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ABSTRACT

Emerging device-based Computing-in-memory (CiM) has been
proved to be a promising candidate for high-energy efficiency deep
neural network (DNN) computations. However, most emerging
devices suffer uncertainty issues, resulting in a difference between
actual data stored and the weight value it is designed to be. This
leads to an accuracy drop from trained models to actually deployed
platforms. In this work, we offer a thorough analysis of the effect of
such uncertainties-induced changes in DNN models. To reduce the
impact of device uncertainties, we propose UAE, an uncertainty-
aware Neural Architecture Search scheme to identify a DNN model
that is both accurate and robust against device uncertainties.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved superhuman per-
formance in various perception tasks and have become one of the
most popular solutions for these applications. Thus, there is an
obvious trend in deploying DNNs on edge devices such as auto-
mobiles, smartphones, and smart sensors. However, implementing
computational intense DNNs directly on edge devices is a significant
challenge due to the limited computation resource and constrained
power budget of these devices. Moreover, most of the DNN acceler-
ator designs are confined in a design space where the researchers
only consider conventional von-Neumann architectures (e.g., GPUs,
mobile CPUs, or FPGAs) as candidate platforms. In von-Neumann
architectures, data movement inevitably becomes the bottleneck
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Figure 1: Accuracy differences between models trained in
data center and deployed on CiM simulations for differ-
ent neural architectures. FC Net and LeNet target MNIST,
ResNet 56 targets CIFAR-10 and VGG-19 targets ImageNet.
An accuracy drop close to 10% can be observed.

for system efficiency, due to the well-known memory wall where
the computational unit must fetch and store data from the memory
hierarchy.

Emerging device-based Compute-in-Memory (CiM) neural ac-
celerators [5] offer a great opportunity to break the memory wall
with special architectural advantages. CiM architectures offer re-
duced data movement by in-situ weight data access [17]. Highly
efficient emerging devices (e.g. RRAMs, STT-RAMS, and FeFETs)
can be devised to offer higher energy efficiency and higher mem-
ory density compared with traditional MOSFET [16] based designs.
However, such accelerators suffer greatly from design limitations.
Non-ideal conditions of emerging devices due to their non-ideal
manufacturing process induce uncertainties on emerging devices.
These uncertainties, such as device-to-device (D2D) variations, ther-
mal noise, and retrieval limitations, cause value changes that, the
weights in the actually deployed accelerators may be different from
the desired weight value trained offline in data centers. This weight
value change leads to performance degradation in actual accelera-
tor implementations. As an illustration, we train the four models,
multilayer perceptron (MLP) and LeNet for MNIST, ResNet 56 for
CIFAR-10, and VGG-19 for ImageNet, to state-of-the-art accuracy
and deploy them on CiM simulation tools [4]. As shown in Fig. 1,
an accuracy degradation of close to 10% is observed in each model
implementation.
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The device uncertainty-induced performance degradation has
been studied from different perspectives, including device-level
observations [25], architecture level analysis [6], and behavioral
level explorations [21]. Finding suitable pairs of DNN models and
hardware designs that can together offer both desirable hardware
reliability and high inference accuracy requires great effort.

Neural Architecture Search (NAS) [24, 26, 27] is one of the most
successful efforts to address this issue. NAS liberates human labor
from endlessly exploring optimal handcrafted DNN models by au-
tomatically identifying neural architectures that can offer desired
performances from a pre-determined search space. Co-exploration
of neural architecture and hardware design [7-9] pushes this con-
cept further by incorporating hardware design specifications into
NAS search spaces, so as to offer neural architecture-hardware de-
sign pairs that are accurate, efficient, and robust against hardware
uncertainties.

In this work, we adopt a statistical analysis perspective to study
the effect of device uncertainties on the performance of DNNs.
We model the emerging device uncertainty as a whole into Gauss-
ian noise on weights and thoroughly investigate the behavior of
different DNN models under such uncertainties. We conduct a
Monte-Carlo simulation-based analysis on the statistical behavior
of the models under the influence of device uncertainties. We then
abstract our analysis results to offer supports for NAS applications.
The detailed contributions of this work are:

e We propose a Monte-Carlo simulation-based experimental
flow to measure the device uncertainty-induced perturba-
tions to DNN models.

e We then thoroughly investigate the behaviors of different
DNN models under such perturbations and show that the
value changes of their output vectors follow Gaussian distri-
bution.

o To alleviate this effect, we then propose UAE, a device uncertainty- 2.2

aware NAS framework, to search for architectures that are
more robust to device uncertainties.

Experimental results show that UAE offers a 2.49% higher accu-
racy than NACIM [6] with 1.2x of time consumption. By further
increasing search complexity, UAE reaches 6.39% higher accuracy
than NACIM with 2.5x of search time.

2 BACKGROUND

2.1 CiM DNN Accelerators

Researchers have proposed different crossbar-based CiM DNN accel-
erator architectures [3, 16] for efficient DNN inference. We assume
an ISAAC-like architecture [16], and the architecture of the system
is organized into multiple tiles, with crossbar arrays as the heart
of each tile. The crossbar not only stores the synaptic weights but
also performs dot-product computations. One certain crossbar is
dedicated to processing a set of neurons in a given DNN layer. The
outputs of that layer are fed to other crossbars that are dedicated
to processing the next layer. The computation in the crossbar is
performed inanalog domain. However, ADC and DAC are used
to convert the signal from and to the analog domain dot-product
computation and other digital domain operations needed in DNN
computation.
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Crossbar is the key component of CiM DNN accelerators. As
shown in Fig. 2, a crossbar can be considered as a processing element
for matrix-vector multiplication where matrix value (i.e. weights
for NNs) are stored at the cross point of each vertical and horizontal
line with resistive emerging devices such as RRAMs and FeFETs,
and each vector value is propagated through horizontal data lines.
In this work, we assume an RRAM-based design. The calculation in
crossbar is performed in analog domain but additional peripheral
digital circuits are needed for other key NN operations (e.g., non-
linear activation), so DAC and ADCs are adopted between different
components.

Device-level limitations confine the application of crossbars. The
precision of ADC and DACs limits the precision of DNN activations
for each layer and the non-ideal characteristics of emerging devices
impose noises on the weights of deployed DNNs.

Synapse
— DAC b - -
1
1

— DAC

2~
A1
f‘f‘j

— DAC

7

]
— DAC -- \11\
\C i

| Mux |

A1
A1 A
AT

ADC ADC | ---- | ADC

Figure 2: Illustration on crossbar architecture.

Device Variation

In this work, we assume an RRAM-based crossbar design. RRAM
devices suffer various types of faults due to manufacturing and
runtime non-idealities. Noise sources that are directly relevant to
crossbar-based designs include thermal noise, shot noise, random
telegraph noise (RTN), and programming errors [4]. When the
circuitry is used for inference, programming errors due to device-
to-device variations could be the dominant error source.

Write-and-verify [1, 15, 19] is a simple, accurate, and widely
used programming scheme for RRAMs. The key operation is to
iteratively apply a series of short pulses and check the difference
between current and target resistance, converging progressively on
the target resistance. In deploying accelerators for Neural Network
inference, this time-consuming progress is tolerable because once
programmed, no more modifications to the resistance are needed
during the entire life span of the accelerator. Although this scheme
pulls down the D2D variation-induced error to less than 1%, a
significant error drop can still be observed in conditions shown in
Fig. 1.

2.3 Neural Architecture Search

Neural Architecture Search (NAS) has achieved state-of-the-art
performance in various perceptual tasks, such as image classifica-
tions [22, 23], inference security [2] and image segmentation [20].
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NAS is becoming increasingly successful mainly because it liber-
ates human designing labors by automatically identifying high-
performance neural architectures. Co-exploration of neural archi-
tecture and hardware design [7-9] push this concept further by in-
corporating hardware design specifications into NAS search spaces,
so as to offer neural architecture-hardware design pairs that are
accurate, efficient, and robust against hardware uncertainties.

Formally speaking, NAS deals with a problem that, given a per-
ceptual task T, a human-defined design space S, and a set of figures
of merit (FOM) P, what is the best neural architecture in S that can
offer optimal performance (in terms of FOM in P) on task T.

A typical reinforcement learning (RL)-based NAS that solves
this issue, such as the framework proposed in [26], is composed of
three key components, a controller, a trainer and an evaluator. In
one iteration (named episode) of RL-based NAS, (1) the controller
generates a neural architecture from the design space; (2) the trainer
builds the generated neural architecture into a DNN model, named
child network, and trains the child network on a held-out training
dataset; (3) the evaluator collects the figures of merit (FOM), e.g.,
test accuracy of the trained child network on test dataset, its latency
and/or energy consumption; and (4) the controller use a user-defined
reward function to calculate a reward data from FOM collected by
the evaluator and use the reward to update itself so that it can
predict neural architectures with higher FOM.

This iterative method terminates under two circumstances: (1)
the controller repeatedly predicts the same child network; and (2) the
number of predicted architectures exceeds a predefined threshold
(episode limit). The child network that offers the highest reward
among all the generated neural architectures is presented as the
search result. The chosen neural architecture is then re-trained
on the training dataset for a longer training time to offer optimal
performance.

More recently, differentiable NAS [12, 13, 18] has achieved state-
of-the-art performance with a much-reduced search time by trans-
forming the search process into training an over-parameterized
neural network. However, those approaches suffer from flexibility.
More specifically, in the field of research considered in this paper,
differentiable NAS struggles in handling large search spaces with
multiple different hardware design parameters and complex designs
where the number of channels varies for each layer. Thus, in this
work, we adopt RL based NAS as our search algorithm.

3 UNCERTAINTY MODELING
3.1 Uncertainty Model

In this work, we model device uncertainties as a whole and use a
Gaussian distribution to represent them [4, 6]. We set the mean of
the uncertainty distribution to be zero, its variation to be 0.04, and
for each device, its uncertainty is independently distributed. which
is referred from [25], where the uncertainties are measured from
actual physical devices. For an easier representation of the latter
part of this paper, the uncertainty model is depicted as:

Wpep = Wexp + N(1,0) (1)

where N is a Gaussian variable which, on each individual element
of the weights, is independent and identically distributed. Wy,
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and Wp,, are the expected weights trained in the data center and
the actual weights deployed on the accelerators, respectively.

3.2 Effects on DNN Outputs

In this work, we focus on the impact of device uncertainty on clas-
sification tasks, and the reasons go as follows: (1) most emerging
device-based DNN accelerators target classification tasks, analyzing
the effect of device uncertainties on these tasks helps the majority
of the researchers to improve their work; (2) DNNs for classifica-
tion tasks are typically composed of convolution layers and fully
connected layers, which are also the basic components of DNNs
targeting other application. The effect of device uncertainties on
these two components is essential for all types of DNNs.

We start by understanding the effect of device uncertainties on
the output of a DNN model. Formally speaking, a DNN model M
can be defined as a combination of its neural architecture and its
trained weights. Thus, the inference process of a DNN model with
input I that generate an output O can be defined as:

O=F (W, (2)
where F is the neural architecture of M, W is its weights, I is this
input vector and O is the output vector.

During training, O is then passed through a loss function, where
a version of O after SoftMax is compared with the ground truth
classification label GT to generate a loss for the backpropagation
process. During inference, the final predicted class of I can be cal-
culated by argmax(0O), which is the index of the item in O that has
the maximum value.

Although in inference, classification result is the final outcome of
a DNN model, the output vector O serves as a better representative
of the behavior of this model. The classification result is only an
index of the maximum value of O and is thus only a simplified
discrete proxy of O. The continuous, multi-dimension vector O
contains more information than the classification result. In order to
understand how uncertainties in weights may affect the network,
it is of crucial importance to understand how it affects O.

As defined in 1 and 2, a deployed neural network under the effect
of device uncertainties can be depicted as:

Opep = F Wpep, 1) = F (Wixp + Nj, 1) (3)

where WEy is the trained value of the neural network to be de-
ployed, Nj is one sample from the noise distribution, and Op,, is
the affected output.

We analyze the distributional behavior of the effect of device
uncertainties on the output vector of a DNN model. To conduct
this analysis, we first (1) train a DNN model F to converge and
collects its trained weight Wg,,. We then (2) fix one input image
I and collect its output on the trained weight Wgy,. We denote
this output as the original output Op,;. After that, we (3) sample
K different instances of noises N1, Ny, ...Nk and then feed them to
Eq. 3, collecting K different output vectors. Finally, we calculate
output change using Eq. 4

OcG = Opep — Oori ()
where the output change is the element-wise subtraction of the
perturbed and original output.
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3.3 Experimental Results

In order to get a glance at the statistical behavior of output change,
according to the workflow introduced in Sect. 3.2, we train a LeNet
model for the MNIST dataset [11] to state-of-the-art accuracy. We
then randomly choose one input image in the test dataset and sam-
pled 10k different instances of noise. with this setup, we gathered
10k different output change vectors.

The output change is a vector of 10, with each element represent-
ing the confidence of classifying the input image into one certain
category. Because a high-dimensional vector is not a good choice
for analytical study and visualization, we analyze each element of
these vectors. We analyze the statistical behavior of each element
across different vectors and gathered 10 instances of distribution
data.

Surprisingly, each element of the output change follows Gaussian
distribution. To visualize this finding, we plot the histogram of
the distribution of each element of output change vector and the
corresponding Gaussian distribution that fits it. The visualization
result for the first element of output change is shown in Fig. 3 that
the first element of output change vector is a Gaussian variable.
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Figure 3: Output change distribution of LeNet for MNIST.
10k output change vectors are gathered from one trained
LeNet model affected by 10k different instances of noise
sampled from N (0, 0.04). This figure shows the distribution
of the fist item of the gathered output change vectors.

To verify this observation, We tested various networks in various
datasets. With the MNIST dataset, we analyze both LeNet and
multilayer perceptrons (MLP) using ReLU and Sigmoid activation
with 2 layers. With the CIFAR-10 dataset [10], we test a conventional
floating-point CNN, a quantized CNN, and two ResNets, ResNet-
56 and ResNet-110. We also train these models with 3 different
initializations to get different trained weights.

We evaluate how these output change vectors fit into Gaussian
variables by two widely used standards: mean square error (MSE)
and Chi-square (y?) test. MSE can be described as:

N
_ 1 R
MSE = — ;(o, - Ep) )
and y? test can be depicted as:
N
(O; — E;)?
X = Z‘ 5 (©6)
i=

where O; and E; are the observed (output change) and estimated
(Gaussian) value of probability and N is a user-defined granularity.
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We define N = 100 because it is precise enough when we have a
total of 10k instances of data.

Model Dataset  x% (1072) MSE (107%)
MLP-ReLU MNIST 5.22 3.20
MLP-Sigmoid MNIST 5.81 2.20
LeNet MNIST 4.59 2.67
Float-Conv CIFAR-10 7.01 3.03
Fixed-Conv CIFAR-10 6.79 2.74
ResNet-56 CIFAR-10 4.56 1.79
ResNet-110 CIFAR-10 4.81 2.01

Table 1: Gaussian fit for different models. The y? test result
and MSE between the output change and Gaussian distribu-
tion is presented. Both tests show that the output change fol-
lows Gaussian distribution w.r.t different instances of noise.

The evaluation result is shown in Table 1. Note that we have
test 3 different initializations for each model and for each model,
outputchange is a vector of 10. The result shown in Table 1 is an
average of them. For each model tested, y? test results are all below
0.1 and MSE are all below 1 X 1073, which indicates that they are
well fit into Gaussian distributions. Moreover, both errors do not
increase when the model is extremely shallow (e.g. 2-layer MLP)
and very deep (RestNet-110), so this observation generalizes across
different DNN models.

The study on each of the models supports the previous observa-
tion that their output vectors values follow Gaussian distribution.
Based on these studies, we can claim that,
with any independent and identically distributed Gaussian
noise on weight, the output vector of the same input image
follows a multi-dimensional Gaussian distribution! over dif-
ferent samples of noise.

This is a very strong claim but is not counter-intuitive. The
output of the first convolution layer is the summation of the multi-
plication result of deterministic inputs and Gaussianly distributed
weights and is thus a summation of Gaussian distributions. The
summation of Gaussian variables is also a Gaussian variable, so
the output of the first layer is a Gaussian variable. After activation,
the input of the second layer is a transformed Gaussian variable
and after propagating through this layer, with enough number of
operands, the accumulated variable can be approximated by Gauss-
ian variables. Thus, although the final output may not strictly be a
Gaussian variable, a Gaussian approximation can be observed.

4 UNCERTAINTY AWARE SEARCH
4.1 Methodology

In addition to understanding the effect of device uncertainties, we
propose a remedy method to reduce the effect of this issue by
adopting NAS.

In this work, we propose Uncertainty Aware sEarch (UAE), a
more comprehensive uncertainty aware NAS for better exploration
of neural architectures in non-ideal emerging devices based CiM
NN accelerators.

Note that each element of the output are deeply co-related, not independent
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Similar to the state-of-the-art Reinforcement Learning based
NAS framework NACIM [6], UAE works iteratively and in each
iteration: (1) an LSTM-based controller is used to learn and generate
neural architectures; (2) an uncertainty aware trainer is used to
train each generated neural architecture to get a model to deploy;
(3) an uncertainty aware evaluator is adopted to evaluate the actual
performance of the deployed model; (4) the evaluated performance
is used as a reward to update the controller so that it can generate
neural architectures with higher rewards.

The detailed implementation of the uncertainty aware trainer
and evaluator are described below.

4.2 Uncertainty-Aware Training & Evaluation

We adopt an uncertainty-aware training scheme similar to the one
used in NACIM [6]. The training process is organized the same as
traditional DNN training that, in each iteration, a subset (batch) of
the training data is used to train the model, and after the whole
training dataset has been used to train the model, and an epoch of
training is finished and another epoch is started. The trainer trains
the model for multiple epochs to get a trained model.

The uncertainty-aware training augments the training process
for each batch to learn a DNN model that is more robust against
device variations. In each training batch, before feeding the input
into the model, the trainer (1) save the original weight Wp,; of the
model; (2) sample a noise from the uncertainty distribution and add
the noise to the weight of the model to form a Wp,,; (3) perform
forward inference and back propagation in the perturbed model
and collect gradient data for each weight; (4) load the saved Wp,;
back to the model and update W,; with the collected gradient data
via stochastic gradient descent.

Uncertainty-aware training simulates the process of training
DNNss directly on CiM-based accelerators. Experiments in NACIM
show that uncertainty-aware training learns DNN models that are
robust against device uncertainties.

The uncertainty-aware evaluation is performed similarly to the
training process. Before evaluation, the evaluator samples an in-
stance of noise from the uncertainty distribution and add the noise
to the trained weight Wo,; to get a Wpe,. The evaluator then eval-
uates the classification accuracy of the perturbed model on a test
dataset. This process is performed for K times and K different accu-
racy data are gathered. The evaluator then report one distributional
property (e.g., mean, maximum value, 95% minimum value) of the
K accuracy data to form a reward. The distributional property to
be used is specified by the user.

4.3 Experimental Results

We demonstrate the effectiveness of UAE by searching for an op-
timal quantized CNN for CIFAR-10. The fixed design parameters
and hyper-parameters included in the search space are shown in
Table 2. For device uncertainty specifications, we assume an ISAAC-
like [16] neural accelerator architecture and a four-bit RRAM device,
whose behavioral model is extracted from [25]. The search process
is conducted in a GPU server machine with an Nvidia GTX 1080ti
accelerator.

As described in Sect. 4.2, there are two major search parameters:
the instances (K) of noise sampled for each architecture and the
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Hyper-Parameters Value choices

Dataset CIFAR-10

Type Quantized CNN
# of Conv Layers 6

# of FC Layers 2

FC Hidden size 1024

# channels (24, 36, 48, 64)
Filter Height/Width (1,3,5,7)

# of integer bits 0,1, 2,3)

(0,1,2,3,4,5,6)

Table 2: Quantized CNN for CIFAR-10 search setups. Upper-
half: configurations fixed to be the same among all searched
architectures; lower half: hyper-parameters to be searched.

# of fraction bits

distributional properties used to form the accuracy data collected by
the evaluator into a reward. We test two different values of K, 5, and
100 samples, for the reason that will be explained afterward. We also
use two different distributional properties, one is the mean value
of all accuracy data (mean) and the other is 95% minimum of the
accuracy data (95). The mean value indicates how a model performs
under the effect of device uncertainty in average circumstances
and the 95% minimum shows the models’ behavior in worst-case
scenarios.

We offer a comparison for different specifications of UAE and two
baseline methods, quantNAS [14], a state-of-the-art NAS frame-
work to search for the optimal quantized CNN and NACIM [6],
another uncertainty aware searching framework for CiM-based
accelerators. In each experiment, the NAS controller searches for
2000 different architectures (episodes) and the trainer trains each
generated architecture for 15 epochs.

The DNN models finally presented by each search framework are
also evaluated by mean and 95% minimum value with their accuracy
data collected by 10k Monte-Carol simulation. The experimental
result is shown in Table. 3.2

Method K w/onoise mean 95 Time (h)
QuantNAS [14] 0 84.92% 08.48% N/A 53
NACIM [6] 1 7388% 7345% N/A 98
UAE-M 5 77.48% 75.94%  75.55% 118
UAE-M 100 82.99% 79.84% 77.82% 255
UAE-95 100 80.64% 78.39% 77.98% 255

Table 3: Comparison for different specifications of UAE and
two other baselines. Different methods sample different in-
stances of noise (K) in uncertainty-aware evaluation. UAE-
M uses mean value of the accuracy data collected by the
evaluator to form a reward and UAE-95 uses the 95% min-
imum data. Accuracy without noise shows the model accu-
racy with an ideal device and the mean and 95% minimum
(95) value shows the behavior of the searched DNN models
under the effect of device uncertainty, evaluated by Monte-
Carol simulation.

2Because the data for quantNAS and NACIM are collected from published work, we
do not have the 95% minimum accuracy result for them.



ASP-DAC 2021, Tokyo, Japan

Experimental results show that, without uncertainty-aware train-
ing, QuantNAS can identify an optimal DNN model that can offer
close to 85% of test accuracy, but struggles in finding proper neural
architectures that are robust to device uncertainties, as the test
accuracy of the DNN model identified by quantNAS is down to
8.5%, even worse than random guessing (10%). With the help of
uncertainty-aware training, NACIM can identify DNN models that
are robust against the impact of device uncertainties. However, as
NACIM only evaluates the performance of the searched architecture
once, the randomness of the device uncertainty hinders the perfor-
mance of NACIM, resulting in a model with only 73.45% of average
accuracy. UAE, on the contrary, is able to find DNN models that are
both accurate and robust against the impact of device uncertainties.
When collecting only 5 samples in uncertainty-aware evaluation,
UAE achieves 2.49% higher accuracy than NACIM with a time
overhead of only 20%. When collecting 100 samples in uncertainty-
aware evaluation, UAE achieves 6.39% higher accuracy than NACIM
a search time overhead of 2.5x. Though further increasing the num-
ber of samples is possible, the search time overhead will be too
large to endure. The adoption of a 95% minimum value standard
is also effective. UAE-95 offers 0.16% higher worst-case accuracy
than its UAE-M counterpart with a 1.45% lower average accuracy.

5 CONCLUSIONS AND FUTURE WORKS

In this work, we propose a Monte-Carlo simulation-based experi-
mental flow to measure the device uncertainty-induced perturba-
tions to DNN models. Our thorough investigation of the behaviors
of different DNN models under such perturbations and shows that
the value changes of their output vectors follow Gaussian distri-
bution. We also propose UAE, a device uncertainty-aware NAS
framework that identifies DNN models that are both accurate and
robust against device uncertainty-induced perturbations. Based on
the observations made on the impact of device uncertainties on
the DNN models, the possible future directions include the formal
mathematical proof of the analyzed statistical behaviors and a time-
efficient estimation method for the impact of device uncertainties.
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