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Abstract

We show that if C⇤
u(X) is a uniform Roe algebra associated to a

bounded geometry metric spaceX, then all bounded derivations on C⇤
u(X)

are inner.

1 Introduction

Let A be a C
⇤-algebra. A derivation of A is a linear map � : A ! A satisfying

�(ab) = a�(b) + �(a)b. In this paper, we always assume that our derivations are

defined on all of A, and are thus bounded by a fundamental result of Sakai [9].

A derivation � of A is inner if there exists d in the multiplier algebra M(A) of

A such that �(a) = ad� da for all a 2 A. Let us say that a C
⇤-algebra A only

has inner derivations if all (bounded) derivations are inner.

Motivated by the needs of mathematical physics and the study of one-

parameter automorphism groups, it is interesting to study whether all deriva-

tions are inner for a particular C⇤-algebra. In the 1970s, a complete solution to

this problem was obtained in the separable case via the work of several authors.

The definitive result was obtained by Akemann and Pedersen [1] (see also El-

liott [6], which contains a closely related result). These authors showed that a

separable C
⇤-algebra only has inner derivations if and only if it isomorphic to

a C
⇤-algebra of the form

C �

M

i2I

Si, (1)

where C is continuous trace (possibly zero), and each Si is simple (possibly

zero). Thus in particular, all separable commutative, and all separable simple,

C
⇤-algebras only have inner derivations. However, one might reasonably say

that most separable C
⇤-algebras admit non-inner derivations.
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For non-separable C
⇤-algebras the picture is murkier. It is well-known that

there are non-separable C
⇤-algebras that are not of the form in line (1) and

that only have inner derivations: perhaps most famously, Sakai [10] has shown

this for all von Neumann algebras. See also for example [6, page 123] for some

examples that are not von Neumann algebras, nor of the form in line (1), and

that only have inner derivations.

Our goal in this paper is to give a new class of examples that only have in-

ner derivations: uniform Roe algebras. Uniform Roe algebras are a well-studied

class of non-separable C⇤-algebras associated to metric spaces; see Section 2 be-

low for basic definitions. They were originally introduced for index-theoretic

purposes, but are now studied for their own sake as a bridge between C
⇤-

algebra theory and coarse geometry, as well as having interesting applications

to single operator theory and mathematical physics, amongst other things. Due

to the presence of `1(X) as a diagonal1 MASA, they have a somewhat von

Neumann algebraic flavor, but are von Neumann algebras only in the trivial

finite-dimensional case. They are also essentially never of the form in line (1).

Moreover, in many ways they are quite tractable as C
⇤-algebras, often having

good regularity properties such as nuclearity.

Here is our main theorem.

Theorem 1.1. Uniform Roe algebras associated to bounded geometry metric

spaces only have inner derivations.

The key ingredients in the proof are: a basic form of a ‘reduction of cocycles’

argument used by Sinclair and Smith [11] in their study of Hochschild cohomol-

ogy of von-Neumann algebras; and recent applications of Ramsey-theoretic ideas

to the study of uniform Roe algebras by Braga and Farah [3].

We conclude this introduction by noting that the fact that all derivations

on A are inner can be restated as saying that the first Hochschild cohomology

group H
1(A,A) vanishes. For A a uniform Roe algebra, it is then natural to ask

if all the higher groups H
n(A,A) vanish. See [11] for a survey of this problem

in the case that A is a von Neumann algebra.
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2 Definitions and background results

In this section, we recall some basic definitions, as well as a classical result of

Kadison stating that all derivations on a C
⇤-algebra are spatially implemented.

Inner products are linear in the first variable. For a Hilbert space H we

denote the space of bounded operators on H by B(H), and the space of compact

operators by K (H). The commutator of a, b 2 B(H) is denoted by [a, b] :=

ab� ba.

The Hilbert space of square-summable sequences on a set X is denoted

`
2(X), and the canonical basis of `2(X) will be denoted (#x)x2X (we reserve �

for derivations). For a 2 B(`2(X)) we define its matrix entries by

axy := ha#y,#xi .

Definition 2.1 (propagation, uniform Roe algebra). Let X be a metric space

and r � 0. An operator a 2 B(`2(X)) has propagation at most r if axy = 0

whenever d(x, y) > r for all (x, y) 2 X ⇥X. In this case, we write prop(a)  r.

The set of all operators with propagation at most r is denoted Cr
u [X]. We define

Cu [X] := {a 2 B(`2(X)) : prop(a) < 1};

it is not di�cult to see that this is a ⇤-algebra. The uniform Roe algebra, denoted

C
⇤
u(X), is defined to be the norm closure of Cu[X].

Definition 2.2 (✏-r-approximated). Let X be a metric space. Given ✏ > 0

and r > 0, an operator a 2 B(`2(X)) can be ✏-r-approximated if there exists a

b 2 Cr
u [X] such that ka� bk  ✏.

We will exclusively be interested in uniform Roe algebras associated to

bounded geometry metric spaces as in the next definition.
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Definition 2.3 (bounded geometry). A metric space X is said to have bounded

geometry if for every r � 0 there exists an Nr 2 N such that for all x 2 X, the

ball of radius r about x has at most Nr elements.

Finally in this section, we recall a general fact about derivations.

Definition 2.4 (spatial derivation). Let A ✓ B(H) be a concrete C
⇤-algebra.

A derivation � of A is spatial if there is a bounded operator d 2 B(H) such that

�(a) = [a, d].

The following is due to Kadison [7, Theorem 4].

Theorem 2.5. Let A ✓ B(H) be a concrete C
⇤-algebra. Then every derivation

on A is spatial.

Note that a uniform Roe algebra C
⇤
u(X) always contains the compact oper-

ators on `
2(X). For a concrete C

⇤-algebra A ✓ B(H) containing the compact

operators K (H), there are simpler proofs of Theorem 2.5 available: see for

example [5, Corollary 3.4 and Remark on page 284].

3 Averaging operators over amenable groups

In this section, we summarize some facts we need about averaging operators on

a Hilbert space over an amenable group. Most of this material seems likely to

be well-known; however, we could not find convenient references for the facts

we wanted, so provide most details here.

Let G be a discrete (possibly uncountable) group. If A is a complex Banach

space, we let `1(G,A) denote the Banach space of bounded functions from G to

A equipped with the supremum norm; in the case A = C, we just write `
1(G).

We also equip `
1(G,A) with the right-action of G defined for a 2 `

1(G,A) and

h, g 2 G by

(ag)(h) := a(hg�1).

If Z is any set, a function � : `1(G,A) ! Z is invariant if �(ag) = �(a) for all

a 2 `
1(G,A) and g 2 G. Recall that G is amenable if there exists an invariant

mean on `
1(G), i.e. an invariant function � : `1(G) ! C that is also a state.

Fix now an invariant mean on `
1(G), which we denote2 by

a 7!

Z

G
a(g) dµ(g).

2
The integral notation is meant to be suggestive, but we do not need to, and will not,

assign any specific meaning to the ‘measure’ µ.
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Let now B be a complex Banach space with dual B⇤. We may upgrade an

invariant mean on `
1(G) to an invariant contractive linear map `

1(G,B
⇤) !

B
⇤ in the following way. Let b 2 B, g 2 G, and a 2 `

1(G,B
⇤), and write

hb, a(g)i for the pairing between b and a(g). Then the map

G ! C, g 7! hb, a(g)i

is bounded, and so we may apply the invariant mean to get a complex number

Z

G
hb, a(g)i dµ(g).

It is not di�cult to check that the map

B ! C, b 7!

Z

G
hb, a(g)i dµ(g)

is a bounded linear functional on B. We write
R
G a(g) dµ(g) for this bounded

linear functional.

The following lemma is straightforward. We leave the details to the reader.

Lemma 3.1. With notation as above, the map

`
1(G,B

⇤) ! B
⇤
, a 7!

Z

G
a(g) dµ(g)

is uniquely determined by the condition

D
b,

Z

G
a(g) dµ(g)

E
=

Z

G
hb, a(g)i dµ(g) (2)

for b 2 B and a 2 `
1(G,B

⇤). It is contractive, linear, invariant, and acts as

the identity on constant functions.

We will apply this machinery in the case that B = L
1(`2(X)) is the trace

class operators on `
2(X). In this case, the dual B⇤ canonically identifies with

B(`2(X)): indeed, if Tr is the canonical trace L
1(`2(X)), b 2 L

1(`2(X)), and

a 2 B(`2(X)), then the pairing inducing this duality isomorphism is defined by

hb, ai := Tr(ba). (3)

We will need some basic lemmas. The first can be deduced very quickly from

the theory of conditional expectations (see for example [4, Lemma 1.5.10]); we
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instead give a slightly longer naive proof.

Lemma 3.2. With notation as above, for any a 2 `
1(G,B(`2(X))) and c 2

B(`2(X)), we have that

c

Z

G
a(g) dµ(g) =

Z

G
ca(g) dµ(g) and

Z

G
a(g) dµ(g)c =

Z

G
a(g)c dµ(g)

Proof. Using lines (2) and (3), for any b 2 L
1(`2(X)), we have

D
b, c

Z

G
a(g) dµ(g)

E
= Tr

⇣
bc

Z

G
a(g) dµ(g)

⌘
=

D
bc,

Z

G
a(g) dµ(g)

E

=

Z

G
hbc, a(g)i dµ(g) =

Z

G
Tr(bca(g)) dµ(g)

=

Z

G
hb, ca(g)i dµ(g) =

D
b,

Z

G
ca(g) dµ(g)

E
.

As b 2 L
1(`2(X)) was arbitrary, this implies that c

R
G a(g) dµ(g) =

R
G ca(g) dµ(g).

The other case is similar, using also the trace identity Tr(cd) = Tr(dc), which

is valid whenever either c or d is trace class.

The next lemma says that our averaging process behaves well with respect to

propagation. Again, we proceed naively; the key point of the lemma is that the

collection of operators in B(`2(X)) that have propagation at most r is weak-⇤

closed for the weak-⇤ topology inherited from the pairing with L
1(`2(X)).

Lemma 3.3. With notation as above, if r � 0 and a 2 `
1(G,B(`2(X))) is

such that the propagation of each a(g) is at most r, then the propagation of
R
G a(g) dµ(g) is also at most r.

Proof. Let exy 2 L
1(`2(X)) be the standard matrix unit. Then one computes

using line (3) above that for any a 2 B(`2(X)),

heyx, ai = Tr(eyxa) = axy. (4)

Using lines (2) and (4), we see that

D
eyx,

Z

G
a(g) dµ(g)

E
=

Z

G
heyx, a(g)i dµ(g) =

Z

G
a(g)xy dµ(g),

where the last expression means the image of the function

G ! C, g 7! a(g)xy
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under the invariant mean. If d(x, y) > r, we have that a(g)xy = 0 for all g 2 G,

and therefore that
R
G a(g)xy dµ(g) = 0. Hence by the above computation,

d(x, y) > r implies
D
eyx,

Z

G
a(g) dµ(g)

E
= 0.

Using line (4), this says that
R
G a(g) dµ(g) has propagation at most r, so we

are done.

Lemma 3.4. With notation as above, say that there is a unitary represen-

tation g 7! ug of G on `
2(X). For any fixed d 2 B(`2(X)), define a 2

`
1(G,B(`2(X))) by a(g) := u

⇤
gdug. Then

R
G a(g) dµ(g) is in the commutant

of the set {ug | g 2 G}.

Proof. Let h 2 G. Then by Lemma 3.2,

uh

Z

G
u
⇤
gdug dµ(g) =

Z

G
uhu

⇤
gdug dµ(g) =

Z

G
u
⇤
gh�1dug dµ(g).

Making the ‘change of variables’ k = gh
�1 and using right-invariance of the

map a 7!
R
G a(g) dµ(g), this equals

Z

G
(uk)

⇤
dukh dµ(k) =

Z

G
u
⇤
kdukuh dµ(k).

Using Lemma 3.2 again we get
R
G u

⇤
kdukuh dµ(k) =

R
G u

⇤
kduk dµ(k)uh, so are

done.

4 A result of Braga and Farah

In this section, we present a result of Braga and Farah from [3, Lemma 4.9]: see

Proposition 4.2 below. Although ‘only’ a lemma, this result is quite substantial.

On the referee’s suggestion, we include a proof to keep our paper self-contained.

Our argument does not contain anything new over the original one, although

we have arranged it di↵erently for the sake of variety.

To state the result, let D := {z 2 C | |z|  1} denote the closed unit disk

in the complex plane. Let I be a countably infinite set, and let DI denote as

usual the space of all I-indexed tuples � := (�i)i2I with each �i 2 D. We fix

this notation throughout this section.
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Definition 4.1 (symmetrically summable). A sequence (ai)i2I is symmetrically

summable if for all � 2 DI , the sum
P

i2I �iai converges in the strong operator

topology to an element of C⇤
u(X). If (ai) is symmetrically summable and � =

(�i) is in DI , we write a� for the operator
P

i2I �iai.

Here is the statement we need, which is essentially3 a special case of [3,

Lemma 4.9].

Proposition 4.2. Let (ai) be a symmetrically summable collection of operators

in C
⇤
u(X). Then for any ✏ > 0 there exists r > 0 such that for all � 2 DI , the

operator a� is ✏-r-approximated.

The content of the result is the order of quantifiers: the point is that given

an ✏ > 0 there is an r > 0 that works for all the a� at once. The proof of

Proposition 4.2 proceeds via an application of the Baire category theorem to

the following sets.

Definition 4.3. Say (ai) is symmetrically summable, and for any ✏, r > 0 define

U✏,r := {� 2 DI
| a� can be ✏-r-approximated}.

Note that the hypothesis of Theorem 4.2 says that for any ✏ > 0,

DI =
1[

r=1

U✏,r, (5)

while the conclusion of Theorem 4.2 says that for any ✏ > 0 there exists r such

that DI = U✏,r.

We equip DI with the product topology, which is compact (by Tychono↵’s

theorem) and metrizable (as I is countable), so in particular a space to which

the Baire category theorem applies.

We will first show that the sets in Definition 4.3 are closed for any sym-

metrically summable (ai). Then we will show that if (ai) does not satisfy the

conclusion of Theorem 4.2, there is ✏ > 0 such that for all r > 0, Ur,✏ is nowhere

dense in DI . As we have the union in line (5), this contradicts the Baire category

theorem and we will be done.
3
There are two di↵erences with [3, Lemma 4.9]. The first is that Braga and Farah allow

index sets I of some other cardinalities, and some non-metrizable coarse spaces. For simplicity,

and as we only need that case, we assume I is countable and X is metrizable here. The second

is that the result of [3, Lemma 4.9] is only stated for finite rank operators ai. However, the

same proof establishes the result without using that assumption, so we state the stronger

version here.
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We now embark on the proof that U✏,r is closed. We will need two prelimi-

nary lemmas.

Lemma 4.4. (i) If a is a bounded operator on `
2(X) such that for all finite

rank projections p in `
1(X) the product ap can be ✏-r-approximated, then

a itself can be ✏-r-approximated.

(ii) Say a is a bounded operator on `
2(X) and ✏, r > 0 are such that for all

� > 0, a can be (✏+ �)-r-approximated. Then a can be ✏-r-approximated.

Proof. (i) Let J be the net of all finite rank projections in `
1(X), equipped

with the usual operator ordering. For each p 2 J , choose bp 2 Cr
u[X]

such that kap � bpk  ✏. Then the net (bp)p2J is norm bounded, so has

a weak operator topology convergent subnet, say (bp)p2J 0 , converging to

some bounded operator b on `
2(X). Note moreover that limp2J 0 p equals

the identity in the weak operator topology, and so limp2J 0 ap = a and

limp2J 0(ap� bp) = a� b in the weak operator topology.

Now, as weak operator topology limits do not increase norms, we see that

ka� bk  lim sup
p2J 0

kap� bpk  ✏.

Hence to complete the proof, it su�ces to show that b is in fact in Cr
u[X].

Indeed, for each (x, y) 2 X ⇥X, the function taking a bounded operator

c on `
2(X) to its matrix entry cxy is weak operator topology continuous.

Hence if d(x, y) > r then

bxy = lim
p2J 0

�
(bp)xy

�
= 0

and so b is in Cr
u[X] as desired.

(ii) For each n, let bn 2 Cr
u[X] be such that ka � bnk  ✏ + 1/n. As in

the previous part, there is a subnet (bnj )j2J of the sequence (bn) that

converges to some b 2 Cr
u[X] in the weak operator topology. As weak

operator topology limits cannot increase norms, we see that

ka� bk  lim sup
j2J

ka� bnjk  lim sup
j2J

(✏+ 1/nj) = ✏,

which shows that a can be ✏-r-approximated as claimed.
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Lemma 4.5. Say (xi)i2I is a collection in a Banach space such that
P

i �ixi

converges in norm for all (�i) 2 DI . Then for any � > 0 there exists a finite

subset F of I such that for all (�i) 2 DI

�����
X

i2I\F

�ixi

����� < �.

Proof. For notational convenience, identify I with N, so we are just dealing with

a sequence (xn). Assume for contradiction that there exists � > 0 such that for

all N there exists (�n) 2 DN such that

�����
X

n>N

�nxn

����� � �.

We will inductively define sequences (�(m))1m=1 of points in DN and N1 < M1 <

N2 < M2 < · · · of natural numbers such that for all m,

�����

MmX

n=Nm+1

�
(m)
n xn

����� � �/2.

Indeed, let m = 1, and let N1 and �
(1) be such that

�����
X

n>N1

�
(1)
n xn

����� � �.

As
P

n>N1
�
(1)
n xn is norm convergent, there exists M1 > N1 such that

�����
X

n>M1

�
(1)
n xn

�����  �/2

(such exists by our convergence assumption). Now, having chosen N1 < M1 <

N2 < · · · < Mm, let us choose Nm+1 > Mm and (�)(m+1) so that

�����
X

n>Nm+1

�
(m+1)
n xn

����� � �,
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and choose Mm+1 > Nm+1 such that

�����
X

n>Mm+1

�
(m+1)
n xn

�����  �/2.

Then the constructed sequences have the desired properties.

Now, define a new sequence � 2 DN by the formula

�n :=

(
�
(m)
n , Nm < n  Mm

0, otherwise.

Then
P1

n=1 �nxn converges in norm. In particular, it is Cauchy. This implies

that for all suitably large m, k
PMm

n=Nm+1 �nxnk < �/2, which contradicts the

properties of our construction.

Lemma 4.6. Say (ai) is a symmetrically summable collection. Then for any

✏, r > 0 the set U✏,r of Definition 4.3 is closed.

Proof. Assume for contradiction that for some ✏, r > 0, U✏,r is not closed. Then

there exists some � 2 U✏,r \ U✏,r. As � 62 U✏,r, we have that a� cannot be ✏-r-

approximated. Using (the contrapositive of) Lemma 4.4, part (i), there exists

a finite rank projection p 2 `
1(X) such that a�p cannot be ✏-r-approximated.

Now, for any ⌘ 2 DI , the sum
P

i2I ⌘iai defining a⌘ is strongly convergent.

As p is finite rank, this implies that the sum
P

i2I ⌘iaip is norm convergent.

Hence using Lemma 4.5, for any � > 0 there exists a finite subset F of I such

that �����
X

i2I\F

⌘iaip

����� < � (6)

for all ⌘ 2 DI (and in particular for ⌘ = �).

As F is finite, the set

(
⌘ 2 DI

��� |F |max
i2F

kaik|⌘i � �i| < � for all i 2 F

)
(7)

is an open neighbourhood of � for the product topology. As � is in the closure

of U✏,r, the set in line (7) thus contains some ✓ 2 U✏,r. Hence in particular a✓p

can be ✏-r-approximated, so there is b 2 Cr
u[X] be such that ka✓p�bk  ✏. Note
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that

ka�p� bk  ka✓p� bk+ ka�p� a✓pk

 ka✓p� bk+

�����
X

i2F

(�i � ✓i)aip

�����+

�����
X

i2I\F

✓iaip

�����+

�����
X

i2I\F

�iaip

�����.

The first term on the bottom line is bounded above by ✏ by choice of b, the

second is bounded above by � using that ✓ is in the set in line (7), and the third

and fourth terms are bounded above by � using the estimate in line (6) (which

is valid for all elements ⌘ of DI).

Now, we have shown that for arbitrary � > 0, we have found b 2 Cr
u[X] such

that ka�p� bk  ✏+ 3�. Using Lemma 4.4, part (ii), this implies that a�p can

be ✏-r-approximated. This contradicts our assumption in the first paragraph,

so we are done.

Now we turn to showing that if the conclusion of Theorem 4.2 is false, then

for suitably small ✏ > 0, all the sets U✏,r of Definition 4.3 are nowhere dense in

DI . We need another two preliminary lemmas.

Lemma 4.7. If K is a norm-compact subset of C⇤
u(X) then for any ✏ > 0 there

exists r > 0 such that all operators in K can be ✏-r-approximated.

Proof. We choose a finite subset {a1, ..., an} ✓ K such that every point of K

is within ✏/2 of an element of {a1, ..., an}. As each ai is in C
⇤
u(X), it can

be ✏/2-ri-approximated for some ri. Is then straightforward to see that r =

max{r1, ..., rn} has the desired property.

Lemma 4.8. Let (ai) be a symmetrically summable collection that does not

satisfy the conclusion of Proposition 4.2. Then there is an ✏ > 0 so that for all

r > 0 and all finite subsets F of I there exists (�i) 2 DI such that
P

i2I\F �iai

cannot be ✏-r approximated.

Proof. Let (ai) be as in the statement. Then there exists � > 0 such that for

all r > 0 there exists � 2 DI such that a is not �-r-approximable. Assume for

contradiction that the conclusion of the lemma fails. Then there exists s > 0

and a finite subset F of I such that for all (�i) 2 DI we have that
P

i2I\F �iai

is �/2-s-approximated. As F is finite, the set

K :=

(
X

i2F

�iai

��� � 2 DI

)
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is norm-compact. Hence Lemma 4.7 gives t > 0 such that every element of K

can be �/2-t-approximated. Now, for arbitrary � 2 DI ,

a� =
X

i2F

�iai +
X

i2I\F

�iai;

as the first term above can be �/2-s-approximated, and as the second can be

�/2-t-approximated, this implies that a� can be �-max{s, t}-approximated. As

� was arbitrary, this contradicts the first sentence in the proof, and we are

done.

As already noted after the statement of Proposition 4.2, the following lemma

completes the proof of the proposition.

Lemma 4.9. Say (ai) is a symmetrically summable collection that does not

satisfy the conclusion of Proposition 4.2. Then there is ✏ > 0 such that for each

r > 0 the set U✏,r of Definition 4.3 is nowhere dense in DI .

Proof. Let ✏0 > 0 have the property from Lemma 4.8. We claim that ✏ := ✏
0
/2

has the property required for this lemma. Assume for contradiction that for

some r > 0, U✏,r is not nowhere dense. Lemma 4.6 implies that U✏,r is closed,

and so it contains a point � in its interior. Then by definition of the product

topology there exists a finite set F ✓ I and � > 0 such that the set

V := {⌘ 2 DI
| |⌘i � �i| < � for all i 2 F} (8)

is contained in U✏,r.

Note that the element
P

i2F �iai is in C
⇤
u(X) by assumption, so can be ✏-s-

approximated for some s; let b� 2 Cs
u[X] be such that k

P
i2F �iai � b�k  ✏.

On the other hand, Lemma 4.8 gives us ⌘ 2 DI so that
P

i2I\F ⌘iai cannot

be ✏
0-max{r, s}-approximated. We may further assume that ⌘i = 0 for i 2 F .

Define ✓ 2 DI by

✓i :=

(
�i i 2 F

⌘i i 62 F

Then ✓ is clearly in the set V of line (8), and so a✓ is ✏-r-approximated. Let

then b✓ 2 Cr
u[X] be such that ka✓ � b✓k  ✏. We then see that

ka⌘ � (b✓ � b�)k  ka⌘ � a✓ + b�k+ ka✓ � b✓k 

�����b� �

X

i2F

�iai

�����+ ka✓ � b✓k
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The terms on the right are each less than ✏ by choice of b� and b✓, and so

ka⌘ � (b✓ � b�)k  2✏ = ✏
0. As b� + b✓ has propagation at most max{r, s}, this

contradicts the assumption that a⌘ cannot be ✏0-max{r, s}-approximated, so we

are done.

5 Proof of the main result

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Let � : C⇤
u (X) ! C

⇤
u (X) be a derivation. Theorem 2.5

implies that � is spatially implemented, so there is d 2 B(`2(X)) such that

�(a) = [a, d] for all a 2 C
⇤
u(X). We will show that d is in C

⇤
u(X).

Let U be the unitary group of `1(X), equipped with the discrete topology.

As U is abelian, it is amenable (see for example [2, Theorem G.2.1]), and so we

may fix a right-invariant mean on `
1(U). As in Lemma 3.1 above, this allows

us to build a right-invariant, contractive, linear map

`
1(U ,B(`2(X))) ! B(`2(X)), a 7!

Z

U
a(u) dµ(u). (9)

We apply this to the bounded function

U ! B(`2(X)), u 7! u
⇤
du

to get a bounded operator

d
0 :=

Z

U
u
⇤
du dµ(u) 2 B(`2(X)).

Using Lemma 3.4 applied to the identity representation of U , d0 is in the commu-

tant of U . As U spans `1(X), and as `1(X) is maximal abelian in B(`2(X)),

this implies that d0 is in `
1(X). To show that d is in C

⇤
u(X), it therefore su�ces

to show that h := d� d
0 is in C

⇤
u(X).

Continuing, let px 2 B(`2(X)) be the rank one projection onto the span of

the Dirac mass at x. For an element f of the unit ball of `1(X) (considered as

a multiplication operator on `
2(X)), write f as a strongly convergent sum

f =
X

x2X

f(x)px.

14



Then using strong continuity of subtraction, and separate strong continuity of

multiplication on bounded sets,

[f, d] =
h X

x2X

f(x)px, d
i
=

X

x2X

f(x)[px, d].

On the other hand, by the assumption that � is a derivation on C
⇤
u(X), [f, d]

is in C
⇤
u(X) for all f 2 `

1(X). It follows that if we set I = X, and if for each

x 2 X we set ax := [px, d], then the collection (ax)x2X satisfies the assumptions

of Proposition 4.2. Hence, for every ✏ > 0 there exists r > 0 such that for every

f in the unit ball of `1(X), the operator [f, d] can be ✏-r-approximated. In

particular, using that any u 2 U has propagation zero and norm one, for any

✏ > 0 there exists r > 0 such that d� u
⇤
du = u

⇤[u, d] can be ✏-r-approximated.

For each u 2 U , we can therefore choose a(u) of propagation at most r such

that b(u) := d � u
⇤
du � a(u) has norm at most ✏. Note that the functions

a : u 7! a(u) and b : u 7! b(u) are in `
1(U ,B(`2(X))). Hence we may consider

their images under the map in line (9). Using that the map in line (9) is linear

and acts as the identity on constant functions (see Lemma 3.1), we see that

Z

U
a(u) dµ(u) +

Z

U
b(u) dµ(u) =

Z

U
d� u

⇤
du dµ(u) = d�

Z

U
u
⇤
du dµ(u)

= d� d
0 = h. (10)

On the other hand,
R
U a(u) dµ(u) has propagation at most r by Lemma 3.3,

and
R
U b(u) dµ(u) has norm at most ✏ as the map in line (9) is contractive (see

Lemma 3.1). In particular, line (10) writes h as a sum of an element of C⇤
u(X),

and an element of norm at most ✏. As ✏ was arbitrary, h is in C
⇤
u(X), and we

are done.
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