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Abstract

Neural Architecture Search (NAS) is a popular method for automatically designing optimized archi-

tectures for high-performance deep learning. In this approach, it is common to use bilevel optimization
where one optimizes the model weights over the training data (lower-level problem) and various hyper-
parameters such as the configuration of the architecture over the validation data (upper-level problem).
This paper explores the statistical aspects of such problems with train-validation splits. In practice, the
lower-level problem is often overparameterized and can easily achieve zero loss. Thus, a-priori it seems
impossible to distinguish the right hyperparameters based on training loss alone which motivates a better
understanding of the role of train-validation split. To this aim this work establishes the following results:
e We show that refined properties of the validation loss such as risk and hyper-gradients are indicative of
those of the true test loss. This reveals that the upper-level problem helps select the most generalizable
model and prevent overfitting with a near-minimal validation sample size. Importantly, this is established
for continuous spaces — which are highly relevant for popular differentiable search schemes.
e We establish generalization bounds for NAS problems with an emphasis on an activation search prob-
lem. When optimized with gradient-descent, we show that the train-validation procedure returns the best
(model, architecture) pair even if all architectures can perfectly fit the training data to achieve zero error.
o Finally, we highlight rigorous connections between NAS, multiple kernel learning, and low-rank ma-
trix learning. The latter leads to novel algorithmic insights where the solution of the upper problem can
be accurately learned via efficient spectral methods to achieve near-minimal risk.

1 Introduction

Hyperparameter optimization (HPO) is a critical component of modern machine learning pipelines. It is
particularly important for deep learning applications where there are many possibilities for choosing a va-
riety of hyperparameters to achieve the best test accuracy. A crucial hyperparameter for deep learning is
the architecture of the network. The architecture encodes the flow of information from the input to output,
which is governed by the network’s graph and the set of nonlinear operations that transform hidden feature
representations. In this case HPO is often referred to as Neural Architecture Search (NAS). NAS is critical
to finding the most suitable architecture in an automated manner without extensive user trial and error.
HPO/NAS problems are often formulated as bilevel optimization problems and critically rely on a train-
validation split of the data, where the parameters of the learning model (e.g. weights of the neural network)
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Figure 1: This figure depicts the typical scenario arising in modern hyperparameter optimization problems —such as
those arising in NAS— involving p parameters, h hyperparameters and n training data. In these modern settings, as
depicted in Figure (a), the network is expressive enough so that it can perfectly fit the training data for all choices
of (continuously-parameterized) architectures simultaneously. However, the network exhibits very different test per-
formance for different hyperparameter choices. Perhaps surprisingly, as depicted in Figure (b), when we solve the
problem via a train-validation split, as long as the amount of validation data ny, is comparable to the number of hyper-
parameters h (i.e. ny = h), the validation loss uniformly concentrates around the test loss and enables the discovery
of the optimal model even if the training loss is uniformly zero over all architectures. This paper aims to rigorously
establish this phenomena (e.g., see our Theorem 3). Figure (c) shows NAS experiments on DARTS during the search
phase. We evaluate train/test/validation losses of the continuously-parameterized supernet. These experiments are
consistent with the depictions in Figures (a) and (b) and our theory: Training error is consistently zero after 30 epochs.
Validation error is never zero even with extremely few (20 or 50) samples. Validation error almost perfectly tracks test
error as soon as validation size is mildly large (e.g. > 250) which is also comparable with the number of architectural
parameters (h = 224).

are optimized over the training data (lower-level problem), and the hyperparameters are optimized over a
validation data (upper-level problem). With an ever growing number of configurations/architecture choices
in modern learning problems, there has been a surge of interest in differentiable HPO methods that focus on
continuous hyperparameter relaxations. For instance, differentiable architecture search schemes often learn
continuously parameterized architectures which are discretized only at the end of the training [44]. Similar
techniques have also been applied to learning data-augmentation policies [20] and meta-learning [27, 25].
These differentiable algorithms are often much faster and seamlessly scale to millions of hyperparameters
[45]. However, the generalization capability of HPO/NAS with such large search spaces and the benefits of
the train-validation split on this generalization remain largely mysterious.

Addressing the above challenge is particularly important in modern overparameterized learning regimes
where the training loss is often not indicative of the model’s performance as large networks with many
parameters can easily overfit to training data and achieve zero loss. To be concrete, let n7 and ny denote the
training and validation sample sizes and p and h the number parameters and hyperparmeters of the model.
In deep learning, NAS and HPO problems typically operate in a regime where

‘p = # params. > ny > ny > h = # hyperparams.‘ (1.1)

Figure 1 depicts such a regime (e.g. when p > poly(ny))) where the neural network model is in fact
expressive enough to perfectly fit the dataset for all possible combinations of hyperparameters. Neverthe-
less, training with a train-validation split tends to select the right hyperparameters where the corresponding



network achieves stellar test accuracy. This leads us to the main challenge of this paper':

How does train-validation split for NAS/HPO over large continuous search spaces discover near-
optimal hyperparameters that generalize well despite the overparameterized nature of the problem?

To this aim, in this paper, we explore the statistical aspects of NAS with train-validation split and provide
theoretical guarantees to explain its generalization capability in the practical data/parameter regime of (1.1).
Specifically, our contributions and the basic outline of the paper are as follows:

e Generalization with Train-Validation Split (Section 3): We provide general-purpose uniform con-
vergence arguments to show that refined properties of the validation loss (such as risk and hyper-gradients)
are indicative of the test-time properties. This is shown when the lower-level of the bilevel train-validation
problem is optimized by an algorithm which is (approximately) Lipschitz with respect to the hyperparam-
eters. Our result applies as soon as the validation sample size scales proportionally with the effective di-
mension of the hyperparameter space and only logarithmically in this Lipschitz constant. We then utilize
this result to obtain an end-to-end generalization bound for bilevel optimization with train-validation split
under generic conditions. We also show that the aforementioned Lipschitzness condition holds in a variety
of settings, such as: When the lower-level problem is strongly convex (the ridge regularization strength is
allowed to be one of the hyperparameters) as well as a broad class of kernel and neural network learning
problems (not necessarily strongly-convex) discussed next.

e Generalization Guarantees for NAS (Sections 4 & 5): We also develop guarantees for NAS prob-
lems. Specifically, we first develop results for a neural activation search problem that aims to determine the
best activation function (among a continuously parameterized family) for overparameterized shallow neural
network training. We study this problem in connection to a feature-map/kernel learning problem involving
the selection of the best feature-map among a continuously parameterized family of feature-maps. Further-
more, when the lower-level problem is optimized via gradient descent, we show that the bilevel problem is
guaranteed to select the activation that has the best generalization capability. This holds despite the fact
that with any choice of the activation, the network can perfectly fit the training data. We then extend our
results to deeper networks by similarly linking the problem of finding the optimal architecture to the search
for the optimal kernel function. Using this connection, we show that train-validation split achieves the best
excess risk bound among all architectures while requiring few validation samples and provide insights on
the role of depth and width.

e Algorithmic Guarantees via Connection to Low-rank Learning (Section 6): The results stated so
far focus on generalization and are not fully algorithmic in the sense that they assume access to an approx-
imately optimal solution of the upper-level (validation) problem (see (TVO)). As mentioned earlier, this is
not the case for the lower-level problem: we specifically consider algorithms such as gradient descent. This
naturally raises the question: Can one provably find such an approximate solution with a few validation sam-
ples and a computationally tractable algorithm? Towards addressing this question, we connect the shallow
neural activation search problem to a novel low-rank matrix learning problem with an overparameterized di-
mension p. We then provide a two stage algorithm on a train-validation split of the data to find near-optimal
hyperparameters via a spectral estimator that also achieves a near-optimal generalization risk. Perhaps unex-
pectedly, this holds as long as the matrix dimensions obey h x p < (n7 +ny)? which allows for the regime
(1.1). In essence, this demonstrates that it is possible to tractably solve the upper problem in the regime of
(1.1) even when the problem can easily be overfitting for all choices of hyperparameters. This is similar in
spirit to practical NAS problems where the network can fit the data even with poor architectures.

"While we do provide guarantees for generic HPO problems (cf. Sec. 3), the emphasis of this work is NAS and the search for
the optimal architecture rather than broader class of hyperparameters.



2 Preliminaries and Problem Formulation

We begin by introducing some notation used throughout the paper. We use X ' to denote the Moore—Penrose
inverse of a matrix X. 2, < denote inequalities that hold up to an absolute constant. We define the norm
||-|| x over an input space X" as || f||x := supgecy |f(x)]. O(-) implies equality up to constant/logarithmic
factors. ¢, C' > 0 are used to denote absolute constants. Finally, we use N:(A) to denote an e-Euclidean
ball cover of a set A.

Throughout, we use (x,y) ~ D with x € X and y € Y, to denote the data distribution of the fea-
ture/label pair. We also use 7 = {(x;, ;) };, to denote the training dataset and V = {(&;,¥;)};Y; the
validation dataset and assume 7 and V are drawn i.i.d. from D. Given a loss function ¢ and a hypothesis
f X — Y, we define the population risk and the empirical validation risk as follows

L) = Epltty. F@)] Evlf) = =3 UG F@). @1
=1

For binary classification with y € {—1, 1} also define the test classification error as LO71(f) = P(yf(z) <
0). We focus on a bilevel empirical risk minimization (ERM) problem over train/validation datasets involv-
ing a hyperparameter o € R” and a hypothesis f. Here, the model f (which depends on the hyperparameter
) is typically trained over the training data 7 with the hyperparameters fixed (lower problem). Then, the
best hyperparameter is selected based on the validation data (upper-level problem).

While the training of the lower problem is typically via optimizing an (possibly regularized) empirical
risk of the form L7(f) = an ST Uy, f(x;)), we do not explicitly require a global optima of this empir-
ical loss and assume that we have access to an algorithm .4 that returns a model based on the training data
T with hyperparameters fixed at o

f& = Ala,T).
We provide some example scenarios with the corresponding algorithm below.
Scenario 1: Strongly Convex Problems. The lower-level problem ERM is strongly convex with respect to
the parameters of the model and A returns its unique solution. A specific example is learning the optimal
kernel given a predefined set of kernels per §4.1.
Scenario 2: Gradient Descent & NAS. In NAS, f is typically a neural network and o encodes the network
architecture. Given this architecture, starting from randomly initialized weights, A trains the weights of f
on dataset 7 by running fixed number of gradient descent iterations. See §4.2 and §5 for more details.

As mentioned earlier, modern NAS problems typically obey (1.1) where the lower-level problem in-
volves fitting an overparameterized network with many parameters whereas the number of architectural
parameters h is typically less than 1000 and obeys h = dim(c) < my. Intuitively, this is the regime in
which all lower-level problems have solutions perfectly fitting the data. However, the under-parameterized
upper problem can potentially guide the algorithm towards the right model. Our goal is to provide theoreti-
cal insights for this regime. To select the optimal model, given hyperparameter space A and tolerance § > 0,
the following Train-Validation Optimization (TVO) returns a -approximate solution to the validation risk
EV (upper problem)

acl{acA|Ly(fl) < meiRZV(fZHcS}. (TVO)
3 Generalization with Train-Validation Split

In this section we state our generic generalization bounds for bilevel optimization problems with train-
validation split. Next, in Sections 4 and 5, we utilize these generic bounds to establish guarantees for



neural architecture/activation search —which will necessitate additional technical innovations. We start by
introducing the problem setting in Section 2. We then introduce our first result in Section 3.1 which controls
the generalization gap between the test and validation risk as well as the corresponding gradients. Then, in
Section 3.2, we relate training and validation risks which, when combined with our first result, yields an
end-to-end generalization bound for the train-validation split.

3.1 Low validation risk implies good generalization

Our first result connects the test (generalization) error to that of the validation error. A key aspect of our
result is that we establish uniform convergence guarantees that hold over continuous hyperparameter spaces
which is particularly insightful for differentiable HPO/NAS algorithms such as DARTS [44]. Besides vali-
dation loss, we will also establish the uniform convergence of the hyper-gradient Vafv( fI ) of the upper
problem under similar assumptions. Such concentration of hyper-gradient is insightful for gradient-based
bilevel optimization algorithms to solve (TVO). Specifically, we will answer how many validation samples
are required so that upper-level problems (hyper-)gradient concentrates around its expectation. Our results
rely on the following definition and assumptions.

Definition 1 (Effective dimension) For a set A € R" of hy]_)erparameters we define its effective c_iimension
hegy as the smallest value of hy > 0 such that [INz(A)| < (C/e)" for all ¢ > 0 and a constant C' > 0.

The effective dimension captures the degrees of freedom of a set A. In particular, if A € R" has Euclidean
radius R, then heir = h with C = 3R so that it reduces to the number of hyperparameters. However,
hesr is more nuanced and can also help incorporate problem structure/prior knowledge (e.g. sparse neural
architectures have less degrees of freedom).”

Assumption 1 A(-) is an L-Lipschitz function of o in ||-||x norm, that is, for all pairs a1, 0 € A, we
have || 3, = f3,lx < Lller — azlle,.

Assumption 2 For all hypotheses f., the loss ((y, -) is T-Lipschitz over the feasible set { fI (x) ‘ x e X}
Additionally, ((y, fI(z)) — E[t(y, fL (z))] has bounded subexponential (|| - ||,5,) norm with respect to the
randomness in (x,y) ~ D.

Assumption 1 (and a less stringent version stated in Assumption 6) is key to our NAS generalization analy-
sis and we show it holds in a variety of scenarios. Assumption 2 requires the loss or gradient on a sample
(z,y) to have a sub-exponential tail. While the above two assumptions allow us to show that the validation
error is indicative of the test error, the two additional assumptions (which parallel those above) allow us to
show that the hypergradient is concentrated around gradient of the true loss with respect to the hyperparam-
eters. As mentioned earlier such concentration of the hyper-gradient is insightful for gradient-based bilevel
optimization algorithms.

Assumption 1" For some R > 1 and all a1, 2 € A and x € X, hyper-gradient obeys HVafZ;l (@)]e, <
Rand |Vafl, (@) = Vafd,(@)le < RL|a1 — azle,.

Assumption 2’ ¢'(y, -) is T-Lipschitz and the hyper-gradient noise V{(y, fI (x)) — E[V{(y, fI (x))] over
the random example (x,y) ~ D has bounded subexponential norm as well.

Our first result establishes a generalization guarantee for (TVO) under these assumptions.

2In the empirical process theory literature this is sometimes also referred to as the uniform entropy number e.g. see [52, Defini-
tion 2.5]



Theorem 1 Suppose Assumptions 1&2 hold. Let a be an approximate minimizer of the empirical validation
risk per (TVO) and set hey := heglog(CLI'ny [heg). Also assume ny > heg+ T for some T > 0. Then,
with probability at least 1 — 2e™ 7,

~ C(hop
sup [£(F) — By(f)] <y SLar £ 7). 3.1)
acA ny
T : T C(Beﬁ'+ T)
L(f5) < mnin L(fo)+2 B +0. (3.2)

Suppose also Assumptions 1'& 2’ hold and nyy, > h + Beff + 7 for some T > 0. Then, with probability at
least 1 — 2e™7, the hyper-gradient of the validation risk converges uniformly. That is,

~ C(h + heg+
sup [V (£3) = VLD e < \/ Gt by t7) (3.3)
acA ny

This result shows that as soon as the size of the validation data exceeds the effective number of hyperpa-
rameters ny 2 hegr (up to log factors) then (1) as evident per (3.1) the test error is close to the validation
error (i.e. validation error is indicative of the test error) and (2) per (3.2) the optimization over validation is
guaranteed to return a hypothesis on par with the best choice of hyperparameters in A. Theorem 1 has two
key distinguishing features, over the prior art on cross-validation [37, 38], which makes it highly relevant for
modern learning problems. The first distinguishing contribution of this result is that it applies to continuous
hyperparameters and bounds the size of A via the refined notion of effective dimension, establishing a log-
arithmic dependence on problem parameters. This is particularly important for the Lipschtizness parameter
L which can be rather large in practice. The second distinguishing factor is that besides the loss function,
per (3.3) we also establish the uniform convergence of hyper-gradients. The reason the latter is useful is
that if the validation loss satisfies favorable properties (e.g. Polyak-Lojasiewicz condition), one can obtain
generalization guarantees based on the stationary points of validation risk via (3.3) (see [26, 64]). We defer
a detailed study of such gradient-based bilevel optimization guarantees to future work. Finally, we note that
(3.3) requires at least h samples - which is the ambient dimension and greater than h.g. This is unavoidable
due to the vectorial nature of the (hyper)-gradient and is consistent with related results on uniform gradient
concentration [49].

Theorem 1 is the simplest statement of our results and there are a variety of possible extensions that
are more general and/or require less restrictive assumptions (see Theorem 6 in Appendix B.1 for further
detail). First, the loss function or gradient can be viewed as special cases of functionals of the loss function
and as long as such functionals are Lipschitz with subexponential behavior, they will concentrate uniformly.
Second, while Theorem 1 aims to highlight our ability to handle continuous hyperparameters via the Lips-
chitzness of the algorithm A, Assumption 1 can be replaced with a much weaker (see Assumption 6 in the
Appendix). In general, A can be discontinuous as long as it is approximately locally-Lipschitz over the set
A. This would allow for discrete A (requiring ny o log |A| samples). Additionally, when analyzing neural
nets, we indeed prove approximate Lipschitzness (rather than exact Lipschitzness).

Finally, we note that the results above do not directly imply good generalization as they do not guarantee
that the validation error (ming, Ey( £T)) or the generalization error (mingea £(f.)) of the model trained
with the best hyperparameters is small. This is to be expected as when there are very few training data one
can not hope for the model fZ to have good generalization even with optimal hyperparameters. However,
whether the training phase is successful or not, the validation phase returns approximately the best hyperpa-
rameters even with a bad model! In the next section we do in fact show that with enough training data the



validation/generalization of the model trained with the best hyperparameter is indeed small allowing us to
establish an end-to-end generalization bound.

3.2 End-to-end generalization with Train-Validation Split

We begin by briefly discussing the role of the training data which is necessary for establishing an end-to-end
bound. To accomplish this, we need to characterize how the population loss of the algorithm A scales with
the training data ny. To this aim, let us consider the limiting case n — 400 and define the corresponding
model for a given set of hyperparameters « as
fP .= A(a,D) := lim A(e,T).
ny—00

Classical learning theory results typically bound the difference between the population loss/risk of a model
that is trained with finite training data (£(f7)) and the loss achieved by the idealized infinite data model
(L(fP)) in terms of an appropriate complexity measure of the class and the size of the training data. In
particular, for a specific choice of the hyperparameter c, based on classical learning theory [13]) a typical
behavior is to have

Ca + CoVt
VT
with probability at least 1 — e~!. Here, CZ is a dataset-dependent complexity measure for the hypothesis

set of the lower-level problem and Cj is a positive scalar. We are now ready to state our end-to-end bound
which ensures a bound of the form (3.4) holds simultaneously for all choices of hyperparameters o € A.

LTy < LBy + : (3.4)

Proposition 1 (Train-validation bound) Consider the setting of Theorem 1 and for any fixed o« € A as-
sume (3.4) holds. Also assume {2 (in || - ||x norm) and C] have bounded Lipschitz constants with respect
to o over A. Then with probability at least 1 — 3e~! over the train T and validation V datasets

cr >+ O(heg + 1)
VT ny

L(fL) < min <£(f§3) + + 4.
acA

In a nutshell, the above bound shows that the generalization error of a model trained with train-validation
split is on par with the best train-only generalization achievable by picking the best hyperparameter o« € A.
The only loss incurred is an extra \/heg/ny term which is vanishingly small as soon as the validation data
is sufficiently larger than the effective dimension of the hyperparameters. We note that the Lipschitzness
condition on fZ and CZ can be relaxed. For instance, Proposition 2, stated in Appendix B.3, provides a
strict generalization where the Lipschitz property is only required to hold over a subset of the search space
A.

We note that classical literature on this topic [36, 38] typically use model selection to select the com-
plexity from a nested set of growing hypothesis spaces by using explicit regularizers of a form similar in
spirit to CZ . Instead, Proposition 1 aims to implicitly control the model capacity via the complexity measure
CZ of the outcome of the lower-level algorithm .4. This implicit capacity control is what we will utilize in
Theorem 3 (via norm-based generalization) which is of interest in practical NAS settings®. This is because
capacity of modern deep nets are rarely controlled explicitly and in fact, larger capacity often benefits gen-
eralization ability. In the next section, we demonstrate how one can utilize this end-to-end guarantee within
specific problems.

3Indeed, to obtain meaningful bounds in the regime (1.1), CI should not be dimension-dependent (as # of params p 2 n7).



4 Feature Maps and Shallow Networks

In this section and Section 5, we provide our main results on neural architecture/activation search which
will utilize the generalization bounds provided above. Towards understanding the NAS problem, we first
introduce the feature map selection problem [39]. This problem is similar in spirit to the multiple kernel
learning [29] problem which aims to select the best kernel for a learning task. This problem can be viewed
as a simplified linear NAS problem where the hyperparameters control a linear combination of features and
the parameters of the network are shared across all hyperparameters. Building on our findings on feature
maps/kernels, Section 4.2 will establish our main results on activation search for shallow networks.

4.1 Feature map selection for kernel learning

Below, the hyperparameter vector ¢ € R"*! controls both the choice of the feature map and the ridge
regularization coefficient.

Definition 2 (Optimal Feature Map Regression) Suppose we are given h feature maps ¢; : X — RP.
Define the superposition ¢o(+) = Z?Zl a;¢;i(+). Given training data T, the algorithm A solves the ridge
regression with feature matrix ®,, = ‘I’Z via

0o = argmin ||y — @a0[7, + e 017, 4.1)

where @4 = [pa(T1) dal(T2) ... da(Tn, )] 4.2)

Here a1 € [Amin, Amax] C R U {0} controls the regularization strength. We then solve for optimal
choice @ via (TVO) with hypothesis f (v) = v7 0.

The main motivation behind studying problems of the form (4.1), is obtaining the best linear superposition of
the feature maps minimizing the validation risk. This is in contrast to building % individual models and then
applying ensemble learning, which would correspond to a linear superposition of the h kernels induced by
these feature maps. Instead this problem formulation models weight-sharing which has been a key ingredient
of state-of-the-art NAS algorithms [63, 41] as same parameter 6 has compatible dimension with all feature
maps. In essence, for NAS, this parameter will correspond to the (super)network’s weights and the feature
maps will be induced by different architecture choices so that the formulation above can be viewed as the
simplest of NAS problems with linear networks. Nevertheless, as we will see in the forthcoming sections
this analysis serves as a stepping stone for more complex NAS problems. To apply Theorem 1 to the optimal
feature map regression problem we need to verify its assumptions/characterize hef.

Lemma 1 Suppose the feature maps and labels are bounded i.e. SUp ¢ v 1<;<p, ||Pi(T) H%Q < Band |y| < 1.
Also assume the loss € is bounded and 1-Lipschitz w.r.t. the model output. Set A\g = Apin+infaeca Ufnig('@a) >

0. Additionally let A be a convex set with 1 radius R > 1. Then, Theorem I holds with hey =
(h+ 1) log(20R3Bn2 )\, (Bnr + 1)).

An important component of the proof of this lemma is that we show that when Ao > 0, f, is a Lipschitz
function of o and Theorem 1 applies. Thus per (TVO) in this setting one can provably and jointly find the
optimal feature map and the optimal regularization strength as soon as the size of the validation exceeds the
number of hyperparameters.

We note that there are two different mechanisms by which we establish Lipschitzness w.r.t. a in the
above theorem. When Ap,i, > 0, the lower problem is strongly-convex with respect to the model parameters.
As we show in the next lemma, this is more broadly true for any training procedure which is based on
minimizing a loss which is strongly convex with respect to the model parameters.



Lemma 2 Let A be a convex set. Suppose fo, is parameterized by 0o, where O, is obtained by minimizing
a loss function L7(ca,0) : A x RP — R. Suppose L1(cx, 0) is u strongly-convex in @ and L smooth in c.
Then 0 is \/ L/ p-Lipschitz in c.

Importantly, Lemma 1 can also operate in the ridgeless regime (A, = 0) even when the training loss
is not strongly convex. This holds as long as the feature maps are not poorly-conditioned in the sense that

inf opin (Po®PL) = Ao > 0. 4.3
01tI€1A<7 ( a a) 0> (4.3)

We note the exact value of )\g is not too important as the effective number of hyperparameters only depends
logarithmically on this quantity. Such a ridgeless regression setting has attracted particular interest in recent

years as deep nets can often generalize well in an overparameterized regime without any regularization
despite perfectly interpolating the training data. In the remainder of the manuscript, we focus on ridgeless
regression problems with an emphasis on neural nets (thus we drop the A + 1°th index of o).

Our next result utilizes Proposition 1 to provide an end-to-end generalization bound for feature map
selection involving both training and validation sample sizes. Below we assume that (4.3) holds with high
probability over 7.

Theorem 2 (End-to-end generalization for feature map selection) Consider the setup in Definition 2 with
apy1 = 0. Set R = supgea ||llle, and assume supgex 1<i<p, ||gi)l(a:)||§2 < Band ¢ in (2.1) is T-Lipschitz
and bounded by a constant. Suppose (4.3) holds with probability at least 1 — pg. Alsop > ny > ny 2
hlog(M) with M = 30R4B2/\62F(n%— + n3)||ylle,. Furthermore, lety = [y1 y2 ... Yn,|. Then with
probability at least 1 — 4e~' — po, the population risk (over D) obeys

BuT K1 Y:
L(fz) < min2ry| 22422 ¥Y 1 o hlog(M) +7
acA nr o
In this result, the excess risk term nyL{—&ly becomes smaller as the kernel induced by a becomes better

aligned with the labeling function e.g. when y lies on the principal eigenspace of K. This theorem shows
that for the optimal feature map regression problem, bilevel optimization via a train-validation split returns
a generalization guarantee on par with that of the best feature map (minimizing the excess risk) as soon as
the size of the validation data exceeds the number of hyperparameters.

4.2 Activation search for shallow networks

In this section we focus on an activation search problem where the goal is to find the best activation among
a parameterized family of activations for training a shallow neural networks based on a train-validation
split. To this aim we consider a one-hidden layer network of the form & + fy(z) = vTo(Wz) and
focus on a binary classification task with y € {—1,41} labels. Here, o : R — R denotes the activation,
W ¢ RF*? input-to-hidden weights, and v € R? hidden-to-output weights. We focus on the case where
the activation belongs to a family of activations of the form o, = Z?Zl a;o; with a € A denoting the
hyperparameters. Here, {ai}?zl are a list of candidate activation functions (e.g., ReLU, sigmoid, Swish).
The neural net with hyperparameter  is thus given by fun.a () = v oo (W ). For simplicity of exposition
in this section we will only use the input layer for training thus the training weights are W with dimension
p = dim(W) = k x d and fix v to have ++/co/k entries (roughly half of each) with a proper choice of
co > 0. In Section 5 we further discuss how our results can be extended to NAS beyond activation search
and to deeper networks where all the layers are trained.



Bilevel optimization for shallow activation search: We now explain the specific gradient-based algo-
rithm we consider for the lower-level optimization problem. For a fixed hyperparameter c, the lower-level
optimization aims to minimize a quadratic loss over the training data of the form

nT
ET(W) = %Z(yz - fnn,a(xb W))Q
i=1

L . T iid.
To this aim, for a fixed hyperparameter o € A, starting from a random initialization of the form W '~

N(0,1) we run gradient descent updates of the form W, ; = W, — UVEAT(WT) for T iterations. Thus,
the lower algorithm .A returns the model

T (x) = vl oa(Wre).

We then solve for the d-approximate optimal activation & via (TVO) by setting ¢ in (2.1) to be the hinge
loss.

To state our end-to-end generalization guarantee, we need a few definitions. First, we introduce neural
feature maps induced by the Neural Tangent Kernel (NTK) [34].

Definition 3 (Neural feature maps & NTK) Let fu, o (-, 0) be a neural net parameterized by weights 6 €

RP and architecture . Define ¢ (x) = 8f”5’§8 @) 46 be the neural feature map at the random initialization
0o ~ Dinir. Define the neural feature matrix ® o, = [P (1) - .. qba(:vnT)]T € R"T*P gsin (4.2) i.e.
afnn a(wl) 8fnn a(wn) r
P, = . .. - . 4.4
« 00, 00, 44)

We define the gram matrix as Ko, = D, PL € RVTXNT with (i, §)th entry equal to (¢po(T;), ba(x;)) and

o~

NTK matrix is as Ko = Eg, [ Ko

Neural feature maps are in general nonlinear function of « (cf. Sec. 5). However, in case of shallow
networks, it is nicely additive and obeys ¢ (x;) = Zi;l ;01 (x;) regardless of random initialization 6
establishing a link to Def. 2. The next assumption ensures the expressivity of the NTK to interpolate the

data and enables us to analyze regularization-free training.

Assumption 3 (Expressive Neural Kernels) There exists Ao > 0 such that for any o € A, the NTK matrix
Ka = )\OInT-

This assumption is similar to (4.3) but we take expectation over random 6. Assumptions in a similar
spirit to this are commonly used for the optimization/generalization analysis of neural nets, especially in the
interpolating regime [4, 19, 16, 50]. For fixed o, K, > 0 as long as no two training inputs are perfectly
correlated and ¢, is analytic and not a polynomial [22]. The key aspect of our assumption is that we require
the NTK matrices to be lower bounded for all c. Later in Theorem 4 of §5 we shall show how to circumvent
this assumption with a small ridge regularization.

With these definitions in place we are now ready to state our end-to-end generalization guarantee for
Shallow activation search where the lower-level problem is optimized via gradient descent. The reader is
referred to Theorem 14 for the precise statement. Note that Ao and K, scales linearly with initialization
variance cg. To state a result invariant to initialization, we will state our result in terms of the normalized
eigen lower bound A\g = Ag/co and kernel matrix Ko, = Kq /co.
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Theorem 3 (Neural activation search) Suppose input features have unit Euclidean norm i.e. ||x|s, = 1
and labels take values in {—1,1}. Pick A to be a subset of the unit {1 ball. Suppose Assumption 3 holds
for 8y <» Wy and the candidate activations have first two derivatives (|c}|,|o" |) upper bounded by B > 0.

Furthermore, fix v with half \/co /k and half —+/co/k entries for a proper cq (see supplementary). Define
the normalized lower bound Ay = \o/co and kernel matrix K,=K, /co. Also assume the network width

obeys B
k 2 poly(nr, X5 e7h).

for a tolerance level 1 > ¢ > 0 and the size of the validation data obeys ny 2 (5(h) Following the
aforementioned bilevel optimization scheme with a proper 1 > 0 choice and any choice of number of
iterations obeying T 2, O(%’(’:— log(e~1)), the classification error (0-1 loss) on the data distribution D obeys

TR O(h) +t
LOl(fg)gminQB\/y "y+c\/o( )+ +e+4,
acA ny ny

with probability at least 1 — 4(e™" + n}?’ + e~ 10" (over the randomness in Wy, T,V). Here, y =
Y1 Y2 ... Yny|. On the same event, for all o« € A, the training classification error obeys EAQFI( fZ ) <e.

For a fixed o, the norm-based excess risk term 4/ nyfif‘ly quantifies the alignment between the kernel and
the labeling function (which is small when y lies on the principal eigenspace of K, ). This generalization
bound is akin to expressions that arise in norm-based NTK generalization arguments such as [4]. Critically,
however, going beyond a fixed c, our theorem establishes this for all activations uniformly to conclude that
the minimizer of the validation error also achieves minimal excess risk. The final statement of the theorem
shows that the training error is arbitrarily small (essentially zero as T' — oo) over all activations uniformly.
Together, these results formally establish the pictorial illustration in Figures 1(a) & (b).

The proof strategy has two novelties with respect to standard NTK arguments. First, it requires a subtle
uniform convergence argument on top of the NTK analysis to show that certain favorable properties that
are essential to the NTK proof hold uniformly for all activations (i.e. choices of the hyperparameters) simul-
taneously with the same random initialization W(. Second, since neural nets may not obey Assumption
1, to be able to apply our generalization bounds we need to construct a uniform Lipschitz approximation
via its corresponding linearized feature map (fiin.a (%) = &’ ¢a(x)) and bound the neural net’s risk over
train-validation procedure in terms of this proxy. This uniform approximation is in contrast to pointwise
approximation results of [5]. Sec. 5 provides further insights on our strategy. Finally, we mention a few
possible extensions. One can (i) use logistic loss in the algorithm 4 rather than least-squares loss —which is
often more suitable for classification tasks— [81] or (ii) use regularization techniques such as early stopping
or ridge penalization [42] or (iii) refine the excess risk term using further technical arguments such as local
Rademacher complexity [10].

S Extension to NAS for Deep Architectures

In this section, we provide further discussion extending our results in Sec. 4.2 to multi-layer networks and
general NAS beyond simple activation search. Our intention is to provide the core building blocks for an
NTK-based NAS argument over a continuous architecture space A. Recall the neural feature map intro-
duced in Definition 3 where fun «(+, @) can be any architecture induced by hyperparameters c. For instance,
in DARTS, the architecture is a directed acyclic graph where each node () is a latent representation of the
raw input  and « dictates the operations (/) on the edges that transform (%) to obtain ).
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Recall the matrices K, K, o € R"™*"T from Definition 3 which are constructed from the neural feature
map ¢q(x) = W%%go(w). For infinite-width networks (with proper initialization), NTK perfectly governs
the training and generalization dynamics and the architectural hyperparameters c controls the NTK kernel
matrix K, € R"7*"7 (associated to the training set 7). A critical challenge for the general architectures is
that the relation between the NTK kernel K, and « can be highly nonlinear. Here, we introduce a generic
result for NTK-based generalization where we assume that K, is possibly nonlinear but Lipschitz function
of a. Recall that Theorem 1 achieves logarithmic dependency on the Lipschitz constant thus unless the
Lipschitz constant is extremely large, good generalization bounds are achievable. Our arguments will utilize
this fact.

Assumption 4 (Lipschitz Kernel) K, f{\a € R"*™ are L-Lipschitz functions of a in spectral norm.

To be able to establish generalization bounds for learning with generic neural feature maps in connection
to NTK (Thm 4 below) we need to ensure that wide networks converge to their infinite-width counterparts
uniformly over A. Let k, be a width parameter associated with the network. For instance, for a fully-
connected network, k., can be set to the minimum number of hidden units across all layers. Similar to random
features, it is known that, the network at random initialization converges to its infinite width counterpart
exponentially fast. We now formalize this assumption.

Assumption 5 (Neural Feature Concentration) Recall Def. 3. There exists a width parameter k,, > 0 and
scalar v > 0 such that, for any fixed o« € A, at initialization 6y ~ Dy, we have

[P{uk\a K| > \/yt/k:*} > et (5.1)

For deep ResNets, fully-connected deep nets and DARTS architecture space (with zero, skip, conv opera-
tions), this assumption holds with proper choice of v > 0 (cf. Theorem E.1 of [22] and Lemma 22 of [78]
which sets v x n?).

Assumptions 4 and 5, allows us to establish uniform convergence to the NTK over a continuous archi-
tecture space A. Specifically, given tolerance € > 0, for ky 2 O( 2Uhettlog(L)), with high probability
(over initialization), || Kq — f{\aH < ¢ holds for all o € A uniformly (cf. Lemma 13).

Our generalization result for generic architectures is provided below and establishes a bound similar to
Theorem 3 by training a linearized model with neural feature maps. However, unlike Theorem 3, here we

employ a small ridge regularization to promote Lipschitzness which helps us circumvent Assumption 3.

Theorem 4 Suppose Assumptions 4 and 5 hold and for all o and some B > 0 neural feature maps obey
| = 50— 8J 5 “(m |2 i, < B almost surely. We solve feature map regression (Def. 2) with neural feature maps and

a/\o

4v/BnT1

and

ﬁxed rldge penalty \. Fix some eigen-cutoff \g > 0 and tolerance ¢ > 0. Set 0 < A <
e = 6(hefflog(/\_2Ln%—)). Finally define the \g-positive set

Ag={aecA|Ky> N}

Also assume ky 2 (5(5_4/\64V2hefflog(L)) andny 2 Eeﬁc Finally, set ¢ in (2.1) to be the hinge loss. Then,
with probability at least 1 — 5e™", for some constant C' > 0, the binary classification error obeys

ByTKg t
L0717y < min 2 yia +C eﬁ+ +e+0.

acAg ny ny
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Here the set Ay is the set of architectures that are favorable in the sense that the NTK associated with their
infinite-width network can rather quickly fit the data as its kernel matrix has a large minimum eigenvalue.
This also ensures that the neural nets trained on 7 are Lipschitz with respect to v over Ay. In essence, the
result states that the bilevel procedure (TVO) is guaranteed to return a model at least as good as the best
model over Ag. Importantly, one can enlarge the set A by reducing the penalty X at the cost of a larger hegt
term which grows logarithmically in 1/). The above theorem also relates to optimal kernel selection using
validation data which connects NAS to the multiple kernel learning (MKL) [29] problem. However in the
MKL literature, the kernel K, is typically a linear function of o« whereas in NAS the dependence is more

involved and nonconvex, especially for realistic search spaces.
Deep activation search. As a concrete example, we briefly pause to demonstrate that the above assumption

holds for a deep multilayer activation search problem. In this case we will show that L is at most exponen-
tial in depth D. To be precise, following Section 4.2, fix a pre-defined set of activations {o; }?:1. For a
feedforward depth D network, set a € RP” to be the concatenation of D subvectors {oz(i)}i’;1 C R". The
layer ¢ activation is then given via

h
T () =Y alla;().
j=1

Now, given input z = x(*) and weight matrices § = {W(i)}ig Jil, define the corresponding feedforward

network fon o(x, 0) : RY — R = WP (D) where the hidden features =(*) are defined as
xV = aa(i)(W(i)w(i_l)) for 1<i<D.

The lemma below shows that in this case the Lipschitzness L with respect to the hyperparameters is at
most exponential in D. The result is stated for a fairly flexible random Gaussian initialization. The precise
statement is deferred to Lemma 15.

Lemma 3 Suppose for all 1 < i < h, |¢;(0)|,|¢;(z)|, |¢] (x)| are bounded. Input features are normalized

to ensure ||x||¢, < V/d. Let layer i have k; neurons and W' € RFi*Fi=1_ Suppose the aspect ratios k;/k;_1

are bounded for layers i > 2. For the first layer, denote kg = d and k1 = k. Each layer ( is initialized with
i.i.d. N(0,cp) entries satisfying

c if i=1 B
o < for some constant ¢ > 0.
E/ ki—1 if £>2

Then, Assumption 4 holds (with high probability for f(\a) withlog(L) < D + log(k + d + ny).

We remark that this initialization scheme corresponds to Xavier/He initializations (1/fan_in variance) as well
as our setting in Theorem 3. We suspect that the exponential dependence on D can be refined by enforcing
normalization schemes during initialization to ensure that hidden features don’t grow exponentially with
depth. Recall that sample complexity in Theorem 1 depends logarithmically on L, which grows at most
linearly in D up to log factors. Furthermore, as stated earlier Assumption 5 is known to hold in this setting
as well (cf. discussion above). Thus for a depth D network, using the above Lipschitzness bound, Theorem 4
allows for good generalization with a validation sample complexity of ny o O(hefrlog(L)) = O(D X heg).
Finally, note that log(L) also exhibits a logarithmic dependence on k. Thus as long as network width is not
exponentially large (which holds for all practical networks), our excess risk bounds remain small leading
to meaningful generalization guarantees. We do remark that results can also be extended to infinite-width
networks (which are of interest due to NTK). Here, the key idea is constructing a Lipschitz approximation
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to the infinite-width problem via a finite-width problem. In similar spirit to Lemma 5, such approximation
can be made arbitrarily accurate with a polynomial choice of k£ [78, 5]. As discussed earlier, Theorem 7 in
the appendix provides a clear path to fully formalize this and the proof of Theorem 3 already employs such
a Lipschitz approximation scheme to circumvent imperfect Lipschitzness of nonlinear neural net training.

6 Algorithmic Guarantees via Connection to Low-rank Matrix Learning

The results stated so far focus on generalization and are not fully algorithmic in nature in the sense that they
assume access to an approximately optimal hyperparameter of the upper-level problem per (TVO) based on
the validation data. In this section we wish to investigate whether it is possible to provably find such an
approximate solution with a few validation samples and a computationally tractable algorithm. To this aim,
in this section, we establish algorithmic connections between our activation/feature-map search problems of
Section 4 to a rank-1 matrix learning problem. In Def. 2 —instead of studying ®., given a— let us consider

the matrix of feature maps - .
X = [p1(z) ¢2(x) ... dn(x)]” € RM

for a given input 2. Then, the population squared-loss risk of a (c, @) pair predicting 87 ¢ () is given by
L(e,0) :=E[(y — o' X0)"] = E[(y — (X, a8"))?].

Thus, the search for the optimal model pair (., 0y ) is simply a rank-1 matrix learning task with M, =
0,0, 1. Can we learn the right matrix with a tractable algorithm in the regime (1.1)?

This is a rather subtle question as in the regime (1.1) there is not enough samples to reconstruct M, as
anything algorithm regardless of computational tractability requires n7 + ny 2 p + h! But this of course
does not rule out the possibility of finding an approximately optimal hyperparameter close to ... To answer
this —rather tricky question— we study a discriminative data model commonly used for modeling low-rank
learning. Consider a realizable setup y = o’ X6, where we ignore noise for ease of exposition, see
supplementary for details. We also assume that the feature matrix X has i.i.d. N'(0, 1) entries. Suppose we
have 7 = (yi, X;)17, ",V = (Ui, X;)¥V " datasets with equal sample split n = n7 = ny. If we combine
these datasets into 7 and solve ERM, when 2n < p, for any choice of o, weights @ € RP can perfectly
fit the labels. Instead, we propose the following two-stage algorithm to achieve a near-optimal learning
guarantee. Set M = Yoy 7: X;.

1. Spectral estimatoron V :  Set & = top_eigen_vec(M M 7. 6.1)
n
2. Solve ERM on 7T : Set § = arg min > (yi— a’X,0)%. (6.2)
i=1

We have the following guarantee for this procedure.

Theorem 5 (Low-rank learning with p > n) Let (X;, X;)}, be i.i.d. matrices with i.i.d. N'(0, 1) entries.
Let y; = o, T X0, for unit norm o« € R",0 € RP. Consider an asymptotic setting where p,n, h grow to
inﬁnz'ty with fixed ratios given by p = p/n > 1, h = h/n < 1 and consider the asymptotic performance of
(@, 0).
Let 1 > pq, a > 0 be the absolute correlation between o, i.e. po, 5 = laTal. Suppose ph < 1/6.
We have that
lim p2, 4 >1—64ph (6.3)

n— o0
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Figure 2: We visualize the Lipschitzness of the algorithm when .A(-) is stochastic gradient descent. We train networks
with activation parameters « and o + A« and display the normalized distances ||6, — 0+ aalle, /Ac for different
perturbation strengths Ac.

Additionally, if ph < c for sufficiently small constant ¢ > 0,

~ 5 1 200h
li <l—=4+ —F . 4
N AR, ©H

risk(o)  estimating O«

A few remarks are in order. First, the result applies in the regime p > n as long as —the rather surprising
condition— ph < n? holds (see (6.3)). Numerical experiments in Section 7 verify that (specifically Figure 5)
this condition is indeed necessary. Here, risk(a,) = 1 —n/p is the exact asymptotic risk one would achieve
by solving ERM with the knowledge of optimal a,. Our result shows that one can approximately recover
this optimal a, up to an error that scales with ph/n?2. Our second result achieves a near-optimal risk via &
without knowing a,. Since 1 — 1/p is essentially constant, the risk due to cv,-search is proportional to h =
h/n. This rate is consistent with Theorem 1 which would achieve a risk of 1—n/p+O(+/h/n). Remarkably,
we obtain a slightly more refined rate (h/n < /h/n) using a spectral estimator with a completely different
mathematical machinery based on high-dimensional learning. To the best of our knowledge, our spectral
estimation result (6.3) in the p > n regime is first of its kind (with a surprising ph < n? condition) and
might be of independent interest. Finally, while this result already provides valuable algorithmic insights, it
would be desirable to extend this result to general feature distributions to establish algorithmic guarantees
for the original activation/feature map search problems.

7 Numerical Experiments

To verify our theory, we provide three sets of experiments. First, to test Theorem 3, we verify the (ap-
proximate) Lipschitzness of trained neural nets to perturbations in the activation function. Second, to test

Theorem 1, we will study the test-validation gap for DARTS search space. Finally, we verify our claims on
a. Lipschitzness of Trained Networks. First, we wish to verify Assumption 1 for neural nets by demonstrat-

ing their Lipschitzness under proper conditions. In these experiments, we consider a single hyperparameter
a € R to control the activation via a combination of ReLU and Sigmoid i.e. o4(xz) = (1 — a)ReLU(z) +
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Figure 3: We visualize the Lipschitzness of the algorithm when A(-) is stochastic gradient descent. In Fig-
ure 3(a) and 3(b), we train the input layer of 2-layer shallow networks with activation parameters o and o + A«
which have the same setup as Figure 2(a). Then we display the maximum and average output variability defined in
(7.1) and (7.2) respectively for different perturbation strengths A« and model width k. In Figure 3(c) and 3(d), we
train 4-layer deep fully connected networks with activation parameters o and o + A« and also display the maximum
and average output variability for different perturbation strengths Acv.

a - Sigmoid(x). Training the network weights @ with this activation from the same random initialization
leads to the weights 8,. We are interested in testing the stability of these weights to slight a perturbations
by studying the normalized distance [|6, — 04+ Aa|le,/Ac. This in turn ensures the Lipschitzness of the
model output via a standard bound (see supp. for numerical experiments). Fig. 2 presents our results on
both shallow and deeper networks on a binary MNIST task which uses the first two classes with squared
loss. This setup is in a similar spirit to our theory. In Fig. 2(a) we train input layer of a shallow network
fa(r) = vT0, (W X) where W € RFX™4 In Fig. 2(b), a deeper fully connected network with 4 layers
is trained. Here, the number of neurons from input to output are k, k/2, k/4 and 1 and the same activation
04 (X)) is used for all layers. Finally, we initialize the network with He initialization and train the model for
60 epochs with batch size 128 with SGD optimizer and learning rate 0.003. For each curve and width level,
we average 20 experiments where we first pick 20 random « € [0, 1] and their perturbation o + Aa.. We
then compute the average of normalized distances |0, — Oq4Aalle, /A

We now provide further experiments to better verify Assumption 1. Let T be the test data (of MNIST)
which provides a proxy for the input domain X *. Our goal is to assess the Lipschitzness of the network
prediction over Tt Which exactly corresponds to the setup of Assumption 1. Specifically, we will evaluate
two quantities as a function of the activation perturbation A«

eom - 004 s
Maximum output variability: max(f, A« Trest) = SUP e e | Z:) f(Ba+a m)|’ (7.1)
o
1
00&7 - ea s . 72
"TA%GZMW ) = f(Ooraa @) (72)

Average output variability: avg(f, Ac, Trest) =

Here, the maximum output variability is the most relevant quantity as it directly corresponds to the Lipschitz-
ness of the function over the input domain. We keep the same setup in Figure 3(a) and 3(b) as Figure 2(a),
however, in Figure 3(a) and 3(b), instead of computing the distance between trained models, we plot maxi-
mum output variability (7.1) and average output variability (7.2) respectively for different perturbation level
A, and model width. Figure 3(c) and 3(d) demonstrate the output variability on 4-layer neural networks
which has the same setup as 2(b).

*We note that these values are calculated over the test data however we found the behavior over the training data to be similar.
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Figure 4: The test-validation gap and errors for the continuously parameterized architecture during the
search phase of DARTS. The result is average of 5 different runs. Evaluations are for different validation
sample sizes and epoch checkpoints. Figure 4(b) shows that all models overfit to training samples quickly.
The DARTS runs with less validation examples also trend to overfit the validation dataset which leads to the
increase in test error (most visibly for ny € {20, 50}).

All figures support our theory and show that, the normalized distance is indeed stable to the perturbation
level A« across different widths and only mildly changes. Note that Ao € {0.01,0.005} result in a
slightly larger normalized distance compared to larger perturbations. Such behavior for small A« is not
surprising and is likely due to the imperfect Lipschitzness of the network (especially with ReL.U activation).
Fortunately, our theory allows for this as it only requires an approximate Lipschitz property (recall the

discussion below Theorem 1).
b. Test-Validation Gap for DARTS. In this experiment, we study a realistic architecture search space

via DARTS algorithm [44] over CIFAR-10 dataset using 10k training samples. We only consider the search
phase of DARTS and train for 50 epochs using SGD. This phase outputs a continuously parameterized archi-
tecture, which can be computed on DARTS’ supernet. Each operation on the edges of the final architecture
is a linear superposition of eight predefined operations (e.g. conv3x3, zero, skip). The curves are obtained
by averaging three independent runs. In Fig. 4, we assess the gap between the test and validation errors
while varying validation sizes from 20 to 1000. Our experiments reveal two key findings via Figure 4(a).
First, the train-validation gap indeed decreases rapidly as soon as the validation size is only mildly large,
e.g. around ny = 250 —much smaller than the typical validation size used in practice. This is consistent with
Theorem 1 as the architecture has 224 hyperparameters. On the other hand, there is indeed a potential of
overfitting to validation for ny < 100. We also observe that the gap noticeably increases with more epochs.
The small gaps at initial epochs may be due to insufficient training i.e. network does not yet achieve zero
training loss. For later epochs, since early-stopping (i.e. using earlier epoch checkpoints) has a ridge regu-
larization effect, we suspect that widening gap may be due to the growing Lipschitz constant with respect
to the architecture choice. Such behavior would be consistent with Thm 4 (smaller ridge penalty leads to
more excess validation risk). Figure 4(b) displays the train/validation/test errors by epoch for different vali-
dation sample sizes. This figure is also consistent with our core setup and expectations (1.1). The training
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Figure 5: Overparameterized rank-1 learning setup of Sec. 6. The (absolute value of) the correlation coeffi-
cient between «, and the estimate & as a function of h. Each curve (with distinct color) corresponds to a
fixed ph/n? choice. Here we kept the notation consistent with Sec. 6 and set n = ny = ny.

loss/error quickly goes down to zero. Validation contains much fewer samples but it is difficult to overfit
(despite continuously parameterized architecture). However, as discussed above, below a certain threshold

(ny < 100), differentiable search indeed overfits to the validation leading to deteriorating test risk.
¢. Overparameterized Rank-1 Learning. We now aim to verify the theoretical claims of Sec. 6 on rank-

1 learning. Specifically, we will verify our claim (6.3) and empirically demonstrate that recovery of the
ground-truth hyperparameter o, requires hp < n? where we set n = ny = ny. This is in contrast to the
arguably more intuitive A < n requirement. Figure 5 summarizes our numerical results. Our experiment
is constructed as follows. We generate an h x p rank-1 matrix M = o0, with left and right singular
vectors o, 0, generated as i.i.d. Gaussians normalized to unit norm. We collect n noiseless labels via

Yi = o, X0, where X; S N(0, 1) as in Theorem 5 and apply the spectral estimator (6.1) to estimate the
v, vector. In our experiments, we vary h between 0 to 60 and we set p = yn?/h. « is also varied from 0.1
to 0.4. Figure 5(a) displays the (absolute value of) the correlation coefficient between c, and the estimate &
as a function of h. Each curve (with distinct color) corresponds to a fixed ph/ n? choice. Observe that these
curves remain constant even if & is varying more than a factor of 20. This indicates that correlation indeed
depends on hp rather than solely . When we increase -y, p increases and correlation noticeably decreases
as we move from a higher curve to a lower curve again indicating the dependence on p. Finally, Figure 5(b)
displays the exact same information but the x-axis is the total number of parameters normalized by the total
data (used for spectral initialization). This shows that, just as predicted by Theorem 5, hyperparameter o,
can be learned even when p is much larger than n as long as hp < n?.

8 Related Works

Our work establishes generalization guarantees for architecture search and is closely connected to the litera-
ture on deep learning theory, statistical learning, and hyperparameter optimization / NAS. These connections
are discussed below.

Statistical learning: The statistical learning theory provide rich tools for analyzing test performance of
algorithms [13, 66]. Our discussion on learning with bilevel optimization and train-validation split connects
to the model selection literature [36, 37, 69] as well as the more recent works on architecture search [40, 39].
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The model selection literature is mostly concerned with controlling the model complexity (e.g. via nested
hypothesis), which is not directly applicable to high-capacity deep nets. The latter two works are closer
to us and also establish connections between feature maps and NAS. However, there are key distinctions.
First, we operate on continuous hyperparameter spaces whereas these consider discrete hyperparameters
which are easier to analyze. Second, their approaches do not directly apply to neural nets as they have to
control the space of all networks with zero training loss which can be large. In contrast, we analyze tractable
lower-level algorithms such as gradient-descent and study the properties of a single model returned by the
algorithm. [30] discuss methods for determining train-validation split ratios. Favorable learning theoretic
properties of (cross-)validation are studied by [38, 73]. These works either apply to specific scenarios such
as tuning lasso penalty or do not consider hyperparameters. We also note that algorithmic stability of [14]
utilizes stability of an algorithm to changes in the training set. In contrast, we consider the stability with
respect to hyperparamters. [7] discusses the importance of train-validation split in meta-learning problems,
which also accept a bilevel formulation. Finally, [71] explores tuning the learning rate for improved gener-
alization. They focus on a simple quadratic objective using hyper-gradient methods and characterize when
train-validation split provably helps.

Generalization in deep learning: The statistical study of neural networks can be traced back to 1990’s
[3, 12, 9]. With the success of deep learning, the generalization properties of deep networks received a
renewed interest in recent years [24, 6, 55, 28]. [11, 56] establish spectrally normalized risk bounds for
deep networks and [54] provides refined bounds by exploiting inter-layer Jacobian. [6] proposes tighter
bounds using compression techniques. These provide a solid foundation on the generalization ability of deep
nets. More recently, [34] has introduced the neural tangent kernel which enables the analysis of deep nets
trained with gradient-based algorithms: With proper initialization, wide networks behave similarly to kernel
regression. NTK has received significant attention for analyzing the optimization and learning dynamics of
wide networks [23, 2, 18, 76, 57, 80, 70, 60]. Closer to us, [16, 4, 48, 59, 1, 4] provide generalization bounds
for gradient descent training. A line of research implements neural kernels for convolutional networks and
ResNets [75, 65, 43, 33]. Related to us [5] mention the possibility of using NTK for NAS and recent work
by [62] shows that such an approach can indeed produce good results and speed up NAS. In connection to
these, §4 and 5 establish the first provable guarantees for NAS and also provide a rigorous justification of
the NTK-based NAS by establishing data-dependent bounds under verifiable assumptions.

Neural Architecture Search and Bilevel Optimization: HPO and NAS find widespread applications
in machine learning. These are often formulated as a bilevel optimization problem, which seeks the optimal
hyperparameter at the upper-level optimization minimizing a validation loss. There are variety of NAS
approaches employing reinforcement learning, evolutionary search, and Bayesian optimization [79, 8, 77].
Recently differentiable optimization methods have emerged as a powerful tool for NAS (and HPO) problem
[44, 72, 15, 74, 41, 63, 21] which use continuous relaxations of the architecture. Specifically, DARTS
proposed by [44] uses a continuous relaxation on the upper-level optimization and weight sharing in the
lower level. The algorithm optimizes the lower and upper level simultaneously by gradient descent using
train-validation split. [72, 74, 63, 21] provide further improvements on differentiable NAS. The success of
differentiable HPO/NAS methods has further raised interest in large continuous hyperparameter spaces and
accelerating bilevel optimization [27, 41, 45]. In this paper we initiate some theoretical understanding of
this exciting and expanding empirical literature.

High-dimensional learning: In §6, we use ideas from high-dimensional learning to establish algo-
rithmic results. Closest to us are the works on spectral estimators. The recent literature utilizes spectral
methods for low-rank learning problems such as phase-retrieval and clustering [68]. Spectral algorithm is
used to initialize the algorithm within a basin of attraction for a subsequent method such as convex optimiza-
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tion or gradient descent. This is in similar flavor to our Theorem 5 which employs a two-stage algorithm.
[46, 47, 53] provide asymptotic/sharp analysis for spectral methods for phase retrieval. However, unlike our
problem, these works all focus symmetric matrices and operate in the low-dimensional regime where sample
size is more than the parameter size. While not directly related, we remark that sparse phase retrieval and
sparse PCA problems [35, 82] do lead to a high-dimensional regime (sample size less than parameter size)
due to the sparsity prior on the parameter.

9 Conclusion and Future Directions

In this paper, we explored theoretical aspects of the NAS problem. We first provided statistical guarantees
when solving bilevel optimization with train-validation split. We showed that even if the lower-level problem
overfits —which is common in deep learning— the upper-level problem can guarantee generalization with
a few validation data. We applied these results to establish guarantees for the optimal activation search
problem and extended our theory to generic neural architectures. These formally established the high-level
intuition in Figure 1. We also showed interesting connections between the activation search and a novel
low-rank matrix learning problem and provided sharp algorithmic guarantees for the latter.

There are multiple exciting directions for future research. First, one can develop variants of Theorems
3 and 4 by studying other lower-level algorithms (e.g. different loss functions, incorporate regularization)
and, most importantly, developing a better understanding of the architecture search spaces and architectural
operations. Second, our results are established for the NTK (i.e. lazy training) regime and it would be
desirable to obtain similar results for other learning regimes such as the mean-field regime [51]. Finally,
it would be interesting to study both computational and statistical aspects of the gradient-based solutions
to the upper-level problem (TVO). To this aim, our Theorem 1 established that gradient of the validation
loss (i.e. hyper-gradient) uniformly converges under mild assumptions. However, besides this, we require
a deeper understanding of the population landscape (i.e. as ny — oo) of the the upper-level validation
problem (even for the shallow NAS problem of Section 4) which might necessitate new advances in bilevel
optimization theory.
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Organization of the Appendix

1. We gather some useful statistical learning and concentration results in Section A.
2. Proofs of our generic train-validation bounds and feature maps are provided in Section B.
3. Proofs for general architectures appear in Sections D and E.

4. Proofs for algorithmic guarantees (i.e. overparameterized low-rank learning) are the subject of Section
F and G.

5. Finally Theorem 3 (activation search for shallow networks) is proven in Sections H and J.

A Useful Statistical Learning and Concentration Results

The lemma below is a standard generalization result for linear models. Let (¢;);.7; be Rademacher random
variables. Define Rademacher complexity of a function class F as

1 .
Ry (F) = o ETe: [;gg; 5if(wi)] . (A.1)

Lemma 4 Suppose the loss function { is bounded in [0, C'| and T'-Lipschitz in the second argument. Also
define

nr

fmaspinlr(n) where Er(f)= 23t ()

Then with probability at least 1 — e, for all f € F we have

sup Lo(f) < Lr(f) + 2Ry (F) + 1| =
fer ny

Corollary 1 (Linear models) Let Fii' = {f | f(x) = 67 ¢(x), ||0]|s, < R}. Suppose ||qi)(az)||§2 < B for
all € € X. Then, with probability at least 1 — e, for all f € F'", we have

OTRVB + CVt
VT '

Define ® = [p(z1) ... ¢(zn,)])T. Set K = ®DT. Suppose n > p = dim(0) and oin(®) > 0. Consider
the min Euclidean norm estimator 0 = ®'y and f(x) = 07 ¢(x). Noting that ||0|,, = ||®Tyl|l, =

VYT K1y, we arrive at

Lo(f) < Lr(f) +

oI'/ByT K—1y + C/t

Lp(f) < N

(A.2)
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Proof The Rademacher complexity of F g“ is bounded as

. 1 T
RnT(fll_le“) =—LE7,, [ sup 25¢9T¢(xi)]
nr 16lle, <R =7
RS- RVB
=—E||Y cid(x) < .
ny P ’ T
To finish the proof observe that f - ]-"}i{“ with R = m ]

Lemma 5 (Moment concentration with Gaussian tail) Ler X be nonnegative satisfy the tail bound P(X >
E+1t)< e_t2/2f0r some E > 0. Then

E[|X|*] < 28 max(E, k + 2),

which implies
E[|X|%)Y* < 2max(E, k + 2).

Proof If E < k + 2, we will simply use the bound P(X > k42 +1¢) < e~t*/2_ The tail condition implies

lift<1
e~ BE/2 f > 1

P(X > 2Et) < { ,
which implies that

lift<1

e B2 i ¢ >

9

P(X* > 2ktER) < {

Let f, Q be the pdf and tail of (X/2E)*. Then

k 00 00 00
it = | st = [T waou) =~z + [ Q@ (A3
2FE 0 0 o
o0 [e's) 27k [e'e] e(i+l)k/2 "k
:/ Q(t)dt < 1+/ e B /th=1+2/ e B2y (A4)
0 1 i—0 eik/2
<14 Y eliFDR/2mbe )2 (A.5)
=0
<14 el (A.6)
=0

For the final line to hold, we simply need eBe'/2 > gitle(i+1)k/2, Taking logs of both sides, this reduces to
Ee'/2 > (i + 1)(k + 2)/2 which is the same as

Ee' > (i+1)(k+2).

Clearly, this holds for all ¢ when E > k + 2. [ ]
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B Generalizations and Proofs for Learning with Train-Validation Split
(Theorems 1, 2 & Proposition 1)

B.1 Uniform Convergence of Loss Functionals

We will show uniform concentration of an m-dimensional functional [ of the loss function i.e. we shall first
study F4(y, f(x)) € R™. To obtain the results on loss function or its gradient, we can set [ to be identity
and V operator respectively. More generally, [ can also represent the Hessian or projection of the gradient
to proper subspaces of interest. Associated with the functional I we define the [ distance metric to be

distr (f1, f2) = sup [[F(y, fi(x)) — FL(y, f2(x))lle,-
yeY,xeX

Note that, for simplicity of exposition in our notation we dropped the dependence on X', ), . This distance
will serve as a proxy for the ||-||x-norm in the generalized analysis. We also loosen Assumption 1 to
relax global Lipschitzness condition so that A can instead be approximately locally-Lipschitz. Thus, the
following provides a generalization of Assumption 1.

Assumption 6 Suppose there exists a partitionining P = (A;)E, of A such that log(P) < heglog(C)
and the algorithm A satisfies the following. Over each A; C P, A(-) is an (L, €o)-Lipschitz approximable
function of o in dist (-, -) distance. That is, there exists a function g such that, distg(f, go) < €0 over
A; and gq, is L-Lipschitz function of o in disty (-, -) that is disty (9o, , Jay) < L1 — azl|e,.

Assumption 7 F{(y, fI(z)) — E[F¢(y, f1 (x))] has subexponential (|| - ||, ) norm bounded by some S > 1
with respect to the randomness in (x,y) ~ D.

The following lemma is obtained as a corollary of Lemma D.7 of [58] by specializing it to the unit Euclidean
ball.

Lemma 6 Consider the empirical and population functionals [FEAV( Iy = LS Flys, f1(x4)) and

nr
FL(fT) = E[Fl(y, fI (x))] respectively. Suppose ny > m. Then

[P{ |Fev(sD — (D), 2 55— tQ} < e~ min(E0y )

valay
With this lemma in place we are now ready to state our uniform concentration result.

Theorem 6 (Uniform Concentration over Validation) Suppose Assumptions 6 and 7 hold. Fix 7 > 0 and

set
Beﬁ := heglog <CL‘ /—nv> .

Then, as long as ny > Beﬁr—l— m + T, with probability at least 1 — 2e™7, U‘_Ey uniformly converges as follows

C(h,
gs\/ (hgtm+7) ) (B.1)
0o ny

sup |[F2v(£2) — FL(2)
acA

with C' > 0 a fixed numerical constant.

28



Proof Let C'g be an £/ L-cover of A; in ¢ norm and C, = Ui 1 Cé. Recall from Definition 1 that the
covering bound for A; C A obeys |Ci| < hegrlog(C'L/¢). Using the bound on P (via Assumption 6), we
arrive at

log |C.| < log(P) + hefrlog(CL/e) < 2hegrlog(CL/¢).

Let F = {fa ‘ a € A}. Let G = {ga ‘ a € A} be the set of (locally) Lipschitz functions g, within
o neighborhood of F. Following Assumption 6, let G be the distg(-,-) e-cover of G induced by C..
Additionally, let /. C F be a set of hypothesis with same cardinality as GG that are within g¢ distance to
their counterparts in G.. For a fixed f € F_, using sub-exponentiality of the loss functional (Assumption
7) and subexponential concentration provided in Lemma 6, for a proper choice of constant C' > 0, with
probability 1 — 2e~min(tvt*) e have that

< SVCVm + 2
/2 - 2\ /T '
Recall that we choose 1y > hegrlog(C L /e)+m 7. Also set the short-hand notation e = et log(CL/e).

Thus setting t = v/ et + T < /ny, ensures

min(ty/n, t?) > t* > log |C.| + .

|FEv(r) —Fein)

Thus, union bounding over F;, we find that with probability 1 — 2e™", for all f € F;

e ®2)

Now, fix any f € F. Pick g € G and ¢’ € G. such that distr (g, ¢’') < e and distr(g, f) < 9. Additionally
pick f’ € F. which is gg-neighbor of ¢’ € G.. This implies that, for all feasible (x, y)

IFe(y, f(x)) — Fl(y, f'(2))]le,
< ||Fe(y, f(x)) — Ty, g(@))lley + |FL(y, g(2)) — FL(y, f/(@)]le, + FE(y, g'(x)) — FL(y, f'(2))]|e,
< e+ 2ey,

via Assumption 6. This further implies the same bound for population and empirical functionals
IFLY(f) = FL () eas IFL(S) = FL(S ey < & + 220,

Combining this with (B.2) leads to the following uniform convergence bound for all f € F'

C(heﬁ +m + 7')
Vo

To proceed, select £ = 4/ %‘; and set Aefr = hegr log(C L/1y [ hegr). Thus,

sup [|[FL(f) = FLy(f) e, < 5\/ +2(e + 2¢p).
fer

~ Clhett +m + 7
up |£(f) — Ev(fu)| < s\/ et 47) | 4y, (B3)
fer ny
concluding the proof of the bound. [ |
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B.2 Proof of Theorem 1

Let us state slight generalization of Assumptions 1 and 1’ which will be utilized in our proof.

Assumption 8 There exists a function g, such that, for all pairs o, 00 € A, ||ga, — fg:l lx < eo and

1901 — o llx < L|lar — azle,.

Assumption 8' For some R > 1 and all a1, 2 € A and x € X, hyper-gradient obeys ||Vafg:1 (@)]le, <
R |Vafd, (@) = Vall, (@)l < RL|ov — aslle, and | Vaga, (2) — Va [l (®)e < Reo.

The proof will be a corollary of the generalized result Theorem 6. Let us first state a lemma to show that
Assumptions 2 and 8 imply Assumptions 6 and 7.

Lemma 7 Let C > 0 be a proper choice of constant.

o Assumptions 2 and 8 imply Assumptions 6 and 7 hold for the loss function (setting I = Identity), with
m=1,L — LT, eg — I'eg, and S = C.

o Assumptions 2' and 8' imply Assumptions 6 and 7 hold for the gradient (setting F = V), with m = h,
L — 2RLT, eg — 2RT'gg, and S = C.

Proof For the first statement, we conclude that Assumption 6 holds with L — LI via

sup Uy, fau (®)) = LY, faz (@) ST sup [fa, () = fa,(®)| < LT|lar — czlle,.
yeY,zeX xeX

Following the same argument, we plug in g — ['eg. To prove the result for the gradient mapping note that
if Assumptions 2’ & 8’ hold then, using the fact that Vo ¢(y, fo(x)) = €' (y, fa(x))V fo(x) we have

IVU(y, far (@) = VY, far (@))lley < 1Y far (@) = Oy, far @DV fa, (@)lle, + TV fa (®) = V fas (@) e,

< T[fon (@) = fao (@) |[R+ TRL| o — c2le,
S 2PLR||OL1 — a2||€2.

Following the same argument, we plug in g — 2RI'cy. Subexponentiality with S = C' follows from the
boundedness condition in Assumption 2. [ |

Theorem 1 di_rectly follows by setting €g = 0 and plugging in the looser bound 71y /hegr > /71y /hegr in
the definition of h.g term. Note that, the theorem below is a corollary of the more general result in Theorem
6.

Theorem 7 (Learning with Validation — Lipschitz Approximation) Suppose Assumptions 2 & 8 hold. Let

Q be the minimizer of the empirical risk (TVO) over validation. Fix T > 0 and set Beﬁc := helog(CLT\/ny /hep).

There exists a constant C' > 0 such that, whenever ny > Eeﬁc + 7, with probability at least 1 — 2e¢™7, fg
achieves the risk bound

= Clheg+ T
sup [L(f0) — Lv(f])] < Clhar +7) | ype, (B.4)
acA ny
he
L(fF) < min L(f]) +2 Clheg +7) + 8Tgg + 0. (B.5)
acA ny

30



Furthermore, suppose Assumptions 2' & 8' hold as well. Set Be‘fo := h + heglog(2CRLT\/ny [hef). When-
ever ny > hgﬁc + 7, with probability at least 1 — 2e™7,

. C(hYe+T)
sup [VLy(FL) = VLD, < | —L—

acA

+ 8RI'ey. (B.6)

T

Proof Applying Theorem 6 and plugging in the first statement of Lemma 7, with probability 1 — 2e™7,
we obtain the statement (B.4). Here we used the fact that hegs + 7 + m < Q(Beff + 7) and factor 2 can be
subsumed in the constant C'.

We obtain the advertised bound (B.5) via (a) observing that the bound is valid for & and the optimal
population hypothesis a* = arg mingea £(fo) and (b) using the fact that

Ly(fa) < inf Ly(fa) +8 < Ly(far) + 0.

Following (B.4), we first have £(fz) < ming EV( fa)+ %ﬁ'fﬂ +4eol" + 6. Using a triangle inequality
with a*, we find

C(hets + 7)
ny

L(fa) < inf L(fa)+2 + 820l + 6 (B.7)

Applying Theorem 6 and plugging in the second statement of Lemma 7, with probability 1 — 2e™", we
obtain the statement (B.6). Here, we used the fact that m = h and hegt = hetr log(2CRLT \/ny [ hett). We
then set hgf = hefr + h to conclude. [ ]

B.3 Proof of Proposition 1

For the purpose of our neural network analysis assuming C,, to be Lipschitz might be too restrictive. As
a result, we will state a slight generalization which allows for Lipschitzness of C,, and f2 over a smaller
domain A, which provides more flexibility.

Assumption 9 Over a domain A, C A: (1) f2 is L-Lipschitz function of o in ||-||x norm and (2) the
excess risk term Cq is kL/n7-Lipschitz for some k > 0.

Note that, the first condition is equivalent to Assumption 1 holding over A, in population (i.e. n7 — 00).
We intentionally parameterized the Lipschitz constant by the same notation to simplify exposition. The
following result is a slight generalization of Proposition 1 where we allow for non-Lipschitzness of A by
instead assuming it holds over a smaller subset A,.

Proposition 2 (Train-Validation Bounds) Consider the setting of Theorem [ and for any fixed o« € A

T

assume (3.4) holds. Additionally suppose Assumption 9 holds. Then with probability at least 1 — e~ 7,

, , cr helog(2(T + k)ngrCL/hey) + T
Ty < D o eff 108 T eff
min £(fo) < min (E(fa) + ——nr> + 200\/ o . (BB
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-7

Using Theorem 1, this in turn implies that with probability at least 1 — 3e

CXEA*

T = —
£(fT) < min ( (fD) + C_> 20, \/ heﬁclog(2(F+/-;)nTCL/heff) T \/ C’h@ﬁlog(QSLFnV/heﬁc) s
T %

N
(B.9)

Observe that (B.9) implies Proposition 1 as the sample size setting of the paper is n > ny via (1.1).

Proof The proof of (B.8) uses a covering argument. Create an ¢ / L covering A, of the set A, of size
log |Ag| < hegrlog(C'L/¢). For each o € A,, setting t = heglog(C'L/e) + 7 we have that for all o €

A., the bound (3.4) holds with probability 1 — e~". To conclude set ¢ — “eyl/T . Coleu/nr 4pg

hefi = hegrlog(2(T 4 k)n7CL/hett) + 7. Also observe, via Assumption 9, that

IL(fE) — L(f2)| + 3. —Cal \/ﬁ Ca| < Te + ke < 0.5Co\ heir/nT-

To proceed, via Assumption 1 we also have |L(f2 ) — L(f2)| < Te < 0.5Co+\/hegs/n. Together, using
triangle inequality, these imply for all &« € A,

T
(fa) < ,C(fa + 0.5CH/ eff/n7‘+ Co h < ,C(fa) + \5—_ + 2CH4/ f_Leff/nT,

=
cr he
L(fI) < c(fd) + W+200 n—f (B.10)

Finally to conclude with (B.8) notice the fact that mingea £( fa ) < mingea, £( fa ).
To conclude with the final statement (B.9), we apply Theorem 1 which bounds LV( fT) in terms of
mingea £(f7). This results in an overall success probability of 1 — 3e™". [

B.4 Proof of Theorem 2

Proof Below C > 0 is an absolute constant. First under the provided conditions (which include (4.3) with
probability 1 — pg), applying Lemma 12, we find that Assumption 1 (A is Lipschitz) holds with Lipschitz
constant L = 6R3B?, /n%—hAEQHyHgQ. Assumption 2 holds automatically and Assumption 1 holds with

hegt = h and C' = 3. Thus, applying Theorem 7 (with ¢g = 0), with probability at least 1 — 2¢~7

\/ hlog(6 RLT /oy /1)
Vv

The remaining task is bounding the infaea £(fo) — infaea £(fL) term. We do this via Lemma 8 which
yields that with probability 1 —2e~¢, for all € A (B.11) holds. Together, these imply that with probability

L(fa) < lnf L(fa)+ —|—5.
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1—4e ™™ —pg

\/h log(6R x 6R3B2/n3-hA;%|lyle,T\/ny/h) + 7

L(fa) — 6 < min C

acA vy
2TV ByTKa'y + Cy/hlog(0R'B2A2TnZ lylle,) + 7
Jr
VT
. Cy/hlog(M)+7 2IVByTKa'y+Cy/hlog(M) + 1
< min +
acA vy VT
_ 20\/ByTKgly ~ C\/hlog(M)+ 1
< min +
acA N %s min(ny, ny)
where M = 30R4BQ)\52F(7127+n%)”ﬂ”&- "

B.5 Uniform Concentration of Excess Risk for Feature Maps

Lemma 8 Consider the setup of Definition 2. Let Sup ey 1<i<p ||¢i(T) ”%2 < B. Declare K, = ®,®L.
Suppose (4.3) holds with probability 1 — pg over the training data. Assume ¢ is a I' Lipschitz loss bounded
by C > 1. With probability at least 1 — py — e~!, we have that for all o € A

6.) < - ByTKa'y +2C/hlog(20R B2\, T 1y s,) + 7
L(6a) < iy
nr

Proof The proof strategy follows that of Proposition 1. Using (A.2) of Corollary 1, we know that, for any
choice of o € A with probability 1 — e~! we have that

o/ ByTKaly + CVt
T '

where Ko, = ®,®L. To proceed, we will apply a covering argument to the population loss of the empirical
solutions. This will require Lipschitzness of the population loss. Observe that

VY Koy = 0alle, = 125ylle.-

Lemma 12 shows the Lipschitzness of 8, with L = 5R?,/B3n3-h\; 2||y|¢, which implies that

(B.11)

Lp(f) < (B.12)

160 — Oulle, < Lijax — &g,

To proceed, let C. be an € cover of A of size log |C.| < hlog(3R/e). Setting t = hlog(3R/e) + 7, with
probability 1 —e™7, we find that all & € C. obeys (B.12) with this choice of t. Observe that, with probability
at least 1 — py, via the lower bound (4.3), we have ||04]|¢,, [|0a’ |2, < ||Ylle, /v Ao- To proceed, for any o
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pick &’ € C. with ||a — &/||s, < ¢ and observe that

L(fa) = L(far) = W( ,05%(%)} — E[l(y, 050 ()]
L E[04¢a (@) — 04 dar ()]
L[E[(0a — 8ar) da(@)] + E[|0a (da(x) — ¢or (2))]]]
PIE|00 — Ocrlles ]| da(®)lles] + El|0ar lles || 0o (®) = o ()2, ]
< F(RL\/EIICV — ey + VhBlla = |16, [ylle. /v 2o)

f h
< TVB|lylle, GR*BY2\/n3-hAg? + ([ —)e

Ao
< 6R*BT\/nd-hAg?||ylle,e,

where we used the fact that \g < 02, (®4) < n7R?B. Thus we obtain that for all « € A

R 2F\/ByTK y+ Cy/hlog(3R/e) +

Lp(f) < — L L 6RBRT n3-hAg 2|yl e.e.
Here setting e =1 = 20R*B2)\; *T'nZ ||y ||, /3R, we obtain the desired bound (B.11). ]

C Results on Algorithmic Lipschitzness

C.1 Proof of Lemma 1

Proof First applying Lemma 12, we find that Assumption 1 holds with (C.8). Plugging in the boundedness
of labels (i.e. ||yll¢, < /n7), ' =1,n7 > h, R > 1, we end up with the refined bound

L < 6R3BnrAy2(Bnrvh +1).
Finally, using the fact that v is ~ + 1 dimensional, we obtain hes = (h + 1) log(20R? BnZ-A\y 2(Bnr +1)).

C.2  Proof of Lemma 2
The following lemma is a rephrasing of Lemma 2.

Lemma 9 (Lipschitz Solutions under Strong-Convexity / Smoothness) Let A be a convex set. Let F(a, 0) :

A X RP — R be a p strongly-convex function of 0 and L-smooth function of o over the feasible domain
RP x A. Let
0, = arg mein]-"(a, 0).

Then, O, is \/ L/ u-Lipschitz function of c.

Proof Pick a pair a, @’ € A. From strong-convexity of @ and optimality of 8, we have that

F(o 8a) — F(a'0a) > 560 — a7,
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On the other hand, smoothness of a implies
e 0a) — Fla,0u)] < Ll — |, (R
Putting these together,
Flo6a) + Ll — o[, > F(od,0a) > F(e00r) + 46 — Ol
Since the inequality is symmetric with respect to «, @', we also have
e 0r) + Ll — o3, > Flex,0a) + 260 — 0l €2)
Summing up both sides yield the desired result

Lia— /|7, = ull0a — Ol7,-

C.3 Stability of Linear Regression
We begin by stating the following useful lemma.

Lemma 10 Let A and B be two positive semidefinite matrices with minimum eigenvalue of A bounded
below by v > 0. Set P = B — A and suppose | P|| < 0. Then

0
v(y=0)
Proof Let A and B be two positive semidefinite matrices with minimum eigenvalue of A bounded below

by v > 0. Set P = B — A and suppose ||P|| < 4. Let A have eigen decomposition UXUT. Let
P =UTPU and P = X~ /2UT PUX /2. Observe that | P|| < v~ 6. We have that

A~ - B! < (C.3)

A~ =B~ = ||z -U"B7'U|
=|=t-UuTA+P)lU|
= |z -vTwzut +upPuth) U
== = (=+P)7
<=t -E+P)7
S ||2_1/2(I o (I + 2—1/2132—1/2)—1)2—1/2H
<o (DI - T+ P)7|

1 A7t 0

< — = .
Tal=dyt (v —9)

For the last statement, we observe the fact that (I+P)~! = 3,5 ,(—1)"*P? which yields || I —(I+P)~!| <
,16 -
15"

The lemma below shows the stability of ridge(less) regression to feature or regularizer changes.
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Lemma 11 (Feature Robustness of Linear Models) Fix X, X ¢ R"*? with | X ||, | X|| < B. Fix \,\ >
0 and assume \g = X + 2. (X) > 0. Suppose 2B|| X — X|| + |A — A\| < Xo/2. Consider the ridge

min
regression (or min Euclidean solution)
(XTX + M) 'XTy if A>00rn>p

0:-/4ri e ,X,)\ =
dg(y ) {XT(XXT)—ly if A=0andn <p

Also define 0 = Avidee(Y, X, \) which solves the problem with features X. In either cases (whether X > 0
or not), we have that

5B%|lylle,
S

2Blylle,

10 — 0], <
2 )\%

X — X + A=A (C.4)
Proof Suppose A > 0 or n > p. Recall that X7 X + \I > AoI. Observe that XTXx - XTX =
XT(X - X)+ (X — X)TX which implies | X7 X + AT — X7 X + \I|| < B where B = 2eB+ |\ — )|
Recall that B < )¢ /2. Using this and the result (C.3) above, we can bound

T o o _ 2Be +|A — |
XTX + 2D ' (XTX + D)77YY < _ C5
(X AD = (XX A = S — @B+ 3 - ) )
B

<2 C.6
_)\0()\0—2B€) €6)

2B
SV (C.7

0

We then find

10 = 6llg, < N(XTX +ADT'XT — (XTX + A1) XTIyl
<(IXTX +ADT'P| + (XTX +AD 7 = (XTX 2D IX D |ylle
2BB
A3
< 5B2||ylle,

< (edg' + )Iylle,

2BHyH€2
A3

e+ A=Al

Similarly when A = 0 and n < p, using X XT = AT

X X v ¥ 2Be
I(XXT) - (XXT)!| < _
72 (2 (X) — [XXT — XXT])
4Be
< 2%
<%

Thus, in an essentially identical fashion, we find
160 = 0]le, < | XT(XXT)™ = XT(XXT) llylle,
<X -X)TXXT) Y+ IXT XX = (XX Dlylle,

2
_ 5Byl _
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This finishes the proof of ﬂ Lipschitzness.

Finally, let X = UAVT be the singular value decomposition with ¢th singular value o;. Suppose A = 0,
o2 > Xg and A # 0. We consider the gap

I(XTX + XD 7IXT - XT(XXT)7 Y = |[V(A2 + AD)TAUT - VAIUT|

\i i A
< sup \—/\2 7——2|§—2.
1<i<sn A7 A AT TG

Thus, using this bound and the triangle inequality, for the scenario A = 0 and A\ # 0, we again find the
desired bound. [ |

C.4 Lipschitzness of Feature Maps

Lemma 12 (Lipschitzness of Feature Map Solutions) Let sup,cy 1<;< [|¢i(T) H?Q < B. Let A\ > 0

be the strength of regularization. Suppose n < p and X + mfaEA omm(@a) > X > 0. Set R =

SUPgea |lt|le,. Suppose A is convex and the Algorithm A solves the ridge regression given ® i.e.
0, = -Aridge(y7 q)aa )\)

Then, O, is SRQ\/B:”n%/h)\a %||yl|¢,-Lipschitz function of  (in o norm) and Assumption 1 holds with

L =6R*B?, /n%—h)\g2l|y|]gz.

Additionally, consider 0 = Ayigge(Y, ®oys Otni1) where aupy1 € [N, Amax) where A+infaea 02, (Po) >
Ao. Then Assumption 1 holds with
L =6R*B*\/n3-hA 2|y, + 2R*B/rr Ay || ylles- (C.8)

Proof Observe that || (z)|le, < RV B which also implies |[®|| < B = RyBnr. Fix a,a’ € A
satisfying ||la — &/||¢, = ¢ < 4R)\T0n7— where € > 0 is to be determined. This implies that

[¢a(x) = dor (@)le, = IIZ (@)lle, < [l — ||, VB (C.9)
= ||Po — B < \/_nTHa — &||¢,VB < \/nrh|la — &'||,,VB < e\/nThB. (C.10)

Using the fact that problem is )\0 -strongly convex, applying Lemma 11 with \g, and observing that the initial
choice of € implies ||y — P/ || < evnrThB < 43\/— we find that

160 = Oarlles _ 52 2 2
= 2 J<5B )\ =5R*B Af.
||‘I) —d, H = Hy”b/ nTHyHZQ/ 0

This also implies the Lipschitzness % < L := 5R%,/B*13-h\;*||y|le,. Observe that this ar-
2

gument showed the desired Lipschitzness around « in a ball of radius € > 0. However, this same local

Lipschitzness holds for any choice of o« € A. Since A is convex, local Lipschitzness implies global (as we

can draw a straightline between any two points and repeatedly apply local Lipschitzness).
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Let 6, be L Lipschitz function of o (which is provided above). To conclude with Assumption 1, we

need Lipschitzness over the input space. Observe that |0z, < Ay 12 llyl|e,. Consequently, using the fact
R?B(ns — 1) > X (which implies R?Bny > \g), we find

fa(®) = for(@)| < 0L0a(z) — 0L do ()]
< RVBL|a — &|le, + 18allesda (@) — do (@)lles
< (RVBL + |lylle, Ay > VRB) |l — &,
< VB(RL + |lylle, g * Vi) |le = o |,

< 6R332 n%'h)‘EQHyHb”a - a,||€2v

concluding the first result.
To show the second point, using the exact same argument and applying (C.4), we find

0o — 00 : —~ 0
Ba =Oalles < 52, [B3nt mag il + 28 Brr g lwll

Ha - a,||€2

Repeating the input space argument, we find the advertised bound. [ |

D Proofs for Neural Feature Maps (Theorem 4)

The following theorem is a restatement of Theorem 4. The main difference is that conditions (D.1) on
hett, k. are more precise versions compared to Theorem 4.

Theorem 8 (Restatement of Theorem 4) Suppose Assumptions 4 and 5 hold and we solve feature map
regression (Def. 2) with neural feature maps (4.4) upper bounded by /B in la-norm. Define the set

AOZ{GEA‘KQZ)\()}.

Let loss ¢ be T'-Lipschitz and bounded by a constant. Suppose the following conditions on ky, \ hold and
define hoy as

e = hegrlog(ACL(AT2BT +VB)n3-) (D.1)
ke 2 €TINS T B2 (hoglog(2LCk, [ (vhey)) + 1)
2
A< SN
4\/ BnT
Then, with probability at least 1 — 5e™!, for some constant C' > 0
ByTKy' h
£(fI) < min 2r\/ Y "y+c\/ Y (D.2)
acAyp nr nrt

Finally, this result also applies to the 0 — 1 loss L9~ by setting T' = 1. To see this, choose { to be the Hinge
loss and note that it dominates the 0 — 1 loss.
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Proof For a new input example x, define the vector ko (x) = ko (x;, ) where kq is the empirical kernel
function associated with neural feature map at initialization. By assumption k is L-Lipschitz in {3 norm.
First we settle a couple of bounds.

1. Setep < A\o/2 and note that using Assumption 5 we have
ki > 4eg v (hegrlog(2LCky ) (Vhegr)) + t). (D.3)

With probability at least 1 — e, for all o, | Ko — Ka|| < 0.

2. Let fé be the solution with ridge regularization 0 < A < \o/2 and f3 be the ridgeless solution. For
any input x € X, using Lemma 10, we have that

1fa(@) — fo(z)] = [yK 3 ka(x) — y(Ko + M) kg (z)] (D.4)
<Nyl 1K' = (Ko + M) ||| ka(@)]|e, (D.5)
<2 Ngm' (D.6)

0

3. Next, we apply Theorem 1. First note that (for sufficiently small o« — &)
574 -1 574 -1 L /
I(Ka + A7 = (Ko + A7 < 5lla = ale.

The Lipschitz constant of .A can be found via

(Ko + M) L ha(®) — y(Kor + M) oo (@) < [ylle (Ko + M) ha(®) — (Ko + M) her (2) s
< ylleoll (Ko + 2D = (Ko + D7 [[6a(®) 6y + 1K 150 (@) = Ko (2) 0y

2Lyl Lllylle
< (TZHFva(w)llzz + Tz)lla —a|g,
< 2LB||y||ézx/nT€

2LBnyt
< z ¢

Thus Theorem 1 yields with probability 1 — 2e~¢

heflog(4A\—2C LBTnyny) + 7
ny

+ 4. (D.7)

L(fT) < f £(f]) +c\/
acA

4. Finally, applying Theorem 1 on the ridgeless kernel estimators (trained with K, o) fL, over the set Ay,

we obtain that for each o € Ay
L < oT\/ByTKa'y + CVE
(fa) — W N
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Observe that for a € Ay

IyTKaly—yTK;}y\<m\yTK y—yT K 'yl

Jikty [l

\\/yTﬁily - \/yTE;}y\ < (D.8)

< VBnrlyle| Ka' - K| (D.9)
2v BnrLl|ly|le
S vles o= o, (D.10)
0
Same argument also gives
__ _ __ Vi \/26
I\/yTKaly - \/yTKalyl < \/yT(Ka1 - Ka')y < Hy”iio (D.11)

Applying Lemma 1 with & M and using (D.11), we find with probability 1 — 2e~¢ that

0

2T/ By Ka'y + O/ herrlog(20VBn-L) +

L) < i D.12
mip £fa) < min N (B2
or ByTI?,;ly+C\/hefflog(2@\/§n3TL)+T VB o

o . :
_anelglo Valyn i AO ( )

To stitch the results together, observe that with probability 1 — 5¢~¢ all events hold. Then, using (D.6) and
right above, we obtain

2v/ BnrA
< Vo
min £(fo) < min £(fq) + ¥

TVBYTKa 'y + C\/herlog@OVBiL) + 7 /Bzy  2V/Brrh
< min + 3T + .

T acAy Nalss A() )\(2)
(D.14)

Now fix € > 0 and set A < 2 and g = 2 The sum 31" Y BE + 2 2 A on the right hand-side of
4v/Bnr 36T B- \2 g

(D.14) is upper bounded by ¢ as soon as the conditions (D.1) hold (recall (D. 3) for k, bound). Under these
conditions, combining (D.14) with the validation bound (D.7), yields the following upper bound

- 2TVByYTKG'y + C\/ heirlog(2CVBn3-L) + 7 o \/ hett log(4A"2C LBTnyny) + 7
min

+ 0 +e.

QEAO A /TLT

This is equivalent to (D.2) after plugging in the definition of heg and recalling ny > ny. [ |

ny

D.1 Uniform Convergence to Population Neural Kernel

Lemma 13 (Uniform Convergence to NTK) Suppose Assumptions 4 and 5 hold. With probability at least
Vheplog(2LCk, [ (Vhey) )+t

Ky

1 — et over initialization, for all c,
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Proof Fix o, o’ such that ||« — o/||s, = €/2L and C. be the cover set of size log |Cc| < hefrlog(2LC /¢).
We find that || Ko — K« || < /2. Now, using the concentration bound (5.1) and setting 7 = hegrlog(2LC' /) +

¢, we obtain that with probability 1 —e~t, all o € C. obeys | Ko — Kal| < \/th log(ifé/a)Jr"t. Fora € A,
picking a neighbor @’ € C., via triangle inequality, we find

Ko — Kol
<Ko — Kol + [ Ko — Kol + | Ko — Kol

< \/Vheff 10g(2lf/C_'/€) + vt e

Setting £ = \/Vhest/ k«, we conclude with the result. [

E Proof of Lemma 3 and Structure of the Jacobian of a Deep Neural Net

E.1 Expression for Jacobian

In this section we wish to bound the Lipschitzness of the Jacobian matrix with respect to the architecture
parameters . To this aim we begin by considering the structure of the Jacobian. Specifically, assume we

have n data points x; € R4 fori =1,2,...,n. We shall use
T
°k
X — 5172 c |RTL><d
T
wn

for the data matrix.
Set v := WP+ Assume a neural network mapping f : R* — R with D hidden layers of the form

Fo,wO w@ WD z) =T p (W(D)aa(p_l) (W<D—1> O (W“)m)))
with W () ¢ Rdrxdr—1 where do = d and dp = k. We also define the hidden unit vector
h(z) = o <W<1>$)
for the first layer and inductively for the remaining layers via
R () = 0 0 (W(”h(”_l) (:c))

forr=2,3,...,D.
The Jacobian with respect to the weights of the last layer is equal to

JIT (v) = 0 (D) (W(D)aa(o_l) (W(D_l) e Og(1) (W(l)XT))>
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which can also be rewritten as

Oy (B (wl))T

Onoy (B (wz))T

J (v) =

oo (RO (@)

With respect to W (P) the columns take the form
J* (WD) = diag (v) oty (WX ) 1P (XT)
To calculate the derivative with respect to W () first note that
f (v,W(1>,W<2>, N .,W<D>,a:> =vTo ) (W(D)aa(p_l) (W<D—1> O (W<’”>h<’“—1>(a:)>>) .
Furthermore, note that
f (u, w w@ WD) a:) - (W<D>aa(D,1) (W<D—1> O (g (W(T)»)) .

where g (W) = W h(r=1(z). Using the chain rule we have

0y () = (o7 T e (o (1910)) w1 )t e, (10)) 2, ()

s=r+1
= ('UT H diag (U,a(s) (h(s)(:c))) W(S)> diag (U;(T) <h(r)( ))) <Id(r> ® <h(7' 1)($))T)
s=r+1
Therefore,
[ (o712, diag oy (R(@1)) ) W) diag (o ) (B (1)) (T © (RO V(1)) " _
j(W(r)> _ v 12, diag o (o (M) (x2)) ) W) diag (0! () (R (22))) (I @ (A"~ 1)(:1:2))T
_(vT [12.,., diag (0 « (RC )(a:n))> W(S>) di;;g (a;(r) (h(")(mn))) (Idm 9 (h(r—l)(mn))T)_

For simplicity we shall use the short-hand
JO .= 7 (Ww)) 7

with 7P+ = 7 (v). We shall also use ji(z) to denote the i-th row of 7©). Finally, define the overall
Jacobian to be

T =®, = [j(DH) A j(l)] c RMXP

Additionally, define the gram matrix as K=gJg7T= ®,®L. For the discussion below set S, = |[W )|,
define the quantities

D+1 7 D+1

M=][S, M.=][S. M =]]S5. (E.1)
(=1 B

=1
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Also suppose ||z||¢, < N for some N > +/d for all feasible inputs € X. Observe that, if the activations
are zero-mean using |¢, | < B,
|hOl, < BMLN.

Define kg = d and let k; be the width of the /th layer. Define
5’1 = Si—i-max(l, kz/kz—l)

In general, since |, (0)| < B, we have that

IO, < BEMEN. (E2)
where
D+1 D+1
M=T1] S, M{=1[8 M=T]]S5
/=1 =1 =0

E.2 Upper Bounding Jacobian

Before Lipschitzness, let us upper bound the Jacobian spectral norm. Clearly given two activation parame-
ters o, &, noting 7 is concatenation of 7(©)’s, Jacobian’s obey

D+1

1Tall < ; |7&7112 < V2D | max (174 (E3)
1o~ Tall < VDT max 176" ~ 75| (E4)
<V2Dn _max (750~ Tl (E5)

Additionally denoting J := J, observe that
Hj(e)” < /nBPHI L Hh(Z—l)W2 < /nBP-tH L Bé—lMi—lN (E.6)
< +/nBPMN. (E.7)

Thus, we find that

7]l < V2DnBPMN. (E.8)

E.3 Lipschitzness of the Gram Matrix

Now that we have an expression for the Jacobian matrices with respect to different weights we wish to bound
the Lipshitzness with respect to .. Let «, & be two activation choices. Observe via (E.8) that

|TaTL — TaTZ| < 2vV2DnBP MN| T8 — Jal- (E.9)

The right side will be bounded via (E.5). Thus, to proceed, we will consider the derivative of ji(e) (fixing
o). Using the chain rule we have

D 0)

27" 07" on®)(a;)

da = OhO)(z;) Oa

43



Thus, using the triangular inequality

Now note that based on the structure of the Jacobian discussed above and using the fact that the first and
second order derivatives of the activations are bounded by B> 1 we have

D j(e)

Oh() (z;)

9 j.(ﬁ)
15/6"

8)
<D max 8h :c,)
0—1<s<D

8h(6)

‘ . (E.10)
s=0—

PV G D+1
=T H <B ul‘[gﬂ HW for s=0—1 (E.11)
¢ D+1

079 < B> ] HW(“) Hh“—l)(xi) < BPMN for s>( (E12)

8h(5)(:132) B w—it1 ly -

aji(é)
To proceed, we need to bound the remaining term || M ||. We can write
o' (x;) ah )
=51l < Z 1= (@ 2 (E.14)
) (@) © ()

< VD max H or i a 0| (E.15)
< \/BBDMN\/_ . (E.16)

To see this, define h() = WOR=1 and note (Y = o) (h¥)). Now observe that 8’;(2((;;3"') has the
following clean form, with columns that are bounded via (E.2)

ohO (x)
dat)

Combining (E.13) with (E.16) and plugging in (E.10), we obtain

= [01(r) ... gn(hD)] € RRX"

57

|l < DBPMN x VDBPMNVh < D¥*(BP MN)*Vh. (E.17)

E.4 Finalizing the Proof of Lemma 3
We now put the bounds above together. Overall, combining (E.9), (E.5), (E.17), we find that

K, - Ks _ _
W < 2v2DnBP MN x v2Dn x D¥?(BP MN)*>Vh < 4nvVh(DBPMN)3.
£

This is summarized in the following lemma.
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Lemma 14 (Gram matrix Lipschitzness) Suppose ith layer has k; neurons with kg = d and W@ ¢
Rkixki—1 - Suppose ¢; obeys |¢;(0)], |¢i(x)|, |#7(x)] < B. Suppose lnputfeatures obey ||x|l,, < N for
some N > \/d. Also let S; be an upper bound on |W;|| and define M = H (S + max(1, /ki/ki—1)).
Suppose o = [aV) ... aP)] where o)) governs ith layer activation and ||a! )Hg < 1. We have that

|IKo — Ka|| < 4nvVR(DBPMN)? || — &||4,. (E.18)

The following lemma is a restatement of Lemma 3 (i.e. its more precise version) and essentially follows
from the deterministic bound of Lemma 14.

Lemma 15 Suppose ith layer has k; neurons with ko = d and W ¢ RFi*ki-1 Suppose ¢; obeys
19:(0)], |4 (2)], |9} ()| < B. Suppose input features are normalized to ensure ||x|s, S V/d. Fix constants
p > 1, ¢ > 0. Suppose the aspect ratios obey k; /ki—1 + 1 < p for 2 < i < D. Suppose layer i is initialized
as N'(0,¢;) for 1 <i < D + 1. Additionally suppose

¢ < c if 1=1
¢/ki—1 if

Set kmin = minj<;<p k;. Then, there exists a constant C' > 0 such that, with probability 1 — De~10kmin
foralla,&x € A
| Ko — Kal
Ha - 6‘”&
Similarly Ko, = E[K | is also (CB\/@p)*Pn\/hD?(ky /d 4 1)3/2d-Lipschitz function of cv.

Proof We just need to plug in the proper quantities to Lemma 14. Let C' > 0 be an absolute constant to be
determined. Let p; be the ith layer aspect ratio k; /k;—1 + 1. Let ¢; = ¢;k;—1. Observe that, using Gaussian
tail bound and Lemma 5, forall D +1 > ¢ > 1,

< (CBVEp)*PnVhD3(ky Jd + 1)3/2d5.

P( ’1|| D) > ki + +H)<e 2 (E.19)
Vki + VEi — 1454
\/kz—l

Define I'; = C'\/¢;p;. This also implies that, with probability at least 1 — (D + 1)6_1%‘“in (union bound
over all layers),

(W@ < 166%( )3 < (C%eipi)3/. (E.20)

WO <t E[W@P) <1
Since S; < ||W®|| + \/p;, this also implies (after adjusting the constant C')
S;<Ty, E[SI)'V3<Ty

Finally, we simply need to calculate M. Noticing ¢;p; < épfori > 2and ¢1p1 < éd(k1+d)/d = (k1 +d),
we find

+
M= 5‘ < H i < (CPEp) Pk +d (E.21)

V4
E[M ]S C\/_)SD ky + d)*/2. (E.22)

We conclude with the result after multiplying the remaining terms nv/hD? B3P N3 from (E.18) with N =

V. n
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F Properties of the Spectral Estimator

The following establishes an asymptotic guarantee for spectral estimator when learning an overparameter-
ized rank-1 matrix. Unlike Theorem 3, this result allows for label noise.
Theorem 9 (Guarantees for the spectral estimator) Let (X;)", C R"P be i.i.d. matrices withi.i.d. N'(0,1)

. . . ji.d.
entries. Let y; = o X;0+02z; for aunitnorm o € R", @ € RP and suppose the noise is (zi)y K N(0,1).
Form the cross-moment matrix

R 1 n
i=

Let & be the top left singular vector of M. Let p = p/n and h = h/n. Let 1 > p > 0 be the absolute
correlation between a, o i.e. p = |’ al. In the large dimensional limit p,n, h — oo (while keeping p, h
constant in the limit), with probability 1, we have

p_ (4o Vh—2yp+Vh
1—p2 = 2(vp+1) '

Specifically, assuming (1 4+ 0%)\/ph < 1/6, we find p?> > 1 — 64(1 + o2)?ph.

(F.1)

Proof When an inequality (e.g. <) holds in the large dimensional limit, with probability 1, we use the P-

P
overset notation (e.g. <). During the proof, vec(-) denotes the vectorization of a matrix obtained by putting
all columns on top of each other. mtx(-) denotes the inverse operation that constructs a matrix from a vector.
Let x; = vec(X;). Let g; = 0Tx; and h; ~ N(0,1) independent of others. Decompose z; =

x; + (9i — ni)0 where ; = (I — x; + h; H , 1) is independent of g;.
! h:)0 where = (I — 007 )a; + h;0 =" (0, 1) is independent of

N 1 ¢
vec(M) = — Z Yi; = — Z mz(w?G +0%) (F.2)
s s
1 n
= E[Z wi(x] 0 + 02) + 9760 — gihi + o (9i — hi)z6) (F3)
i=1
1
= 0 +rest; + % where |||[resty || g, [y S \—/%U. (F4)

where v ~ N(0,v) where v = 1 + o2 and rest; is allowed to have an adversarial direction. Concretely, y
(approximately) equal to the ﬁ S 2h(2T0 + 0z) term.
Following this, we can rewrite as

1 ¢ .
vec(M) = — Z yix; = vec(M) + restp,
n
i=1
where M, G € R, G "< N(0,v) = mtx(v) and

_ G
M =a0" + —.
(87 +\/ﬁ
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Letg = GO N (0, v). Consider the covariance matrix

1
(ag” +gaT).

- 1
MMT = aa® + —GGT + —
o+ n * Vn

Observe that

IGTalf, 29"
& 29

Trrl2
laT M, =1+ o

Set p = p/n and h = h/n. Set v = \/ph. This implies that

JNTTT _ JiVTFD

Thus in the high-dimensional limit (n, p sufficiently large), contributions of rest;, resto disappears and

HozTJ\ZfH?2 =1+ Vn—p +resty = 1 +vp +resty where ||restal|y, S

- P _
|l M7, — 1+ vp. (E.5)

Now, let e = top_eigvec(GG') and g = g/||g||s,. Observe that e is generated uniformly randomly over
the range space of G. Thus, the inner products g”e, g” o, e’ c all have subgaussian norm at most 1//n
and become orthogonal in the high-dimensional limit. Also note that since e is an eigenvector, GG” e is
again asymptotically orthogonal to o, g (as it is perfectly parallel to e which is orthogonal to o, g). Top
eigenvalue obeys the Bai-Yin law,

e'GGle r, (VP+Vh)' *T‘/E)Q — W5+ VY (F6)

n

Since « is fixed (and independent of '), we have that

GGT

= vpa + v/ phh + resty  where |||[rests || ey ||y S 1/%,

where R term is distributed as "~ A (0,1/n). Let a be the top eigenvector of M M7 and a = aax + bv
where a, v are two orthogonal unit vectors and a? 4 b? = 1. Note that h is uniformly generated in the range

aT

space of GT. Thus ||Gh|7, /n L5 U(p + R). It is also orthogonal to e, @, g in the limit. Consequently, (in
the limit) we have

T

(acx + b0)T S (ax + bo) < vlpa® + 2aby[BhIRTv| + B(VF + VE)?] (F7)

n

P _
< w[p+ 2[ably + 2b*y + b°h] (F.8)

We additionally have the bound

9 T T P —
|%\ < 2v/v|ab|V/.

Combining, in large dimensional limit, we find that

_ P — _
la” M |2, < a® + vp + 2|ab|(y + V'h) + vb2(2y + D). (E9)
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Since a is the top eigenvector, using bounds (F.5) and (F.9), we obtain via ||a” M ||%2 > |laTM ||%2 that

a2 + vp + 2w|ab|(y + V) + vb2(2y + h) > 1+ vp (F.10)
— v+ 2v]ab|(y + VR) + vbA(2y + ) > b (E.11)
— 2wab|(y + Vh) > (1 — v(2y + h))b? (E12)
— 2al(y + VR) > (1 — v(2y + h))[} (F13)

la] _ 1—w(2y+h)

> F.14
o~ 20y 1 VB (1)

After simplification, the line above is identical to (F.1). To proceed, using the fact that p > ~ > h and
assuming vy < 1/6 we find

o] _ 1
o] — 8vy
This also yields |a|? > 1/(1 + 64v242) > 1 — 640242 [

G Finalizing the Proof of Theorem 5

The proof is completed in two stages. First, we prove (6.3). The statement is directly implied by Theorem
9 by setting the noise level to zero. This gives us & which is p (absolute) correlated with o, where p
obeys (6.3). For the second statement, we assume that validation training is complete, (6.3) and focus on
the empirical risk minimization over training data to bound the risk of overparameterized learning with 6,.
Below, without losing generality, we assume the correlation between & and «, are nonnegative (as the
situation is symmetric).

Observe that when a is fixed (i.e. conditioned on the outcome of the spectral estimator), we define the
feature matrix for the ERM (6.4). Specifically, define the matrix ®5 € R™*P where ith row of ®, is given
by ; = X lT a. Also define the ideal feature matrix ®,, where the ith row is given by x; = XiT o
Observe that &; are essentially noisy features that contain a mixture of the right features (i.e. ;) as well as
the wrong features that are induced by the component of & orthogonal to a,.

Specifically, decompose & = pa, + /1 — p2a where & is also unit norm. Then set z; = XZ»T & and
observe that

x; = px; +/1— p2$i.

The outcome of Theorem 9 upper bounds the magnitude of these wrong features (by lower bounding
p). To proceed, we shall establish the exact asymptotic risk when fitting these noisy features. Given this
discussion, the proof of the risk bound (6.4) is essentially established via the following lemma. The first
statement applies for any value of p and the second statement chooses p induced by the spectral estimator to
conclude with the proof of (6.4).
Lemma 16 (Asymptotic risk of regression with suboptimal feature map) Fix 6, € RP and (x;, z;)]"_, td
N(0,I). Set y; = .’BZTO* and define the noisy features ©; = px; + /1 — p*z;. Solve the problem (which is
same as (6.2))

0 = arg mein L(8) where L(0)=|y— ®50]7,.
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Consider the double asymptotic regime with p,n — oo and p/n — p > 1. We have that

5 ay2 _ o~ 2Pp+2p — p’
lim £(6) = E[(y — 27§)? = 2
Jim £(8) = El(y ")) = 1L

Specifically, assume ph < ¢ < 1/6 for sufficiently small constant ¢ > 0. Recalling p?> > 1 — 64hp as given
by Theorem 9 (where we set 0 = 0), we find

: 1 200h
. <q_ L _200n
nh_}rgoﬁ(e) <1 = + = 1/p (G.1)

Proof We remark that related results/analysis exist in the literature (in the context of overparameterized
high-dimensional learning and the properties of the min-norm interpolating solutions) [31]. Our strategy
uses the results from [17].

Define the vector a = /1 — p?x — pz and note that &, a are independent. Additionally, note that

y=x70, = pzT0, +/1— p2aTe,.

Setw = a0, ~ N(0,1) which corresponds to the noise level of the problem. The original data in terms
of the noisy features can be written as follows

yi = p&] 0, + /1 — p2uw;. (G.2)

Define the asymptotic risk risk(p, p) = lim, o0 E[(y — 276)?] = E[||0 — 0.]17,]. Leth ~ N'(0, I, /p). Let
us introduce the random vector

_ 1— 2 D— 1 2 =2 272 =2 2_2*2 2 *2_2*2 2
TN R VA P et et el R PYN L Ui
p p—1 P p p2(p—1) P p2(p—1)

Specializing the results of [17] to identity covariance shows that, in the double asymptotic overdetermined
regime (p = p/n > 1),

=2 = 2 2
ﬁm@myzﬁgﬁmé—aw@:41_§y+2i%%&%ﬁ_ (G.3)
_ P2+ 0’0 — D"+ 20— p* | P —2pp% + G4)
p?(p—1) (Y '
_ PP =2p+p*—p+2p P2 G5)
p(p—1) p(p—1) '
_ P —2pp+2p—p? G6)
pp—1) '

This proves the first statement. Observe that in the special case of p = 1, the risk reduces to risk(a,) =

. _ 52 9% D— _
risk(p, p) = B2 = Bl =1 - 1/p.

To bound the risk on &, we study the derivative at p = 1. Note that

oOrisk(p,p)  2—-2p—2p orisk(p, p) . —2p 2

op  plp—1) op =1 p(p—1) p-1
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This implies thatif 1 — e < p < 1 for sufficiently small € > 0, we have that

3(1—
risk(p, p) > risk(1, p) + (71@
p—
Since hp < c by choosing c sufficiently small, we can ensure p > p? > 1 — 64ph > 1 — . Plugging in p
lower bound above yields

3(1 — 64ph 200h
risk(p, p) = risk(1, p) + % < risk(1,p) + 7— /5
concluding the overall proof of (G.1) which is a restatement of (6.4). [ |

H Proofs for Shallow Neural Networks

We consider the NAS algorithm of Section 4.2 where the solution to the lower-level problem is obtained via
gradient-based. First define the Jacobian of the network and NTK kernel at the random initialization. Given
training dataset 7, define the Jacobian of the network

Ja(W) _ [fnnéc;(;zl) fnnéc;}i;CQ) fnn,g‘(;nT)}T c [RnTXp.

The Neural Tangent Kernel with activation o, has the following kernel matrix

Ko=F Ta(Wo) T (Wp)]

Woig‘N(O,l) [

We first introduce some short-hand notation. Set 8 = vec(W — W,). When « is clear from context,
given weights W define the network via f9 (x) = v 0 (W x) and linearized network as

fin(®) = v" [06,(Woz) © (W — Wo)a] .
Based on this, introduce the initial prediction vector

D= Pa = [fnn(whWO) fnn(w% WO) ce fnn(wna WO)]

We then define the linearized problem
~lin 1 2
LT (W)= §||y —p— Ja(W0)0|7,. (H.1)

For the theorem below, we denote 8; = vec(W; — W)). We also denote 0, = VCC(Wt — W) where W, is
the linearized iterations which are obtained by training on the linearized problem 217‘9

Theorem 10 (Shallow NAS Master Theorem) Suppose input features and labels are normalized to ||z |y,

1,y < 1. Fix v with half \/co/k and half —\/co/k entries for sufficiently small co > 0. Initialize
Wy €5 N(0,1). Let B > 0 upper bound |oy,|, |og,|. Suppose the loss € is bounded by a constant and
1-Lipschitz and NTK lower bound Assumption 3 holds and set the normalized lower bound Ny = \o/co.

Suppose the network width obeys

IA

k Z kJQ = k‘Q(E, 5\0,”7’)

Additionally suppose ny 2 O (h) where o (+) hides the log terms. Suppose the following holds with proba-
bility 1 — po (over the initialization Wy) uniformly over all ov € A and for all T > Ty := To(e, Ao, n7)
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L. Eznp[lvT0a(Woz)|, 15 321 [0 00 (Woi)| < co.
2. T’th iterate @1 obeys |Wr — Wo||r = |07 — éooHeg <e1
3. Rows are bounded via ||Wr — Wy||2.00 < 1/Co/k.

4. At initialization, the network prediction is at most €3 i.e. ||palle, < 2.
5. Initial Jacobians obey 222 = NI, /2
. Initial Jacobians obey %> = NIy /2.

6. Initial Jacobians obey |(Ja )L =K | < e3. (Via Lemma 10, this is implied by || Jo.JE — Kol <
ANies/2.)

Fix M = 12OB4S\O_QF(n2r + n2)||ylle,. Then, with probability 1 — 4e~* — py, §-approximate NAS output

obeys
TK! hlog(M) +t
L(fI) < min 231/M+01/M+6+5, (H.2)
acA nr ny

where ¢ = 3(go + \/%BCO/\/E + \/coBe1 +2Bey/+/ o) + By/coes. Additionally, since hinge loss dom-
inates the 0-1 loss (standard classification error), the bound above also applied for the 0-1 loss L0~

Proof For the proof, we would like to employ Theorem 2. To this aim, we introduce the so-called ideal
feature map regression problem. Unlike (H.1), ideal problem uses the exact labels y and solves

Sides 1
LFIW) = 5y = Ja(Wo)8|Z,. (H.3)

We define the ideal model to be the pseudo-inverse
6% = Jly (H4)

Note that the ideal problem is equivalent to the feature map regression task described in Definition 2 where

feature maps are %L“(,;c). Thus, we can also study the generalization risk of 8192 on the new examples given

by £(f0") where

lin

9 fan ()
oWy

L(f8) = Eplt(y, 07 )]. (H.5)

To proceed with the proof, set & = gy + BCoy/co/k + /coBe1 + 2,/coBea/v/Ao. Let & be a 4-
approximate solution of the NAS problem. We first apply a triangle inequality on Lemmas 17, 18. Specifi-
cally, with probability 1 — pg over Wy, for all a € A Lemmas 17, 18 hold. Fix £ € {L, Ev} (i.e. either
validation or population loss). Thus recalling fa fnn o, We write

E(F9) — £(7%)] < e WWC%\/—BQ

~ ideal
L) = £(F0™)] < 2/20Bea/ o
eldcdl

= [L(f]) - L(f ) < <. (H.6)

51



Thus any §-approximate solution & of the NAS problem ensures that

Ly(f%7) < Ly(fF) + &' < min Ly(fL) +&' +0 < inf Ly(f%") +2' + 0.

ideal . . . . .

Thus, %" isa (2¢’ 4 §)-approximate solution of the linearized feature map regression. To proceed, Lemma
. . . ideal .

19 establishes the generalization guarantee for such a f%" v

1a
ideal T o -1 hl M
LU < min 2By | LTeda) Y o JRloe(M) +7 o s
acA nr ny

Finally, we go back to neural net’s generalization via setting L = L in (H.6) which gives |L( fg ) —
@ideal

(f i )| < € where we note that fg; = fBTA. To conclude also plug in (H.7) to move to K. These as a

nn,o
whole imply Theorem 10’s statement (H.g) after (1) applying the change of variable 3¢’ + VcoB /e3> €
and then applying the change of variable Ay = cgAp. [ |

Lemma 17 Consider the setup of Theorem 10, specifically the itemized assumptions involving the initializa-
tion Wo which holds with probability 1 — po. Let Or, 01 be the iterations induced by any fixed activation
a € A. For L € {L, Ly} (i.e. for population or validation risk), we have that

E(70r) — £(f%)] < o + fﬁCHstl

Proof Applying Lemma 20, we find that

| VaCoB
v

Next, observe that for any input with ||z||¢, < 1, the neural feature maps are bounded by

ann( )

|'C~( ) Z( lin )| —

H ||€2 < \/_B

This means that o )
LL(f07) — L(fg)] < o BllOss — O7lle, < /e Ber.

To conclude use a triangle inequality to combine the bounds above. [ |

Lemma 18 (Bounding the perturbation of the linearized model) Consider the setup of Theorem 10, specif-
ically the itemized assumptions involving the initialization Wy which holds with probability 1 — pg. Recall
04! from (H.4) and that p is the prediction vector on T at Wy bounded as ||p||s, < 2. For L € {L, Ly},

we have that
eideal

L(18) < £(F8"") + 2v/&@Bea/ Vo,

Additionally, the perturbation due to empirical vs population Jacobian is bounded via

y" (JJIT) "y < Veslylle, + VY Ky, (H.7)
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Proof Recall that feature map norm is bounded by /coB and thus

gldcdl

L(foe) < L) + Vo B0 = O le,-

We upper bound the right hand side via

1645 — 6clley < T4y — T — Plles < 20lplles/ v < 222/7 0.

For the next result let P = K~ — (JJT)~!. Using || P|| < 3, we have that

VYT (JIT) by < \JyT (K~ — Py < yTK -y + VyTPy < VyTK 1y + llylle, /TP

The next result shows a uniform upper bound on the ideal solutions €92 which solve the feature map
regression with Jacobian matrix J.

Lemma 19 Fix M = 120B*\;*T'(n2 + ”v)Hnyz Let & be a ¢-approximate solution of (TVO) with

linearized Jacobian feature map with labels y. Set Ka = Ja JT and suppose K = Xoln, /2 for all
a € A withsupyea ||ele, < 1. Recall the definition (H.5). With probability at least 1 — 2e™7, we have

that
. TR,! hlog(M
Ll (£T) < min 2,/coB| L=2Y 1 ¢, | hlogM)+7 5 (H.8)
acA nt ny

where fg is the §-approximate solution of (TVO) with the feature map regression problem (H.3).

Proof We need to plug in the right quantities into Theorem 2. First note that we assumed ||a|l, = R = 1.

First observe that neural feature maps o) ““(m) are bounded by /coB in Euclidean norm thus we substitute
B + ¢oB2. Secondly, the Jacobian feature matrix Jq, obeys (4.3) with Ag/2. Thus we also set Ay <> \p/2,
I' = 1 and R = 1. Finally, apply the change of variable to normalized Ay via A\g = Ag/co. Thus we exactly
find (H.8) for M = 120B*\;*T'(nZ + nd)||ylle,- ]

Lemma 20 Let W, € R¥*?. Suppose o is a function with second derivative bounded by B > 0 in absolute
value. Let co, Co > 0 be scalars. Suppose W € RF*? is such that sup; << llwi — woille, < \/Co/k and

lv|le,, < +/co/k. Define neural net fu,(x) = vTU(Wa:) and its linearization
flin(w) = 'UT(O'/(W()CC) O) (W — Wo):li)

Suppose input space X is subset of unit Euclidean ball and E o.p[|vT oo (Wox)|], nlv S vl oa(Woz;)| <
eo. Let 0 be a T-Lipschitz loss. Then for L € {L, EV}

(co . YACB
o+ Yotob

[£(fun) — L(fun)] < T(e )
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Proof Let fun(z) = fun(x) — vTo(Whz). Via Taylor series expansion, for any ||z|s, < 1
|fnn( fhn | = Z |'Uz 'wo i (wz - 'wO,i)TiE)2|

= Z V]l Bllw: — wogll?, |7,
i=1

k
Vo, [Co
< Buwuégﬁq/;?

_ VaColzlE,B _ yaCoB
< NG <

Since loss function is I' Lipschitz, we obtain

J@CoB
)

We conclude via triangle inequality after using the condition of small L prediction at Wy (which bounds

|fnn_fnn‘)' |

\L(fan) — L£(fiin)] < T(e0

I Gradient Descent Analysis for Shallow Networks

This section only focuses on the training dataset 7. Thus, to keep notation more concise, throughout we
suppose 7 is a dataset with n samples (i.e. we set nt < n). Following Section 4.2, starting at a random

o iid. - .
initialization Wy "~5" A/ (0, 1), we optimize the training loss

Er(W) = 53 (0~ fanalee W)Y = Ly — fa(W)I2,

i=1

via gradient updates W, = W, — nVZT(WT) for T iterations. Here vy is the concatenated label vector
and fo (W) is the prediction vector with entries fun o(;, W). We will drop the subscript a as the a-
dependence is clear from context. Consider the mixture of activation functions given by

h
z) = Z o0 (2)
r=1

Throughout this section we assume a € A. Assume A is subset of the unit ¢; ball i.e. all &« € A obeys
|la]le, < 1. Next we define the neural tangent kernel.

Definition 4 (Neural tangent kernel and minimum eigenvalue) Ler w € R? be a random vector with a
N (0, 1) distribution. Also consider a set of n input data points 1,2, ..., T, € RY aggregated into the
rows of a data matrix X € R"*%, Associated to a network x — v’ 0o (Wx) and the input data matrix X
we define the neural tangent kernel matrix as

K,=E [Ta(Wo) T2 (Wo)]

Wo' BN (0,1)
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We also define the eigenvalue \o,(X) based on Ko (X) as
Aa(X) := Amin (Ka(X)).
Assumption 10 We assume

in Aa(X) > (X
min Aq(X) 2 Ao(X)

Additionally define the invariant initialization-scale lower bound

Mo(X) = AO(f)
[vlz,

and state the bounds in terms of this quantity.

Theorem 11 Consider a data set of input/label pairs x; € R% and y; € R fori = 1,2, ...,n aggregated as
rows/entries of a data matrix X € R™*? and a label vector y € R™. Without loss of generality we assume
the dataset is normalized so that ||x;||,, = 1. Also consider a one-hidden layer neural network with k hidden
units and one output of the form x +— vl oo (Wx) with W € RE* and v € RF the input-to-hidden and
hidden-to-output weights. We assume the activations o1, 0, ...,op with h < n has bounded derivatives

0’.(,2)‘

ie.

O'I-I(Z)‘ < B for all z. Also let \o(X) denote the minimum eigenvalue of the neural

net covariance per Assumption 10. Furthermore, we fix v by setting half of the entries of v € RF to A

Vi
the other half t f% with \/co obeying \/co < W and train only over W. Starting from an initial

and

weight matrix Wy selected at random with i.i.d. N'(0, 1) entries, we run Gradient Descent (GD) updates of

the form W1 = — nVL(W.) with step size n < m. Then, as long as, for some v < 1 and
and C > 0a ﬁxed numerlcal constant, we have
1 Bn| X ||®
k> C—=5—(logn)B* |\X||16h+CLJ (1.1)
YIAG(X) c07?Ag

then there is an event of probability at least 1 — % —4e~ % such that on this event, for all activation choices
a € A, all GD iterates obey

Xo(X)\"
15w~ wl, <an (192200 12)
16/n
W, — Wollp <— 2
coro(X)
32B|| X ||

||WT - WOHZ,OO S \/57

\/Ex/C—Xo(X)

S B ( incOA()(X))t _m 13)

w- -
coro(X)

°°HF 2\/_BHXH

Furthermore, on the same event, we also have:
e (a) for any two distributions Dy and Dy over the unit Euclidean ball of R?

Exrp, [vl 00 (Woz)] < /o <1 + 34/log n) B and Egup,[vToe (Wox)] < /oo (1 + 34/log n) B
(L.4)
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e (b) and prediction at initialization obeys

loa (XW) 0], < Ve (1+3yiogn) B, (L)
e (c) and the following bound on the Jacobian matrix

| Ta(Wo)Ta (W) — Ko(X)|| < €5 1.6

v VCN(X)
holds for g = =15 %.

I.1 Proof of Theorem 11

In order to prove this result we first need to state some auxiliary lemmas that characterize various properties
of the Jacobian matrix. The first two concern the uniform concentration of the Jacobian matrix and uniform
bound on the minimum eigenvalue at initialization and will be proven later on in this section.

Lemma 21 (Jacobian Concentration) Consider a one-hidden layer neural network model of the form x

v oo (W) where the activations o1, 0, . . ., oy have bounded second derivatives obeying ‘0;-’ (z)‘ < B.
Also assume we have n data points 1, s, . .., T, € R with unit euclidean norm (Hxi”zg = 1). Then, as
long as
1 C
> —(logn)B* | X || h,
||'U||e4 €0

the Jacobian matrix at a random point Wy € R¥*? with i.i.d. N'(0, 1) entries obeys
| Ta(W0)Tay (Wo) — Ka(X)|| < &
holds simultaneously for all o« € A with probability at least 1 — 4e~ 0",

Lemma 22 (Minimum eigenvalue of the Jacobian at initialization) Consider a one-hidden layer neural
network model of the form x — vlog (W ) where the activations o1, 02, . . . , op, have bounded derivatives

obeying 0’;(2)‘ < B. Also assume we have n data points T, o, . .., x, € R with unit euclidean norm

(llzill,, = 1). Then, as long as

1vlle, > SOhlog(nk)i‘lXH B
lvll,, — Va(X)

the Jacobian matrix at a random point Wy € R¥*? with i.i.d. N'(0, 1) entries obeys

COX\O(X)v

N =

acA

with probability at least 1 — 7%3

The next three lemmas are immediate consequences of similar results in [61] (specifically Lemmas 5.7, 5.8,
6.12 respectively) and we therefore state them without proof.
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Lemma 23 (Spectral norm of the Jacobian) Consider a one-hidden layer neural network model of the
/

g j(z)‘ <

B. Also assume we have n data points x1,xa, ..., T, € RY. Then the Jacobian matrix with respect to the

input-to-hidden weights obeys

form x — v o (W) where the activations 01,03, . .. ,0), have bounded derivatives obeying

max | Ta(W) < VEB o], |1X]].

Lemma 24 (Jacobian Lipschitzness) Consider a one-hidden layer neural network model of the form x —
ol(z)| <

M. Also assume we have n data points x1, T, . .., %, € R with unit euclidean norm (llzill,, = 1). Then

v 0o (Wx) where the activations o1, 03, . . ., o), have bounded second order derivatives obeying

the Jacobian mapping with respect to the input-to-hidden weights obeys

max HJC,(VT/) - ja(W)H < MJvll, Xl HVT/ - WHF forall W,W e R¥¥.

ac o

Lemma 25 (Upper bound on initial prediction) Consider a one-hidden layer neural network model of the

ai(z)] <
f <

B and h < n. Also assume we have n data points x1, T, . .., , € R? with unit euclidean norm (||x; e, =

form x — vlog (W x) where the activations 01,09, ... ,0y have bounded derivatives obeying

1) aggregated as rows of a matrix X € R™*? and the corresponding labels given by y € R". Furthermore,
assume we set half of the entries of v € R¥ 1o % and the other half to 7%‘ Then for W € RF*? with
ii.d. N(0,1) entries

Haa (XWT) qub < avn (1 + 3\/logn) B,

holds with probability at least 1 — % Additionally, let D be any distribution supported over the unit

Euclidean ball. With probability at least 1 — Elg, we have that

Egop [0 0a(Wa)| < /o (1 + 3\/@) B.
Proof By the triangular inequality we have
loa (XWH) v, < e, max|lo; (XWT) o],
= max [lo; (XWT) 0|,

The result holds by applying the union bound to Lemma 6.12 of [61] with § = 3+/logn.
For the second result, observe that v’ o4 (W) is a \/coB Lipschitz function of W' via

W o (Wa) o7 o (We)| < [ollello; (W) — o) (Wa)s, 17
< VaB|(W — Wzl < VaB. (18)

This means that the expectation function f(W) = Egp |vT 0o(Wx)| is \/coB Lipschitz as well. Finally,
let us find its expectation over W N (0,1) via

ELf(W)] = E[lv" oa(Wa)|] = S Egonon[v" 05(9)l] < BEguno.nllvgll < vVaoB.  (19)
YRS
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Here, the final line follows from Gaussian contraction inequality. Overall, the Lipschitz tail bound yields
P(f(W) > (1 + 3y/Iogn)\/coB) < n=3. ]

With these auxiliary lemmas in place we now state a more general version of the main theorem proven later
on in this section.

Theorem 12 (Meta theorem) Consider a data set of input/label pairs x; € R? and y; € R for i =
1,2,...,n aggregated as rows/entries of a data matrix X € R™ % and a label vector y € R™. Without
loss of generality we assume the dataset is normalized so that |z;||,, = 1. Also consider a one-hidden
layer neural network with k hidden units and one output of the form x + v oo (W) with W € Rk xd
and v € RF the input-to-hidden and hidden-to-output weights. We assume the activations ,os, . .., oy, has

a;(z)‘ < a;-’(z)‘ < M for all z. Also let \g(X) denote the normalized
minimum eigenvalue of the neural net covariance per Assumption 10. Furthermore, we fix v and train only

over W. Starting from an initial weight matrix Wy selected at random with i.i.d. N'(0, 1) entries we run
Gradient Descent (GD) updates of the form W1 = — nVL(W,) with step size n <

bounded derivatives i.e.

S S
2kB’QHvHZX,HXIIQ'
Then, as long as

2
VAL {
[ole. = Ma(X)

1V1le, >/30h log
vll,..

lollz, 9216
kL5 |olf T

1f(Wo) = ylle,

\/ )

MWMW)W%”H

°(X)

1.10)

and ¢ > 0 a fixed numerical constant, then with probability at least 1 — # — 471" for all activation
choices o € A, all GD iterates obey

o], Ao(X) )
IF(W:) = yllE, < <1n% 1F(Wo) = yllz, (L11)
8
W, — Wyl < ——||f(W0) —Ylle, (L.12)
][, v/ Ao(X)
16B||v||¢ || X
1We — Wollaoo < SO U=l R i) (L13)
[vll7, Ao(X)
Furthermore, assume
max || Ja(Wo)Ta (Wo) — Ka(X)|| < & (I.14)
holds with eg < 5—'1L2k1 5':‘1;‘}‘@32 B(;i;ug for some v < 1. Then
Wi W, <3 il 2 (1 Talol Ro0) e )
F~AVEB ||, | X] ? 4 ’ [vll,, VAo (X)

holds with probability at least 1 — n—lg, — 471 on the same event.
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Finalizing the Proof of Theorem 11

Proof We now demonstrate how Theorem 11 follows from the meta theorem above. To this aim first note
Ci

that ||v||,, = v/co and ||v||,_ = % We also note that the choice of (I.1) (specifically the second summand

involving cg) implies (I.10) so that the above meta theorem applies (with probability at least 1 — % —4e710hy,
We now proceed by proving the various identities.

Proof of (1.5):
This follows immediately from Lemma 25.
Proof of (1.6):
)2
Note that by Lemma 21 equation (I.5) holds with £g = 5%% with probability at least 1 — 4e~ 19" as

long as we have

L >
4 -
o7,

2
(logn)B* | X|*h & kzcg—g(logn)34||xu4h
0

Sl Q

1
s k> CW(logn)Bw 1 X6 h

Y 0( )

This is true as the latter is the same as (I.1).
Proofs of (1.2) and (1.3):
F . i 1 L v Ve (X) .

or this statement, the critical ingredient is the fact that eg < =5 “BIX]T which follows from the proof
of (1.6) (right above). With this in mind, the critical condition (I.14) holds and (I.15) is applicable. Thus,
the proof of inequalities in (I.2) and (I.3) follow from their counter parts in Theorem 12 (more specifically
equations (I.11), (I.12), (I.13), and (I.15)) by substituting the choice of v and then noting that by Lemma 25
and the upper bound on ,/cq

1F(Wo) = ylly, = [|oa (XWT) v —yll,, < lyll, + Veovn (1+3/logn) B < 2v/n

holds with probability at least 1 — #

Proof of (1.4):

This result is also a direct application of the second statement of Lemma 25 (i.e. bounding the expected
prediction over a distribution). Since we have two distributions (D1, D3), the probability of success is
1—2/n3.

Final step: Union bounding above results in an additional n% probability of error in the final statement to
obtain an overall probability of success of 1 — % — 4100, [ |

1.2 Proof of Meta Theorem (Theorem 12)

Proof of (I.11) and (1.12):
The proof of equations (I.11) and (I.12) follow from Corollary 6.11 [61] by replacing the following quantities
in Corollary 6.11 [61] using the auxiliary Lemmas 22, 23, and 24.

1 —
a:= vl yA(X), B:= VEB vl X, L=M |, |X]
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Proof of (I.13):
To prove this inequality note that

||mat (72 (W)r) (v)on (WXT) diag(r) X |2,

< [[olle. max log, (wg X7) diag(r) X |e,

X1 max log, (wi XT) diag(r) e,

< Bllllec [ X7 [les

<|lvlle

[e%) ‘

Furthermore, by the triangular inequality we have

T—1

IWr = Wollzeo < D I1Witt = Wiz
t=0

—772 Imat (T (We)re)||2,00

T—1
<nBllvlle 1 XD Irele,
t=0

-1 2 3
[vll7, Ao(X) \ *
<nBlol X |3 <1 A R T O

t=0
nBllvle. |1 X 1F(Wo) — wlle
= = 2
- \/1 _ plelEenio)
16B||v loo X .
0Bl I XN )y,

5
[v]l5, Ao(X)
. . . 1 2
where in the last inequality we used the fact that for 0 < x < 1 we have Vi <=z
Proof of (I.15):

To prove this inequality we utilize Theorem 4 of [32] with o := V2a, B:=0,e0:=2e0 = yg—i, €:= 7%‘—;.
Assumption 1 of this theorem is satisfied by the definition of v and 5. Also using (I.14) Assumption 2 of
[32] holds with 2gg < & Bg Also in this case the value of R in this theorem becomes equal to

2.5 45
mafin, + i, < 2
rol|, + 5 Iroll,, < 5 7ol

Furthermore, note that as long as

menr oIl 1XU0L ol
AGP(X) T kLS ol
we have

’}/CY

9roll,, L < 53 .
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which implies that

4.5 ’ya4 €
RL < — ]|r0H€2 < 2ﬁ3 =3

so that Assumption 3 of this theorem is also satisfied. Thus, equation (37) of [32] implies
|wi - W], < 35 ol
which together with the triangular inequality implies

L e O A S L
F F 46 2 F

Define r, = J vect(ﬁi) — y. All that remains to complete the proof is to bound the last term. To this aim
consider the singular value decomposition of J = U X JVJT and note that

vect(Wt) - Vect =nJT Z T

=?7JT Z $7'+t
7=0
=nd” (1= ndJ")' Y 7
7=0

oo
=nVi2; (I - 7722J)t Uy ZFT
7=0

o0
=nVy (I -n=5) S,UF Y 7
7=0

o0
=0V (I -n33)' Vivys,ul Y
7=0

—nVy (I —p=3) viJT Z 7
=V (I-n%3)' V] (vect(Wo) - vect(ﬁ?oo)) .
Now using the fact that vect(W) — vect(Wa ) belongs to span(JT) we conclude that
N ot N
[ = W], < (0= na®)" [0 - e |,

< (1 — 477052)t _”rzollfz

=2 (1 Sz, Ro)) "L
o (1= Lo ol
el ol V3ol%)

Plugging the latter into (I.16) completes this proof.
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1.3 Proofs for Jacobian concentration (Proof of Lemma 21)

Proof To lower bound the minimum eigenvalue of J,(W)) universally for all «, we focus on lower
bounding the minimum eigenvalue of Jo, (W) Ja(Wo)T for a fixed .. To this aim we use the identity

Ta(W)IL (W) = (o, (XWT) diag (v) diag (v) o, (WXT)) 0 (XXT)

k

= (Z vioy (Xwy) oy, (XW)T) o (XX7),
(=1

mentioned earlier to conclude that

E [Ja(Wo)Ta(Wo)"] =]}, ([EwNN(O,Id) [0n (Xw) oy, (X’w)TD ©(XXT),
= Ko (X). (1.17)
Now define
Si(a) = [v} (U; (Xwy) ol (Xwg)T> ® (XXT) - Ka(X)]
and note that E[S] = 0. Thus,

Ta(Wo)Ta (W) — Ka(X) =

NE

[v7 (U; (Xwy) ol (X'wg)T) ®(XXT) - Ko (X)]
¢

[
—

Si(a)

-

o~
Il
—

To show that the spectral norm is small

£

e will use the matrix Hoeffding inequality. Next note that
Se(er) <u? (ol (Xuwg) oy (Xw))") © (X XT)
=v;diag (o), (Xwy)) X X diag (o, (Xwy))
<viB2XXT
Similarly, Sy(a) = —ve?BzX XT. Thus, by matrix Hoeffding inequality we have

k
[P{ > Si(a)
/=1
Thus, for a fixed @ we have
k
[P{ > Sy(a)
/=1

Next note that for fixed o« and & we have

Sg(a) — Sg(&)

k
> B xxTxXxT

t2
> t} < 2ne 82 where o? =
=1

2
T BYv? 1x 1%
I \\44H I )

1.18)

t2
> t} < 2ne 82 < 2ne

= v} [ (v (Xwe) oty (Xwe)" + oy (Xwy) o (Xwe) + 0 (Xwe) oly_g (Xw)" ) © (XXT) ]
— v} E [ (o (Xwe) o g (Xwe)" + o5 (Xwe) oy (Xwy)" + 0 (Xwe) oy (Xw)") © (XXT) ]

=< 8v;B? |a — &l | X|* I,
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Thus, for fixed o and & we have

1

Thus in turn implies that for fixed o and & we have
2

~ 2
<cy/lognB®|la — all,, [v]7, I1X]|

Thus using Talagrand’s comparison inequality (Corollary 8.6.2 of [67] and Exercise ) for a fixed otp € A
and all o« € A we have

2
t
- Aa—all2 4 4
Zt} P AT AR

K
> Sile) = Su(@)
=1

k

Z.S'a

(=1

(@) = Se(a)

P2

k

> Si(e)

(=1

sup
acA

< c/logn B2, | X|? (\/E + 2u)

k
D Sele
=1

holds with probability at least 1 — 2e~%, Plugging in © = v/ 10h we arrive at

k
> Si(ax)
=1

holds with probability at least 1 — 219", Thus, using the triangular inequality combined with (I.18) we
have

k

> Si(a)

=1

< ey/lognB?|v|2, | X|* Vh

sup
acA

k k
sup || Se(@)|| <ev/lognB?[|v|7, [IX[1* VE + || Se(ax)
acA ||y /=1
<2¢y/lognB?|[v|f?, | X ||* VA
holds with probability at least 1 — 4e~ 10", [ |

I.4 Proof for minimum eigenvalue of Jacobian at initialization (Proof of Lemma 22)

To lower bound the minimum eigenvalue of J,(W)) universally for all o, we focus on lower bounding the
minimum eigenvalue of Jn (Wo)Ja(Wo)T for a fixed . To this aim we use the identity

Ta(W)ITEW) = (o, (XWT) diag (v) diag (v) o, (WXT)) 0 (X XT)

(o7

k
= ( viol, (Xwy) o, (Xwy) ) ®(xx7),
=1
mentioned earlier to conclude that
E [Ta(Wo)Ta(Wo)T] =101, (Euwnnvory) o6 (Xw) o (Xw)"]) © (XXT)
=Ko (X). (I.19)
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Thus

Amin ([E [ja(WO)ja(WO)T]) > )\a(X) (120)

To relate the minimum eigenvalue of the expectation to that of Jo(Wo)JTa(Wy)T we utilize the matrix
Chernoff identity stated below.

Theorem 13 (Matrix Chernoff) Consider a finite sequence Ay € R™ " of independent, random, Hermi-
tian matrices with common dimension n. Assume that 0 < Ay X RI for{ =1,2,... k. Then

k k Amin (lezl [E[Ae])
_5 el

Pq Amin Ay < (1 -8 < E[A ]> } <n 6—7

{ (; E) 2 ElA: ((1 —5) 6>>

ford €10,1).

We shall apply this theorem with A, := Jo(we) L (w;) = vidiag(ol, (Xwe)) X X Tdiag(oL, (X wy)). To
this aim note that

vidiag(oh (X w;)) X X "diag(of,(Xwe)) < B ol7_ | X|* 1,

so that we can use Chernoff Matrix with R = B> ||’U||?OO | X||? to conclude that

[P{Am-m (Ta(Wo)TL (W) < (1 = 0)Amin (E [Ta(Wo)TL (Wo)]) }

Amin ( [T (W) 7L Wi )

- e™d BZw[7_ X
="\a=5)0d

Thus using (1.20) in the above with 6 = % we have

P{Amm (Ta (W) TL (W) < = [[o]12, Ao (X) } <P{Amm (Ta(Wo)TE (W) < 5 [0l At (X) }

2 <
1 H”HZQ)\Q(X)

10 g2 2 2

<n-e CEIMIEIXI

) <
L w3, %0(0)
10 B2012 1x12
10 BZ]w)7_ [ X]|

<n-e

This proves the result for a fixed a.. Now let AV, be an ¢, /1 ball cover of A with e := 2‘?\/_% ”H:NZQ o (X).
Then using the union bound we conclude that for all « € N b

[l

Omin (ja(WO)) > \/§

Xo(X)
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holds with probability at least

Ly @I, Xe(x) N I0]12, 30(X)

1082012 X2 RPN arEa

1—|Nzn-e Ll S P <_) e ol 11
9

6BvEml|vll, L IwIE, Ro(x)
2logn+hl o )1 "D
1 Zlosnt °g<w§1>vg2\/Ao(X> 10 B2 7_ X2

=1——e
n
>1 =

where the last line holds as long as

ol vVAX) Y 6BvEn [[v]|,_ ))
< BTl ) = 10 <4lg +hlg<<¢51)uvng2m<x>

which in turn holds as long as

Wl V) g /g 2 30 X1 - ma (/o8 /A TogR) )

B,
Next, we focus on the deviation with respect to the o parameter
Ta (Wo) — Ja (Wo) = (diag(v) (o5 (XWy ) —0g (XW())) * X.
Now using the fact that (A x B)(A x B)T = (AA”) ® (BB”) we conclude that
(T (Wo) = Ja (W0)) (Ja (Wo) = Ja (Wo))"
_ ((g;I (XWT) — ol (XWT)) diag(v)diag(v) (o (XWT) — o (XWOT))T)
®(xx7).

To continue further we use the fact that for to PSD matrices A and B we have A\pax (A © B) < (max; Aj;) Amax(B)

combined with (I.21) to conclude that
. 2
|T& (W) — Ja (Wo)II? < I X1 (mgx |diag(v) (o5 (Wozs) — o (Woz,) !m)

2 2 2
< ol X (s o (Wa) — ot (W),
h 2
2 2 ~
— ol 117 ( max |3 (@ — ) o] (Wo)
j:1 lo
2 2 2 ~ 2
< ol 1XIP (x| (Wa) |, ) 1 -
2 2 2~ 2
<k ol 1P & -,
2 2 |1~ 2
<k ol XI5 1 - ol

2 ~ 2
=knB? [[vl?_ l& — e .
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Thus,
1Ta (Wo) — Ta (Wo)|| < VEnB vl [lo — ],

By the definition of the N cover for any ov € A there exists a a € N obeying || — |, < . Thus,
using the above deviation inequality for any oo € A we have

omin (Ja(W0)) >0min (Ta(Wo)) — VknB ||'U||£(,C o — a”él
1 —
Zﬁ 1ol /A0 (X) = VEnB vl

1 = V2 -1 lvll, /5
=7 [vl4, A/ Ao(X) — VknB [vll,., WWV Ao(X)

=5 ol y/3o(X)

completing the proof.

J Proof of Theorem 3

The result follows by plugging the proper quantities in Theorem 10. Due to the output-layer scaling cg, Ao
grows proportional to the initialization c¢g. Thus to state a bound invariant of the initialization, we define
the invariant lower bound \g = )¢ /co and state the bounds in terms of this quantity. We remark that this is
consistent with the literature on neural tangent kernel analysis. Specifically, we show that, in Theorem 10,
one can choose

BwhngZ logng

* koo — s

2 B
o Th x B;\ZT log ( \/T,L_T)

v X0

e po= 4n7_—3 + 4100,

2N
Binr(1+3y/logny)?

® ¢y X

to conclude with the proof of Theorem 3. The verification of this choice will be accomplished via Theo-
rem 11. The following is a restatement (more precise version) of Theorem 3.

Theorem 14 (Neural activation search) Suppose input features are normalized as ||x||¢, = 1 and labels
take values in {—1, 1}. Pick A to be a subset of the unit {1 ball. Suppose Assumption 3 holds for 6y <> W)
and the candidate activations have first two derivatives (|o;|,|0]|) upper bounded by B > 0. Furthermore,

fix v with half \/co/k and half —+/co/k entries for cy B4n7-(1—5|—23/:?logn7-)2 (see supplementary). Also

define the initialization-invariant lower bound Ao = \o/co. Finally, assume the network width obeys

k 2 e\ 8B hnf-log(ny),

for a tolerance level € > 0 and the size of the validation data obeys ny 2 (5(]1) Following the bilevel
optimization scheme for the shallow activation search with learning rate n = m choice and number

of iterations obeying T' 2 E;%z log (B\/F), the misclassification bound (0-1 loss)

eV 2o
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Lo O(h) +t
ny ny

TK-!
WY Za ¥ Yets, a.1)

£971(f7) < min 2B
(f&) < min
holds with probability at least 1 — 4(e”' + n7_-3 + e_mh) (over the randomness in Wy, T,V). Here, y =

W1 Y2 ... Yns|. Finally, on the same event, for all o« € A, training classification error obeys /32-_1( f;— ) <
E.

J.1 Finalizing the proof by verifying the £, 7}, ¢y, po choices

The main strategy for the proof is combining Theorem 11 with Theorem 10. We ensure that all five sum-

mands in the error 3(gg + \/%BCO/\/EJr VcoBe1+2Bea// Xo) + By/coes3 in Theorem 10 is less or equal
to 1/5 of the tolerance error €. To achieve this goal, we set

X VR "
5 /nT 30B2/n7(1 +3lognr)”

in this section and prove the result (that these choices of ko, g, co, po are valid).
Step 0: Verifying &k > k satisfies conditions. First, recall from Theorem 11 that we need to verify

16 16 8 8
g > Clognn) B X[ h  n7BYX]|

— = J.2
- AN coV2Ag 02

Observe that the second summand is bounded as follows (plugging in our cy choice)

nBYX|* nrBY|X|* Binr(l+3yiogny)?
cofyz)\g ’yQAg 2o
WZB) X [ log ny
x 2220 :
0

To proceed, by plugging in the value of v (and using B>ns > \o) we find that & > kg implies (J.2) via the
following list of implications

_ B'Z||X||"* hlog ny N n3-B?|| X||®log ny

k = _
e*AS 4§
L > 316n§,h_ logny  n5B'? logny
~ eiNd e4NS
I Bl6n§rh log ny
X ed)d
0
k > k.

Step 1: Verifying the choice of py and obtaining the values of cg, 1, Cy, €2, 3 for the itemized list of
Theorem 10. We will substitute the bounds (1.3), (I.4), (1.5), (I.6) from Theorem 11 in the itemized assump-
tions of Theorem 10. Thus, setting py = 4n7r3 + 410" the following conditions hold with probability

1-— nig, — 410 (which is the success probability of Theorem 11)
T

L. Egnp[[vo0(Woz)|], % > wloa(Woz;)| < eo, where g9 = (/coB(1 + 3y/lognr)
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2. T’th iterate O obeys

= ~ 1 t N
||WT*Woo||F = ||0T*000||€ <eg = \/TLT+4< nCQ)\o(X)> ———————
? 2\/_BHXH coAo(X)

3. Rows are bounded via | W7 — Wy|2.00 < \/Co/k and Cp = 322B%| X ||

c)\2

4. At initialization, the network prediction is at most 3 i.e. ||pa|le, < €2 = \/co/nTB(1 + 3/lognr)

5. Initial Jacobians obey J“c;]g - S\OInT /2.

2,232

6. Initial Jacobians obey ||(JoJL) ! — K| < e3 = 5122e0 B8 X[

Step 1.1: Bounding ¢; and verifying the choice of 7j. In the second itemized condition of Step 1, we
apply log on the second summand,

t
log (4 <1 - incoj\o(X)) ﬂ)) = tlog (1 - incojxo(X)> + log 4@

coro(X coAo(X)
11 . T
:tlog<1——70)\ X>—|—log47
VT
< tlog <1— > + log(4 —)
8B2 NZSY

5\0 ) /T
<t|-— + log(4 — ).
< SBQHT ( \V Co)\o)

Here, we hope to ensure thate; < 5 v/nT, Thus, we can bound t as following.

b
Veo Bl X]]

A N
t(~agmey ) +lomt < g(sz V")

X £ < log(2 Y0
8BZny ) ~ 8 B X]||
8B? nT |, (1203,/—717)

Vo

t> —
S

Thus, as long as’

16 B2 120B./nr B2 B+v/nt
T>Tp= 2 T jog(Z22V Ty o ”71 o

Ao v Ao v/
‘We have

i
<H5——\/nr.
VaB | X|
Step 1.2: Applying ¢, €1, Cy, €2, €3 to the error in Theorem 10. Considering Theorem 10, we have the
following overall error

error = 3(go + /coBCo/Vk + \/eoBe1 + 2Bea/ /o) + /o B /23, 1.3)

SHere, we choose the coefficient of Tj to be 16 rather than 8 which will help in (J.5).
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We will now show the values of kg, cg, Tp ensure that error < €. Specifically, plugging in the value of
€0, €1, Co, €2, €3 to (J.3), we have

error <3v/coB(1 + 3/lognr) + 3 32°B° | X 15— vnr
VarVE 1X|
GﬁBQW(l + 3y/log ) n V27X
Vo 512B2 || X||*
Step 2: Verifying c( and - satisfies conditions. First, plugging in ¢y and £ > k into the second summand
of (J.4), we find

J.4)

BYIX|® _ BX|* B /A7l +3VIogny) &2\ SN
= >~ N — s ce s ce
‘/Co)\%\/g /\(2) eV Ao BSn%_ thgnT B?’ng-/Q\/E

where ¢ > 0 can be made arbitrarily small by enlarging the constant multiplier of the k¢ lower bound on the

width k.
i el X _ £/ Ao
Setting v = o and ¢y = (3OBQW(1+3\/IognT)
c < (15-322)71), we find that each term in (J.4) is less to or equal than £

€VX 2 \/565\0
err0r§ 1OBW+3 32 (‘€+5+5+W

)2 in (J.4) and using the ce bound above (set

error < 5— =e.
5

Combine this with Theorem 10, fix M = 120B*A7°T'(n%+n3,)||y|l¢,. with probability 1 — 4e~" — - — 4¢~10%,
T
d-approximate NAS output obeys

[yTKg! | hlog(M) +t
L(fL) < min 2\/cB ¥Y=2a¥, ¢ M—Ferror%—é,
acA ny ny

with error < e. This concludes the proof of the main claim (J.1).

Finally, to conclude with the claim on the training risk satisfying ﬁg-_l ( fg ) < e. Here, we will employ
the first statement (I.2) of Theorem 11. For all architectures «, using the fact that the least-squares dominate
the 0-1 loss, for 7' > Tp, using BQnT > Ao, We can write

3 T
A0 1 coro(X
D) < 21w - o, <4 (1220 )
Ao(X
< dexp( 1 20X
1 coro 16B%nr 1208, /_nT
< dexp(— — 7 Jog 15
120B./nT
< dexp(— et log( ek

HXH2

4w VA
= 1203,/—n7

evXo
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