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Abstract

We show that if C}(X) is a uniform Roe algebra associated to a
bounded geometry metric space X, then all bounded derivations on Cj, (X)

are inner.

1 Introduction

Let A be a C*-algebra. A derivation of A is a linear map 0 : A — A satisfying
d(ab) = ad(b) + 6(a)b. In this paper, we always assume that our derivations are
defined on all of A, and are thus bounded by a fundamental result of Sakai [9].
A derivation d of A is inner if there exists d in the multiplier algebra M (A) of
A such that §(a) = ad — da for all a € A. Let us say that a C*-algebra A only
has inner derivations if all (bounded) derivations are inner.

Motivated by the needs of mathematical physics and the study of one-
parameter automorphism groups, it is interesting to study whether all deriva-
tions are inner for a particular C*-algebra. In the 1970s, a complete solution to
this problem was obtained in the separable case via the work of several authors.
The definitive result was obtained by Akemann and Pedersen [I] (see also El-
liott [6], which contains a closely related result). These authors showed that a
separable C*-algebra only has inner derivations if and only if it isomorphic to
a C*-algebra of the form

Cce @ Sis (1)

icl
where C' is continuous trace (possibly zero), and each S; is simple (possibly
zero). Thus in particular, all separable commutative, and all separable simple,
C*-algebras only have inner derivations. However, one might reasonably say

that most separable C*-algebras admit non-inner derivations.



For non-separable C*-algebras the picture is murkier. It is well-known that
there are non-separable C*-algebras that are not of the form in line and
that only have inner derivations: perhaps most famously, Sakai [10] has shown
this for all von Neumann algebras. See also for example [6, page 123] for some
examples that are not von Neumann algebras, nor of the form in line (1)), and
that only have inner derivations.

Our goal in this paper is to give a new class of examples that only have in-
ner derivations: uniform Roe algebras. Uniform Roe algebras are a well-studied
class of non-separable C*-algebras associated to metric spaces; see Section [2 be-
low for basic definitions. They were originally introduced for index-theoretic
purposes, but are now studied for their own sake as a bridge between C*-
algebra theory and coarse geometry, as well as having interesting applications
to single operator theory and mathematical physics, amongst other things. Due
to the presence of £>°(X) as a diagona MASA, they have a somewhat von
Neumann algebraic flavor, but are von Neumann algebras only in the trivial
finite-dimensional case. They are also essentially never of the form in line (1J).
Moreover, in many ways they are quite tractable as C*-algebras, often having
good regularity properties such as nuclearity.

Here is our main theorem.

Theorem 1.1. Uniform Roe algebras associated to bounded geometry metric

spaces only have inner derivations.

The key ingredients in the proof are: a basic form of a ‘reduction of cocycles’
argument used by Sinclair and Smith [11] in their study of Hochschild cohomol-
ogy of von-Neumann algebras; and recent applications of Ramsey-theoretic ideas
to the study of uniform Roe algebras by Braga and Farah [3].

We conclude this introduction by noting that the fact that all derivations
on A are inner can be restated as saying that the first Hochschild cohomology
group H'(A, A) vanishes. For A a uniform Roe algebra, it is then natural to ask
if all the higher groups H"(A, A) vanish. See [11] for a survey of this problem

in the case that A is a von Neumann algebra.
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2 Definitions and background results

In this section, we recall some basic definitions, as well as a classical result of
Kadison stating that all derivations on a C*-algebra are spatially implemented.

Inner products are linear in the first variable. For a Hilbert space H we
denote the space of bounded operators on H by Z(H), and the space of compact
operators by £ (H). The commutator of a,b € %B(H) is denoted by [a,b] :=
ab — ba.

The Hilbert space of square-summable sequences on a set X is denoted
£2(X), and the canonical basis of £2(X) will be denoted (9,).cx (We reserve &
for derivations). For a € Z(¢?(X)) we define its matrix entries by

Ugy = (a¥y, V) .

Definition 2.1 (propagation, uniform Roe algebra). Let X be a metric space
and r > 0. An operator a € B({?(X)) has propagation at most r if az, = 0
whenever d(x,y) > r for all (z,y) € X x X. In this case, we write prop(a) < r.
The set of all operators with propagation at most r is denoted C?, [X]. We define

C, [X]:={a € B(*(X)) : prop(a) < oo};

it is not difficult to see that this is a x-algebra. The uniform Roe algebra, denoted
C#(X), is defined to be the norm closure of C,[X].

Definition 2.2 (e-r-approzimated). Let X be a metric space. Given € > 0
and r > 0, an operator a € %((*(X)) can be e-r-approzimated if there exists a
b € CI [X] such that |ja — b|| <e.

We will exclusively be interested in uniform Roe algebras associated to

bounded geometry metric spaces as in the next definition.



Definition 2.3 (bounded geometry). A metric space X is said to have bounded
geometry if for every r > 0 there exists an N,. € N such that for all z € X, the

ball of radius r about x has at most N, elements.
Finally in this section, we recall a general fact about derivations.

Definition 2.4 (spatial derivation). Let A C Z(H) be a concrete C*-algebra.
A derivation § of A is spatial if there is a bounded operator d € %(H) such that
6(a) = [a,d].

The following is due to Kadison |7, Theorem 4].

Theorem 2.5. Let A C B(H) be a concrete C*-algebra. Then every derivation
on A is spatial. ]

Note that a uniform Roe algebra C(X) always contains the compact oper-
ators on £2(X). For a concrete C*-algebra A C %(H) containing the compact
operators £ (1), there are simpler proofs of Theorem available: see for
example [5, Corollary 3.4 and Remark on page 284].

3 Averaging operators over amenable groups

In this section, we summarize some facts we need about averaging operators on
a Hilbert space over an amenable group. Most of this material seems likely to
be well-known; however, we could not find convenient references for the facts
we wanted, so provide most details here.

Let G be a discrete (possibly uncountable) group. If A is a complex Banach
space, we let £°°(G, A) denote the Banach space of bounded functions from G to
A equipped with the supremum norm; in the case A = C, we just write £*°(G).
We also equip £*°(G, A) with the right-action of G defined for a € £*°(G, A) and
h,g € G by

(ag)(h) == a(hg™).
If Z is any set, a function ¢ : £°(G, A) — Z is invariant if ¢(ag) = ¢(a) for all
a € {*(G,A) and g € G. Recall that G is amenable if there exists an invariant

mean on {>°(G), i.e. an invariant function ¢ : £°(G) — C that is also a state.

Fix now an invariant mean on ¢*°(G), which we denot by

GH/Ga(g)du(y)-

2The integral notation is meant to be suggestive, but we do not need to, and will not,
assign any specific meaning to the ‘measure’ u.




Let now B be a complex Banach space with dual B*. We may upgrade an
invariant mean on ¢*>°(G) to an invariant contractive linear map ¢ (G, B*) —
B* in the following way. Let b € B, g € G, and a € (*°(G, B*), and write
(b,a(g)) for the pairing between b and a(g). Then the map

G—=C, g~ (balg))

is bounded, and so we may apply the invariant mean to get a complex number

/ (b a(g)) d ().
G

It is not difficult to check that the map

B - C, bH/G<b7a(g)>du(9)

is a bounded linear functional on B. We write [, a(g)d pu(g) for this bounded
linear functional.

The following lemma is straightforward. We leave the details to the reader.

Lemma 3.1. With notation as above, the map

{>*(G,B*) — B*, a»—)/Ga(g)d,u(g)

18 uniquely determined by the condition

(v [ a@an) = [ pato) i )

forb € B and a € {*°(G,B*). It is contractive, linear, invariant, and acts as

the identity on constant functions. [

We will apply this machinery in the case that B = L£}(¢?(X)) is the trace
class operators on £?(X). In this case, the dual B* canonically identifies with
B(F?(X)): indeed, if Tr is the canonical trace L£}(¢2(X)), b € L1 (¢*(X)), and
a € B((*(X)), then the pairing inducing this duality isomorphism is defined by

(b, a) := Tr(ba). (3)

We will need some basic lemmas. The first can be deduced very quickly from

the theory of conditional expectations (see for example [4, Lemma 1.5.10]); we



instead give a slightly longer naive proof.

Lemma 3.2. With notation as above, for any a € {>*(G, B({*(X))) and c €
B(F?(X)), we have that

¢ [a@ant) = [ ctwdne) md [ a@anee= [ awedut)

G

Proof. Using lines and (3)), for any b € £1(¢?(X)), we have

(ve [ atg)ante)) =Te(be [ aw)aute) = (be. | ato)dnio))
— [ e.ale) dnte) = [ To(bealg) dn(o)
G G

= [ ot ants) = (. [ catorants))

Asb € L1 (*(X)) was arbitrary, this implies that ¢ [, a(g) d u(g) = [, ca(g) d pu(g).
The other case is similar, using also the trace identity Tr(cd) = Tr(dc), which

is valid whenever either ¢ or d is trace class. O

The next lemma says that our averaging process behaves well with respect to
propagation. Again, we proceed naively; the key point of the lemma is that the
collection of operators in %(¢?(X)) that have propagation at most r is weak-*

closed for the weak-* topology inherited from the pairing with £1(¢?(X)).

Lemma 3.3. With notation as above, if r > 0 and a € {>*(G, B(*(X))) is
such that the propagation of each a(g) is at most r, then the propagation of
Joalg) du(g) is also at most r.

Proof. Let ey, € L*(¢?(X)) be the standard matrix unit. Then one computes
using line (3]) above that for any a € Z(£*(X)),

(eyg,a) = Tr(eyza) = agpy. (4)
Using lines and , we see that
Qaw/xﬂmdu@»==/<%ma@»du@%=/uﬂwwduw%
G G G
where the last expression means the image of the function

G—C, grra(g)ey



under the invariant mean. If d(z,y) > r, we have that a(g).y, = 0 for all g € G,
and therefore that [, a(g)sy, du(g) = 0. Hence by the above computation,

d(xz,y) >r implies <ey$,/Ga(g)d/,L(g)> =0.

Using line (), this says that Jo alg) dpu(g) has propagation at most r, so we

are done. O

Lemma 3.4. With notation as above, say that there is a unitary represen-
tation g — uy of G on (*(X). For any fivred d € B((*(X)), define a €
(G, B(1*(X))) by alg) := uiduy. Then [, a(g)du(g) is in the commutant
of the set {uy | g € G}.

Proof. Let h € G. Then by Lemma [3.2
uh/GuZdugdu(g):/Guhu;dugdu(g)z/Gu;h,ldugdu(g).

Making the ‘change of variables’ k = gh~' and using right-invariance of the

map a — [, a(g)dpu(g), this equals

/(uk)*dukhdu(ki) = / widugup d p(k).

G G

Using Lemma again we get fG ufdupup d p(k) = fG ujduy d p(k)up, so are
done. O

4 A result of Braga and Farah

In this section, we present a result of Braga and Farah from [3| Lemma 4.9]: see
Proposition [4.2] below. Although ‘only’ a lemma, this result is quite substantial.
On the referee’s suggestion, we include a proof to keep our paper self-contained.
Our argument does not contain anything new over the original one, although
we have arranged it differently for the sake of variety.

To state the result, let D := {z € C | |z| < 1} denote the closed unit disk
in the complex plane. Let I be a countably infinite set, and let D’ denote as
usual the space of all I-indexed tuples A := (\;);e; with each A\; € D. We fix

this notation throughout this section.



Definition 4.1 (symmetrically summable). A sequence (a;);cr is symmetrically
summable if for all X € D', the sum Y, ;
topology to an element of C(X). If (a;) is symmetrically summable and A =

Aija; converges in the strong operator

(\;) is in D!, we write ay, for the operator D icr Al

Here is the statement we need, which is essentiall a special case of [3|

Lemma 4.9].

Proposition 4.2. Let (a;) be a symmetrically summable collection of operators
in C?(X). Then for any € > 0 there exists r > 0 such that for all A € D!, the

operator a) is e-r-approximated.

The content of the result is the order of quantifiers: the point is that given
an € > 0 there is an r > 0 that works for all the a) at once. The proof of
Proposition [4.2| proceeds via an application of the Baire category theorem to

the following sets.

Definition 4.3. Say (a;) is symmetrically summable, and for any €, > 0 define
Uer == {A €D’ | ay can be e-r-approximated}.

Note that the hypothesis of Theorem [4.2] says that for any € > 0,

DI == U Ue,ra (5)

while the conclusion of Theorem says that for any € > 0 there exists r such
that D! = U,

We equip D! with the product topology, which is compact (by Tychonoff’s
theorem) and metrizable (as I is countable), so in particular a space to which
the Baire category theorem applies.

We will first show that the sets in Definition are closed for any sym-
metrically summable (a;). Then we will show that if (a;) does not satisfy the
conclusion of T heorem there is € > 0 such that for all r > 0, U, . is nowhere
dense in D?. As we have the union in line , this contradicts the Baire category

theorem and we will be done.

3There are two differences with [3, Lemma 4.9]. The first is that Braga and Farah allow
index sets I of some other cardinalities, and some non-metrizable coarse spaces. For simplicity,
and as we only need that case, we assume [ is countable and X is metrizable here. The second
is that the result of |3, Lemma 4.9] is only stated for finite rank operators a;. However, the
same proof establishes the result without using that assumption, so we state the stronger
version here.



We now embark on the proof that U, is closed. We will need two prelimi-

nary lemmas.

Lemma 4.4. (i) If a is a bounded operator on ¢*(X) such that for all finite

rank projections p in £°°(X) the product ap can be e-r-approximated, then

a itself can be e-r-approximated.

(ii) Say a is a bounded operator on (*(X) and €,7 > 0 are such that for all

0 >0, a can be (e + 0)-r-approximated. Then a can be e-r-approximated.

Proof. (i) Let J be the net of all finite rank projections in £°°(X), equipped

with the usual operator ordering. For each p € J, choose b, € CI[X]
such that |lap — b,|| < e. Then the net (b,)pes is norm bounded, so has
a weak operator topology convergent subnet, say (by)pe., converging to
some bounded operator b on £2(X). Note moreover that lim,e; p equals
the identity in the weak operator topology, and so lim,c ap = a and

limy,e - (ap — b,) = @ — b in the weak operator topology.

Now, as weak operator topology limits do not increase norms, we see that

la —b|| <limsup|lap — b, <e.
peJ’

Hence to complete the proof, it suffices to show that b is in fact in CJ[X].
Indeed, for each (z,y) € X x X, the function taking a bounded operator
c on £2(X) to its matrix entry Czy is weak operator topology continuous.
Hence if d(z,y) > r then

bey = I}ig}, ((bp)ay) =0

and so b is in CJ,[X] as desired.

For each n, let b, € CI[X] be such that ||a — b,|| < e+ 1/n. As in
the previous part, there is a subnet (by,);es of the sequence (b,) that
converges to some b € CI[X] in the weak operator topology. As weak

operator topology limits cannot increase norms, we see that
la — bl <limsup ||a — by, || < limsup(e + 1/n;) =€,
JjeJ jeJ

which shows that a can be e-r-approximated as claimed.



Lemma 4.5. Say (z;)ier s a collection in a Banach space such that Zl A%
converges in norm for all (\;) € DI. Then for any 6 > 0 there exists a finite
subset F of I such that for all (\;) € D!

i€I\F

< 0.

Proof. For notational convenience, identify I with N, so we are just dealing with
a sequence (x,). Assume for contradiction that there exists ¢ > 0 such that for
all N there exists (\,) € DY such that

Z Ann

n>N

> 4.

We will inductively define sequences (A™)%°_, of points in DY and N; < M; <

m=1

Ny < Ms < --- of natural numbers such that for all m,

M,,
S A,

n=Np,+1

> 6/2.

Indeed, let m = 1, and let N; and A™) be such that

Z )\g)wn

n>N;

> 4.

As Zn> N /\S)zn is norm convergent, there exists M; > N; such that

Z Az,

n>M;y

<6/2

(such exists by our convergence assumption). Now, having chosen N; < M; <
Ny < -+ < My, let us choose N, 11 > M,, and ()\)(mﬂ) so that

Z Agzm+1)mn

n>Npt1

>4

)

10



and choose M,,11 > Ny,4+1 such that

Z )‘sLerl)zn

n>My, 1

<6/2.

Then the constructed sequences have the desired properties.

Now, define a new sequence A\ € DY by the formula

P )\glm)’ Np <n < My,
" 0, otherwise.

Then 7, Ap@y, converges in norm. In particular, it is Cauchy. This implies
that for all suitably large m, || ZTA;I:’"NMH AnZn|| < 6/2, which contradicts the

properties of our construction. O

Lemma 4.6. Say (a;) is a symmetrically summable collection. Then for any
e,7 >0 the set U, of Definition[4.3 is closed.

Proof. Assume for contradiction that for some €, > 0, U, , is not closed. Then
there exists some A\ € K\ Uer. As X & Uc,, we have that a) cannot be e-r-
approximated. Using (the contrapositive of) Lemma part (i), there exists
a finite rank projection p € ¢°°(X) such that ap cannot be e-r-approximated.

Now, for any 1 € D, the sum > ic1 Miai defining a,, is strongly convergent.
As p is finite rank, this implies that the sum ), ; n;a;p is norm convergent.
Hence using Lemma for any 6 > 0 there exists a finite subset F' of I such

that
Z nia;p|l <6 (6)
iEINF
for all € D! (and in particular for n = \).
As F is finite, the set
{UEDI ‘ |F|m€a£(||ai\||m—>\i\<5for alliEF} (7)

is an open neighbourhood of A for the product topology. As A is in the closure
of U, the set in line @ thus contains some 6 € U . Hence in particular agp

can be e-r-approximated, so there is b € CI,[X] be such that ||agp —b|| < €. Note

11



that

llaxp = bll < [lagp — bll + [laxp — aop||

> (A = 0;)aip

i€F

< llagp — bl + +

> Giaip

i€EI\F

+

> Naip

i€I\F

The first term on the bottom line is bounded above by e by choice of b, the
second is bounded above by § using that 6 is in the set in line ([7]), and the third
and fourth terms are bounded above by ¢ using the estimate in line @ (which
is valid for all elements 7 of D).

Now, we have shown that for arbitrary § > 0, we have found b € CJ,[X] such
that [|axp — b|| < € + 35. Using Lemma [4.4] part (ii), this implies that axp can
be e-r-approximated. This contradicts our assumption in the first paragraph,

so we are done. O

Now we turn to showing that if the conclusion of Theorem [£.2]is false, then
for suitably small € > 0, all the sets U, , of Definition are nowhere dense in

D’. We need another two preliminary lemmas.

Lemma 4.7. If K is a norm-compact subset of C:(X) then for any e > 0 there

exists v > 0 such that all operators in K can be e-r-approximated.

Proof. We choose a finite subset {a1,...,a,} C K such that every point of K
is within €/2 of an element of {aj,...,a,}. As each a; is in C}(X), it can
be €/2-r;-approximated for some r;. Is then straightforward to see that r =

max{ry,...,7,} has the desired property. O

Lemma 4.8. Let (a;) be a symmetrically summable collection that does not
satisfy the conclusion of Proposition[{.2. Then there is an € > 0 so that for all
r >0 and all finite subsets F of I there exists (\;) € D! such that ZieI\F Aia;

cannot be e-r approrimated.

Proof. Let (a;) be as in the statement. Then there exists 6 > 0 such that for
all 7 > 0 there exists A € D! such that a is not 6-r-approximable. Assume for
contradiction that the conclusion of the lemma fails. Then there exists s > 0
and a finite subset F' of I such that for all ()\;) € D! we have that Dier\F Aili
is 0/2-s-approximated. As F is finite, the set

K{Z)\Zaz )\EDI}
ieF

12



is norm-compact. Hence Lemma [4.7| gives ¢ > 0 such that every element of K

can be §/2-t-approximated. Now, for arbitrary A € D/,

ax = Z)‘iai + Z Aia;

icF i€l\F

as the first term above can be d/2-s-approximated, and as the second can be
0 /2-t-approximated, this implies that ay can be é-max{s,t}-approximated. As
A was arbitrary, this contradicts the first sentence in the proof, and we are
done. O

As already noted after the statement of Proposition [4.2} the following lemma

completes the proof of the proposition.

Lemma 4.9. Say (a;) is a symmetrically summable collection that does not
satisfy the conclusion of Proposition[{.2. Then there is € > 0 such that for each
r > 0 the set U, of Deﬁnition@ is nowhere dense in D',

Proof. Let € > 0 have the property from Lemma We claim that € := ¢’/2
has the property required for this lemma. Assume for contradiction that for
some r > 0, Uc, is not nowhere dense. Lemma implies that U, , is closed,
and so it contains a point A in its interior. Then by definition of the product
topology there exists a finite set F' C I and ¢ > 0 such that the set

Vi={neD!||n—\|<dforallicF} (8)

is contained in U, ,.

Note that the element ), 5 A;a; is in C};(X) by assumption, so can be e-s-
approximated for some s; let by € C;[X] be such that ||}, p Aia; — bal| < e
On the other hand, Lemma gives us n € D! so that EieI\F 1;a; cannot

be €’-max{r, s}-approximated. We may further assume that n; = 0 for i € F.

Define 6 € D! by
0, — AN 1EF
ni i¢F
Then 0 is clearly in the set V' of line , and so ay is e-r-approximated. Let
then by € C7,[X] be such that ||ag — bg|| < e. We then see that

lay — (bg — b < [lay —ag + ball + llag — bol| < + [las — bo|

b,\ — Z )\iai

ieF

13



The terms on the right are each less than e by choice of by and by, and so
lay, — (bg — by)|| < 2¢ = €. As by + by has propagation at most max{r, s}, this
contradicts the assumption that a, cannot be ¢’-max{r, s}-approximated, so we

are done. ]

5 Proof of the main result

In this section, we prove Theorem [1.1

Proof of Theorem[I.1. Let 6 : C (X) — Cf (X) be a derivation. Theorem [2.5
implies that ¢ is spatially implemented, so there is d € Z(¢*(X)) such that
d(a) = [a,d] for all a € C%(X). We will show that d is in C(X).

Let U be the unitary group of £>°(X), equipped with the discrete topology.
As U is abelian, it is amenable (see for example |2, Theorem G.2.1]), and so we
may fix a right-invariant mean on £°°(i). As in Lemma above, this allows

us to build a right-invariant, contractive, linear map
U, BUE(X))) — BUEX)), ars /u a(u) d p(u). )
We apply this to the bounded function
U— BEX)), u— u*du

to get a bounded operator
d = / w*dud p(u) € B (X)).
u

Using Lemma[3.4]applied to the identity representation of I, d’ is in the commu-
tant of U. As U spans £*°(X), and as £>°(X) is maximal abelian in Z(¢*(X)),
this implies that d’ is in £°°(X). To show that d is in C(X), it therefore suffices
to show that h:=d —d' is in C(X).

Continuing, let p, € %(£2(X)) be the rank one projection onto the span of
the Dirac mass at z. For an element f of the unit ball of £°°(X) (considered as

a multiplication operator on £2(X)), write f as a strongly convergent sum

f=3" f@p..

zeX

14



Then using strong continuity of subtraction, and separate strong continuity of

multiplication on bounded sets,

ol = [ F@pand] = 3 F@)pa,d.
zeX zeX

On the other hand, by the assumption that ¢ is a derivation on C}(X), [f,d]
is in CF(X) for all f € £>°(X). It follows that if we set I = X, and if for each
x € X we set a; := [p, d], then the collection (a;).cx satisfies the assumptions
of Proposition Hence, for every € > 0 there exists r > 0 such that for every
f in the unit ball of ¢>°(X), the operator [f,d] can be e-r-approximated. In
particular, using that any v € U has propagation zero and norm one, for any
€ > 0 there exists r > 0 such that d — u*du = u*[u, d] can be e-r-approximated.

For each u € U, we can therefore choose a(u) of propagation at most r such
that b(u) := d — u*du — a(u) has norm at most e. Note that the functions
a:u a(u) and b:u— b(u) are in £°(U, B(£*(X))). Hence we may consider
their images under the map in line @ Using that the map in line @D is linear
and acts as the identity on constant functions (see Lemma, we see that

/ a(u)d p(u) Jr/ b(u)d p(u) = / d—u*dud p(u) =d— / w*dud p(u)
u u u u

—d—d =h. (10)
On the other hand, [, a(u)dpu(u) has propagation at most 7 by Lemma
and [,, b(u) d pu(u) has norm at most € as the map in line ([9) is contractive (see
Lemma [3.1). In particular, line writes h as a sum of an element of C7(X),

and an element of norm at most €. As € was arbitrary, h is in C}(X), and we

are done. 0
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