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Abstract—We present a novel approach for recovering a sparse
signal from quadratic measurements corresponding to a rank-one
tensorization of the data vector. Such quadratic measurements,
referred to as interferometric or cross-correlated data, naturally
arise in many fields such as remote sensing, spectroscopy, holog-
raphy and seismology. Compared to the sparse signal recovery
problem that uses linear measurements, the unknown in this case
is a matrix formed by the cross correlations of the sought signal.
This creates a bottleneck for the inversion since the number
of unknowns grows quadratically with the dimension of the
signal. The main idea of the proposed approach is to reduce the
dimensionality of the problem by recovering only the diagonal of
the unknown matrix, whose dimension grows linearly with the
size of the signal, and use an efficient Noise Collector to absorb the
cross-correlated data that come from the off-diagonal elements
of this matrix. These elements do not carry extra information
about the support of the signal, but significantly contribute to
these data. With this strategy, we recover the unknown matrix
by solving a convex linear problem whose cost is similar to the
one that uses linear measurements. Our theory shows that the
proposed approach provides exact support recovery when the
data is not too noisy, and that there are no false positives for any
level of noise. It also demonstrates that the level of sparsity that
can be recovered scales almost linearly with the number of data.
The numerical experiments presented in the paper corroborate
these findings.

Index Terms—quadratic data, /;-minimization, noise, dimen-
sion reduction

I. INTRODUCTION

Reconstruction of signals or images from cross correlations
has interesting applications in many fields of science and
engineering such as optics, quantum mechanics, electron mi-
croscopy, antenna testing, seismic interferometry, or imaging
in general [14], [18], [35], [31]. Using cross correlations of
measurements collected at different locations presents several
advantages since the inversion does not require knowledge of
the emitter positions, or the probing pulses shapes as only
time differences matter. Cross correlations have been used,
for example, when imaging is carried out with opportunistic
sources whose properties are mainly unknown [13], [11], [19].

In many applications, we seek information about an object
or a signal p € CX given data b € CV most often related
through a linear transformation
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where A € CNV*X is the measurement or model matrix. When
the signal p is compressed or when the data is scarce, N <
K, in which case (1) is underdetermined and infinitely many
signals or objects match the data. However, if the signal p is
sparse so only M < K components are different than zero,
{1-minimization algorithms that solve

p,, = argmin ||pl|¢,, subject to Ap =b )

can recover the true signal efficiently even when N < K.
On the other hand, there are situations in which it is difficult
or impossible to record high quality data b, and it is more
convenient to use the cross-correlated data contained in the
matrix
B=bb* e VNN (3)

to find the desired information about the object or signal p
(see [12] and references therein). We will refer to (3) as the
quadratic data.

One way to address this problem is to lift it to the matrix
level and reformulate it as a low-rank matrix linear system,
which can be solved by using nuclear norm minimization
as it was suggested in [7], [4] for imaging with intensities-
only. This makes the problem convex over the appropriate
matrix vector space and, thus, the unique true solution can be
found using well established algorithms with increased storage
requirements as they involve the SVD of the iterate matrix
unknown [1]. Thus, the big caveat is that the computational
cost and memory requirements rapidly become prohibitive
because the dimension of the problem increases quadratically
with K, making its solution infeasible for large scale problems.

To avoid the bottleneck arising from squaring the dimen-
sionality of the inverse problem, non-convex approaches that
use gradient descent iterations and operate on the original
signal domain have also been recently proposed [6], [10],
[34], [5]. The premise of these methods is that if the initial
guess obtained by means of a spectral method is sufficiently
accurate, the iterates provably converge to the correct solution
(up to a global phase) with a geometric rate and algorithmic
step-size O(1/K). Other interesting non-convex methods with
some theoretical guarantees for the matrix completion problem
are the OptSpace algorithm [21] that also computes the initial
guess by means of a spectral method, and the AltMinPhase
algorithm [29] that alternates between updates of the phase
and the signals.

In this paper we suggest a different approach. We propose
to consider the linear matrix equation

AXA* =B “4)

for the correlated signal X = p p* € CK*X vectorize both
sides so that
vec(AXA") = vec(B), (5)
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and use the Kronecker product &, and its property
vec(PQR) = (RT @ P)vec(Q), to express the matrix mul-
tiplications as the linear transformation

(A® A)vec(X) = vec(B). (6)

Thus, we can promote the sparsity of the sought signal
using ¢;-minimization algorithms that are more efficient than
nuclear norm minimization ones, as they do not require heavy
operations that involve matrix factorizations. However, the
dimension of the unknown vec(X) in (6) also increases
quadratically with K, so this approach by itself would still
be impractical when K is not small.

Furthermore, one might think that it is not a good idea to
go quadratic and solve (6) instead of (1) for two reasons.
First, because the condition number of (A ® A) increases
quadratically, so the conditioning of the problem can worsen
substantially and, thus, its numerical solution can be less
reliable. Second, and perhaps more importantly, because the
mutual coherence of the matrix (A® A) is exactly the same as
the one of matrix A [20], i.e. u(A® A) = u(A), so recovery
guarantees do not get better. However, it follows from [20]
that if one chooses only a few specific columns of the matrix
(A® A), then u(A® A) = (u(A))2. The right columns to
choose are those that correspond to the diagonal entries of the
matrix X.

Hence, we propose to use a Noise Collector to reduce
the dimensionality of problem (6). The Noise Collector was
introduced in [28] to eliminate the clutter in the recovered
signals when the data are contaminated by additive noise. In
this paper, we use the Noise Collector to absorb part of the data
instead. Specifically, we treat the data vector that corresponds
to the K2 — K off-diagonal entries in the matrix X as noise.
Using the Noise Collector allows us to ignore these entries and
construct a linear system with the same number of unknowns
as the original problem (1) that uses linear data. Thus, a
dimension reduction from K2 to K unknowns is achieved with
almost no extra computational cost. This is because the number
of operations used by the Noise Collector is of the same order
as the ones needed to solve the original problem with linear
measurements (see Section IV-A). In other words, the cost
of solving the sparse signal recovery problem using cross-
correlated data also grows linearly with K using the proposed
approach. We point out that the Noise Collector also works
as a regularization of the inverse problem, so its condition
number becomes O(1).

The main result of this paper is Theorem 3 which says that
under certain decoherence conditions on the matrix A, we can
efficiently find the support of an M-sparse signal exactly if the
cross-correlated data is noise-free or the noise is low enough.
Furthermore, Theorem 3 shows that the level of sparsity M
that can be recovered is O(N/+vIn N).

The numerical experiments included in this paper support
the results of Theorem 3. They show that the support of a
signal can be found exactly if the noise in the data is not too
large with almost no extra computational cost with respect
to the original problem (1) that considers linear data with
no correlations. Once the support has been found, a trivial
second step allows us to find the signal, including its phases.
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The reconstruction is exact when there is no noise in the data
and the results are very satisfactory even for noisy data with
low signal to noise ratios. That is, our numerical experiments
suggest that the approach presented here is robust with respect
to additive noise. Additional properties are that for any level of
noise the solution has no false positives, and that the algorithm
is parameter-free, so it does not require an estimation of the
energy of the off-diagonal signal that we need to absorb, or
of the level of noise in the data.

The paper is organized as follows. In Section II, we
summarize the model used to generate the signals to be
recovered, which in our case are images. In Section III, we
present the theory that supports the proposed strategy for
dimension reduction when correlated data are used to recover
the signals. Section IV explains the algorithm for carrying
out the inversion efficiently. Section V shows the numerical
experiments. Section VI summarizes our conclusions. The
proofs of the theorems are given in A.

II. PASSIVE ARRAY IMAGING

We consider processing of passive array signals where the
object to be imaged is a set of point sources at positions Z;
and (complex) amplitudes o, j = 1,..., M. The data used to
image the object are collected at several sensors on an array;
see Figure 1. The imaging system is characterized by the array
aperture a, the distance L to the sources, the bandwidth B and
the central wavelength \g of the signals.

Fig. 1. General setup for passive array imaging. The source at Z; emits a
signal that is recorded at all array elements &,, r = 1,..., Ny.

The sources are located inside an image window IW dis-
cretized with a uniform grid of points 4, k = 1, ..., K. Thus,
the signal to be recovered is the source vector

p=p1,....px|T € CK, (7)
whose components py, correspond to the amplitudes of the M
sources at the grid points 4, k = 1,..., K, with K > M.
This vector has components g, = «; if 3§, = Z; for some
7 =1,..., M, while the others are zero.

Denoting by G(&, §; w) the Green’s function for the propa-
gation of a wave of angular frequency w from point 4 to point
Z, we define the single-frequency Green’s function vector that
connects a point ¢ in the IW with all the sensors on the array
located at points &,, r = 1,..., N,, so
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exp{iw|Z — y|/co}

An|& —
medium is homogeneous. Hence, the signals of frequencies w;
recorded at the sensors locations &, are

In three dimensions, G(&, 9§;w) = if the

M
b(Z,,w;) = ZajG(:i'r, Zjw), r=1,...,N,.
j=1

They form the single-frequency data vector b(w;) =
[b(Z1,w), b(Ba,wi), ..., b(&En,w)]T € CNr. As several fre-
quencies wy, | = 1,..., Ny, are used to recover (7), all the
recorded data are stacked in the multi-frequency column data
vector

b= [b(w1)T,b(w2)T,...,blwn,)T]T € CV ,with N = N, N;.

®)

A. The inverse problem with linear data

When the data (8) are available and reliable, one can form
the linear system
Ap=b ©)

to recover (7). Here, A is the N x K measurement matrix
whose columns aj, are the multi-frequency Green’s function
vectors

ai = = lg(i) T 9 @i )T g(Fion, T € €

(10)
where ¢;, are scalars that normalize these vectors to have ¢5-
norm one, and

Y

where p is given by (7). Then, one can solve (9) for the
unknown vector p using a number of ¢, and ¢; inversion
methods to find the sought image. In general, {5 methods are
robust but the resulting resolution is low. On the other hand,
¢1 methods provide higher resolution but they are much more
sensitive to noise in the data [27]. Hence, they cannot be used
with poor quality data unless one carefully takes care of the
noise.

p = diag(cy, ca, ..., cK) P,

B. The inverse problem with quadratic cross correlation data

In many instances, imaging with cross correlations helps
to form better and more robust images. This is the case, for
example, when one uses high frequency signals and has a low-
budget measurement system with inexpensive sensors that are
not able to resolve the signals well. Another situation is when
the raw data (8) can be measured but it is more convenient
to image with cross correlations because they help to mitigate
the effects of the inhomogeneities of the medium between the
sources and the sensors [3], [15]

Assume that all the cross-correlated data contained in the
matrix

B=bb* e VN (12)

are available for imaging. Then, one can consider the linear
system

AXA* =B, (13)
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and seek the matrix X = pp* € CK*K that solves it. The
unknown matrix X is rank-one and, hence, one possibility
is to look for a low-rank matrix by using nuclear norm
minimization as it was suggested for imaging with intensities-
only in [7], [4]. This is possible in theory, but it is unfeasible
when the problem is large because the number of unknowns
grows quadratically and, therefore, the computational cost
rapidly becomes prohibitive. For example, to form an image
with 1000 x 1000 pixels one would have to solve a system
with 10" unknowns.

Instead, we suggest the following strategy. We propose to
vectorize both sides of (13) so

vec(AX A*) = vec(B), (14)

where vec(-) denotes the vectorization of a matrix formed by
stacking its columns into a single column vector. Then, we
use the Kronecker product ®, and its property vec(PQR) =
(RT ® P)vec(Q), to express the matrix multiplications as the
linear transformation

(A® A)vec(X) = vec(B). (15)

With this formulation of the problem we can use an /;
minimization algorithm to form the images, which is much
faster than a nuclear norm minimization algorithm that needs
to compute the SVD of the iterate matrices. However, with
just this approach the main obstacle is not overcome, as the
dimensionality still grows quadratically with the number of
unknowns K. To this effect, we propose here a dimension
reduction strategy that uses the Noise Collector [28] to absorb
a component of the data vector that does not provide extra
information about the signal support. We point out that this
component is not a gaussian random vector as in [28], but a
deterministic vector resulting from the off-diagonal terms of
X that are neglected. Hence, the use of the Noise Collector as
an effective dimension reduction tool is not a straightforward
application of [28]. We need to show why, and under what
conditions, it can indeed absorb the interference terms, i.e.,
the off-diagonal elements p;p}, = j. This is the purpose of
Theorems 2 and 3 given in the next section.

We point out that other ¢; regularizations used in signal
processing, as lasso [32], [9] or square-root lasso [2], could
be used as well to absorb the contribution to the data of the
off-diagonal interference terms and, thus, reduce the dimen-
sionality of the problem. The advantage of square-root lasso
over the commonly used lasso regularization is that the former,
as the Noise Collector, does not need to know (or estimate) the
level of noise, so its solution does not depend on the choice
of the penalty level.

III. THE NOISE COLLECTOR AND DIMENSION REDUCTION

We explain in this section how the Noise Collector can be
used to effectively reduce the dimensionality of problem (15).
We first present it in Section III-A as an effective denoising
tool for a linear problem. Theorem 1 considers the case of
a generic gaussian noise vector e. This is the result of [28],
recalled here for completeness. Theorem 2 is then introduced
to address the problem of absorbing a deterministic noise
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vector. This is a new original result with slightly weaker
assumptions than Theorem 1. In particular, Theorem 2 requires
the noise vector to be decoherent only with respect to the
columns of the sensing matrix that do not correspond to the
signal support. Although this is not essential when the noise is
random, it turns out to be crucial for problem (15) because, in
this case, the deterministic noise vector is not decoherent with
respect to the columns that correspond to the signal support.
The specific assumptions needed for the Noise Collector to be
employed as an effective dimension reduction tool for problem
(15) are given in Theorem 3, whose proof relies in verifying
that the assumptions of Theorem 2 indeed hold in this case.

A. The Noise Collector

The Noise Collector [28] is a method to find the vector
x € CK in

Tx=dy+e, (16)

from highly incomplete measurement data d = do + e € CV
possibly corrupted by noise e € CV, where 1 < N < K.
Here, T is a general measurement matrix of size N x K, whose
columns have unit length. The main results in [28] ensure that
we can still recover the support of )x when the data is noisy
by looking at the support of X, found as

(Xrsm,) = argminy n (T[Ix/le; + 17lle,) 5

subject to Tx +Cn = d, an

with an O(1) no-phantom weight 7, and a Noise Collector
matrix C € CV*= with © = A7, for 8 > 1. If the noise e is
Gaussian, then the columns of C can be chosen independently
and at random on the unit sphere SV !, The weight 7 > 1 is
chosen so it is expensive to approximate e with the columns
of T, but it cannot be taken too large because then we lose
the signal x that gets absorbed by the Noise Collector as well.
Intuitively, 7 is a measure of the rate at which the signal is
lost as the noise increases. For practical purposes, 7 is chosen
as the minimal value for which x = 0 when the data is pure
noise, i.e., when dy = 0. The key property is that the optimal
value of 7 does not depend on the level of noise and, therefore,
it is chosen in advance, before the Noise Collector is used for
a specific task. We have the following result.

Theorem 1: [28] Fix 8 > 1, and draw ¥ = A/? columns to
form the Noise Collector C, independently, from the uniform
distribution on SV ~1. Let x be an M-sparse solution of the
noiseless system 7x = dop, and X, the solution of (17) with
gaussian noise e so d = dj + e. Denote the ratio of minimum
to maximum significant values of x as

_ : x|
= min .
iesupp(X) |1x[[e.
Assume that the columns of 7" are incoherent, so that

(18)

1
[{t;, t;)] < I for all ¢ and j. (19)

Then, for any x > 0, there are constants 7 = 7(k, 3), ¢; =
c1(k, 8,7), and Ny = Ny(k, ) such that, if the noise level

satisfies | ”2
dollz, | N
max (1, ||ell¢e,) < c 2
( || H z) 1 HX”& th

(20)
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then supp(x,) = supp(x) for all N' > Ny with probability
1—1/N".

To gain a better understanding of this theorem, let us
consider the case where 7' is the identity matrix (the classical
denoising problem) and all coefficients of dy = x are either 1
or 0. Then [ dol|7, = [[x|le, = M. In this case, an acceptable
level of noise is

N N
||€||£2 g ||d0||42\/M1nN ~ \/th

The estimate (21) implies that we can handle more noise as
we increase the number of measurements. This holds for two
reasons. Firstly, a typical noise vector e is almost orthogonal
to the columns of 7" so, using bounds on the maximum of a
family of sub-gaussian random variables, we obtain

In N

THGH&
for some ¢y = co(r) with probability 1 —1/N*. In particular,
a typical noise vector e is almost orthogonal to the signal
subspace V. More formally, suppose V' is the M-dimensional
subspace spanned by the column vectors t; with j in the
support of x, and let W = V= be the orthogonal complement
to V. Consider the orthogonal decomposition e = e¥ + e,
such that e” is in V' and e is in W. Then,

M
lle®lle. </ 7 llelles

with high probability that tends to 1, as N' — oo. In
Theorem 1, a quantitative estimate of this convergence is
1—1/N*. It means that if a signal is sparse so M < N, then
we can recover it for very low signal-to-noise ratios. Secondly,
and more importantly, if the columns of the noise collector C
are also almost orthogonal to the signal subspace, then it is too
expensive to approximate the signal dy with the columns of C
and, hence, we have to use the columns of the measurement
matrix 7. If we draw the columns of C, independently, from
the uniform distribution on S 1 then they will be almost
orthogonal to the signal subspace with high probability. It
is again estimated as 1 — 1/A* in Theorem 1. Finally, the
incoherence condition (19) implies that it is too expensive to
approximate the signal dy with columns 7' that are not in the
support of x and, hence, there are no false positives.

In Theorem 1 we used randomness twice: the noise vector
e was random and the columns of the noise collector were
drawn at random. Note that in both cases randomness could
be replaced by deterministic conditions requiring that e and
the columns of C are almost orthogonal to the signal subspace.
It is natural to assume that the noise vector e is a random
variable and, as we explain in [28], the columns of C are
random because it is hard to construct a deterministic C that
satisfies the almost orthogonality conditions. In the present
work we still construct the matrix C randomly, but we treat
the vector e as deterministic (see Theorem 2). Inspection of
the proofs in [28] shows that the only condition on e we need
to verify from Theorem 1 is (22). Thus, the next Theorem is
a reformulation of Theorem 1 for a deterministic noise vector
e. The proof is given in Appendix B.

2

[(ti, e)| < co (22)
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Theorem 2: Assume conditions on x, 7', and C are as in
Theorem 1 and define v as in (18). Then, for any « > 0,
there are constants 79 = 7o(k,08), co = co(k,3), and
No = No(k, B,7), @ = alcg, K, 3) such that the following
two claims hold.

(i) If e satisfies (22) for all ¢;, ¢ &€ supp (x); all columns

of T' satisfy
Vin N

|<tlatj>| < ¢ \/N (23)
for all ¢ and j; the sparsity M is such that
M<a VN ; (24)
In N
and 7 > 79, then supp(x,) C supp(x) with probability 1 —
1/NE.
(>i1) If, in addition, the noise is not large, so
tm,e)] < min il/2 (25)
(b€l < _min Jxil/
for all t,,,, m € supp(x), and
llelle, < crlixlle, (26)

for some ¢, then supp(x) = supp(x,.) for all N’ > Ny with
probability 1 — 1/A/".

In contrast to Theorem 1, we require in Theorem 2 condi-
tion (22) to hold only for for ¢;, ¢ ¢ supp (), that is for
the columns of 7' outside the support of x. For the columns
inside the support, ¢ € supp (x), we relax condition (22) to
condition (25) which is easier to be satisfied. Thus Theorem 2
has slightly weaker assumptions than Theorem 1. For a random
e this weakening in not essential, because one needs to know
the support of x in advance. It turns out that for our e this
weakening will become important (see Remark 3 in the end
of Appendix C) .

B. Dimension reduction for cross correlation data

The N2 x K2 linear problem (15) that uses quadratic cross
correlation data is notoriously hard to solve due to its high
dimensionality. Therefore, we propose the following strategy
for robust dimensionality reduction. The idea is to treat the
contribution of the off-diagonal elements of X = pp* €
CE*K a5 noise and, thus, use the Noise Collector to absorb
it. Namely, we define

X:diag(X) = [|p1‘27|p2|27"'7|pK|2]T7 (27)

and re-write (15) as

TI'x+Cn=d, (28)

where we replace the off-diagonal elements by the Noise
Collector term C n and

T=(A®A)y

contains only the K columns of A ® A corresponding to x.
Thus, the size of x is K and the size of T is N x K, with
K = K and ' = N2. In practice, the measurements may be
subsampled as well, so the size of the system can be further
reduced to N x K, with N' = O(N) and K = K. Notice

(29)
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that, as a result of the proposed dimension reduction strategy,
the resulting x has nonnegative entries and, hence, specific
algorithms for sparse recovery of nonnegative signals could
be applied [16], [22], [23].

Problem (28) can be understood as an exact linearization of
the classical phase retrieval problem, where all the interference
terms p;p; for i # j are absorbed in Cn, with n being an
unwanted vector considered to be noise in this formulation. In
other words, the phase retrieval problem with K unknowns
has been transformed to the linear problem (28) that also
has K unknowns. Note, though, that in phase retrieval only
autocorrelation measurements are considered, while in (28) we
also use cross-correlated measurements.

In the next theorem we use all the measurements d € CV R
so A/ = N2 in (28). This is done for simplicity of presentation,
but in practice N' = O(N) measurements are enough. We
will choose a solution of (28) using (17). As in Theorems 1
and 2, the vector m in (28) has N P entries that do not
have physical meaning. Its only purpose is to absorb the off-
diagonal contributions in e = d — T"x. We point out that the
magnitude of e is not small if M > 2. Indeed, the contribution
of x = diag(X) to the data d is of order M, while the
contribution of the off-diagonal terms of X is of order M?2.
Furthermore, the vector e is not independent of x anymore.

Theorem 3: Fix |p;|. Suppose the phases p;/|p;| are inde-
pendent and uniformly distributed on the (complex) unit circle.
Suppose X is a solution of (15), x = diag(X) is M-sparse,
and T = (A® A)y : CF — CN,K =K and N = N2. Fix
B > 1, and draw ¥ = N” columns for C, independently, from
the uniform distribution on SV 1. Denote

A = VNmax [(a;,a;), (30)
i#j

and define « as in (18). Then, for any x > 0, there are con-

stants o = a(k,7y, A), 7 = 7(k, 8), and Ny = Ny(k, 8,7, A)

such that the following holds. If

M < aN/VInN 31)

and . is the solution of (17), then supp(x) = supp(x.) for
all N' > Ny with probability 1 — 1/N*.

Note that the main role of N is to absorb all constants so
that simple expressions of the form 1 — 1/N* arise (see also
Remark 1 in Appendix A). All the key parameters «, 3, and
A are of order O(1). Indeed, A is O(1) because |(a;, a;)| is
O(1/V/N), ~ is also typically O(1) as it is the ratio between
the smallest and the largest value of the unknown, ( is an
O(1) parameter that determines the dimension ¥ = A¥ of
the Noise Collector, and k is the algebraic decay rate of the
probability estimate 1 — 1/N*, which is also O(1).

The proof of Theorem 3 is given in Appendix C. In
Theorem 3 the scaling for sparse recovery is (31). This
linear in M scaling is in good agreement with our numerical
experiments, see Figure 7. In order to obtain this scaling
we introduced our probabilistic framework in Theorem 3
assuming that the phases of the signals are random. The idea
is that a vector with random phases better describes a typical
signal in many applications. Our assumption about the type
of randomness is not essential and it is only used to simplify
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the proof of this theorem. It is, however, essential to assume
randomness so as to obtain the linear in M scaling (31). The
dimension reduction still could be done without introducing
the probabilistic framework. If no randomness is assumed,
then the scaling for sparse recovery is not linear as in (31).
It is more conservative: M < avV N /VIn N, and it does not
agree with our numerical experiments. We state and prove
a deterministic version of Theorem 3 in Appendix D for
completeness.

IV. ALGORITHMIC IMPLEMENTATION

A key point of the proposed strategy is that the M -sparsest
solution of (28) can be effectively found by solving the
minimization problem

(Xr,mr) = argmin (7lxle, + [Inlle,), (32)

subject to T'x +Cn = d,

with an O(1) no-phatom weight 7. Here, T'is an A/ x K matrix,
C an N x N'# matrix, with /3 close to one, x is a K x 1 vector
and 7 is a A% x 1 vector. The main property of this approach
is that if the matrix T is incoherent enough, so its columns
satisfy assumption (19) of Theorem 1, the ¢;-norm minimal
solution of (32) has a zero false discovery rate for any level
of noise, with probability that tends to one as the dimension
of the data N increases to infinity.
To find the minimizer in (32), we define the function

Fix,n,z) = X7lixlle, +nlle,)
1
+ 5ITx+Cn—dlff, + (z.d = Tx —Cn)

(33)

for a no-phantom weight 7, and determine the solution as
mzaxr>r(1717171F(x,n7z). (34)
This strategy finds the minimum in (32) exactly for all values
of the regularization parameter A. Thus, the method is fully
automated, meaning that it has no tuning parameters. To
determine the exact extremum in (34), we use the iterative soft
thresholding algorithm GeLMA [26] that works as follows.
Pick a value for the no-phantom weight 7; for optimal
results calibrate 7 to be the smallest value for which x = 0
when the algorithm is fed with pure noise. In our numerical
experiments we use 7 = 2. Next, pick a value for the
regularization parameter, for example A\ = 1, and choose step
sizes Aty < 2/|[[T|C]||* and Aty < N/||T|'. Set x, = O,
1n9 =0, 20 = 0, and iterate for k£ > 0:

r:d_TXk_C,r'km
Xi+1 = Srane, (Xg + At T (2 + 1)),
Mpr1 = Saan, (Mg + At C* (21 + 1)),

Zit1 = 2k + At 1, (35)

where S, (y;) = sign(y;) max{0, |y;| —r}. Terminate the itera-
tions when the distance ||x, ; —X3|| between two consecutive
iterates is below a given tolerance.

IChoosing two step sizes instead of the smaller one At; improves the
convergence speed.

http://dx.doi.org/10.1109/TSP.2021.3067140

A. The Noise Collector: construction and properties

. . B
To construct the Noise Collector matrix C € CN*N” that

satisfies the assumptions of Theorem 1 one could draw N7
normally distributed A/-dimensional vectors, normalized to
unit length. Thus, the additional computational cost incurred
for implementing the Noise Collector in (35), due to the terms
Cn;, and C*(zy, + r), would be O(NP*1), which is not very
large as we use S = 1.5 in practice. The computational cost of
(35) without the Noise Collector mainly comes from the matrix
vector multiplications 7 x, which can be done in O(NK)
operations and, typically, X > N.

To further reduce the additional computational time and
memory requirements we use a different construction proce-
dure that exploits the properties of circulant matrices. The idea
is to draw instead a few normally distributed N -dimensional
vectors of length one, and construct from each one of them a
circulant matrix of dimension A" x A. The columns of these
matrices are still independent and uniformly distributed on
SV, so they satisfy the assumptions of Theorem 1. The
full Noise Collector matrix is then formed by concatenating
these circulant matrices together.

More precisely, the Noise Collector construction is done in
the following way. We draw N~ normally distributed A/-
dimensional vectors, normalized to unit length. These are the
generating vectors of the Noise Collector. To these vectors
are associated A?~1 circulant matrices C; € CN >N , 1 =
1,...,NP=1 and the Noise Collector matrix is constructed
by concatenation of these N’ £—1 matrices, so

C=1[C1|C2|Cs3]|... |Cphra-1] € (C./\/'X./\/'ﬁ.

We point out that the Noise Collector matrix C is not stored,
only the N#~1 generating vectors are saved in memory. On the
other hand, the matrix vector multiplications Cn;, and C*(z+
) in (35) can be computed using these generating vectors and
FFTs [17]. This makes the complexity associated to the Noise
Collector O(NP log(N)).

To explain this further, we recall briefly below how a matrix
vector multiplication can be performed using the FFT for a cir-
culant matrix. For a generating vector ¢ = [CO, Cl,y... ,c/\/,l],
the C; circulant matrix takes the form

Co CN -1 ... C1

C1 Co ... Co
C; =

CN—-1 CN—2 ... (O

This matrix can be diagonalized by the Discrete Fourier
Transform (DFT) matrix, i.e.,

Ci=FAF!

where F is the DFT matrix, 7! is its inverse, and A is
a diagonal matrix such that A = diag(Fc), where c is the
generating vector. Thus, a matrix vector multiplication C;n is
performed as follows: (i) compute ) = F~'n, the inverse DFT
of i in N'log(N') operations, (ii) compute the eigenvalues of
C; as the DFT of ¢, and component wise multiply the result
with 7 (this step can also be done in A log(N') operations),
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and (iii) compute the FFT of the vector resulting from step
(i) in, again, N log(N') operations.

Consequently, the cost of performing the multiplication Cn;,
is NP~ IN log(N) = NP log(N). As the cost of finding the
solution without the Noise Collector is O(NK) due to the
terms 1" x},, the additional cost due to the Noise Collector is
negligible since K >> NP1 log(N) because, typically, K >
N and 5~ 1.5.

We emphasise that in the dimension reduced signal recovery
problem (28) that uses cross-correlated data, X = K and
N = O(N), so the computational cost of finding its sparsest
solution is O(NNK), as the original problem that uses linear
data.

V. NUMERICAL RESULTS

We consider processing of passive array signals. We seek
to determine the positions Z; and the complex amplitudes «;
of M point sources, j = 1,..., M, from measurements of
polychromatic signals on an array of receivers; see Figure 1.
The source imaging problem is considered here for simplicity.
The active array imaging problem can be cast under the same
linear algebra framework even when multiple scattering is
important [8].

The array consists of N, = 21 receivers located at
T, = —% + A’,'T__lla, r =1,...,N,, where a = 100X is
the array aperture. The imaging window (IW) is at range
L = 100X from the array and the bandwidth B = fy/3 of
the emitted pulse is 1/3 of the central frequency fo, so the
resolution in range is ¢/B = 3\ while in cross-range it is
AL/a = X. We consider a high frequency microwave imaging
regime with central frequency fo = 60GHz corresponding to
Ao = 5mm. We make measurements for Ny = 21 equally
spaced frequencies spanning a bandwidth B = 20GHz. The
array aperture is a = bH0cm, and the distance from the
array to the center of the IW is L = 50cm. Then, the
resolution is AoL/a = 5mm in the cross-range (direction
parallel to the array) and c¢y/B = 15mm in range (direction
of propagation). These parameters are typical in microwave
scanning technology [24].

We consider an IW with K = 1681 pixels which makes
the dimension of X = pp* equal to K? = 2825761. The
pixel dimensions, i.e., the resolution of the imaging system,
is bmm x 15mm. The total number of measurements is
N = N, Ny = 441. Thus, we can form N? = 194481 cross-
correlations over frequencies and locations.

Let us first note that with these values for NV and K,
which in fact are not big, we cannot form the full K2 x K?
matrix (A ® A) so as to solve (15) for the K2 x 1 vector
vec(X) because of its huge dimensions. Instead, we propose
to reduce the dimensionality of the problem to K unknowns
corresponding to diag(X), neglecting all the off-diagonal
terms that correspond to the interference terms pypjy, for
k # k'. Their contributions to the cross-correlated data are
treated as noise, which is absorbed in a fictitious vector n
using a Noise Collector. We stress that this noise is never
small if M > 2, as its contribution to the the cross-correlated
data is of order O(M?), while the contribution of diag(X) is
only of order O(M).

http://dx.doi.org/10.1109/TSP.2021.3067140
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Fig. 2. The true x = diag(X) = diag(p p*), i.e., the absolute values squared
of the point sources amplitudes.. The dimension of the image is K = 1681.
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Fig. 3. Imaging M = 8 sources using correlations and the NC. The dimension
of the image is &' = 1681. The dimension of the linear data is N = 441.
The ¢; images are obtained using 21N of the N2 correlation data. Noise
free data.

In the following examples, we consider imaging of M =8
point sources that are on the grid; see Fig. 2. If the sources
are off-grid the resulting modeling error is also absorbed by
the Noise Collector. In the following numerical experiments,
we only use A/ = 21N cross-correlated data picked at random
instead of the N2 cross-correlated data which are in principle
available. This reduces even more the dimensionality of the
problem that we are solving.

In Fig. 3, we present the results when the used data is
noise-free. The left column shows the results when we use
the ¢; algorithm (35); the top plot is the recovered image and
the bottom plot the recovered x = diag(X) = diag(p p*)
vector. The support of the sources is exact but the amplitudes
are not. If it is important for an application to recover the
amplitudes with precision, one can consider in a second step
the full problem (15) for vec(X) with all the interference terms
prpy, for k # k', but restricted to the exact support found in
the first step. If there is no noise in the data, this second step
finds the exact values of the amplitudes efficiently using an /5
minimization method; see the right column of Fig. 3.

In Figs. 4 and 5 we consider the same configuration of
sources but we add white Gaussian noise to the data. The
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Fig. 4. Imaging M = 8 sources using correlations and the NC. The dimension
of the image is K = 1681. The dimension of the linear data is N = 441.
The ¢ images are obtained using 21N of the N2 correlation data. Data with
10dB SNR.
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Fig. 5. Imaging M = 8 sources using correlations and the NC. The dimension
of the image is K = 1681. The dimension of the linear data is N = 441.
The ¢1 images are obtained using 21N of the N2 correlation data. Data with
0dB SNR.

resulting SNR values are 10dB and 0dB, respectively. In both
cases, the solutions obtained in the first step look very similar
to the one obtained in Fig. 3 for noise free data. This is so,
because the noise in the data is dominated by the neglected
interference terms. The actual effect of the additive noise is
only seen in the 2nd step when we solve for vec(X), restricted
to the support, using an ¢ minimization method. Indeed, when
the data are noisy we cannot recover the exact values of the
amplitudes. Still, since an /> method is used on the correct
support, the reconstructions are extremely robust and give very
good results, even when the SNR is 0dB.

To illustrate the robustness of the reconstructions of the
entire matrix X = p p* we also plot in Fig. 6 the angle of X,
compared to the angle of X restricted on the support recovered
during the first step. We get an exact reconstruction for noise-
free data. The error in the reconstruction increases as the SNR

http://dx.doi.org/10.1109/TSP.2021.3067140

decreases but the results are very satisfactory even for the 0dB
SNR case.

Again, the big advantage of the proposed ¢; minimization
approach that seeks only for the components of diag(X), and
uses a Noise Collector to absorb the interference terms that
are treated as noise, is that it is linear in the number of pixels
K instead of quadratic. This allows us to consider large scale
problems. Moreover, as we observed in the results of Figs. 3
to 6, the number of data A/ used to recover the images do
not need to be N2, but only a multiple of N. Note that in
the examples shown here K = 1681 while N = 441. The full
matrix N2 x K2 would require 9000 gigabytes of RAM which
makes the problem of solving for X practically unfeasible.

In Fig. 7 we illustrate the performance of the proposed ¢;
approach for different sparsity levels M and data sizes N.
There is no additive noise added to the data in this figure.
Success in recovering the true support of the unknown x
corresponds to the value 1 (yellow) and failure to O (blue).
The small phase transition zone (green) contains intermediate
values. The red line is the the estimate v/A'/(2v/In ). These
results are obtained by averaging over 10 realizations.

VI. CONCLUSSIONS

In this paper, we consider the problem of sparse signal
recovery from cross correlation measurements. The unknown
in this case is the correlated matrix signal X = pp* whose
dimension grows quadratically with the size K of p and,
hence, inversion becomes computationally unfeasible as K
becomes large. To overcome this issue, we propose a novel
dimension reduction strategy. Specifically, we vectorize the
problem and consider only the diagonal terms |p;|> of X as
unknown. The contribution of the off-diagonal interference
terms p;p; for i # j is treated as noise, which is absorbed
using the Noise Collector approach introduced in [28]. In this
way, we are able to relate the (noisy) data to the diagonal
terms |p;|? of X through a linear transformation. This allows
us to recover the signal exactly using efficient ¢;-minimization
algorithms. The cost of solving this dimension reduced prob-
lem is similar to the one using linear data. Furthermore, our
numerical experiments show that the suggested approach is
robust with respect to additive noise in the data.
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APPENDIX
A. A special case of the Dvoretzky-Milman’s theorem

The proof of Theorem 2 uses the following special case of
the Dvoretzky-Milman’s theorem [25] proved, e.g. in [28] as
Lemma 1. For clarity of presentation we work in R instead of

C.
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Fig. 6. Imaging M = 8 sources using correlations and the NC. The dimension of the image is K = 1681. The dimension of the linear data is N = 441.
The angle of the components of X~ compared to angle of the components of the true X restricted on the support.
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Fig. 7. Algorithm performance for exact support recovery during the first
step using ¢; and the Noise Collector. Success corresponds to the value 1
(yellow) and failure to O (blue). The small phase transition zone (green)
contains intermediate values. The red line is the estimate v /(2vInN).
Ordinate and abscissa are the data used N = N2 and the sparsity M.

Theorem 4: Fix B > 1, a unit vector b, and draw ¥ = N
columns of C, independently, from the uniform distribution on
SN Define H 1 as a convex hull of the columns of C. More
formally,

> >
Hi=qzeRV|z=> &e, Y [GI< 1y,
=1 =1

Then

1 2
c ﬂb ¢ Hy, with probability 1 — 2N*~ %,

N (36)

and
6b € H,, with probability 1 — 4\ exp (—N o /12) @37
where

1=0\/"Y o= VE- T2

Proof of Theorem 4. Using the rotational invariance of all
our probability distributions, inequality (36) is true if

P(max |(¢;, b)| > eVIn N /VN) < QNB—é,

where ¢;, i = 1,2, ..., N'? are uniformly distributed on SV 1,
and we can assume b = (1,0,...,0). Denote the event

Q= {mlax\(ci,bﬂ > t/\/ﬁ}.

Since PP <|<ci, b)| > t/\/N) < 2exp(—t?/2) for each ¢;, we
can use the union bound to obtain P (£;) < 2N exp(—t2/2).
Choosing t = cvIn N we get (36).

We will now prove (37). The idea is to find sufficient
conditions so that 3N columns, say, cj, j € S of C satisty

1
b:Zajcj7Z|aj| < 7 (38)
JeES JES
The first of these sufficient conditions is:
(39)

e B S 6.
rjrgg(cj,b) >0

Let us discuss this condition (39). It means that the vectors
c;, j € S and the vector b lie on the same side of the plane
x1 = 6. We now observe that vectors with (39) will satisfy (38)
if
0="> a;éj,a; >0, (40)
jes
where ¢; are projections of c; onto the plane z; = 0. In
turn, if there does not exist a vector e such that e L b
and (cj,e) > 0 for all j € S, then condition (40) holds.
Our vectors ¢j, 7 € S are independent (as it follows from
their selection below) with rotationally invariant probability
measure. By Wendel’s Theorem [36] the second sufficient
condition holds with probability
1 = sv -
T 2 ( k >>1e e

k=0

(41)

In the last inequality we used the probability that out of 2m

coin tosses, the number of heads is less than m — ¢, is at most

e~t*/(m+) Tt remains to compute the probability (39) holds.
For each ¢;

t ]. o0 12 ]_ 2
Pl {c;,b) > — :—/ e Tdr > —e V.
(< ) \/N) V2 Jy 4

Split the index set 1,2, ..., X into 3\ non-overlapping subsets
Sy, k=1,2,...,3N of size N#~1/3. For each S

NEL
P [ max{(c;, b) < W\/l? = ( - 4,/\;72) < e_%N‘B

1€Sk
for ¢ = /(8 —1)/2. For the set S in (39) we will take ¢;
with the largest (c;, b) from each Sy, k = 1,2,...,3N. Note

that they are independent, as required above. By independence

P ((39) holds) = Hzﬁlp(%%§<ci, b) > ovVIn N /VN).
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Then P ((39) holds) > (1 — e~ =N )3V > 1 _ 3\ e~ BN
Recalling (41) we replace 3 by 4 in the last estimate and
obtain (37). UJ

Remark 1: Theorem 4 states that if we take an arbitrary
1-dimensional subspace V' then the intersection of a convex
hull, say H;, with V' is approximately a ball. More precisely,
it contains a small ball and it is contained in a bigger ball:

B,- CVNH, C B+, (42)

where r* ~ \/%. This statement is probabilistic, meaning
that the arbitrary subspace V could be chosen with some
probability that tends to 1 as N' — oo, as it follows from (37)
and (36). While we are mostly interested in the result for
large N, our results are not asymptotic - one can deduce
an explicit probabilistic estimate of success for any N. In
the main Theorems we choose to demonstrate the behavior
of this probability of success for large A. Namely, we show
that convergence to 1 of this probability happens faster than
any inverse polynomial rate: for any x > 0 there exists N
so that the probability of success is more than 1 — 1/N* for
all N > Ny. The main role of Ay in all our Theorems is to
absorb all constants so that simple expressions like 1 —1/A*
arise.

Remark 2: We use inclusion (42) in dimension k = 2 only.
In other words, we apply it to families of two-dimensional
subspaces V. Since the number of these subspaces is small,
we still can claim 1 — 1/A* probability of success using the
union bound. The upper bound of inclusion (42) is a variant
the Dvoretsky-Milman Theorem. It could be proved in a more
general setup as Theorem 11.3.3 in the form of exercise 11.3.5
in [33]. The lower bound in (42) is sharper, because the general
Dvoretsky-Milman bound may degenerate to 0. The lower
bound relies on the construction of our noise collector C.

B. Proof of Theorem 2

Proof: To prove the first claim, we repeat the proof of
Theorem 2 from [28]. Suppose the (M +1)-dimensional space
V' is spanned by e and the column vectors ¢;, with j in the
support of x. For notational convenience and without loss
of generality assume the support of x is 1,2,..., M. Define
several auxiliary convex hulls:

M M
Hg:{xeRNxZZ&ti, Z|fi|<1}
i=1 i=1
and
i K K
HE{IERNI(1+€)Z &iti, Z |§z‘|<1}~
i=M+1 i=M+1

Further define convex hulls
H = {ghl + (]. —£)h2,0 < f < 1,h1 S HZ,Z = 1,2}
T
and

:{fh—l-(l—f)ﬁ,Oggg1,h€HT,iL6fI€}.
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The key observation is that supp(x,) C supp(x) if there exists
a (sufficiently small) positive € such that A7 and H] coincide
in the subspace V. In other words, if there is € > 0 such that

VNH =VNH, (43)

then supp(x,) C supp(x).
In turn, a sufficient condition for (43) could be formulated

in terms of orthogonal projections of £; on V. Denote by t; the
orthogonal projections of t; on V fori > M + 1. If t7 C H™
strictly (i.e. tf NOH™ = () for all ¢ > M + 1, then (43) must
hold for some ¢ > 0.

Therefore it remains to show ¢7 C HT strictly for all i >
M+ 1.

Fix 7 > M + 1, and suppose
M e
ti = &oto + Z Enty, where tg = H (44)
e
n=1

Suppose k is the index of the entry of £ with the largest
absolute value, ie. €| = max,<am |€,]. Multiply (44) by
|k [tr /&, take absolute values, and obtain

|<t})7tk>| 2 |§k‘ - Z |£n<tn7tk>‘ .
n#k,nM

M and (23) we obtain

vVIn N

VN )

Using (22) for ¢ <

vVin N
N

Choose « in (24) so that

Co—Fr=—

> [&k| ( — Mcy

(45)

Then,

and therefore,

for all Kk =0,1,2,..., M. Hence, Zk:l |€k] < 1/3.
By (37) we can find 79 = 4cp/¢ = O(1) so that
io ~ lnN
— € H; for tg = 4cg——=-1
. 1 0 0 IN 0
with probability 1 — 4N exp <—J\/ 5 12). Therefore,

t) = éoio + 50 &ty
and |&| J’_Zk €k <1/3+1/3<2/3

and to/7 € Hy for all 7 > 7. Therefore, t; C HT
strictly with probability 1 — 4N exp (—N¢"/12).
given x > 0 we now can choose Ny large enough so that
AN exp (—N¢2/12) < 1/N* for all N' > Ny, and this
completes the proof of the first part.

To prove the second claim, we repeat the proof of The-
orem 3 from [28]. Let us reduce the general case to the
case when A is the first M columns of the identity matrix:

For a
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A = lej,ea,...,ep|. By the first claim the last K — M
columns of A are not used in approximating d. Therefore
we can assume for simplicity and without loss of generality
that .4 has only the first M columns. Construct a square
matrix M so that its first M columns are ¢; ¢ < M, and
the remaining N — M columns form an orthonormal basis
of V1 - the orthogonal complement of V. Gershgorin circle
theorem applied to M*M with estimate (45) implies that
v/3/2 is a lower bound for singular values of M. Suppose
we use A = M~'A and C = M~!C instead of A and C,
respectively. Then all assumptions of the Theorem will remain
essentially the same, up to this universal constant V3 /2. For
example, the lengths of ¢; may become at most V/3/2, or the
constant ¢; in (26) may be increased to 2¢; //3.

Thus, we can assume for simplicity and without loss of
generality that A is the first M columns of the identity matrix.

Suppose V¢ are the 2-dimensional spaces spanned by e and
t; for i € supp(x). We will denote by AH a hull H rescaled by
A. By (42) all \H™ NV look like rounded rhombi depicted on
Fig. 8, and \H] NV C BY_ with probability 1 — N~", where
Bj. is a 2-dimensional ¢y-ball of radius A\rcovIn N /VAN.
Thus AH™NV* C H} with probability 1 — N ", where H}
is the convex hull of BS_ and a vector Af,, f; = Xi||X||e_11ti~
Then supp(x,) = supp(x), if there exists Ag so that x;t; + e
lies on the flat boundary of Hj_ for all i € supp(x).

t;x: +e

Fig. 8. An intersection of H” with the span(t;, e) is a rounded rhombus.

If min;esupp(x) IXil = 7V[IX |l then there exists a constant
c2 = co(7) such that if x;¢;+e lies on the flat boundary of H?
for some ¢ and some A, then there exists \g so that x;t; + coe
lies on the flat boundary of H/(O for all 4 € supp(x). If

|<tiaXiti +6>‘ TCO\/lnN TCOHXHgl\/lIlN
= = ,  (46)
Ixiti +elle; ™~ VNI fille. VNl

then x;t; + cze lies on the flat boundary of H}.
Since |(t;, x:t:+e€)| = |xil/2 by (25), inequality (46) holds

< 27¢o|x|| e, VIR N
\/Nl)(i|

By (26) and using ||x|l¢, < M the last inequality is true if

VN
TeicovVIn N

The last inequality is true if o in (24) is small enough. Thus,
supp(x.) = supp(x)- u

if
|Xi|
=
Ixiti + elle,
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In the proof of Theorem 3 we will use the following variant
of Hanson-Wright inequality.

Theorem 5: (Hanson-Wright inequality for bounded sym-
metric random variables) Suppose X; are independent sym-
metric random variables, with [|[X;|lo.. < K. Let 2 =
Zi;ﬁj XJXZm” Then

t2/32
P (2| > t) < 2exp (> 47)
KM
where M is a matrix with components m;;, |[M]|g is its

Frobenius (Hilbert-Schmidt) norm.

Theorem 3 can be proved using standard arguments from
high-dimensional probability. For example one can modify
proof of Theorem 6.2.1 in [30] to bounded random variables
to obtain 3.

C. Proof of Theorem 3

Proof: Theorem 3 immediately follows from Theorem 2
as soon as we check that conditions (22), (23), (25) and (26)
are satisfied. Choose cg, 79, Ny and o so that Theorem 2 is
satisfied with probability 1 — 3/\/% Note that we can increase
o, To» No and decrease « in this proof if necessary.

By rescaling we can and we do assume that ||p||¢.. = 1 and
therefore ||x||¢., = 1.

The idea is to prove that each (22), (23), (25) and (26) hold
with probability close to 1. Then we use the union bound to
conclude that all these conditions hold simultaneously with
probability close to 1. We prove (23), (26), (22), and (25) in
paragraphs a), b), ¢) and d) below, respectively.

a) We start with verifying (23). We denote by (A ® A,
the column of A® A that arises from a tensor product a; ®a;.
If we use all A' = N? of the data then

(A Ak, (AQ A)mn) = 3Ly S0 Gk it jOm il
= (am,ar){a;,an,).
In particular, all columns of A® A have length 1. Therefore,
A2
N
and condition (23) is verified because A2 < ¢yv/In N for

N > Ny if we choose N large enough.
b) The next condition is (26). Note that

[(ti, )] = |(A@ A)ii, (A A)j | = (@i, a))* <

MM < |le]le, < AaM (48)

implies (26) because YM < ||x|l¢;, < M. To prove (48) with
high probability we write

lellz, = lIxII?, + 2llxlle Zx + Ze,

where we define random variables

Ei1 = Z prpilar, ar), (49)
k1, k#l
and
E2 = Z pkﬁlﬁmpn <am; ak> <al, an>' (50)

all indices different
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We first estimate the random variable =; from (49). By
Hanson-Wright inequality (47)

P(|21] > 1) < 2exp (—

where M is a matrix with components |pyp;|{ax, a;). Since
l(ar,a;)| < A/VN, we obtain [|[M|r < AM/v/N. Take
t =~vM/8 < ||x|l¢, /8 and obtain

P(|Z1] > yM/8) <

which is negligible for large N. Thus

t2/32>
M1

2exp (—cN),c=c(7),

_ Il

=1 < g (51

with probability 1 — 2exp (—cN).
We now estimate the random variable =5 from (50). Observe
that 25 = (Z;)? — =3, where the random variable

2y = >

m=l[ or k=n or both

pkﬁlﬁmpn<ama ak><al; a’n>-

For =5 we can use a deterministic estimate:

I YL A
=3 X X S .
N VIn N 16

For the random variable (Z1)? we use (51).
We now combine estimates for =; and Z, to obtain (48).
Using the union bound, we obtain

1 3
sz, < llell?, < S lxIZ, (52)

with probability 1 — 2exp (—cN). Thus, (48) holds with
probability 1 — 2exp (—cN).

¢) We will now prove (22). For m ¢ supp(x), consider a
random variable

em = <tm7 e>

Z ﬁkpl<t7n7 (-’Zl ® A)k,l>

k1 k£l

Z PrPI(Crm, QL) (G, ).
kL kL

(53)

We have

A2
N
if m # k, and m # [. If M is a matrix with components
lpkpil(@m, ar){am, a;), then |M||p < A2M/N. Using (48)
choose ¢t = o822 le|l, > co3 MY in Hanson-Wright
inequality (47) to obtain:

|<tm7 (A®A)k,l>‘ == ‘<am7ak><am7al>| g (54)

¥ M+vIn N

P(10n] > 05 lell,) <P ([On] > cog —7—
2.2
vecgIn N
<2 — Lo
exP( 128A4)

Then (22) holds with probability 1— 3~ if cg is large enough.
d) We will now prove (25). For m € supp(x) decompose

Om = (tm,e) = 0O + 62

http://dx.doi.org/10.1109/TSP.2021.3067140

12
where the random variables
@}n == Z ﬁk}pl<amaa’k><amaal>7
k1, k#L k#m,l#m
and
0% = 3" (Pmpr + Prpm) (@m.ar). (55

kk£m

The distribution of the random variable ©} has exactly the
same behavior as ©,,, for m ¢ supp(x). We therefore have

P (165 > Flxle..)

by Hanson-Wright inequality (47) if « is small enough. If
m =1 (or m = k) then
_ A
[(tm, (A® Aim)| = [{@m, ar)] < o 00
We will now estimate ©2, given by (55). If we condition
on p,,, then ©2, is a sum of independent random variables.
Therefore by Hoeffding’s inequality

2

t 2M A?
(|@ | > t) < 2exp (—cb2> , where b < COT < a

InN’

Choosing t appropriately we obtain

P (1021 > Tlxle.. ) <

by choosing « small enough.
Using the union bound we combine estimates for O} and
©2, to conclude that

¥
P<@m a ) g o A/~

for m € supp(x).

All the conditions (23) (26), (22), (25) are now verified.
Applying the union bound we conclude that estimates in
Theorem 2 hold with probability 1 — —. This completes the
proof of Theorem 3. u

Remark 3: The proof of Theorem 3 reveals why we had
to assume (25) for m € supp(x). When m ¢ supp(x) then
(tm,e) is estimated in (53) using (54). When m € supp(x)
then (t,,,e) contains ©2, given by (55). For ©2 we cannot
use (54), and we have to use a weaker estimate (56).

11
6N+

D. A deterministic version of Theorem 3

Theorem 6: Suppose X is a solution of (15), x = dlag(X)
is M-sparse, d € CN, N = N2, and T = (A® A)y
CKX - CN.Fix 8 > 1, and draw ¥ = AP columns for
C, independently, from the uniform distribution on SV-1 and
define v as in (18) and A as in (30). Then, for any x > 0,
there are constants o = a(k,~,A), 7 = 7(k, 3), and Ny =
No(k, 3,7, A) such that the following holds. If M < avN
and ., is the solution (17), then supp(x) = supp(x, ) for all
N > Ny with probability 1 — 1/N*.
Proof: We need to verify that all conditions of Theorem 2
are satisfied non-probabilistically. Conditions (23) is already
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verified in the proof of Theorem 3 under even weaker assump-
tions than in Theorem 6. Therefore we only need to verify
estimates (26), (25) and (22).

Since -
e=> pp(A® Ay,
kAl
we have
2A
lell?, <= > Xklpm.llom.]
’ \/N all indices
A2
+W Z |pm1| |pm2| |pk1| |pk2|
all indices
+ Z XkXm
k,m
and thus

lell7, < 2Aalxllellpll?, + A% |plg, + IIxI7,
= (14 Aa)?[|x|[7, -
Therefore estimate (26) holds.
A non-probabilistic version of estimate (25) is as follows.
For m € supp(x) we have

[t €)] =| > pepi(tm, (A® A))
k,l,k#l
<2 ) Ukl 1pml [(Ems (A® A)gm)]
k,k#£m
+ 0 ekl [{Em, (A® A)ii)|
kL k#l#m )
2A A
<—= ) pkllpm| + =D |pkl o]
e S
2AM  A2M? )
<\ ——=+—— el
VN N
_(2AM A ™
< = .
< 5 lxllen

if o is small enough.
We now obtain a lower bound on ||el|¢,. For Z; and =,
in (49) and (50), respectively, we have

AM? A2 M
VN N

1Z1] < <AaM, 2] < < Ao M2

Since
lell7, = IxlIZ, +2lxlle,E + Z2, and [Ix|le, = M
we can choose « so that
M/2 = |xlle, /2 < [lell7,-
To show (22) observe that
’<tm7 (-/Zl & -A)k,l>| = |<a’ma ak><a’m7 al>‘ < AQ/Na
because m # k, and m # [. Therefore

(e}l = > pepi{tm, (A A)r)
k1 k£l

A2 M?
< <
N

AZallell,

\/N )

and (22) follows either for choosing o small or In NV large. B
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