is designed

to demonstrate the stability results of the SPDE with a different initial condition; Test 4 is

designed to demonstrate the stability results of the SPDE with a different nonlinear term; Test

5 is designed to demonstrate the stability results of the SPDE with a different diffusion term.

The square domain D = [−1, 1]2, and 10000 sample points are used in these tests.

Test 1 In this test, we consider the following smooth initial condition

u0(x, y) = tanh
(x2 + y2 − 0.62√

2ε

)
, (4.1)

where ε = 0.2. Time step size τ = 1 × 10−6 is used in this Test 1. The nonlinear term is

f(u) = 1
ε2 (u−u3), and the diffusion term is g(u) = δ u. Table 4.1 shows the following three types
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of errors
{

sup
0≤n≤N

E
[
‖en‖2L2(D)

]} 1
2 ,

{
E
[

sup
0≤n≤N

‖en‖2L2(D)

]} 1
2 , and

{
E
[∑N

n=1 τ‖∇en‖2L2(D)

]} 1
2 re-

spectively, and the rates of convergence. The noise intensity is δ = 1. In the table, we use

L∞EL2, EL∞L2 and EL2H1 to denote these three types of errors respectively.

L∞EL2 error order EL∞L2 error order EL2H1 error order

h = 0.5
√
2 0.2909 — 0.2900 — 2.2386 —

h = 0.25
√
2 0.0759 1.9384 0.0757 1.9377 1.1401 0.9734

h = 0.125
√
2 0.0202 1.9097 0.0201 1.9131 0.5919 0.9457

h = 0.0625
√
2 0.0051 1.9858 0.0051 1.9786 0.2996 0.9823

Table 4.1:: Spatial errors and convergence rates of Test 1: ε = 0.2, τ = 1× 10−6, δ = 1.

Table 4.2 shows the errors L∞EL2, EL∞L2 and EL2H1 respectively, and the rates of con-

vergence at final time T = 2−5. The noise intensity δ = 50.

L∞EL2 error order EL∞L2 error order EL2H1 error order

h = 0.5
√
2 0.3391 — 0.2979 — 2.2723 —

h = 0.25
√
2 0.0885 1.9380 0.0778 1.9370 1.1573 0.9734

h = 0.125
√
2 0.0235 1.9130 0.0206 1.9171 0.6008 0.9458

h = 0.0625
√
2 0.0060 1.9696 0.0053 1.9586 0.3042 0.9819

Table 4.2:: Spatial errors and convergence rates of Test 1: ε = 0.2, τ = 1× 10−6, δ = 50.

From these two tables, we observe that the error orders of L∞EL2 and EL∞L2 are 2, and

the error order of EL2H1 is 1. Besides, the error orders keep the same when the noise intensity

increases.

In the following tests, EL2 and EH1 are used to denote E‖un
h‖2L2 and E‖∇un

h‖2L2 respectively.

Test 2 In this test, we consider the following initial condition

u0(x, y) = tanh
(√x2 + y2 − 0.6√

2ε

)
. (4.2)

The nonlinear term is f(u) = 1
ε2 (u−u3), and the diffusion term is g(u) = δ u, which corresponds

to the stochastic Allen-Cahn equation. More tests related to the Allen-Cahn equation can be

found in [9, 11, 12, 26, 34]. Figure 4.1 shows the evolution of the zero-level sets of the solutions

under different intensity of the noise. We observe that although the circle may shrink or dilate

(depending on the sign of the diffusion term), the average zero-level sets shrink for smaller and

bigger noises. Figure 4.2 shows the EL2 and EH1 stability results at each time step, which

verifies the results in Theorems 3.1 and 3.3. We also observe that they are both bounded.

Figure 4.3 shows the EL2 and EH1 stability results for one sample point. From the graphs,

these stability results seem to be bounded although they are not sample-wise decreasing.

Test 3 In this test, we consider the following initial condition

u0(x, y) = tanh
( 1√

2ε
(
√
x2/0.04 + y2/0.36− 1)(

√
x2/0.36 + y2/0.04− 1)

)
. (4.3)

The nonlinear term is f(u) = 1
ε2 (u−u3), and the diffusion term is g(u) = δ u. Figure 4.4 shows

the EL2 and EH1 stability results at each time step, which verifies the results in Theorems 3.1
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(a) δ = 0.1 (b) δ = 1

Fig. 4.1.: Zero level sets of the solutions: τ = 1× 10−4, h = 0.008, ε = 0.01.

(a) δ = 0.1 (b) δ = 1

Fig. 4.2.: Stability results (average): τ = 2.5× 10−3, ε = 0.1, and h = 0.04.

(a) δ = 0.1 (b) δ = 1

Fig. 4.3.: Stability results (one sample point): τ = 2.5× 10−3, ε = 0.1, and h = 0.04.

and 3.3. Figure 4.5 shows the EL2 and EH1 stability results for one sample point. Similarly,

these stability results are bounded although they are not sample-wise decreasing.

Test 4 In this test, we consider the initial condition in (4.1) with ε = 0.5. The nonlinear

term is f(u) = 1
ε2 (u − u11), and the diffusion term is g(u) = δ u. Figure 4.6 shows the EL2
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(a) δ = 0.1 (b) δ = 1

Fig. 4.4.: Stability results: τ = 5× 10−4, ε = 0.1, and h = 0.04.

(a) δ = 0.1 (b) δ = 1

Fig. 4.5.: Stability results (one sample point): τ = 5× 10−4, ε = 0.1, and h = 0.04.

and EH1 stability results at each time step, which verifies the results in Theorems 3.1 and 3.3.

Figure 4.7 shows the EL2 and EH1 stability results for one sample point. We can observe some

oscillations especially when δ is big.

(a) δ = 0.1 (b) δ = 1

Fig. 4.6.: Stability results: τ = 5× 10−3, ε = 0.5, and h = 0.04.
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(a) δ = 0.1 (b) δ = 1

Fig. 4.7.: Stability results (one sample point): τ = 5× 10−3, ε = 0.5, and h = 0.04.

Test 5 In this test, we consider the initial condition in (4.1) with ε = 0.5. The nonlinear term

is f(u) = 1
ε2 (u − u3), and the diffusion term is g(u) = δ

√
u2 + 1. Figure 4.8 shows the EL2

and EH1 stability results at each time step, which verifies the results in Theorems 3.1 and 3.3.

Figure 4.9 shows the EL2 and EH1 stability results for one sample point. We can observe big

oscillations of the EL2 stability when δ = 1 .

(a) δ = 0.1 (b) δ = 1

Fig. 4.8.: Stability results: τ = 5× 10−3, ε = 0.5, and h = 0.04.

Test 6 In this test, we consider a random initial condition in Figure 4.10. The nonlinear term

is f(u) = 1
ε2 (u− u3), and the diffusion term is g(u) = δ u. Figure 4.11 shows the EL2 and EH1

stability results at each time step, which verifies the results in Theorems 3.1 and 3.3. Figure

4.12 shows the L2 and H1 stability results for one sample point. We observe that the L2 and

H1 stability are all bounded, and they decrease very fast in the phase coarsening process.
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