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Abstract

Diffusion Monte Carlo provides an effective and efficient approach for calculating
ground sate properties of molecular systems based on potential energy surfaces. The
approach has been shown to require increasingly large ensembles when intra- and in-
termolecular vibrations are weakly coupled. We recently proposed a guided variant of
diffusion Monte Carlo to address these challenges for water clusters [J. Phys. Chem.
A 2019, 123, 8063-8070]. In the present study, we extend this approach and apply it
to more strongly bound molecular ions, specifically CH and H (H20),,—1_4. For the
protonated water systems, we show that the guided DMC approach that was devel-
oped for studies of (H20),, can be used to describe the OH stretches and HOH bends in
the solvating water molecules, as well as the free OH stretches in the hydronium core.
For the hydrogen bonded OH stretches in the H3OT core of HY(H20),, and the CH
stretches in CHZ, we develop adaptive guiding functions based on the instantaneous
structure of the ion of interest. Using these guiding functions, we demonstrate that
we are able to obtain converged zero-point energies and ground state wave functions
using ensemble sizes that are as small as 10% the size that is needed to obtain similar

accuracy from unguided calculations.



Introduction

Developing and implementing general approaches for solving the Schrodinger equation for
vibrational systems is a long-standing challenge in theoretical spectroscopy. For molecules
and ions where the vibrations are weakly coupled and the wave functions for the states of
interest are localized in a single minimum in the potential energy surface, methods based on a
harmonic treatment can provide a good starting point for more sophisticated methods. These
include vibrational perturbation theory,!? or vibrational self-consistent field (VSCF)-based

4 and extensions built off of these approaches.’? Such approaches have been

approaches,
extended to studies of molecular clusters, for example (Hy0O),, in which the Hamiltonian
based on the intramolecular degrees of freedom is solved for a fixed cluster geometry.® The
situation becomes more challenging when the molecular system of interest displays large
amplitude vibrations, which allow it to sample multiple minima on the potential surface
even in the vibrational ground state. Additional complications emerge when these large
amplitude vibrations are strongly coupled to other vibrational degrees of freedom.

A method that circumvents many of these challenges is diffusion Monte Carlo (DMC). 12
In this approach, a large ensemble of localized functions, called walkers, is used to provide
a Monte Carlo sampling of the ground state wave function. The coordinates and the rel-
ative weights of the walkers are propagated based on the imaginary-time time-dependent
Schrodinger equation. The long time, equlilibrated ensemble obtained from this propaga-
tion provides a Monte Carlo sampling of the ground state wave function of the system of
interest. The associated zero-point energy is obtained by imposing the requirement that the
amplitude of the wave function does not change during the propagation.

The DMC approach has been used with great success to study a broad range of molecular
systems that would have been very challenging to study by approaches that rely on a basis
set to expand the wave functions.!¥ 6 An example of such a molecule is CHY. The ground
state wave function of this ion has amplitude at the 120 symmetry equivalent minima on

the potential surface as well as near the 180 saddle points that connect these minima.!"!®



At the same time, the harmonic CH stretch frequencies span the range of roughly 2500 to
3300 cm ! at each of the three low-energy stationary point structures.!® This indicates that
the frequency of the CH stretch is sensitive to its environment within the ion. Similarly,
the frequencies of the water-bound OH bonds in protonated water clusters, H" (H50),,, are
sensitive to their environments. This is reflected in the breadth of the features in the vibra-
tional spectrum that are assigned to this motion in various size-selected protonated water
clusters.?’ The structures and frequencies of water molecules that make up a water cluster,
(H20),, also show sensitivities to the structure of the cluster, although the couplings between
the intra- and intermolecular vibrations are weaker in this case compared to the protonated
water clusters.?!

In the case of the neutral water clusters, Mallory and Mandelshtam showed that very
large ensembles of walkers were required to obtain reliable results using standard DMC
approaches. For example, in their study of (H2O)g, they used an ensemble in excess of
105 walkers, run for 8.8 x 10* time steps.?? In DMC simulations the potential energy of
each walker needs to be evaluated at each time step. As potential functions become more
accurate, they often also become more expensive to evaluate. Thus, these requirements of
large ensembles to obtain accurate results make the DMC approach prohibitive, and limits
the size and types of systems that can be studied using DMC.

1223 we concluded that these challenges of

As we explored the origins of this behavior,
applying DMC to studies of neutral water clusters reflected the fact that the shifts in the
frequencies of the OH stretching vibrations with the environment were comparable in size
to the frequencies of the low-frequency vibrations in these clusters. Additionally, when all
degrees of freedom are included in the calculation, the instantaneous equilibrium structure of
the cluster as a function of the intermolecular degrees of freedom is sensitive to the precise
OH bond lengths and HOH angles of the individual water molecules that make up the

cluster. The need for a very large ensemble to converge this calculation reflects difficulties

in sampling both the intermolecular and intramolecular degrees of freedom effectively. An



additional complication arises from the fact that the time step used in the simulation needs
to be chosen based on the shortest vibrational period in the system. At the same time the
simulation needs to be run long enough to sample the motions in the degrees of freedom
that are associated with the low-frequency vibrations. These considerations contributed to
the very large ensemble sizes Mallory and Mandelshtam found they needed to fully sample
the ground state of water clusters.

On the other hand, while the above considerations make these clusters particularly chal-
lenging for DMC calculations, they represent a situation for which an adiabatic separation
of the low- and high-frequency vibrations provide a good zero-order description of the vibra-
tional dynamics.%2* In this approach, rather than focusing on the instantaneous values of the
intramolecular degrees of freedom that are associated with the high frequency vibrations, the
potential that is used to study the intermolecular vibrations is the average of the full poten-
tial over the probability amplitude associated with the wave function that describes the high
frequency vibrations. More specifically, the vibrational energy and wave function associated
with the intramolecular degrees of freedom are obtained using the potential evaluated at
an instantaneous cluster geometry. Taken together, these energies are used to construct an
adiabatic potential where the energy dependence on the intermolecular degrees of freedom
reflects the vibrationally averaged behavior of the high frequency modes rather than their
instantaneous values. Such an approach expressed in this form would be challenging for
studies of such clusters using DMC, as each potential energy evaluation for the intermolecu-
lar degrees of freedom would require averaging the full potential over the ground state wave
function in the intramolecular vibrations. Additionally, such a treatment would render the
results of the calculation at best approximate, removing one of the attractive features of
DMC, e.g. its use for obtaining an exact description of the ground state wave function, and
the associated zero-point energy of the system of interest.

12,23

In a recent pair of studies, we demonstrated that we could achieve a similar separation

of time scales using DMC through the introduction of carefully developed guiding functions,



Ur. We applied the approach to studies of water clusters and demonstrated an order of
magnitude saving in ensemble sizes used for the simulations without a loss of accuracy.
Specifically, for water clusters, these guiding functions were expressed as direct products
of the solutions to one-dimensional cuts through the potential surface of an isolated water
molecule along each of the two OH stretch coordinates along with a harmonic description of
the bend. The introduction of the guiding function in the DMC calculation has the effect of
replacing the potential function with the local energy,

HYp
Fr =
L T,

(1)

Our choice for W, has the effect of reducing the dependence of Ej, on the intramolecular
degrees of freedom compared to that of the full potential function. For example, if the OH
stretch component exactly matched that of one of the OH oscillators of the water molecule
in the cluster then for that cut through the potential, the local energy is constant, and the
average value of the local energy for that coordinate is independent of how the walkers sam-
ple that coordinate. By removing the dependence of the local energy on the high frequency
vibrations, Er, in Eq. 1 resembles an adiabatic potential that only depends on the inter-
molecular coordinates. Further by expressing the trial wave functions as direct products of
one-dimensional wave functions, the evaluation of the Ey, does not have a significant impact
on the overall expense of the DMC calculation. On the other hand, the introduction of Ef,
does not introduce any approximations to the treatment of the ground state wave function.
By removing the dependence of Ey, on the OH bond lengths and HOH bend angles we found
that we could realize substantial savings due to the ability to use much smaller ensemble
sizes.

This approach differs from earlier studies on hydrogen clusters® and HZ %% which used
normal mode descriptions for all of the vibrational degrees of freedom. Since the normal
modes are evaluated for a reference structure, such an approach makes it difficult to describe

systems that have multiple low-energy minima on the potential, as a W, that is based on



one of minima may not provide a good description of the ground state wave function near
other minima. By focusing the trial wave function on only the high frequency vibrations,
we remove this bias from our sampling at the expense that we are only describing a subset
of the degrees of freedom. Such an approach was shown to work quite well for the (HyO)g
cluster in which there are several low-energy minima on the potential.?3

In the present study, we explore whether a similar strategy could be used to study pro-
tonated water clusters and CHZ for which the equilibrium OH or CH bond lengths depend
strongly on the values of the coordinates associated with the low-frequency vibrations. For
example, although the five CH bonds in CHZ are equivalent once zero-point energy is con-
sidered, the equilibrium CH bond lengths in the coordinates of the three lowest energy
stationary points on the potential energy surface range from 1.09 to 1.2 A. This range is
comparable to the width associated with the ground state probability amplitude for a CH
oscillator with a frequency of 3000 cm™!, which is 0.17 A. Likewise the frequency of the
shared proton OH stretch in protonated water clusters (HT(H20),,) can vary between 1000
and 2700 cm~! when n = 2 and 4, respectively. As such, the approach for describing ¥
that proved to be effective for the neutral water clusters will not be as effective for these
motions. Instead, we propose an approach that allows the maximum in the wave function
that describes the CH or OH vibrations to depend on the environment of the CH or OH
oscillator. In the case of the OH stretches in the protonated water systems, the width of the
trial wave function is also allowed to adjust based on the environment. This approach will
be applied to CH; and protonated water clusters to explore the savings that can be achieved
as well as insights into couplings of the intermolecular and intramolecular vibrations in these

ions.



Theory

Diffusion Monte Carlo and our implementation have been described elsewhere.” %11:12:27 Ag

outlined above, in this approach the ground state wave function for the system of interest,
®g, is modeled by an ensemble of Ny localized functions, g(x;x;(7)). The position of each
of the walkers, x;(7), is allowed to evolve as the wave function is propagated in imaginary

time, 7 = it/h, based on the imaginary-time time-dependent Schrédinger equation.

Oo(7+ AT) = exp[—(H — Vier) AT] $o(7)

~ exp|—(V — Viet) A7) exp [-TAT] $o(7) (2)

where

v S wi( V) [ > wilr) ] (3)

> wilT) S wi(r = 0)
is introduced to ensure that the sum of the w; values remains constant throughout the
simulation. In the above expression, w; represents the relative weight of each of the walkers
in the ensemble, « = 0.5/A7, and Ny represents the total number of walkers that make
up the ensemble. With this constraint, the time-averaged value of V.. gives the zero-point
energy of the system of interest once the system has equilibrated. While the action of the
kinetic contribution to the propagator shifts the values of the components x; at each time

step,

wi(T + A7) = exp [=(V(x:(7)) = Viet) A] w;(7) (4)

adjusts the contribution of each walker to the ensemble based on its energy. A branching
step is introduced at each time step in the simulation to ensure that all of the walkers

contribute to the ensemble and that the weights do not localize on a small fraction of the



walkers. In this step, an equal number of walkers with large and small weights is identified.
This set of walkers includes all of the walkers for which w;(7) > 20 or w;(7) < 0.1. The
small-weight walkers are then removed from the ensemble, while each of the large-weight
walkers is duplicated, and each member of the new pair of walkers is given a weight that is
half the value of the weight of the duplicated walker. Once equilibrated, a snapshot of ®¢(7)
at any time 7 provides the ground state wave function.

The above description focuses on what we will refer to as unguided DMC simulations. In
the guided approach, rather than using DMC to obtain ®,, we use the ensemble of walkers

to evaluate f, where!0:28

f=Trd (5)

and V' (x;) in Eq. 3 is replaced by the local energy, Fy, defined in Eq. 1. As mentioned above,
in this study, ¥r is the product of one-dimensional wave functions that are each functions
of one of the high frequency intramolecular coordinates, e.g. an XH bond length or an HOH
angle. These guiding functions will be described in the following section.

In order to obtain projections of the probability amplitude onto coordinates of interest
we use a technique called descendent weighting. %2 Specifically, evaluation of the probability
amplitude, ®2, from f requires multiplication of f by ®,/¥zr. Suhm et al. and Barnett et

al. have shown that

Do (x;(7)) o w; (T + 07)
Ur(xi(7)) w;(T)

(6)

where w; (74 07) represents the weight of the ith walker after it has been propagated forward
by o7.



Numerical details

For the simulations of the protonated water clusters, H*(H50), 234 the potential used to
propagate the walkers was developed by Yu and Bowman.!® The version of this potential
used in this study incorporates an updated three-body term involving the hydronium core
and two water molecules. We needed to use this modified surface because preliminary studies
using the previously reported surface has a low-energy region that corresponds to dissociation
of H* from the water cluster, which was sampled by our continuous weight simulations. The
potential energy surface for HsOT is the one developed by Huang, Carter, and Bowman.?’
The simulations for the protonated water clusters were first equilibrated by running for 5000
time steps with a A7 of 10 a.u. without the use of a guiding function, then the simulations
were run for an additional 20 000 time steps with a A7 of 1 a.u. either with or without a
guiding function. This added equilibration step was introduced to ensure that the potential
energy surface was fully sampled at the beginning of the simulation. Simulations with a A7
of 10 a.u. were run for 20 000 time steps without this added equilibration step. The zero-
point energy was then obtained by time averaging Fi.s over the final 15 000 time steps of the
simulation. Although the simulations that are run using the 10 a.u. time steps are allowed
to propagate for roughly three times as long as the simulations that use the 1 a.u. time step,
we find that the average zero-point energies obtained when we perform the averages over the
same propagation times as are used to analyze the 1 a.u. results agree with those obtained
using longer propagation times, albeit with larger statistical uncertainties.

For the calculations involving CH; and its deuterated analogues, the initial ensemble
of walkers is distributed randomly among the 120 equivalent minima on the potential en-
ergy surface. For these calculations we use the potential of Jin, Braams, and Bowman,
which was fit to electronic energies of CHZ calculated at the CCSD(T)/aug-cc-pVTZ level
of theory/basis.’® Each simulation was run for 20 000 time steps with a A7 of 1 a.u. The
zero-point energy was obtained by time averaging E..s from 5000 time steps to the end of

the simulation. This allows us to ensure that the ensemble is equilibrated before the energies
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are collected.

All of the reported energies are based on five independent simulations, and the uncer-
tainties represent one standard deviation based on these values, while descendant weights
were collected 20 times for 250 time steps over the last 15 000 time steps in order to collect
wave functions for each simulation.

For the guided simulations, the HOH bends were described by harmonic oscillators based
on a harmonic frequency of 1668 cm~! and a G—matrix element?' of 2.338 amu~—' A2 23
The wave functions that describe the CH bonds in CHZ and the OH bonds in the protonated
water clusters were obtained using a discrete variable representation (DVR)?? based on one-
dimensional slices through the potentials of interest. Descriptions of these calculations, and
the resulting wave functions are provided in the Supporting Information. The resulting wave
functions were interpolated using a cubic spline. Calculations of the drift term and local en-
ergy require the first and second derivatives of U7 with respect to the Cartesian coordinates.

These derivatives were evaluated numerically using a three-point finite difference.

Results

H*(H,0),

Protonated water clusters, like neutral water clusters, present challenges for DMC ap-
proaches. The smallest of these ions, H3O™, is covalently bound, and the OH stretch fre-
quencies are 3445 and 3536 cm~!,3 which is about 200 cm™! lower than the OH stretch
frequencies in an isolated water molecule. The next smallest system, HT (H,0),, shows large
amplitude vibrations and large couplings between high and low frequency vibrations. These
stronger couplings result from the very low frequency of the shared proton stretch, ~ 1000
cm ™!, which is strongly coupled to the stretching and bending vibrations of the terminal wa-
ter molecules.?”3% As we add more water molecules, the amplitude of the water-bound OH

stretching vibrations in the hydronium core are intermediate between H3O and H*(H20),,
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and the frequencies of these vibrations in H" (H,0)3 and H*(H,0), are approximately 2100
and 2653 cm ™!, respectively. 343

As we consider which vibrational degrees of freedom to include in the guiding functions,
several options emerge. Given recent successes in applying a similar approach to studies

12.23 one option is to use a direct product of wave functions that

of neutral water clusters,
describe the OH stretch and HOH bends in the terminal water molecules as well as the
vibrations of the OH stretches in the hydronium core that are not bound to water molecules.
For these vibrations, we use the ground state wave functions obtained for an isolated water
molecule.?® Since the water bound OH stretches in the hydronium core of HT (H,0),, display a
broad range of frequencies, it is not likely that the same distribution can be used to describe
the ground state wave function of this oscillator in all of the possible structures of these
systems. As we consider the development of the guiding functions to use for these systems,
we focus on functional forms that are transferable to larger protonated water clusters, and
which do not presume a specific bonding configuration.

We start by considering the convergence behavior of guided and unguided DMC calcu-
lations for H3O%. The results of this analysis are shown in panel A of Figure 1. In all of
the panels in this figure, the red symbols and lines provide the results of unguided DMC
calculations with a time step of 1 a.u., while the gold lines and symbols provide the results
when the guiding functions based on the OH stretches in an isolated water molecule are used
to describe all of the unbound OH stretches in the hydronium core, and the OH stretches
in the solvating water molecules. In addition, the guiding functions include a harmonic de-
scription of the HOH bend in the solvating water molecules. We do not try to describe the
HOH bends in the hydronium core with the guiding functions due to redundancies in these
coordinates in planar geometries. To aid in comparisons, the results based on the guided
DMC calculation using the largest ensemble are extended using a dotted line, and the un-
certainties are shown with shading of the same color. For hydronium, both the guided and

unguided approaches yield results that are in good agreement with the previously reported
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DMC ground state energy of 7453 cm™!, which was obtained using an unguided simulation
with 20 000 walkers and a 1 a.u. time step.®” For the unguided calculations, ensembles larger
than 10 000 walkers yield energies that are well-converged, while for the guided calculations,
1000 walkers are needed to achieve similar accuracy. These results are consistent with our
earlier studies of water clusters. Unlike the study of water clusters, in which the trial wave
function was chosen to provide a good description of the OH stretch in water, here we use
the water-based OH wave function to describe the OH stretches in H3O". We have also per-
formed these calculations using guiding functions based on the ground state wave function
for an OH stretch in H3O" and obtain results that are nearly identical to those reported in
Figure 1A (see Table S1).

A similar approach was applied to calculations of the zero-point energies of H*(H,0),,
for n = 2, 3 and 4, and the results are shown with the red and gold symbols and lines in
panels B, C and D of Figure 1. For n = 2, shown in panel B, the energies obtained using
the guided DMC approach do not change significantly when 500 or 5000 walkers are used,
although the uncertainties of the results decrease as larger ensembles are used. For the
unguided simulations, 10 000 walkers are needed to achieve similar results. These results are
about 20 cm™! lower than previously reported zero-point energies for this ion, 12 393 (5).3®
The difference reflects small differences in the potential surface used here, which is based on
the potential for larger protonated water clusters, developed by Yu and Bowman. !¢ Similar
improvements in performance are found for the clusters with three and four water molecules,
shown with red and gold symbols and lines in panels C and D of Figure 1.

For H*(H50)3, both the guided and unguided DMC calculations give a zero-point energy
of roughly 18 000 cm~! while for the guided simulations this result is achieved with as few as
2000 walkers, at least 20 000 walkers are required to obtain this energy using the unguided
approach. In both cases the uncertainties are uncomfortably large. The energies are within

1

5 cm™" of the converged zero-point energy when 10 000 walkers for the guided calculation

and 100 000 are required to obtain similar accuracy from the unguided calculations.
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In the case of HY (Hy0)4, the guided DMC simulations give a zero-point energy of 23 409
(6) cm~! when 30 000 walkers are used. The unguided simulations give an energy of 23 421
(10) cm™* when 100 000 walkers were propagated using a 1 a.u. time step. This energy is

L above the energy obtained using the guided approach. For comparison, when we

11 em™
perform large unguided simulations with a larger 10 a.u. time step we obtain a zero-point
energy of 23 397 (4) em™!, which is in very good agreement with the guided results. The
convergence behavior for H(H,0), is similar to the behavior we noted for (HyO)s in a
recent study.?® As in that work, significantly larger ensembles are required for the unguided
simulations than for the guided ones. In the case of (H,O)g, 1 000 000 walkers were needed to
obtain accurate zero-point energies using unguided DMC approaches.?*3 In that work, we
also found that the large unguided calculations that employed the 1 a.u. time step appeared
to be converging to an energy that was larger than the value obtained from the guided DMC
calculations.

We can also compare the zero-point energies obtained by the guided DMC approach
to the value obtained when 20 000 walkers are used, in an unguided simulation with a 10
a.u. time step. For H*(Hy0)s, the calculation with this larger time step appears to be
converged at this ensemble size, and nearly identical zero-point energies are obtained when
25 000 or 15 000 walkers are used. In these cases, the calculated energy agrees with the
values obtained from unguided simulations with ensembles of 40 000 or more walkers when
the 1 a.u. time step was used. In the case of HT (H20)4, the DMC simulation with 20 000
walkers and a 10 a.u. time step gives a zero-point energy of 23 441 (8) cm™!, which is 32
cm ™! higher than the value obtained using the guided approach. When we increase the
ensemble size used for the unguided simulation to 75 000 walkers, the agreement between
the energy calculated by this approach is in excellent agreement with the values obtained
using the guided approach. As with (H2O)g, the larger time step compensates for sampling
issues. While the total propagation times for the 1 a.u. and 10 a.u. simulations differ, if we

evaluate the results of the 10 a.u. simulations using the same propagation times used for the
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1 a.u. ones, the energies do not change significantly, but the uncertainties are larger when
the smaller amount of propagation time is used (see Tables S2 to S4).

One concern with using smaller ensemble sizes in the DMC simulations is that the po-
tential may not be as well-sampled. To explore the effect of ensemble size on the description
of the wave function, we focus on the OOO bend angle in H*(H20)3. We choose this angle
because earlier work exploring projections of the probability amplitude for this cluster ion
onto various internal coordinates indicated that this was among the most problematic.?"
This can be seen in the plots of projections of the probability amplitude onto several in-
ternal coordinates based on unguided simulations with 20 000 walkers, in the left panels of
Figure S1, with the projection onto the OOO angle also shown in the results reported in the
upper panel of Figure 2. For these plots, we show the probability distributions obtained by
projecting the probability amplitude for twenty wave functions onto the angle of interest.
As is seen, while the average distribution looks reasonable (thick blue line) there are large
fluctuations among the results that are obtained from the individual wave functions. This is
reflected by the noisiness of the curves plotted in different colors as well as through the error
bars that are shown for 110°, 120° and 130°. These large fluctuations among the results
obtained using different wave functions reflect the correlation between this angle and the
higher frequency HOH bend involving the bound OH bonds in the hydronium core. It also
reflects changes in the optimized value of these angles as the free OH bond is displaced out of
the plane of the three oxygen atoms (basically the umbrella motion of the hydronium core).
When the hydronium core is planar, the optimized value of the OOO angle is close to 120°,
while in the equilibrium geometry the OOO angle is closer to 113°. These couplings com-
bined with the difference in the frequencies of these vibrations makes the projection of the
ground state probability amplitude onto this coordinate difficult to capture using standard
DMC approaches. Increasing the ensemble size mitigates the problem somewhat, as can be
seen by comparing the size of the error bars for the curves plotted in green (40 000 walkers)

and blue (20 000 walkers). The distributions from individual wave functions obtained in
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these calculations are provided in the middle panel of Figure S1. Interestingly, although
increasing the time step used for the simulations with 20 000 walkers to 10 a.u. leads to
better convergence behavior for the energy, the projections of the probability amplitudes
obtained using the 10 a.u. time step with 20 000 walkers looks very similar to those reported
in Figure 2A. If we compare these results to those obtained when the guided DMC approach
is used with only 10 000 walkers (red curve in Figure S1B), we find that the smaller ensemble
provides a further improvement to the results.

As with the neutral water clusters, the origins of the improved convergence behavior
when guided DMC approaches are used can be traced to the fact that displacements of the
high frequency OH stretches lead to large fluctuations in the potential energy, particularly
when compared to the lower-frequency vibrations. This makes simultaneous sampling of the
high and low-frequency modes less efficient. By introducing guiding functions for the high
frequency vibrations, particularly the unbound OH stretches, the low-frequency motions are
sampled on what is effectively an adiabatic potential surface in which the full potential has
been averaged over these high frequency motions.

The question naturally arises as to whether the approach could be improved by incorpo-
rating the bound OH stretches in the hydronium core in the importance sampling scheme.
As noted above, the frequency of these OH oscillators is sensitive to the bonding environ-
ment. A recent study of the effects of solvation environment on the vibrational frequencies
of the bound OH stretches in the hydronium core of protonated water clusters illustrated
that the frequencies of these OH oscillators can be correlated to the distance between the
oxygen atoms in the hydronium core and the associated water molecule.*’ Additionally, as
with neutral water molecules, stronger hydrogen bonds are associated with both lower OH
stretch frequencies and longer OH bonds in the donor hydronium molecule. In the case of
H*(H,0); and H*(H,0)4, the equilibrium OH bond lengths differ by 0.025 A, based on
the potential used in this study, while the reported frequencies of these vibrations differ by

roughly 550 cm™!. Based on these observations, we cannot expect that the strategy of using
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a single trial wave function to describe an arbitrary environment for the OH bonds in water
clusters will work for the water solvated OH bonds in hydronium core.

To address the above observations and concerns, we developed a modified strategy in
which we drew on the correlations between the distance between the oxygen atoms in the
accepting water molecule and the donating hydronium core, and the location of the maxi-
mum and the value of the width of this OH stretch wave function. For these calculations we
evaluated one-dimensional scans of the potential as a function of the OH bond length for var-
ious OO distances keeping all other coordinates in their geometries based on the equilibrium
structure of the ion. Using these scans, we calculated the ground state wave function for the
OH stretch using a discrete variable representation (DVR).3? The results of this analysis are
provided in Figure 3, where in panel A, the maximum in the ground state wave function,
rof is plotted, while in panel B, we plot the width of the distribution, o. Details of these
calculations are provided in the supporting information. To obtain a trial wave function for
the bound OH stretches in the hydronium core, we use the instantaneous OO distance along
with the curves in Figure 3 to shift and scale the water-bound OH stretch wave function
evaluated at the equilibrium geometry of the cluster.

The results that are obtained when we introduced guiding functions to describe the water
bound OH stretches in the hydronium core are provided with blue and purple curves in panels
C and D of Figure 1. The differences between these two sets of calculations are the parameters
used to describe the wave function. For the blue curve, the parameters and reference wave
function are based on H*(H50)3, while the parameters and reference wave function for
H*(H30), are used to generate the purple curve. As the results provided in Figure 1 and
Tables S2 to S4 show, the convergence properties of these calculations are very similar to
those obtained when guiding functions are only used to describe the OH stretches and HOH
bends of the outer water molecules and the free OH stretch in the hydronium. While at
one level the lack of significant improvement in the convergence properties of the results

when we incorporated trial wave functions for the bound OH stretches in the hydronium
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core is disappointing, the fact that the convergence behavior has not deteriorated with the
introduction of the trial wave function indicates that such a strategy should be successful as
we look to larger clusters, where a single cluster displays a range of strengths of hydrogen

bonded interactions.

CH;

We next turn our attention to CHF and its deuterated analogues. While in the water and
hydronium molecules, all of the OH bonds are equivalent by symmetry, the CH bonds in
CHZ are not equivalent in its minimum energy structure. Specifically, for the minimum
energy geometry the CH bonds range in length from 1.09 to 1.20 A. The frequencies that
are obtained from potential cuts along each of these CH distances vary from 2384 to 3070
cm ™! (see Table S5 and Figure S2). On the other hand, once zero-point energy is introduced
the five CH bonds become equivalent. This is due to the fact that the barriers that separate
the 120 equivalent minima on the potential are lower than the zero-point energy in the low-
frequency vibrations that are responsible for the isomerization. To account for this, we first

consider a guiding function of the form

Wi(x) = ﬁw (&) (7)

where r(C?{ represents the CH® bond length in CH; and v represents the average of five
wave functions that are obtained by solving the one-dimensional Schrodinger equation using
one dimensional cuts of the potential energy surface along the five CH bond lengths. The
resulting wave function is plotted as a purple dotted line in Figure 4, and the wave functions
that correspond to the longest (CH®)) and shortest (CH®) CH bond lengths are plotted
with red dashed and gold solid lines, respectively.

When we use the average CH stretch wave function as the trial wave function in the DMC

calculations, we find that the convergence behavior of the zero-point energy is no faster than
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the unguided approach. It also appears that the calculations are converging to an energy
that is slightly too large. Specifically, a calculation based on 20 000 walkers yielded a zero-
point energy of 10 926(4) cm™!, which is approximately 10 cm~! above the zero-point energy
obtained using an unguided calculation with 20 000 walkers, 10 918(6) cm™'. The reason the
trial wave function provided by Eq. 7 is not appropriate for this problem is illustrated in the
results provided in Figure 4. First, the 0.11 A difference between the lengths of the CH® and
CH® bonds in the minimum energy geometry means that the average wave function does
not provide a very good approximation to the ground state wave function associated with
either of these oscillators. This can be seen by comparing the three wave functions plotted in
Figure 4A. For comparison, in a recent study of the equilibrium geometries of water clusters
containing two to six water molecules, we found that these equilibrium OH bond lengths
differ by at most 0.04 A.*' The difficulties in using a single wave function to describe the
five CH oscillators in CHZ is further illustrated in a comparison of the local energy function
obtained when Ej, in Eq. 1 is evaluated using the potential cut along rgl){ (solid black curve)
in Figure 4B based on the the three wave functions shown in panel A. When we use the
average wave function to calculate the local energy it shows a sizable increase at larger
values of rcp. In contrast, the local energy plotted in the red dashed line is constant as the
corresponding wave function is an eigenstate of this Hamiltonian. Similar behavior is found
when we calculate the local energy using a cut through the potential through rg’l){ (panel C),
although now the purple trace deviates from zero at small values of 7’(02 ). Based on these
plots and the poor performance of guided DMC when the guiding function in Eq. 7 is used,
we conclude that this approach that was effective for water clusters will not work well for
CH;. On the other hand, while the value of (T(CZI){> depends on which CH bond is being
considered, the widths of these distributions are less sensitive to the molecular environment.

To address this challenge, we need to find a procedure to relate (7"8%0 to the instantaneous

structure of CHY | just as we correlated the position and the widths of the wave functions for

the bound OH stretches in HT (H20),, to the OO distances. It has long been recognized that
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the structure of CHZ can be described as a CHJ part, in which the three CH bond lengths are
roughly equal and the distances between these three hydrogen atoms are also equal, and a Hy
part, which is characterized by a shorter H-H distance.*? In Tables S6-S8, for each hydrogen
atom, we report the H-H distances to each of the other four hydrogen atoms, evaluated at
each of the three stationary point geometries on the potential of CHZ. The values based
on the equilibrium structure of CHZ are also plotted as functions of the corresponding CH
bond lengths in the upper panel of Figure 5. For the CH bond lengths that involve hydrogen
atoms in the Hy group, the H-H distances range from 0.95 to approximately 2 A. These are
the two longest CH bonds and the breadth of the distances is illustrated by the blue and
gold distribution in Figure 5A. For the hydrogen atoms in the CH3 group the H-H distances
only range from 1.7 to 1.9 A, as is seen in the green, red and purple distributions. Similar
behavior is seen for the other stationary point geometries. Based on this observation, we
find that there is a correlation between the standard deviation among the four H-H distances
involving a chosen hydrogen atom to the value of (7‘8%{% which we have plotted in panel B

of Figure 5. To incorporate this observation into our trial wave function, we define
5 .
r = [T o (v — (o)) )
i=1

where ¢(rcpn) is the wave function associated with the lowest frequency CH oscillator in the
equilibrium geometry, the gold curve in Figure 4A.

To obtain o;, we first scale all of the CH bond lengths so they are all the same value (1
ap), and o is the standard deviation of the four H-H distances involving the hydrogen atom of
interest. The scaling is introduced to remove the effects of changes in the instantaneous CH
bond lengths on the value of o. In Figure 5B, we plot the difference between the associated
CH bond length and ngl in the equilibrium geometry, §, as a function of these scaled o

values. As is seen, ¢ increases monotonically with o. We then fit this data to a shifted
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exponential,

d(0;) = Aexp(Bo;) + C (9)

Using this relationship, we have allowed the trial wave function to account for variations in
the equilibrium CH bond length on the structure of the ion while keeping all of the hydrogen
atoms equivalent. This does not add significant complexity to the DMC calculation.

The results of guided (blue) and unguided (red) DMC calculations of the ground states
of CH, CD{, and CH3DJ are provided in Figure 6 for various ensemble sizes. As is seen, in
all of the isotopologues, when 2000 to 5000 walkers are used in the unguided simulations, the
energies and associated uncertainties are comparable to the values obtained from unguided
simulations with 20 000 walkers. Both values are also in good agreement with previously
reported zero-point energy for this potential energy surface (black line with grey shading).!?

In addition to confirming that the procedure is effective, these calculations also allowed
us to explore the transferability of the trial wave functions with partial deuteration. The
only change in W7 in Eq. 8 when one or more of the hydrogen atoms are replaced with
deuterium is the trial wave function that is used is the one appropriate for the ground state
of the CD stretch based on the potential cut along rgl){ We also explored how well this wave
function performs on the various deuterated isotopologues of CHZ. One interesting feature
of partially deuterated forms of CHZ is that the probability amplitude becomes localized in
a subset of the 120 minima on the potential. This localization reflects differences among the
zero-point energies of the CH vibrations in the various bonding environments, as is illustrated
by the wave functions plotted in Figure S2.

Overall, the agreement between the results of these calculations and previously reported
zero-point energies for CHZ is very good, further validating the approach. In the cases
of CH4yD* and CH3D5 the energies obtained in the present study are between five and ten
cm ™! higher than previously reported values based on both guided and unguided calculations.
These differences are likely due to difficulties in sampling the high frequency CH stretches

when a 10 a.u. time step is used, as was done in the previous studies of CHF.'® Studies of
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water monomer showed that the use of a 10 a.u. time step in DMC calculations resulted
in zero-point energies that are about five cm™! lower than the zero-point energy obtained
from a converged variational calculation.?3%3 Interestingly, for D,O the 10 a.u. time step
provided an accurate value for the zero-point energy. The fact that we get slightly different
zero-point energies when we reduce the time step from 10 a.u. to 1 a.u. for only CH4D* and
CH;3D5 likely reflects fact that these are the mixed isotoplogues that have more hydrogen

atoms than deuterium atoms.

Conclusions

In this study, we have demonstrated that the guided DMC approach, which we recently

12.23 can be used to study systems where the form of

developed for studies of water clusters,
the vibrational wave function that describes the XH stretches depends on the local environ-
ment experienced by that bond. We applied the approach to studies of protonated water
clusters with four or fewer water molecules and to CHY. We showed that we could obtain
substantial savings in the computational demands of the DMC simulations for these systems,
in some cases as much as an order of magnitude, compared to unguided simulations. We
also showed that the wave functions obtained from these smaller ensembles resulting from
guided simulations were better converged than the wave functions obtained using unguided
approaches with substantially larger ensemble sizes.

By being able to converge the zero-point energies and wave functions with smaller ensem-
bles, we were able to show that for the protonated water systems, the ensemble sizes used in
previous studies are likely not large enough to obtain accurate ground state properties. %16
With the approach validated and the savings that were achieved we are positioned to explore
larger cluster ions, specifically HT (H30);5 6 where experimental studies have demonstrated

that multiple isomers are sampled in the low-temperature experiments, and the most sta-

ble forms appear to be affected by partial deuteration.®* The ability to separate the CH
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stretch vibrations from the lower frequency motions in CHZ also provides an opportunity to
further explore the five dimensional rotor model, which was successfully used by Schlemmer

and co-workers to analyze their rotationally resolved spectrum. 547
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Figure 1: Calculated zero-point energies for (A) H;OT, (B) H(H50),, (C) HT(Hy0)3, (D)
H*(H0)4 plotted as functions of the number of walkers used in the simulation. The red or
pink symbols and lines provide results of unguided simulations using a 1 a.u. and 10 a.u.
time step, respectively. The gold, blue and purple symbols and lines provide results of three
types of guided simulations, which are described in the text. The dotted line and shading
extends the results of the largest guided simulation in each panel to facilitate comparisons
with other calculations. The energies used to generate these plots are also provided in Tables
S1-54.
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Figure 2: (A) Projections of the ground state probability amplitude for H" (H,0)3 onto the
OO0O angle based on the probabilty amplitudes obtained from 20 DMC wave functions (thin
lines). The average of these distributions is plotted with the thick blue line, and the standard
deviations at 110°, 120° and 130° are represented by error bars. These results are based on
an unguided simulation with 20 000 walkers. (B) Comparison of the average of the projected
probability amplitudes based on twenty DMC wave functions obtained from unguided DMC
simulations with 20 000 walkers (blue) and 40 000 walkers (green). In addition the projected
probability amplitude obtained from a guided DMC simulation with 10 000 walkers is shown
in red. For the guided calculation, the guiding function is based on the OH stretches of the
outer water molecules and unbound OH bonds in the hydronium core as well as the HOH
bends in the outer water molecules. The individual probability distributions used to obtain
the green and red curves in panel B are shown in Figure S1.
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Figure 3: The maximum (A) and width (B) of the ground state wave functions for a water
bound OH bond in the hydronium core of H" (Hy0)3 (blue curves) and H* (H,0)4 (purple
curves) are plotted as functions of the distance between the oxygen atoms in the hydronium
core and the bound water molecule. The curves provide a (n — 1)th order polynomial rep-
resentation of the n data points that are plotted. Additional details about how these values

are obtained and the raw data that is plotted are provided in the Supporting Information.
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Figure 4: (A) Wave functions for the longest and shortest CH bonds in CHZ (gold solid
and red dashed line) as well as the average of the ground state wave functions for the five
CH bonds (purple dotted line). (B and C) Local energies obtained from one-dimensional

calculations using the potential along (B) T(CE’I){ and (C) rgl){ (black line) based on the three
wave functions shown in panel A.
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Figure 5: (A) Box and whisker plot showing the standard deviation of H-H distances for each
of the five CH bonds on CHZ, plotted as a function of the CH bond length for the equilibrium
structure of CHZ. (B) Plot of the displacement of the CH bond length from the value of
rg})I in the equilibrium geometry of CHZ, 4, as a function of standard deviation of the H-H
distances to the hydrogen atom of interest o, which is also plotted in panel A. These results
are plotted for each of the three low-energy stationary point structures of CH;, shown in
the insets. The values for the Cy minimum are plotted with blue filled circles, the values for
the Cy saddle point are plotted with green open circles, while the values for the Cs, saddle
point are shown with filled gold diamonds. The dotted line provides a fit of these values to
an exponential function of the form §(c;) = Aexp(Bo;) + C. A, B, and C are -0.02389 A,

6.29099 A=1, and 0.24620 A respectively.
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Figure 6: Calculated zero-point energies for (A) CHF, (B) CDF, and (C) CH,D7 plotted
as a function of the number of walkers used in the simulation (Nyw) for unguided (blue)
and guided (red) DMC simulations. The black lines are the previously reported values of
these zero-point energies, and the grey shading indicates their reported uncertainties.!® The
energies used to generate these plots are also provided in Table S9.
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