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Abstract

Di↵usion Monte Carlo provides an e↵ective and e�cient approach for calculating

ground sate properties of molecular systems based on potential energy surfaces. The

approach has been shown to require increasingly large ensembles when intra- and in-

termolecular vibrations are weakly coupled. We recently proposed a guided variant of

di↵usion Monte Carlo to address these challenges for water clusters [J. Phys. Chem.

A 2019, 123, 8063-8070]. In the present study, we extend this approach and apply it

to more strongly bound molecular ions, specifically CH+
5 and H+(H2O)n=1�4. For the

protonated water systems, we show that the guided DMC approach that was devel-

oped for studies of (H2O)n can be used to describe the OH stretches and HOH bends in

the solvating water molecules, as well as the free OH stretches in the hydronium core.

For the hydrogen bonded OH stretches in the H3O+ core of H+(H2O)n and the CH

stretches in CH+
5 , we develop adaptive guiding functions based on the instantaneous

structure of the ion of interest. Using these guiding functions, we demonstrate that

we are able to obtain converged zero-point energies and ground state wave functions

using ensemble sizes that are as small as 10% the size that is needed to obtain similar

accuracy from unguided calculations.
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Introduction

Developing and implementing general approaches for solving the Schrödinger equation for

vibrational systems is a long-standing challenge in theoretical spectroscopy. For molecules

and ions where the vibrations are weakly coupled and the wave functions for the states of

interest are localized in a single minimum in the potential energy surface, methods based on a

harmonic treatment can provide a good starting point for more sophisticated methods. These

include vibrational perturbation theory,1,2 or vibrational self-consistent field (VSCF)-based

approaches,3,4 and extensions built o↵ of these approaches.5 Such approaches have been

extended to studies of molecular clusters, for example (H2O)n, in which the Hamiltonian

based on the intramolecular degrees of freedom is solved for a fixed cluster geometry.6 The

situation becomes more challenging when the molecular system of interest displays large

amplitude vibrations, which allow it to sample multiple minima on the potential surface

even in the vibrational ground state. Additional complications emerge when these large

amplitude vibrations are strongly coupled to other vibrational degrees of freedom.

A method that circumvents many of these challenges is di↵usion Monte Carlo (DMC).7–12

In this approach, a large ensemble of localized functions, called walkers, is used to provide

a Monte Carlo sampling of the ground state wave function. The coordinates and the rel-

ative weights of the walkers are propagated based on the imaginary-time time-dependent

Schrödinger equation. The long time, equlilibrated ensemble obtained from this propaga-

tion provides a Monte Carlo sampling of the ground state wave function of the system of

interest. The associated zero-point energy is obtained by imposing the requirement that the

amplitude of the wave function does not change during the propagation.

The DMC approach has been used with great success to study a broad range of molecular

systems that would have been very challenging to study by approaches that rely on a basis

set to expand the wave functions.13–16 An example of such a molecule is CH+
5 . The ground

state wave function of this ion has amplitude at the 120 symmetry equivalent minima on

the potential surface as well as near the 180 saddle points that connect these minima.17,18
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At the same time, the harmonic CH stretch frequencies span the range of roughly 2500 to

3300 cm�1 at each of the three low-energy stationary point structures.19 This indicates that

the frequency of the CH stretch is sensitive to its environment within the ion. Similarly,

the frequencies of the water-bound OH bonds in protonated water clusters, H+(H2O)n, are

sensitive to their environments. This is reflected in the breadth of the features in the vibra-

tional spectrum that are assigned to this motion in various size-selected protonated water

clusters.20 The structures and frequencies of water molecules that make up a water cluster,

(H2O)n, also show sensitivities to the structure of the cluster, although the couplings between

the intra- and intermolecular vibrations are weaker in this case compared to the protonated

water clusters.21

In the case of the neutral water clusters, Mallory and Mandelshtam showed that very

large ensembles of walkers were required to obtain reliable results using standard DMC

approaches. For example, in their study of (H2O)6, they used an ensemble in excess of

106 walkers, run for 8.8 ⇥ 104 time steps.22 In DMC simulations the potential energy of

each walker needs to be evaluated at each time step. As potential functions become more

accurate, they often also become more expensive to evaluate. Thus, these requirements of

large ensembles to obtain accurate results make the DMC approach prohibitive, and limits

the size and types of systems that can be studied using DMC.

As we explored the origins of this behavior,12,23 we concluded that these challenges of

applying DMC to studies of neutral water clusters reflected the fact that the shifts in the

frequencies of the OH stretching vibrations with the environment were comparable in size

to the frequencies of the low-frequency vibrations in these clusters. Additionally, when all

degrees of freedom are included in the calculation, the instantaneous equilibrium structure of

the cluster as a function of the intermolecular degrees of freedom is sensitive to the precise

OH bond lengths and HOH angles of the individual water molecules that make up the

cluster. The need for a very large ensemble to converge this calculation reflects di�culties

in sampling both the intermolecular and intramolecular degrees of freedom e↵ectively. An
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additional complication arises from the fact that the time step used in the simulation needs

to be chosen based on the shortest vibrational period in the system. At the same time the

simulation needs to be run long enough to sample the motions in the degrees of freedom

that are associated with the low-frequency vibrations. These considerations contributed to

the very large ensemble sizes Mallory and Mandelshtam found they needed to fully sample

the ground state of water clusters.

On the other hand, while the above considerations make these clusters particularly chal-

lenging for DMC calculations, they represent a situation for which an adiabatic separation

of the low- and high-frequency vibrations provide a good zero-order description of the vibra-

tional dynamics.6,24 In this approach, rather than focusing on the instantaneous values of the

intramolecular degrees of freedom that are associated with the high frequency vibrations, the

potential that is used to study the intermolecular vibrations is the average of the full poten-

tial over the probability amplitude associated with the wave function that describes the high

frequency vibrations. More specifically, the vibrational energy and wave function associated

with the intramolecular degrees of freedom are obtained using the potential evaluated at

an instantaneous cluster geometry. Taken together, these energies are used to construct an

adiabatic potential where the energy dependence on the intermolecular degrees of freedom

reflects the vibrationally averaged behavior of the high frequency modes rather than their

instantaneous values. Such an approach expressed in this form would be challenging for

studies of such clusters using DMC, as each potential energy evaluation for the intermolecu-

lar degrees of freedom would require averaging the full potential over the ground state wave

function in the intramolecular vibrations. Additionally, such a treatment would render the

results of the calculation at best approximate, removing one of the attractive features of

DMC, e.g. its use for obtaining an exact description of the ground state wave function, and

the associated zero-point energy of the system of interest.

In a recent pair of studies,12,23 we demonstrated that we could achieve a similar separation

of time scales using DMC through the introduction of carefully developed guiding functions,
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 T . We applied the approach to studies of water clusters and demonstrated an order of

magnitude saving in ensemble sizes used for the simulations without a loss of accuracy.

Specifically, for water clusters, these guiding functions were expressed as direct products

of the solutions to one-dimensional cuts through the potential surface of an isolated water

molecule along each of the two OH stretch coordinates along with a harmonic description of

the bend. The introduction of the guiding function in the DMC calculation has the e↵ect of

replacing the potential function with the local energy,

EL =
H T

 T
(1)

Our choice for  T has the e↵ect of reducing the dependence of EL on the intramolecular

degrees of freedom compared to that of the full potential function. For example, if the OH

stretch component exactly matched that of one of the OH oscillators of the water molecule

in the cluster then for that cut through the potential, the local energy is constant, and the

average value of the local energy for that coordinate is independent of how the walkers sam-

ple that coordinate. By removing the dependence of the local energy on the high frequency

vibrations, EL in Eq. 1 resembles an adiabatic potential that only depends on the inter-

molecular coordinates. Further by expressing the trial wave functions as direct products of

one-dimensional wave functions, the evaluation of the EL does not have a significant impact

on the overall expense of the DMC calculation. On the other hand, the introduction of EL

does not introduce any approximations to the treatment of the ground state wave function.

By removing the dependence of EL on the OH bond lengths and HOH bend angles we found

that we could realize substantial savings due to the ability to use much smaller ensemble

sizes.

This approach di↵ers from earlier studies on hydrogen clusters25 and H+
5 ,

26 which used

normal mode descriptions for all of the vibrational degrees of freedom. Since the normal

modes are evaluated for a reference structure, such an approach makes it di�cult to describe

systems that have multiple low-energy minima on the potential, as a  T that is based on
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one of minima may not provide a good description of the ground state wave function near

other minima. By focusing the trial wave function on only the high frequency vibrations,

we remove this bias from our sampling at the expense that we are only describing a subset

of the degrees of freedom. Such an approach was shown to work quite well for the (H2O)6

cluster in which there are several low-energy minima on the potential.23

In the present study, we explore whether a similar strategy could be used to study pro-

tonated water clusters and CH+
5 for which the equilibrium OH or CH bond lengths depend

strongly on the values of the coordinates associated with the low-frequency vibrations. For

example, although the five CH bonds in CH+
5 are equivalent once zero-point energy is con-

sidered, the equilibrium CH bond lengths in the coordinates of the three lowest energy

stationary points on the potential energy surface range from 1.09 to 1.2 Å. This range is

comparable to the width associated with the ground state probability amplitude for a CH

oscillator with a frequency of 3000 cm�1, which is 0.17 Å. Likewise the frequency of the

shared proton OH stretch in protonated water clusters (H+(H2O)n) can vary between 1000

and 2700 cm�1 when n = 2 and 4, respectively. As such, the approach for describing  T

that proved to be e↵ective for the neutral water clusters will not be as e↵ective for these

motions. Instead, we propose an approach that allows the maximum in the wave function

that describes the CH or OH vibrations to depend on the environment of the CH or OH

oscillator. In the case of the OH stretches in the protonated water systems, the width of the

trial wave function is also allowed to adjust based on the environment. This approach will

be applied to CH+
5 and protonated water clusters to explore the savings that can be achieved

as well as insights into couplings of the intermolecular and intramolecular vibrations in these

ions.
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Theory

Di↵usion Monte Carlo and our implementation have been described elsewhere.7–9,11,12,27 As

outlined above, in this approach the ground state wave function for the system of interest,

�0, is modeled by an ensemble of NW localized functions, g(x;xi(⌧)). The position of each

of the walkers, xi(⌧), is allowed to evolve as the wave function is propagated in imaginary

time, ⌧ = it/h̄, based on the imaginary-time time-dependent Schrödinger equation.

�0(⌧ +�⌧) = exp [�(H � Vref)�⌧ ] �0(⌧)

⇡ exp [�(V � Vref)�⌧ ] exp [�T�⌧ ] �0(⌧) (2)

where

Vref =

PNW

i=1 wi(⌧)V (xi)PNW

i=1 wi(⌧)
� ↵ ln

" PNW

i=1 wi(⌧)PNW

i=1 wi(⌧ = 0)

#
(3)

is introduced to ensure that the sum of the wi values remains constant throughout the

simulation. In the above expression, wi represents the relative weight of each of the walkers

in the ensemble, ↵ = 0.5/�⌧ , and NW represents the total number of walkers that make

up the ensemble. With this constraint, the time-averaged value of Vref gives the zero-point

energy of the system of interest once the system has equilibrated. While the action of the

kinetic contribution to the propagator shifts the values of the components xi at each time

step,

wi(⌧ +�⌧) = exp [�(V (xi(⌧))� Vref)�⌧ ]wi(⌧) (4)

adjusts the contribution of each walker to the ensemble based on its energy. A branching

step is introduced at each time step in the simulation to ensure that all of the walkers

contribute to the ensemble and that the weights do not localize on a small fraction of the
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walkers. In this step, an equal number of walkers with large and small weights is identified.

This set of walkers includes all of the walkers for which wi(⌧) > 20 or wi(⌧) < 0.1. The

small-weight walkers are then removed from the ensemble, while each of the large-weight

walkers is duplicated, and each member of the new pair of walkers is given a weight that is

half the value of the weight of the duplicated walker. Once equilibrated, a snapshot of �0(⌧)

at any time ⌧ provides the ground state wave function.

The above description focuses on what we will refer to as unguided DMC simulations. In

the guided approach, rather than using DMC to obtain �0, we use the ensemble of walkers

to evaluate f , where10,28

f =  T�0 (5)

and V (xi) in Eq. 3 is replaced by the local energy, EL defined in Eq. 1. As mentioned above,

in this study,  T is the product of one-dimensional wave functions that are each functions

of one of the high frequency intramolecular coordinates, e.g. an XH bond length or an HOH

angle. These guiding functions will be described in the following section.

In order to obtain projections of the probability amplitude onto coordinates of interest

we use a technique called descendent weighting.9,29 Specifically, evaluation of the probability

amplitude, �2
0, from f requires multiplication of f by �0/ T . Suhm et al. and Barnett et

al. have shown that

�0(xi(⌧))

 T (xi(⌧))
/ wi(⌧ + �⌧)

wi(⌧)
(6)

where wi(⌧+�⌧) represents the weight of the ith walker after it has been propagated forward

by �⌧ .
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Numerical details

For the simulations of the protonated water clusters, H+(H2O)n=2,3,4 the potential used to

propagate the walkers was developed by Yu and Bowman.16 The version of this potential

used in this study incorporates an updated three-body term involving the hydronium core

and two water molecules. We needed to use this modified surface because preliminary studies

using the previously reported surface has a low-energy region that corresponds to dissociation

of H+ from the water cluster, which was sampled by our continuous weight simulations. The

potential energy surface for H3O+ is the one developed by Huang, Carter, and Bowman.30

The simulations for the protonated water clusters were first equilibrated by running for 5000

time steps with a �⌧ of 10 a.u. without the use of a guiding function, then the simulations

were run for an additional 20 000 time steps with a �⌧ of 1 a.u. either with or without a

guiding function. This added equilibration step was introduced to ensure that the potential

energy surface was fully sampled at the beginning of the simulation. Simulations with a �⌧

of 10 a.u. were run for 20 000 time steps without this added equilibration step. The zero-

point energy was then obtained by time averaging Eref over the final 15 000 time steps of the

simulation. Although the simulations that are run using the 10 a.u. time steps are allowed

to propagate for roughly three times as long as the simulations that use the 1 a.u. time step,

we find that the average zero-point energies obtained when we perform the averages over the

same propagation times as are used to analyze the 1 a.u. results agree with those obtained

using longer propagation times, albeit with larger statistical uncertainties.

For the calculations involving CH+
5 and its deuterated analogues, the initial ensemble

of walkers is distributed randomly among the 120 equivalent minima on the potential en-

ergy surface. For these calculations we use the potential of Jin, Braams, and Bowman,

which was fit to electronic energies of CH+
5 calculated at the CCSD(T)/aug-cc-pVTZ level

of theory/basis.19 Each simulation was run for 20 000 time steps with a �⌧ of 1 a.u. The

zero-point energy was obtained by time averaging Eref from 5000 time steps to the end of

the simulation. This allows us to ensure that the ensemble is equilibrated before the energies
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are collected.

All of the reported energies are based on five independent simulations, and the uncer-

tainties represent one standard deviation based on these values, while descendant weights

were collected 20 times for 250 time steps over the last 15 000 time steps in order to collect

wave functions for each simulation.

For the guided simulations, the HOH bends were described by harmonic oscillators based

on a harmonic frequency of 1668 cm�1 and a G�matrix element31 of 2.338 amu�1 Å�2.23

The wave functions that describe the CH bonds in CH+
5 and the OH bonds in the protonated

water clusters were obtained using a discrete variable representation (DVR)32 based on one-

dimensional slices through the potentials of interest. Descriptions of these calculations, and

the resulting wave functions are provided in the Supporting Information. The resulting wave

functions were interpolated using a cubic spline. Calculations of the drift term and local en-

ergy require the first and second derivatives of  T with respect to the Cartesian coordinates.

These derivatives were evaluated numerically using a three-point finite di↵erence.

Results

H+(H2O)n

Protonated water clusters, like neutral water clusters, present challenges for DMC ap-

proaches. The smallest of these ions, H3O+, is covalently bound, and the OH stretch fre-

quencies are 3445 and 3536 cm�1,30 which is about 200 cm�1 lower than the OH stretch

frequencies in an isolated water molecule. The next smallest system, H+(H2O)2, shows large

amplitude vibrations and large couplings between high and low frequency vibrations. These

stronger couplings result from the very low frequency of the shared proton stretch, ⇡ 1000

cm�1, which is strongly coupled to the stretching and bending vibrations of the terminal wa-

ter molecules.27,33 As we add more water molecules, the amplitude of the water-bound OH

stretching vibrations in the hydronium core are intermediate between H3O+ and H+(H2O)2,
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and the frequencies of these vibrations in H+(H2O)3 and H+(H2O)4 are approximately 2100

and 2653 cm�1, respectively.34,35

As we consider which vibrational degrees of freedom to include in the guiding functions,

several options emerge. Given recent successes in applying a similar approach to studies

of neutral water clusters,12,23 one option is to use a direct product of wave functions that

describe the OH stretch and HOH bends in the terminal water molecules as well as the

vibrations of the OH stretches in the hydronium core that are not bound to water molecules.

For these vibrations, we use the ground state wave functions obtained for an isolated water

molecule.36 Since the water bound OH stretches in the hydronium core of H+(H2O)n display a

broad range of frequencies, it is not likely that the same distribution can be used to describe

the ground state wave function of this oscillator in all of the possible structures of these

systems. As we consider the development of the guiding functions to use for these systems,

we focus on functional forms that are transferable to larger protonated water clusters, and

which do not presume a specific bonding configuration.

We start by considering the convergence behavior of guided and unguided DMC calcu-

lations for H3O+. The results of this analysis are shown in panel A of Figure 1. In all of

the panels in this figure, the red symbols and lines provide the results of unguided DMC

calculations with a time step of 1 a.u., while the gold lines and symbols provide the results

when the guiding functions based on the OH stretches in an isolated water molecule are used

to describe all of the unbound OH stretches in the hydronium core, and the OH stretches

in the solvating water molecules. In addition, the guiding functions include a harmonic de-

scription of the HOH bend in the solvating water molecules. We do not try to describe the

HOH bends in the hydronium core with the guiding functions due to redundancies in these

coordinates in planar geometries. To aid in comparisons, the results based on the guided

DMC calculation using the largest ensemble are extended using a dotted line, and the un-

certainties are shown with shading of the same color. For hydronium, both the guided and

unguided approaches yield results that are in good agreement with the previously reported
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DMC ground state energy of 7453 cm�1, which was obtained using an unguided simulation

with 20 000 walkers and a 1 a.u. time step.37 For the unguided calculations, ensembles larger

than 10 000 walkers yield energies that are well-converged, while for the guided calculations,

1000 walkers are needed to achieve similar accuracy. These results are consistent with our

earlier studies of water clusters. Unlike the study of water clusters, in which the trial wave

function was chosen to provide a good description of the OH stretch in water, here we use

the water-based OH wave function to describe the OH stretches in H3O+. We have also per-

formed these calculations using guiding functions based on the ground state wave function

for an OH stretch in H3O+ and obtain results that are nearly identical to those reported in

Figure 1A (see Table S1).

A similar approach was applied to calculations of the zero-point energies of H+(H2O)n

for n = 2, 3 and 4, and the results are shown with the red and gold symbols and lines in

panels B, C and D of Figure 1. For n = 2, shown in panel B, the energies obtained using

the guided DMC approach do not change significantly when 500 or 5000 walkers are used,

although the uncertainties of the results decrease as larger ensembles are used. For the

unguided simulations, 10 000 walkers are needed to achieve similar results. These results are

about 20 cm�1 lower than previously reported zero-point energies for this ion, 12 393 (5).38

The di↵erence reflects small di↵erences in the potential surface used here, which is based on

the potential for larger protonated water clusters, developed by Yu and Bowman.16 Similar

improvements in performance are found for the clusters with three and four water molecules,

shown with red and gold symbols and lines in panels C and D of Figure 1.

For H+(H2O)3, both the guided and unguided DMC calculations give a zero-point energy

of roughly 18 000 cm�1 while for the guided simulations this result is achieved with as few as

2000 walkers, at least 20 000 walkers are required to obtain this energy using the unguided

approach. In both cases the uncertainties are uncomfortably large. The energies are within

5 cm�1 of the converged zero-point energy when 10 000 walkers for the guided calculation

and 100 000 are required to obtain similar accuracy from the unguided calculations.
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In the case of H+(H2O)4, the guided DMC simulations give a zero-point energy of 23 409

(6) cm�1 when 30 000 walkers are used. The unguided simulations give an energy of 23 421

(10) cm�1 when 100 000 walkers were propagated using a 1 a.u. time step. This energy is

11 cm�1 above the energy obtained using the guided approach. For comparison, when we

perform large unguided simulations with a larger 10 a.u. time step we obtain a zero-point

energy of 23 397 (4) cm�1, which is in very good agreement with the guided results. The

convergence behavior for H+(H2O)4 is similar to the behavior we noted for (H2O)6 in a

recent study.23 As in that work, significantly larger ensembles are required for the unguided

simulations than for the guided ones. In the case of (H2O)6, 1 000 000 walkers were needed to

obtain accurate zero-point energies using unguided DMC approaches.23,39 In that work, we

also found that the large unguided calculations that employed the 1 a.u. time step appeared

to be converging to an energy that was larger than the value obtained from the guided DMC

calculations.

We can also compare the zero-point energies obtained by the guided DMC approach

to the value obtained when 20 000 walkers are used, in an unguided simulation with a 10

a.u. time step. For H+(H2O)3, the calculation with this larger time step appears to be

converged at this ensemble size, and nearly identical zero-point energies are obtained when

25 000 or 15 000 walkers are used. In these cases, the calculated energy agrees with the

values obtained from unguided simulations with ensembles of 40 000 or more walkers when

the 1 a.u. time step was used. In the case of H+(H2O)4, the DMC simulation with 20 000

walkers and a 10 a.u. time step gives a zero-point energy of 23 441 (8) cm�1, which is 32

cm�1 higher than the value obtained using the guided approach. When we increase the

ensemble size used for the unguided simulation to 75 000 walkers, the agreement between

the energy calculated by this approach is in excellent agreement with the values obtained

using the guided approach. As with (H2O)6, the larger time step compensates for sampling

issues. While the total propagation times for the 1 a.u. and 10 a.u. simulations di↵er, if we

evaluate the results of the 10 a.u. simulations using the same propagation times used for the
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1 a.u. ones, the energies do not change significantly, but the uncertainties are larger when

the smaller amount of propagation time is used (see Tables S2 to S4).

One concern with using smaller ensemble sizes in the DMC simulations is that the po-

tential may not be as well-sampled. To explore the e↵ect of ensemble size on the description

of the wave function, we focus on the OOO bend angle in H+(H2O)3. We choose this angle

because earlier work exploring projections of the probability amplitude for this cluster ion

onto various internal coordinates indicated that this was among the most problematic.27

This can be seen in the plots of projections of the probability amplitude onto several in-

ternal coordinates based on unguided simulations with 20 000 walkers, in the left panels of

Figure S1, with the projection onto the OOO angle also shown in the results reported in the

upper panel of Figure 2. For these plots, we show the probability distributions obtained by

projecting the probability amplitude for twenty wave functions onto the angle of interest.

As is seen, while the average distribution looks reasonable (thick blue line) there are large

fluctuations among the results that are obtained from the individual wave functions. This is

reflected by the noisiness of the curves plotted in di↵erent colors as well as through the error

bars that are shown for 110�, 120� and 130�. These large fluctuations among the results

obtained using di↵erent wave functions reflect the correlation between this angle and the

higher frequency HOH bend involving the bound OH bonds in the hydronium core. It also

reflects changes in the optimized value of these angles as the free OH bond is displaced out of

the plane of the three oxygen atoms (basically the umbrella motion of the hydronium core).

When the hydronium core is planar, the optimized value of the OOO angle is close to 120�,

while in the equilibrium geometry the OOO angle is closer to 113�. These couplings com-

bined with the di↵erence in the frequencies of these vibrations makes the projection of the

ground state probability amplitude onto this coordinate di�cult to capture using standard

DMC approaches. Increasing the ensemble size mitigates the problem somewhat, as can be

seen by comparing the size of the error bars for the curves plotted in green (40 000 walkers)

and blue (20 000 walkers). The distributions from individual wave functions obtained in
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these calculations are provided in the middle panel of Figure S1. Interestingly, although

increasing the time step used for the simulations with 20 000 walkers to 10 a.u. leads to

better convergence behavior for the energy, the projections of the probability amplitudes

obtained using the 10 a.u. time step with 20 000 walkers looks very similar to those reported

in Figure 2A. If we compare these results to those obtained when the guided DMC approach

is used with only 10 000 walkers (red curve in Figure S1B), we find that the smaller ensemble

provides a further improvement to the results.

As with the neutral water clusters, the origins of the improved convergence behavior

when guided DMC approaches are used can be traced to the fact that displacements of the

high frequency OH stretches lead to large fluctuations in the potential energy, particularly

when compared to the lower-frequency vibrations. This makes simultaneous sampling of the

high and low-frequency modes less e�cient. By introducing guiding functions for the high

frequency vibrations, particularly the unbound OH stretches, the low-frequency motions are

sampled on what is e↵ectively an adiabatic potential surface in which the full potential has

been averaged over these high frequency motions.

The question naturally arises as to whether the approach could be improved by incorpo-

rating the bound OH stretches in the hydronium core in the importance sampling scheme.

As noted above, the frequency of these OH oscillators is sensitive to the bonding environ-

ment. A recent study of the e↵ects of solvation environment on the vibrational frequencies

of the bound OH stretches in the hydronium core of protonated water clusters illustrated

that the frequencies of these OH oscillators can be correlated to the distance between the

oxygen atoms in the hydronium core and the associated water molecule.40 Additionally, as

with neutral water molecules, stronger hydrogen bonds are associated with both lower OH

stretch frequencies and longer OH bonds in the donor hydronium molecule. In the case of

H+(H2O)3 and H+(H2O)4, the equilibrium OH bond lengths di↵er by 0.025 Å, based on

the potential used in this study, while the reported frequencies of these vibrations di↵er by

roughly 550 cm�1. Based on these observations, we cannot expect that the strategy of using
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a single trial wave function to describe an arbitrary environment for the OH bonds in water

clusters will work for the water solvated OH bonds in hydronium core.

To address the above observations and concerns, we developed a modified strategy in

which we drew on the correlations between the distance between the oxygen atoms in the

accepting water molecule and the donating hydronium core, and the location of the maxi-

mum and the value of the width of this OH stretch wave function. For these calculations we

evaluated one-dimensional scans of the potential as a function of the OH bond length for var-

ious OO distances keeping all other coordinates in their geometries based on the equilibrium

structure of the ion. Using these scans, we calculated the ground state wave function for the

OH stretch using a discrete variable representation (DVR).32 The results of this analysis are

provided in Figure 3, where in panel A, the maximum in the ground state wave function,

r
max
OH is plotted, while in panel B, we plot the width of the distribution, �. Details of these

calculations are provided in the supporting information. To obtain a trial wave function for

the bound OH stretches in the hydronium core, we use the instantaneous OO distance along

with the curves in Figure 3 to shift and scale the water-bound OH stretch wave function

evaluated at the equilibrium geometry of the cluster.

The results that are obtained when we introduced guiding functions to describe the water

bound OH stretches in the hydronium core are provided with blue and purple curves in panels

C and D of Figure 1. The di↵erences between these two sets of calculations are the parameters

used to describe the wave function. For the blue curve, the parameters and reference wave

function are based on H+(H2O)3, while the parameters and reference wave function for

H+(H2O)4 are used to generate the purple curve. As the results provided in Figure 1 and

Tables S2 to S4 show, the convergence properties of these calculations are very similar to

those obtained when guiding functions are only used to describe the OH stretches and HOH

bends of the outer water molecules and the free OH stretch in the hydronium. While at

one level the lack of significant improvement in the convergence properties of the results

when we incorporated trial wave functions for the bound OH stretches in the hydronium
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core is disappointing, the fact that the convergence behavior has not deteriorated with the

introduction of the trial wave function indicates that such a strategy should be successful as

we look to larger clusters, where a single cluster displays a range of strengths of hydrogen

bonded interactions.

CH+
5

We next turn our attention to CH+
5 and its deuterated analogues. While in the water and

hydronium molecules, all of the OH bonds are equivalent by symmetry, the CH bonds in

CH+
5 are not equivalent in its minimum energy structure. Specifically, for the minimum

energy geometry the CH bonds range in length from 1.09 to 1.20 Å. The frequencies that

are obtained from potential cuts along each of these CH distances vary from 2384 to 3070

cm�1 (see Table S5 and Figure S2). On the other hand, once zero-point energy is introduced

the five CH bonds become equivalent. This is due to the fact that the barriers that separate

the 120 equivalent minima on the potential are lower than the zero-point energy in the low-

frequency vibrations that are responsible for the isomerization. To account for this, we first

consider a guiding function of the form

 t(x) =
5Y

i=1

 

⇣
r
(i)
CH

⌘
(7)

where r
(i)
CH represents the CH(i) bond length in CH+

5 and  represents the average of five

wave functions that are obtained by solving the one-dimensional Schrödinger equation using

one dimensional cuts of the potential energy surface along the five CH bond lengths. The

resulting wave function is plotted as a purple dotted line in Figure 4, and the wave functions

that correspond to the longest (CH(5)) and shortest (CH(2)) CH bond lengths are plotted

with red dashed and gold solid lines, respectively.

When we use the average CH stretch wave function as the trial wave function in the DMC

calculations, we find that the convergence behavior of the zero-point energy is no faster than
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the unguided approach. It also appears that the calculations are converging to an energy

that is slightly too large. Specifically, a calculation based on 20 000 walkers yielded a zero-

point energy of 10 926(4) cm�1, which is approximately 10 cm�1 above the zero-point energy

obtained using an unguided calculation with 20 000 walkers, 10 918(6) cm�1. The reason the

trial wave function provided by Eq. 7 is not appropriate for this problem is illustrated in the

results provided in Figure 4. First, the 0.11 Å di↵erence between the lengths of the CH(2) and

CH(5) bonds in the minimum energy geometry means that the average wave function does

not provide a very good approximation to the ground state wave function associated with

either of these oscillators. This can be seen by comparing the three wave functions plotted in

Figure 4A. For comparison, in a recent study of the equilibrium geometries of water clusters

containing two to six water molecules, we found that these equilibrium OH bond lengths

di↵er by at most 0.04 Å.41 The di�culties in using a single wave function to describe the

five CH oscillators in CH+
5 is further illustrated in a comparison of the local energy function

obtained when EL in Eq. 1 is evaluated using the potential cut along r
(5)
CH (solid black curve)

in Figure 4B based on the the three wave functions shown in panel A. When we use the

average wave function to calculate the local energy it shows a sizable increase at larger

values of rCH. In contrast, the local energy plotted in the red dashed line is constant as the

corresponding wave function is an eigenstate of this Hamiltonian. Similar behavior is found

when we calculate the local energy using a cut through the potential through r
(5)
CH (panel C),

although now the purple trace deviates from zero at small values of r(2)CH. Based on these

plots and the poor performance of guided DMC when the guiding function in Eq. 7 is used,

we conclude that this approach that was e↵ective for water clusters will not work well for

CH+
5 . On the other hand, while the value of hr(i)CHi depends on which CH bond is being

considered, the widths of these distributions are less sensitive to the molecular environment.

To address this challenge, we need to find a procedure to relate hr(i)CHi to the instantaneous

structure of CH+
5 , just as we correlated the position and the widths of the wave functions for

the bound OH stretches in H+(H2O)n to the OO distances. It has long been recognized that
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the structure of CH+
5 can be described as a CH+

3 part, in which the three CH bond lengths are

roughly equal and the distances between these three hydrogen atoms are also equal, and a H2

part, which is characterized by a shorter H-H distance.42 In Tables S6-S8, for each hydrogen

atom, we report the H-H distances to each of the other four hydrogen atoms, evaluated at

each of the three stationary point geometries on the potential of CH+
5 . The values based

on the equilibrium structure of CH+
5 are also plotted as functions of the corresponding CH

bond lengths in the upper panel of Figure 5. For the CH bond lengths that involve hydrogen

atoms in the H2 group, the H-H distances range from 0.95 to approximately 2 Å. These are

the two longest CH bonds and the breadth of the distances is illustrated by the blue and

gold distribution in Figure 5A. For the hydrogen atoms in the CH3 group the H-H distances

only range from 1.7 to 1.9 Å, as is seen in the green, red and purple distributions. Similar

behavior is seen for the other stationary point geometries. Based on this observation, we

find that there is a correlation between the standard deviation among the four H-H distances

involving a chosen hydrogen atom to the value of hr(i)CHi, which we have plotted in panel B

of Figure 5. To incorporate this observation into our trial wave function, we define

 T =
5Y

i=1

�

⇣
r
(i)
CH � �(�i)

⌘
(8)

where �(rCH) is the wave function associated with the lowest frequency CH oscillator in the

equilibrium geometry, the gold curve in Figure 4A.

To obtain �i, we first scale all of the CH bond lengths so they are all the same value (1

a0), and � is the standard deviation of the four H-H distances involving the hydrogen atom of

interest. The scaling is introduced to remove the e↵ects of changes in the instantaneous CH

bond lengths on the value of �. In Figure 5B, we plot the di↵erence between the associated

CH bond length and r
(2)
CH in the equilibrium geometry, �, as a function of these scaled �

values. As is seen, � increases monotonically with �. We then fit this data to a shifted
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exponential,

�(�i) = A exp(B�i) + C (9)

Using this relationship, we have allowed the trial wave function to account for variations in

the equilibrium CH bond length on the structure of the ion while keeping all of the hydrogen

atoms equivalent. This does not add significant complexity to the DMC calculation.

The results of guided (blue) and unguided (red) DMC calculations of the ground states

of CH+
5 , CD

+
5 , and CH3D

+
2 are provided in Figure 6 for various ensemble sizes. As is seen, in

all of the isotopologues, when 2000 to 5000 walkers are used in the unguided simulations, the

energies and associated uncertainties are comparable to the values obtained from unguided

simulations with 20 000 walkers. Both values are also in good agreement with previously

reported zero-point energy for this potential energy surface (black line with grey shading).19

In addition to confirming that the procedure is e↵ective, these calculations also allowed

us to explore the transferability of the trial wave functions with partial deuteration. The

only change in  T in Eq. 8 when one or more of the hydrogen atoms are replaced with

deuterium is the trial wave function that is used is the one appropriate for the ground state

of the CD stretch based on the potential cut along r
(2)
CH. We also explored how well this wave

function performs on the various deuterated isotopologues of CH+
5 . One interesting feature

of partially deuterated forms of CH+
5 is that the probability amplitude becomes localized in

a subset of the 120 minima on the potential. This localization reflects di↵erences among the

zero-point energies of the CH vibrations in the various bonding environments, as is illustrated

by the wave functions plotted in Figure S2.

Overall, the agreement between the results of these calculations and previously reported

zero-point energies for CH+
5 is very good, further validating the approach. In the cases

of CH4D+ and CH3D
+
2 the energies obtained in the present study are between five and ten

cm�1 higher than previously reported values based on both guided and unguided calculations.

These di↵erences are likely due to di�culties in sampling the high frequency CH stretches

when a 10 a.u. time step is used, as was done in the previous studies of CH+
5 .

19 Studies of
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water monomer showed that the use of a 10 a.u. time step in DMC calculations resulted

in zero-point energies that are about five cm�1 lower than the zero-point energy obtained

from a converged variational calculation.23,43 Interestingly, for D2O the 10 a.u. time step

provided an accurate value for the zero-point energy. The fact that we get slightly di↵erent

zero-point energies when we reduce the time step from 10 a.u. to 1 a.u. for only CH4D+ and

CH3D
+
2 likely reflects fact that these are the mixed isotoplogues that have more hydrogen

atoms than deuterium atoms.

Conclusions

In this study, we have demonstrated that the guided DMC approach, which we recently

developed for studies of water clusters,12,23 can be used to study systems where the form of

the vibrational wave function that describes the XH stretches depends on the local environ-

ment experienced by that bond. We applied the approach to studies of protonated water

clusters with four or fewer water molecules and to CH+
5 . We showed that we could obtain

substantial savings in the computational demands of the DMC simulations for these systems,

in some cases as much as an order of magnitude, compared to unguided simulations. We

also showed that the wave functions obtained from these smaller ensembles resulting from

guided simulations were better converged than the wave functions obtained using unguided

approaches with substantially larger ensemble sizes.

By being able to converge the zero-point energies and wave functions with smaller ensem-

bles, we were able to show that for the protonated water systems, the ensemble sizes used in

previous studies are likely not large enough to obtain accurate ground state properties.15,16

With the approach validated and the savings that were achieved we are positioned to explore

larger cluster ions, specifically H+(H2O)5,6 where experimental studies have demonstrated

that multiple isomers are sampled in the low-temperature experiments, and the most sta-

ble forms appear to be a↵ected by partial deuteration.40,44 The ability to separate the CH
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stretch vibrations from the lower frequency motions in CH+
5 also provides an opportunity to

further explore the five dimensional rotor model, which was successfully used by Schlemmer

and co-workers to analyze their rotationally resolved spectrum.45–47
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Figure 1: Calculated zero-point energies for (A) H3O+, (B) H+(H2O)2, (C) H+(H2O)3, (D)
H+(H2O)4 plotted as functions of the number of walkers used in the simulation. The red or
pink symbols and lines provide results of unguided simulations using a 1 a.u. and 10 a.u.
time step, respectively. The gold, blue and purple symbols and lines provide results of three
types of guided simulations, which are described in the text. The dotted line and shading
extends the results of the largest guided simulation in each panel to facilitate comparisons
with other calculations. The energies used to generate these plots are also provided in Tables
S1-S4.
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Figure 2: (A) Projections of the ground state probability amplitude for H+(H2O)3 onto the
OOO angle based on the probabilty amplitudes obtained from 20 DMC wave functions (thin
lines). The average of these distributions is plotted with the thick blue line, and the standard
deviations at 110�, 120� and 130� are represented by error bars. These results are based on
an unguided simulation with 20 000 walkers. (B) Comparison of the average of the projected
probability amplitudes based on twenty DMC wave functions obtained from unguided DMC
simulations with 20 000 walkers (blue) and 40 000 walkers (green). In addition the projected
probability amplitude obtained from a guided DMC simulation with 10 000 walkers is shown
in red. For the guided calculation, the guiding function is based on the OH stretches of the
outer water molecules and unbound OH bonds in the hydronium core as well as the HOH
bends in the outer water molecules. The individual probability distributions used to obtain
the green and red curves in panel B are shown in Figure S1.
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Figure 3: The maximum (A) and width (B) of the ground state wave functions for a water
bound OH bond in the hydronium core of H+(H2O)3 (blue curves) and H+(H2O)4 (purple
curves) are plotted as functions of the distance between the oxygen atoms in the hydronium
core and the bound water molecule. The curves provide a (n � 1)th order polynomial rep-
resentation of the n data points that are plotted. Additional details about how these values
are obtained and the raw data that is plotted are provided in the Supporting Information.
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Figure 4: (A) Wave functions for the longest and shortest CH bonds in CH+
5 (gold solid

and red dashed line) as well as the average of the ground state wave functions for the five
CH bonds (purple dotted line). (B and C) Local energies obtained from one-dimensional

calculations using the potential along (B) r(5)CH and (C) r(2)CH (black line) based on the three
wave functions shown in panel A.
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Figure 5: (A) Box and whisker plot showing the standard deviation of H-H distances for each
of the five CH bonds on CH+

5 , plotted as a function of the CH bond length for the equilibrium
structure of CH+

5 . (B) Plot of the displacement of the CH bond length from the value of

r
(2)
CH in the equilibrium geometry of CH+

5 , �, as a function of standard deviation of the H-H
distances to the hydrogen atom of interest �, which is also plotted in panel A. These results
are plotted for each of the three low-energy stationary point structures of CH+

5 , shown in
the insets. The values for the Cs minimum are plotted with blue filled circles, the values for
the Cs saddle point are plotted with green open circles, while the values for the C2v saddle
point are shown with filled gold diamonds. The dotted line provides a fit of these values to
an exponential function of the form �(�i) = Aexp(B�i) + C. A, B, and C are -0.02389 Å,
6.29099 Å�1, and 0.24620 Å respectively.
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Figure 6: Calculated zero-point energies for (A) CH+
5 , (B) CD+

5 , and (C) CH2D
+
3 plotted

as a function of the number of walkers used in the simulation (NW) for unguided (blue)
and guided (red) DMC simulations. The black lines are the previously reported values of
these zero-point energies, and the grey shading indicates their reported uncertainties.19 The
energies used to generate these plots are also provided in Table S9.
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