A Data-Driven Graph Generative Model for
Temporal Interaction Networks

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He
University of Illinois at Urbana-Champaign, Urbana, IL, USA
{dzhou21, lecheng4, hanj, jingrui}@illinois.edu

ABSTRACT

Deep graph generative models have recently received a surge of
attention due to its superiority of modeling realistic graphs in a
variety of domains, including biology, chemistry, and social science.
Despite the initial success, most, if not all, of the existing works are
designed for static networks. Nonetheless, many realistic networks
are intrinsically dynamic and presented as a collection of system
logs (i.e., timestamped interactions/edges between entities), which
pose anew research direction for us: how can we synthesize realistic
dynamic networks by directly learning from the system logs? In
addition, how can we ensure the generated graphs preserve both
the structural and temporal characteristics of the real data?

To address these challenges, we propose an end-to-end deep
generative framework named TagGen. In particular, we start with a
novel sampling strategy for jointly extracting structural and tem-
poral context information from temporal networks. On top of that,
TagGen parameterizes a bi-level self-attention mechanism together
with a family of local operations to generate temporal random
walks. At last, a discriminator gradually selects generated temporal
random walks, that are plausible in the input data, and feeds them
to an assembling module for generating temporal networks. The
experimental results in seven real-world data sets across a variety of
metrics demonstrate that (1) TagGen outperforms all baselines in the
temporal interaction network generation problem, and (2) TagGen
significantly boosts the performance of the prediction models in
the tasks of anomaly detection and link prediction.

CCS CONCEPTS

» Networks — Topology analysis and generation; « Theory
of computation — Dynamic graph algorithms.

KEYWORDS
Graph Generative Model, Temporal Networks, Transformer Model

ACM Reference Format:

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. 2020. A Data-
Driven Graph Generative Model for Temporal Interaction Networks. In
Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’20), August 23-27, 2020, Virtual Event, CA, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3394486.3403082

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °20, August 23-27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08....$15.00
https://doi.org/10.1145/3394486.3403082

t. t
9 t=t; Userl — User2;User4 —— User3;

User 1 ty
User 3 —— User 2;
kS %

t ty
Q t=t, Userl —2 User3;User2 — User3;

l . t. L,
User 2 User 3 User 4 —2— User 2; User4 —— User 5
s L,
User 1 User 2;

D = € t; t
| ™ t=t; User2 — User3;User5 —— User3;
User 4 User 5

(@) Online Transaction Network (b) Fine-grained Temporal Interactions

Figure 1: An example of temporal interaction networks. (a)
An online transaction network with five users. (b) The
corresponding system logs presented in the form of time-
stamped edges between users.

1 INTRODUCTION

Graph presents a fundamental abstraction for modeling complex
systems in a variety of domains, ranging from chemistry [39], se-
curity [4, 16, 42], recommendation [25, 33], and social science [34].
Therefore, mimicking and generating realistic graphs have been
extensively studied in the past. The traditional graph generative
models are mostly designed to model a particular family of graphs
based on some specific structural assumptions, such as heavy-tailed
degree distribution [3], small diameter [10], local clustering [38], etc.
In addition to the traditional graph generative models, a surge of re-
search efforts on deep generative models [12, 17] have been recently
observed in the task of graph generation. These approaches [5, 40]
are trained directly from the input graphs without incorporating
prior structural assumptions and often achieve promising perfor-
mance in preserving diverse network properties of real networks.

Despite the initial success of deep generative models on graphs,
most of the existing techniques are designed for static networks.
Nonetheless, many real networks are intrinsically dynamic and
stored as a collection of system logs (i.e., timestamped edges be-
tween entities). For example, in Fig. 1, an online transaction network
can be intrinsically presented as a sequence of timestamped edges
(i.e., financial transactions) between users. When an online transac-
tion is completed, a system log file (i.e., a timestamped edge from
one account to another) will be automatically generated and stored
in the system. A conventional way of modeling such dynamic sys-
tems is to construct time-evolving graphs [36, 44] by aggregating
timestamps into a sequence of snapshots. One drawback comes
from the uncertainty of defining the proper resolution of the time-
evolving graphs. If the resolution is too fine, the massive number of
snapshots will bring intractable computational cost when training
deep generative models; if the resolution is too coarse, fine-grained
temporal context information (e.g., the addition/deletion of nodes
and edges) might be lost during the time aggregation.

https://doi.org/10.1145/3394486.3403082
https://doi.org/10.1145/3394486.3403082

Deep Generative Model

Traditional Generative Model

Data Driven

'
'
'
i
I
Dynamic > TagGen
Graph Fisher&Helmberg sT™ ! (This Papaer)
(2019) (2018) | NetGAN
Static = ! (2018)
Graph (1960) Small-World Waxma SONETs | GraphRNN
A (1999) (1988) (2011) ! (2018)
L :
Degree Small Local Motif |
I

Distribution ~ Diameter Clustering Distribution

Figure 2: A two-dimensional conceptual space of graph gen-
erative models.

Fig. 2 compares various graph generators in a two-dimensional
conceptual space in order to demonstrate the limitation of existing
techniques as compared to ours. In this paper, for the first time,
we aim to address the following three open challenges: (Q.1) Can
we directly learn from the raw temporal networks (i.e., temporal
interaction network) represented as a collection of timestamped
edges (see Fig. 1 (b)) instead of constructing the time-evolving
graphs? (Q.2) Can we develop an end-to-end deep generative model
that can ensure the generated graphs preserve the structural and
temporal characteristics (e.g., the heavy tail of degree distribution,
and shrinking network diameter over time) of the original data?

To this end, we propose TagGen, a deep graph generative model
for temporal interaction networks to tackle all of the aforementioned
challenges. We first propose a random walk sampling strategy to
jointly extract the key structural and temporal context informa-
tion from the input graphs. On top of that, we develop a bi-level
self-attention mechanism which can be directly trained from the
extracted temporal random walks while preserving temporal in-
teraction network properties. Moreover, we designed a novel net-
work context generation scheme, which defines a family of local
operations to perform addition and deletion of nodes and edges,
thus mimicking the evolution of real dynamic systems. In partic-
ular, TagGen maintains the state of the graph and generates new
temporal edges by training from the extracted temporal random
walks [27]; the addition operation randomly chooses a node to be
connected with another one at a timestamp ¢; the deletion operation
randomly terminates the interaction between two nodes at times-
tamp t; all the proposed operations are either accepted or rejected
by a discriminator module in TagGen based on the current states
of the constructed graph. At last, the selected plausible temporal
random walks will be fed into an assembling module to generate
temporal networks.

The main contributions of this paper are summarized below.

« Problem. We formally define the problem of temporal interaction
network generation and identify its unique challenges arising from
real applications.

« Algorithm. We propose an end-to-end learning framework for
temporal interaction network generation, which can (1) directly
learn from a series of timestamped nodes and edges and (2) pre-
serve the structural and temporal characteristics of the input data.

« Evaluations. We perform extensive experiments and case stud-
ies on seven real data sets, showing that TagGen achieves superior
performances compared with the previous methods in the tasks
of temporal graph generation and data augmentation.

The rest of our paper is organized as follows. Problem definition
is introduced in Section 2, followed by the details of our proposed
framework TagGen in Section 3. Experimental results are reported
in Section 4. In Section 5, we review the existing literature before
we conclude the paper in Section 6.

2 PROBLEM DEFINITION

The main symbols used in this paper are summarized in Table 1
of Appendix A. We formalize the graph generation problem for
temporal interaction networks [21, 27, 29], and present our learning
problem with inputs and outputs. Different from conventional dy-
namic graphs that are defined as a sequence of discrete snapshots,
the temporal interaction network is represented as a collection of
temporal edges. Each node is associated with multiple timestamped
edges at different timestamps, which results in the different oc-
currences of node v = {0v’1,...,0T}. For example, in Fig. 3, the
node v, is associated with three occurrences {0, v'2, v} that ap-
pear at timestamps #1, t2 and t3. The formal definitions of temporal
occurrence and temporal interaction network are given as follows.

DEFINITION 1 (TEMPORAL OCCURRENCE). In a temporal inter-
action network, a node v is associated with a bag of temporal occur-
rencesv = {01, v, ...}, which instance the occurrences of node v
at timestamps {t1, t2, ...} in the network.

+ Role at t;: vt in (v, v,)0

t2

| | « Role at t,: v 2 in (v, v,)t
tz e_ o 0 2 Ya a Ve

+ Role at t3: v in (v, 1)

(a) (b)

Figure 3: An example of node v, and its temporal occur-
rences. (a) A miniature of a temporal interaction network.
(b) The occurrences of node v, that appear at ¢, t; and 3.

DEFINITION 2 (TEMPORAL INTERACTION NETWORK). A tem-
poral interaction network G = (V,E) is formed by a collection of

nodes V = {v1,v2,...,vn} and a series of timestamped edges E =

te, t
1 €2
{el b8y s

eﬁ,‘:’" }, where e; = (ue,, Ve,) ¢ .

In the static setting, existing works [30] define the network
neighborhood N(v) of node v as a set of nodes that are generated
through some neighborhood sampling strategies. Here, we general-
ize the notion of network neighborhood to the temporal interaction

network setting as follows.

DEFINITION 3 (TEMPORAL NETWORK NEIGHBORHOOD). Given
a temporal occurrence v'v at timestamp t,, the neighborhood of v*»
is defined as Npp(v'@) = {vitvi |]”sp(vl.tvi,vt”) < dppps o = by | <
tNgr) Where fsp(:|-) denotes the shortest path between two nodes,
d Ny 1s the user-defined neighborhood range, and t ., refers to the
user-defined neighborhood time window.

In [27], the authors define the notion of Temporal Walk, which
is presented as a sequence of vertices following a time-order con-
straint. In this paper, we relax such a constraint by considering that

all the nodes within a neighborhood time window [t — a7, +
1, ty + t N, | are the temporal neighbors of v'v and can be accessed
from v via a random walk. Here, we formally define the k-Length
Temporal Walk as follows.

DEFINITION 4 (k-LENGTH TEMPORAL WALK). Given a tempo-
ral interaction network 5 ak-length temporal walk W = {w1, ..., wi}
is defined as a sequence of incident temporal walks traversed one after
another, i.e., w; = (uwi,vwi)tw, i =1,...,k, where u,, and v,
are the source node and destination node of the ith temporal walk w;
in W respectively.

With all the aforementioned notions, we are ready to formalize
the temporal interaction network generation problem as follows.

ProBLEM 1. Temporal Interaction Network Generation

Input: a temporal interaction network G, which is presented as a col-

lection of timestamped edges {(ue,, ve,)1, . . ., (te,,s Ve,) fem }.

Output: a synthetic temporal interaction network G’ = (V', E’) that
accurately captures the structural and temporal properties of
the observed temporal network G.

3 MODEL

In this section, we introduce TagGen, a graph generative model
for temporal interaction networks. The core idea of TagGen is to
train a bi-level self-attention mechanism together with a family
of local operations to model and generate temporal random walks
for assembling temporal interaction networks. In particular, we
first introduce the overall learning framework of TagGen. Then, we
discuss the technical details of TagGen regarding context sampling,
sequence generation, sample discrimination, and graph assembling
in temporal interaction networks. At last, we present an end-to-end
optimization algorithm for training TagGen.

3.1 A Generic Learning Framework

An overview of our proposed framework is presented in Fig. 4,
which consists of four major stages. Given a temporal interac-
tion network defined by a collection of temporal edges (i.e., time-
stamped interactions), we first extract network context information
of temporal interaction networks by sampling a set of temporal
random walks [27] via a novel sampling strategy. Second, we de-
velop a deep generative mechanism, which defines a set of simple
yet effective operations (i.e., addition and deletion over temporal
edges) to generate synthetic random walks. Third, a discriminator
is trained over the sampled temporal random walks to determine
whether the generated temporal walks follow the same distribu-
tions as the real ones. At last, we generate temporal interaction
network, by collecting the qualified synthetic temporal walks via
the discriminator. In the following subsections, we describe each
stage of TagGen in details.

Context sampling. Inspired by the advances of network embed-
ding approaches [30], we view the problem of temporal network
context sampling as a form of local exploration in network neigh-
borhood Nt via temporal random walks [27]. Specifically, given
a temporal occurrence v!v, we aim to extract a set of sequences
that are capable of generating its neighborhood Npr(v’¥). Notice
that in order to fairly and effectively sample neighborhood context,
we should select the most representative temporal occurrences to

serve as initial nodes from the entire data. Here we propose to
estimate the context importance via computing the conditional prob-
ability p(v' |NFr(v')) of each temporal occurrence v’ given its
temporal network neighborhood context Npr(v'?) as follows.

P INFT(v"*)) = p(v'* [Ns(v"*), Nr(v"*)) (1)

where N7(v'*) and Ns(v*) denote the temporal neighborhood
and structural neighborhood of v*® respectively.

ty tvi
Nr(v'®) = {Ui [ty =ty] < thT}

Ns(0") = {07 | fip(v;" 0") < dner)

Intuitively, when p(v’ |[Np7(v'?)) is high, it turns out that v’
is a representative node in its neighborhood, which could be a good
initial point for random walks; when p(v' [Npr(v'?)) is low, it
is highly possible that p(v’*) is an outlier point, whose behaviors
deviate from its neighbors. A key challenge here is how to esti-
mate p(v'* | Npr (7). If p(0'2 [N (v'*)) and p(v'* [Ns(v"?)) are
independent to each other, it is easy to see

P INFT(v")) = p(0" INT(0"*)p(0"* INs (")) (2)

where p(v'*|N7(v!?)) and p(v?? | Ng(v!?)) can be estimated via
some heuristic methods [27, 30]. However, in real networks, the
topology context and temporal context are correlated to some ex-
tend, which has been observed in [7]. For instance, the high-degree
nodes (i.e., p(v'?|Ns(v'?)) is high) have a high probability to be
active in a future timestamp (i.e., p(v™ | N7 (v'?)) is high) , and vice
versa. These observations allow us to state a weak dependence [1]
between the topology neighborhood distribution and temporal
neighborhood distribution.

DEFINITION 5 (WEAK DEPENDENCE). For any v’ € V, the
corresponding temporal neighborhood distribution p(v'® |INT(v!))
and topology neighborhood distribution p(v' |Ns(v'?)) are weakly
dependent on each other, such that, for § > 0,

P INFT(v")) = 8[p(0"* INT(0")p(v"* N5 (v"*))].

Based on Def. 5, here we establish the relationship between
(0" [NFr (%)) and p(v'e INT(0'?)), p(v' | Ns(v'?)).

LEmMA 1. For any v'v € v, if the temporal neighborhood dis-
tribution p(v' | N7 (v'*)) and topology neighborhood distribution
p(0'*|Ns(v')) are weakly dependent on each other, then the follow-
ing inequality holds:

P INpr(v'?)) ®3)

P INS @)Pt N (01 p(Ns (01 (N7 (012)
B p(Ns(v'e), Np(v'e))

__96
where a = Py

The proof of this Lemma can be found in Appendix B. Follow-
ing [30], we assume p(v'@|Ns(v'®)) and p(v'e |NT(v!)) follow
a uniform distribution, where all the temporal entities in a lo-
cal region are equally important. Then, by computing p(Ns(v'?)),
P(NT(v')) and p(Ns(v'), N7(v')) (e.g., via kernel density es-
timation approaches [35]), we can infer the context importance
p(0* |Npr(v'?)) based on Eq. 3 for selecting initial nodes.

After selecting the initial temporal occurrence, we use the biased
temporal random walk [27] to extract a collection of temporal walks

PN (01)) Feedte A
EEEEEE N
@Insert a space '/,,) & f (W(l) |W(1 l))
< wo, .. wd holder in i, > s PO Taddl T 4 J/ x g
G Temporal _ @Replace the space w pY
o Ne Random o N wd holder with a new =<4 AN
4 Walks Sample |~ \\11: Propose temporal role v*. Generate |«
wo > Wd(gete
Input - A Sampled Candidate @®Rremove W and < i_ Ifs (l/I/.,l(;%mlW(1 0y Generated
Temporal Graph Temporal Random Temporal Walk Segment =) 7 () —m / J/ x Temporal Graph
Walk Sequences) = Wy from W Jt
WD w;" from W <y
Generated
Temporal Walks
A A AN J/
1. Sampling 2. Generation 3. Discrimination 4. Assembling
Figure 4: The proposed TagGen framework.
for training TagGen. The key reasons for using random walk based wgode ===
sampling approaches are their flexibility of controlling sequence Q node
length and the capability of jointly capturing structural and tempo- i —
ral neighborhood context information, as shown in [15, 27, 30]. en e 04 A
. . node
Sequence generation. To generate the synthetic temporal random en Wi ®
walks, a straightforward solution is to train a sequence model by L wgec mmm—— 'Y
learning from the extracted random walks [5]. However, in the eonm - — Q> 1-2 ——
tempolal network setting, it is urlclear hgw to mimic the network ® W - —ege—r| e = 7,
evolution and produce temporal interaction networks. Therefore, en | m—
in this paper, we design a family of local operations, i.e., Action = 3 . wgee
L. . s = £

{add, delete}, to perform addition and deletion of temporal entities E 3
and mimic the evolution of real dynamic networks. In particular, 5= w, =
given a k-length temporal random walk W(9) = {Wil), , W;{l)}, ===

we first sample a candidate temporal walk segment W;i) e wl

following a user-defined prior distribution p(W(i)). In this paper,
we assume p(W<i)) follows a uniform distribution, although the
proposed techniques can be naturally extended to other types of
prior distribution. Then, we randomly perform one of the following
operations with probability pacrion = {PaddsPdelete}-

+ add : The add operation is done in a two-step fashion. First,
we insert a place holder token in the candidate temporal walk

)
,and then replace a new temporal

~(@) .

segmentw = (ug 0 v (z))

entity vx!o* with the place holder token such that w; is broken

into {(uﬁ:“)’ vx)or (v, DW“)) WJ' }. The length of the modified
A s

J
temporal random walk sequence W(gld) 4 Would be k + 1.
« delete : The delete operation removes the candidate temporal

,Vv;.i), ey ~(i)} such

that the length of the modified temporal random walk chl)
elete
would be k — 1.

walk segment w(D from W) = {~(l)

Sample discrimination. To ensure the generated graph con-
text follows the similar global structure distribution as the in-
put, TagGen is equipped with a discriminator model fy(-), which

Figure 5: Bi-level self-attention.

aims to distinguish whether the generated temporal networks fol-
low the same distribution as the original graphs. For each gen-

erated temporal random walk thc)tlon after a certain operation

action = {add, delete}, TagGen computes the conditional probabil-

ity P(Wélc)n 0n|W<1Nl)) given the extracted real temporal random

walks WD = (tw® | wD} as follows.

WD WD) o pucrion(action) fp (WD) (4

action action

where fp(-) computes the likelihood of observing wd)

actio
training data W™D = w, .

W(l)}; Paction(aCtlon) Weights
the proposed operation over Wéctmn

Some recent graph generative frameworks (e.g., [5, 40]) model
the extracted graph sequences via recurrent neural networks (RNNs)
or long short-term memory (LSTM) architectures. However, such
sequential nature inherently prevents parallelism and results in in-
tractable running time for long sequence length [37]. For instance,
GraphRNN [40] requires to map the n-node graph into length-n
sequences for training purposes. Inspired by the recent advances
of Transformer models in nature language processing [37], we
propose to employ self-attention mechanisms to impose global
dependencies among temporal entities (i.e., nodes and temporal
occurrences) and reduce the overall sequential computation load.

,, given the

However, direct implementation with standard Transformer pa-
rameterization may fail to capture such bi-level dependencies (i.e.,
node-level dependencies and occurrence-level dependencies). Here,
we propose a bi-level self-attention mechanism illustrated in Fig. 5.
In particular, given a k-length temporal random walk W), we
first obtain the d-dimensional representation Z € R for each
v! (i.e., node v at timestamp t) via temporal network embedding
approaches, e.g., [27]. As each node v is naturally represented as
a bag of temporal occurrences v = {v”, o2, .., UT}, the bi-level
self-attention mechanism is designed to jointly learn (1) the depen-
dencies among nodes in G and (2) the dependencies among different
temporal occurrences. Following the notations in [37], we define
the occurrence-level attention A°¢¢# € R"*"r and node-level
attention A€ € R"r*"r 35 follows.

tiyrroccu tyyroccu
(z; WQ)G(zj wpeer)

occu , t1 Iy _
AT o) = T)
(fagg(za)Wnode) o (fagg(zt?)Wnode)
Anode(vih’ ng) _ i Q j’ K ©)

Vi

where zfl (zfz) € R4 i5 the d-dimensional embedding of node
vl.tl (vl.tz); Wécc" € R9%dk and WI‘;C"” € R4k gre the occurrence-
level query weight matrix and key weight matrix, respectively;
similarly, Wéwde € R%dk and ng"de € R%4k are the node-level

query weight matrix and key weight matrix, respectively; dj. is a
scaling factor; fug4(-) is an aggregation function that summarizes all
the occurrence-level information for each node. For implementation

t
purposes, we define fagg(vit) = Yot ev, zf, such that fag4(v;') =

fagg(vfz) when t; # ty. In this way, the entries (i.e., rows) in A°€€%
and A™°9€ are exactly aligned. Moreover, we introduce a coefficient

A € [0, 1] to balance the occurrence-level attention and node-level
attention and obtain the final bi-level self-attention Zg as follows.

Zs = [x softmax(A™°9€) + (1 — 1) X softmax(A°¢¢*)|[V (7)

where V = Wy Z and Wy denotes the value weight matrix.
With the single head attention described in Fig. 5, we employ
h = 4 parallel attention layers (i.e., heads) in discriminator fy(-)

for selecting the qualified synthetic random walks Wa(lc)tion. The
update rule of the hidden representations in fy(-) is the same as
the standard Transformer model defined in [37]. At the end of the
stage 3, all of the selected synthetic temporal random walks via the
fo(-) will be fed to the beginning of Stage 2 (see Fig. 4) to gradually
modify these sequences until the user-defined stopping criteria are
met and the sequences are ready for assembling (Stage 4).

Graph assembling. In the previous stage, we generate synthetic
temporal random walks by gradually performing local operations
on the extracted real temporal random walks. In this stage, we
assemble all the generated temporal random walks and generate
the temporal interaction networks. In particular, we first compute
the frequency counts s(e’¢) of each temporal edge ee = (u,v)’
in the generated temporal random walks. To ensure the frequency
counts are reliable, we use a larger number of the extract temporal
random walks from the original graphs to avoid the case where

Algorithm 1 The TagGen Learning Framework.

Input:
Temporal interaction network G and parameters including
neighborhood range d /..., neighborhood time window tpy.;.,
number of initial node [, walks per initial temporal occurrences
v, walk length k and constants ¢ and & € (0.5, 1).

Output:
Synthetic temporal interaction network G’

1: Sample [initial temporal occurrences based on Eq. 3.

2: Sample y temporal random walks starting from each initial tem-
poral occurrence with neighborhood range d ., and neigh-
borhood time window ¢y, and store them in S.

3: Train discriminator fy based on S.

4 LetS’ = {}

5: fori=1:yxIdo

6. Initialize W(9) with the first entry in w@ je, W = {wgi)}.

7. forc=1:c¢; do

8 Sample a candidate temporal walk segment Vv](.i) from W),

9: Draw a number random ~ Unif(0, 1).

10: If random < ¢, perform add operation on wﬁ.i); if
random < &, perform delete operation on w;.i).

11 If discriminator fy approves the proposal th?ﬁ on Teplace
W with VT/a(lC) tion> if not, continue.

122 end for

13 Add W@ into 8.

14: end for

15: Construct G’ based on S’ by ensuring all the temporal occur-
rences and timestamps are included in G

some unrepresented temporal occurrences (i.e., with a small de-
gree) are not sampled. In order to transform these frequency counts
to discrete temporal edges, we use the following strategies: (1)
we firstly generate at least one temporal edge starting from each
temporal occurrence v’ with probability p(v’®, v* € Ng(v'?)) =
s(efe=(v,v*)")
Zv*eNs(vtv) s(efe=(v,v*)tv)
currences in G are included; (2) then we generate at least one tempo-
s(e’e
ZEitef S(e)itei);
(3) we generate the temporal edges with the largest counts until
the generated graph has the same edge density as the original one.

to ensure all the observed temporal oc-

ral edge at each timestamp with probability p(e’e) =

3.2 Optimization Algorithm

To optimize TagGen, we use stochastic gradient descent [6] (SGD) to
learn the hidden parameters of TagGen. The optimization algorithm
is described in Alg. 1. The given inputs include the Temporal inter-
action network G, neighborhood range d Npp> neighborhood time
window .., number of initial nodes [, walks per initial nodes
y, walk length k, the number of operations per sequence c1, and
constant parameters & € (0.5,1). With ¢ > 0.5, we enforce the
number of add operation to be larger than the number of delete
operation. In this way, we can avoid the case of generating zero-
entry temporal random walk sequences. From Step 1 to Step 3, we

IlTagGen [INetGAN BMER EEHTNE
TagGen-RMGAE [HNBA EEDAE

1
(Cut Offy
) |M JIM JJ
L lI

DBLP Bltcom WIKI MSG EMAIL
a) Mean Degree

ElTagGen [INetGAN BNER EEHTNE
liTagGen-R MEGAE [WHBA EMDAE

1
(Cut Off)

ElTagGen [INetGAN BHER HEHTNE
lTagGen-R MGAE [BA BMDAE

1
(Cut Off)
o ullll Ll

-TagGen [7INetGAN BIER BEHTNE
BliTagGen-R MMGAE [HBA EMDAE

1 1
(Cut Offy (Cut Off)
0'5 ‘||| M
o I I il

DBLP SO MO Bitcoin WIKI MSG EMAIL DBLP

(d) LCC

BliTagGen-R MlGAE

i[l ||| j.ﬂ“] ..nll o U W

MO Bitcoin WIKI MSG EMAIL DBLP SO
(e) PLE

0.5
0 _| -
DBLP SO MO Bitcoin WIKI MSG EMAIL DBLP SO MO Bitcoin WIKI MSG EMAIL
(b) Claw Count (c) Wedge Count
MlTagGen [INetGAN BNER EMHTNE ElTagGen [INetGAN BNER EEHTNE

[IBA IMDAE BliTagGen-R MMGAE [WIBA BMDAE

MO Bitcoin WIKI MSG EMAIL
(f) N-Component

Figure 6: Average score f;,4(-) comparison with six metrics across seven temporal networks. Best viewed in color. We cut off
high values for better visibility. (Smaller metric values indicate better performance)

sample a set of temporal random walks S from the input data and
train the discriminator fy(-). Step 4 to Step 14 is the main body of
TagGen, which generates the exactly sample number of temporal
random walks as in S. We firstly initial each synthetic walk w
with first entry in W, ie, W) = {w§i>}. From Step 7 to Step 12,
we perform c; times operations (i.e., add and delete) to generate
context for each synthetic walk W) and use discriminator fo ()
to select the qualified temporal random walks to be stored in S”.
In the end, Step 15 constructs the G’ based on S’ by ensuring all
the temporal occurrences and timestamps are included in G’ as
discussed in the previous subsection regarding Stage 4.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our proposed
TagGen framework across seven real temporal networks in graph
generation and data augmentation. Additional results regarding
scalability analysis are reported in Appendix E.

4.1 Experiment Setup

Data Sets: We evaluate TagGen on seven real temporal networks,
including DBLP [43], SO [43], MO [29], WIKI [23], EMAIL [29],
MSG [28] and BITCOIN [20]. The statistics of data sets are summa-
rized in Appendix C.

Comparison Methods: We compare TagGen with two traditional
graph generative models (i.e., Erd6s-Rényi (ER) [9] and Barabasi-
Albert (BA) [3]), two deep graph generative models (GAE [18],
NetGAN [5]), and two dynamic graph generators based on tempo-
ral network embedding approaches (HTNE [45], DAE [13]). Note
that HTNE and GAE are not designed for graph generation. To gen-
erate temporal networks, we utilize the learned temporal network
embedding to construct the adjacency matrix at each timestamp.
Evaluation Metrics: We consider six widely-used network prop-
erties (i.e., Mean Degree, Claw Count, Wedge Count, PLE, LCC,

N-Component) for evaluation, which are elaborated in Appendix
D. As all of these metrics are designed for static graphs, here we
generalize the aforementioned metrics to the dynamic setting in the
form of mean value and median value. In particular, given the real
network G, the synthetic one G’ anda user-specific metric fi(+),
we first construct a sequence of snapshots st (§’ t), t=1,...,T,
of G (G') by aggregating from the initial timestamp to the current
timestamp . Then, we measure the averaged/median discrepancy
(in percentage) between the original graph and the generated graph
in terms of the given metric f;,;(-) as follows.

IS - fm(S")
)

FnS) = fin(S7")
fm(S)

favg(G.G, fin) = Means=1.7(|

fmed(G. G, fm) = Median,=1.7(])

4.2 Quantitative Results for Graph Generation

We compare TagGen with six baseline methods across seven dy-
namic networks regarding six network property metrics in the form
of favg(+) and f;,.4(+) are shown in Fig. 6 and Fig.7. For the static
methods, we apply them on the constructed graph snapshots at
each timestamp and then report the results. In all of these figures,
the performance is the smaller metric values, the better. For the
sake of better visualization, the values of the scores are set to be
one if any value is greater than 1. We draw several interesting ob-
servations from these results. (1) TagGen outperforms the baseline
methods across the six evaluation metrics and seven data sets in
most of the cases. (2) The random graph algorithms (i.e., ER and
BA) perform well (i.e., close to TagGen and better than NetGAN
and GAE) with Mean Degree (shown in Fig. 6 (a) and Fig. 7 (a)), but
perform worse than the competitors with most of the other metrics.

MlTagGen [INetGAN BNER EEHTNE
lTagGen-R MMGAE [FBA IMDAE

0.02
(Cut Offy
0.015
0.005

% beLp MO Bitcoin WIKI MSG EMAIL
(a) Mean Degree
MlTagGen [TINetGAN BNER EMHTNE

IlTagGen-R MMGAE [BA IMDAE

lcm o“) u| "

DBLP MO Bltcom WIKI

(d) LCC

J

MSG EMAIL

ElTagGen [INetGAN BNER EEHTNE
lTagGen-R MGAE [1BA BMDAE

1

(Cut Offy
0.5 “I‘ JM' mm J

0

DBLP MO Bitcoin WIKI MSG EMAIL
(b) Claw Count

lTagGen [INetGAN BNER EEHTNE
[TagGen-R MGAE [WBA EMIDAE

ﬁm||| JIJ ill .JU

DBLP MO Bitcoin WIKI MSG EMAIL

(e) PLE

MlTagGen [INetGAN BNER EEHTNE
BlTagGen-RMEGAE [BA EMDAE

Bl

DBLP SO MO Bitcoin WIKI MSG EMAIL
(c) Wedge Count

ElTagGen [INetGAN BNER EEHTNE
IlTagGen-R MEGAE [HBA IMDAE

| om w ‘ Ml M IM
| |

% beLp MO Bitcoin WIKI MSG EMAIL
(f) N-Component

Figure 7: Median score f,.4() comparison on six metrics across seven temporal networks. Best viewed in color. We cut off

high values for better visibility. (Smaller metric values indicate better performance)

—+Original Graph —TagGen-R —+-GAE —+ BA

—QOriginal Graph

-~ TagGen-R —+-GAE —~BA

—QOriginal Graph

~TagGen-R =+ GAE —~BA

——TagGen —~NetGAN —ER DAE ——TagGen —~NetGAN —+ER DAE ——TagGen —-NetGAN —ER DAE.
10 x10°
2
P 15
5 ©
o _g’ 1
0.5
0 . 0 +
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
(a) Mean Degree (b) Claw Count (c) Wedge Count
——Original Graph —TagGen-R —GAE —BA ——Original Graph —TagGen-R —+-GAE —+~BA —+Original Graph —~TagGen-R —+-GAE — BA
—TagGen —NetGAN —+ER DAE ——TagGen ——NetGAN —+ER DAE ——TagGen —+NetGAN —-ER DAE
%108 6
5
15 _4
3 B
o . - 2
0.5 // j :4_: ; P
0)
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
(d) LCC (e) PLE (f) N-Component

Figure 8: The comparison results on the six evaluation metrics across 117 timestamps in BITCOIN data set. Best viewed in
color. The algorithm better fitting the curve of the original graph (colored in blue) is better.

This is because such random graph algorithms are often designed
to model a certain structural distribution (e.g., degree distribution)
while falling short of capturing many other network properties
(e.g., LCC and wedge count).

To further demonstrate the performance of TagGen, we experi-
ment with the BITCOIN data set and evaluate the performance of
all algorithms in terms of six different metrics in each timestamp.
By doing this, we want to explore how the performances of the
different methods change over 117 timestamps in the BITCOIN data
set. The experimental results are shown in Fig. 8, where the X-axis
represents timestamp, and the Y-axis represents the value of a met-
ric (labeled under each figure). In general, we observe (1) all the

methods perform similarly well on Mean Degree metric; (2) TagGen
consistently performs better than the baseline methods across six
metrics and 117 timestamps as TagGen (colored in red) better fits
the curves of the original graph (colored in blue). A simple guess
here is that TagGen is the only dynamic graph generative model
that can better track the trend of network evolution.

4.3 Case Studies in Data Augmentation

Anomaly Node Detection: In real-world networks, the perfor-
mance of anomaly detection algorithms is often degraded due to
data sparsity. Here, we conduct a case study of boosting the per-
formance of anomaly node detection in SO data set via data aug-
mentation. In particular, we select the labeled network SO as our

NTagGen MMGAE EMDAE
liTagGen-R MMER EMHTNE
[CUNetGAN [HBA EENo Augmentation

04 e
o
02 I
0 I ||

(a) Anomaly detection

o
o

Recall @K

0.9
ElTagGen HEGAE EEDAE

0 MlTagGen-RBER EEHTNE
0

8 INetGAN [IBA EMINo Augmentation
7 === iR E—_— S TR —
0.6

11

0.4

(b) Link prediction

Accuracy

Figure 9: Data Augmentation in SO

evaluation data and consider a minority class (8%) in SO as the
anomalies. In particular, we conduct 10-fold cross-validation and
employ Recall@K as the evaluation metric, where K is the total
number of anomaly nodes in the test set. To assess the performance
of anomaly node detection with data augmentation, we use the
generative models to synthesize temporal edges and inject them
into the original graph. Then, we encode the augmented temporal
network into a node-wised representations [27], which is fed into
the logistic regression model as inputs for classifying the malicious
nodes. The experimental results are shown in Fig. 9 (a), where
No Augmentation (red dotted line) shows the result (Recall@K =
44.8%) of logistic regression directly trained on the embedding of
the original graph without augmentation. The height of the bars in-
dicates the average value of Recall@K, and the error bars represent
the standard deviation in 10 runs. We observe that our proposed
method boosts Recall@K to 67.6% (22.8% improvement over the
base model No Augmentation), while our best competitor NetGAN
only achieves 54.3% (9.5% improvement over No Augmentation).

Link Prediction: In this experiment, we randomly select 50% of
edges as the training data and the rest as the test data. Then, we
compute the node embedding of both the original graph and the
generated graph via CTDNE [27]. At last, we concatenate the two
sets of node embedding and feed them into a logistic regression
model to perform link prediction on the test data. In Fig. 9 (b), the
height of the bars indicates the average value of accuracy, and the
error bars represent the standard deviation in 10 runs. It can be
seen that NetGAN and GAE barely improve the performance of link
prediction, while our proposed method TagGen increases the ac-
curacy rate by 2.7% over the base model without data augmentation.

5 RELATED WORK

In this section, we briefly review the related works regarding dy-
namic network mining and graph generative model.

Dynamic Network Mining. Recently, significant research in-
terests have been observed in developing deep models for dynamic
networks. Most existing work models the dynamic networks as
time-evolving graphs, which aggregate temporal information into
a sequence of snapshots. For instance, [24] proposes a network

embedding approach for modeling the linkage evolution in the
dynamic network; [26] proposes a graph attention neural mech-
anism to learn from the spatial-temporal context information of
the time-evolving graphs; [41] proposes Spatio-Temporal Graph
Convolutional Networks with complete convolutional structures,
enabling faster training speed while tackling the issue of the high
non-linearity and complexity of traffic flow. However, these ap-
proaches may not be able to fully capture the rich temporal context
information in the data due to the aggregation over time. For this
reason, the authors of [27] proposed to learn network embedding for
temporal interaction networks by developing a family of temporally
increasing random walks to extract network context information.
In this paper, we propose a generic framework to further model
and generate the temporal interaction networks by mimicking the
network evolution process in real dynamic systems. To the best of
our knowledge, TagGen is the first deep graph generative model
designed for temporal networks.

Graph Generative Model. Early studies of graph generative
models include the explicit probabilistic models [8, 9], stochastic
block models [11], preferential attachment models [2, 3, 19], ex-
ponential random graph models [32], the small-world model [14],
and Kronecker graphs [22]. In addition to the static models, some
attempts have also been made for generating dynamic graphs. For
instances, [10] proposes a dynamic graph generation framework
that is able to control the network diameter for a long-time hori-
zon; [31] develops a graph generator that models the temporal
motif distribution. However, all of the aforementioned approaches
basically generate graphs relying on some prior structural assump-
tions. Hence, such methods are often hand-engineered and cannot
directly learn from the data without prior knowledge or assump-
tions. The recent progress in deep generative models (e.g., [12, 17])
has attracted a surge of attention to model the graph-structured
data. For example, in [5], the authors aim to capture the topology
of a graph by learning a distribution over the random walks in an
adversarial setting; in [40], the authors propose a framework named
Graph-RNN to decompose graph generation into two processes:
one is to generate a sequence of nodes, and the other is to generate
a sequence of edges for each newly added node. This paper pro-
poses a deep generative framework to model dynamic systems and
generate the temporal interaction networks via a family of local
operations to perform the addition and deletion of nodes and edges.

6 CONCLUSION

In this paper, we propose TagGen - the first attempt to generate
temporal networks by directly learning from a collection of times-
tamped edges. TagGen is able to generate graphs that capture impor-
tant structural and temporal properties of the input data via a novel
context sampling strategy together with a bi-level self-attention
mechanism. We present comprehensive evaluations of TagGen by
conducting the quantitative evaluation in temporal graph genera-
tion and two case studies of data augmentation in the context of
anomaly detection and link prediction. We observe that: (1) TagGen
consistently outperforms the baseline methods in seven data sets
with six metrics; (2) TagGen boosts the performance of anomaly
detection and link prediction approaches via data augmentation.
However, key challenges remain in this space. One possible future

direction is to develop generative models that can jointly model
the evolving network structures and node attributes in order to
generate attributed networks in the dynamic setting.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation under
Grant No. I1S-1618481, I1S-1704532, 11S-1741317, I1S-1947203, and
11S-2002540 the U.S. Department of Homeland Security under Grant
Award Number 17STQAC00001-03-03 and Ordering Agreement
Number HSHQDC-16-A-B0001, US DARPA KAIROS Program No.
FA8750-19-2-1004, SocialSim Program No. W911NF-17-C-0099, a
Baidu gift, and IBM-ILLINOIS Center for Cognitive Computing
Systems Research (C3SR) - a research collaboration as part of the
IBM Al Horizons Network. The views and conclusions are those
of the authors and should not be interpreted as representing the
official policies of the funding agencies or the government.

REFERENCES

(1]
(2]
(3]
(4]

[9

=

[10

[11]

[12

[13

[14

[15

[16]

Steven P. Abney. 2002. Bootstrapping. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics.

Leman Akoglu and Christos Faloutsos. 2009. RTG: a recursive realistic graph
generator using random typing. Data Min. Knowl. Discov.

Réka Albert and Albert-Laszl6 Barabasi. 2001. Statistical mechanics of complex
networks. CoRR cond-mat/0106096 (2001).

Yikun Ban, Xin Liu, Ling Huang, Yitao Duan, Xue Liu, and Wei Xu. 2019. No
Place to Hide: Catching Fraudulent Entities in Tensors. In The World Wide Web
Conference.

Aleksandar Bojchevski, Oleksandr Shchur, Daniel Ziigner, and Stephan Giinne-
mann. 2018. NetGAN: Generating Graphs via Random Walks. In Proceedings of
the 35th International Conference on Machine Learning.

Léon Bottou. 2010. Large-Scale Machine Learning with Stochastic Gradient
Descent. In 19th International Conference on Computational Statistics, COMPSTAT.
Dean V Buonomano and Michael M Merzenich. 1995. Temporal Information
Transformed into a Spatial Code by a Neural Network with Realistic Properties.
Science (1995).

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
Recursive Model for Graph Mining. In Proceedings of the Fourth SIAM International
Conference on Data Mining.

Paul Erdos and Alfréd Rényi. 1959. On random graphs, I. Publicationes Mathe-
maticae (Debrecen) (1959).

Frank Fischer and Christoph Helmberg. 2014. Dynamic graph generation for the
shortest path problem in time expanded networks. Math. Program. (2014).
Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, and Edoardo M. Airoldi.
2009. A Survey of Statistical Network Models. Foundations and Trends in Machine
Learning (2009).

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Advances in Neural Information Processing Systems.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Carsten Grabow, Stefan Grosskinsky, Jiirgen Kurths, and Marc Timme. 2015.
Collective Relaxation Dynamics of Small-World Networks. CoRR abs/1507.04624
(2015). arXiv:1507.04624

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Jian Kang and Hanghang Tong. 2019. N2N: Network Derivative Mining. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
(2014).

Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. CoRR
abs/1611.07308 (2016). arXiv:1611.07308

Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and An-
drew Tomkins. 1999. The Web as a Graph: Measurements, Models, and Methods.
In 5th Annual International Conference of Computing and Combinatorics.

Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Falout-
sos. 2016. Edge Weight Prediction in Weighted Signed Networks. In IEEE 16th
International Conference on Data Mining.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-
bedding Trajectory in Temporal Interaction Networks. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

[22] Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos,

and Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling
Networks. J. Mach. Learn. Res. (2010).

Jure Leskovec and Andrej Krevl. 2015. {SNAP Datasets }:{Stanford} Large
Network Dataset Collection. (2015).

Taisong Li, Jiawei Zhang, Philip S. Yu, Yan Zhang, and Yonghong Yan. 2018. Deep
Dynamic Network Embedding for Link Prediction. IEEE Access (2018).

Xu Liu, Jingrui He, Sam Duddy, and Liz O’Sullivan. 2019. Convolution-Consistent
Collective Matrix Completion. In International Conference on Information and
Knowledge Management.

Zhining Liu, Dawei Zhou, and Jingrui He. 2019. Towards Explainable Represen-
tation of Time-Evolving Graphs via Spatial-Temporal Graph Attention Networks.
In Proceedings of the 28th ACM International Conference on Information and Knowl-
edge Management.

Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee
Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.
In Companion of the The Web Conference 2018 on The Web Conference 2018.
Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. 2009. Patterns and
dynamics of users’ behavior and interaction: Network analysis of an online
community. J. Assoc. Inf. Sci. Technol. (2009).

Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal
Networks. In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Sumit Purohit, Lawrence B Holder, and George Chin. 2018. Temporal Graph
Generation Based on a Distribution of Temporal Motifs. In Proceedings of the
14th International Workshop on Mining and Learning with Graphs.

Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. 2007. An introduction

to exponential random graph (p*) models for social networks. Soc. Networks
(2007).

Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang, Aston Zhang, Shuochao
Yao, Shengzhong Liu, Tianshi Wang, Chao Zhang, and Tarek F. Abdelzaher. 2020.
paper2repo: GitHub Repository Recommendation for Academic Papers. In The
Web Conference.

Huajie Shao, Shuochao Yao, Yiran Zhao, Chao Zhang, Jinda Han, Lance M. Ka-
plan, Lu Su, and Tarek F. Abdelzaher. 2018. A Constrained Maximum Likelihood
Estimator for Unguided Social Sensing. In IEEE Conference on Computer Commu-
nications.

George R Terrell and David W Scott. 1992. Variable Kernel Density Estimation.
The Annals of Statistics (1992).

Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos. 2008.
Proximity Tracking on Time-Evolving Bipartite Graphs. In Proceedings of the
SIAM International Conference on Data Mining.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems.

Bernard M. Waxman. 1988. Routing of multipoint connections. IEEE J. Sel. Areas
Commun. (1988).

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. 2018.
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Gener-
ation. In Advances in Neural Information Processing Systems.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In
Proceedings of the 35th International Conference on Machine Learning.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Convo-
lutional Networks: A Deep Learning Framework for Traffic Forecasting. (2018).
Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan
Davulcu, and Hanghang Tong. 2017. HiDDen: Hierarchical Dense Subgraph
Detection with Application to Financial Fraud Detection. In Proceedings of the
2017 SIAM International Conference on Data Mining.

Dawei Zhou, Jingrui He, Hongxia Yang, and Wei Fan. 2018. SPARC: Self-Paced
Network Representation for Few-Shot Rare Category Characterization. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining.

Dawei Zhou, Kangyang Wang, Nan Cao, and Jingrui He. 2015. Rare Category
Detection on Time-Evolving Graphs. In IEEE International Conference on Data
Mining.

Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaogian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

https://arxiv.org/abs/1507.04624
https://arxiv.org/abs/1611.07308

A NOTATIONS

’ Symbol ‘ Description ‘
G=(V,E) temporal interaction network
V= {v1, ..., Un} the set of nodes in G
E= {elte1 Y aees e,tﬁ"‘ } | the set of temporal edges in G
v={ovh, . .., 0T} | node v with its occurrences at {¢, . .., t7}
el = (u,v)! temporal edge between u and v at timestamp ¢
W={wy, ..., wi} the k-length temporal walk
W = {#y, ..., W} | the synthetic k-length temporal walk
NreT(+) the neighborhood function
n the total number of nodes
n, the total number of temporal occurrences
m the total number of temporal edges
T the total number of timestamps in G
[0} Hadamard product

Table 1: Symbols

B ALGORITHM ANALYSIS

LemMaA 1. For any v'* € V, if the temporal neighborhood dis-
tribution p(v'* |NT(v')) and topology neighborhood distribution
p(ve |Ng(v'?)) are weakly dependent on each other, then the follow-
ing inequality holds:

P INpr(v'*)) ®)

S aP(Ut“ INs(@'))p(v’e INT(v'))p(Ns (v))p(NT (v**))
B p(Ns(v*), N (v'))

__0
where a = ek

Proor. Forany v’ € G, the context importance p(v | Npr(v!))
can estimated as

P INpr (")) = p(0*° N5 ("), Nr (v'?))
_ p'*, Ns(v'), Np(v'?))
P(Ns(v'), Np(vte))

Since the corresponding temporal neighborhood distribution

©

p(v'? | N7 (v'?)) and topology neighborhood distribution p(v!v | Ng(v'?))

satisfy a weak dependence, we can easily have

" [N ("))
S 5P(Ut“)P(Ns(v’”)Ivt“)P(NT(Ut“)Iv’”)
- P(Ns(v'), N7 (vt))

tv)P(v’“ [Ns(@'))p(Ns(v'9)) p(@' [N (0"))p(Nr(v**))
p(vv) p(v’o)

p(Ns(v'e), N (v'))
_ aP(v’” INs(v")p(0** INT(v"2))p(Ns (0*))p(NT (02))
p(Ns (™), Np(v*?))

p(v
5

(10)

]

C DATA STATISTICS

We evaluate TagGen on seven real temporal networks. Specifically,
DBLP [43] is a citation network that contains bibliographic informa-
tion of the publications in IEEE Visualization Conference from 1990
to 2015; SO [43] and MO [29] are two collaboration networks where
each node represents a user, and the edge represents one user’s
comments on another user; WIKI [23] is a voting network, where
each edge exists if the contributors vote to elect the administra-
tors; EMAIL [29] and MSG [28] are two communication networks,
where an edge exists if one person sends at least one email/message
to another person at a certain timestamp; BITCOIN [20] is a who-
trusts-whom network where people trade with bitcoins on a Bitcoin
Alpha platform.

l Network ‘ Nodes ‘ Temporal Edges ‘ Timestamps

EMAIL 986 332,334 26
DBLP 1,909 8,237 15
WIKI 7,118 95,333 6
MSG 1,899 20,296 28

BITCOIN | 3,783 24,186 117
SO 3,262 13,077 36
MO 13,840 195,330 20

Table 2: Statistics of the network data sets.

D IMPLEMENTATION DETAILS

In the experiments, we set the batch size to be 128, the number
of epochs to be 30, the representation size of the node embedding
to be 80, the number of head to be 4, the initial learning rate to
be 0.003, the bi-level self-attention parameter A = 0.5, dp;.. = 1,
tnNpr = 1, the number of initial nodes ! to be the number of the
total nodes, walks per initial nodes y = 3, walk length k = 20, and
constants ¢; = 20 and ¢ = 0.6. Besides, we outline the computation
formula and description regarding the six evaluation metrics used
in our experiments in Table 3. All the code and data are publicly
available at an anonymous Github repository*. The experiments are
performed on a Windows machine with eight 3.8GHz Intel Cores
and a single 16GB RTX 5000 GPU.

E ADDITIONAL RESULTS

We analyze the scalability of TagGen, by recording the running time
(i.e., the sum of the training time and the time for graph generation)
of TagGen on a series of synthetic graphs with increasing size. To be
specific, we generate the synthetic graphs via ER algorithm [9], by
which we can easily control the number of nodes and the number
of edges in a graph. In the experiments, we set the batch size to
be 128, the length of the random walk to be 20, the number of
epochs to be 30, i.e., the same parameter settings as in the previous
subsection. In Fig. 10 (a), we fix the edge density to be 0.005, set the
initial number of nodes to be 500, and increase the number of nodes
by 500 each time. In Fig. 10 (b), we fix the number of nodes to be
5,000 and increase the edge density from 0.005 to 0.05. Based on the

“https://github.com/davidchouzdw/TagGen

results in Fig. 10, we observe that the complexity of the proposed
method is almost linear to the number of nodes. Besides, when we
fix the number of nodes and increase the edge density, the running
time also increases linearly.

Metric name Computation Description
Mean degree of nodes in
Mean Degree Eld(v)] the graph.
d Number of the claw of the
Claw Count Zoev ((30)) graph.

Wedge Count

Toev (45)

Number of wedges of the
graph.

LCC

maxgep [|f ||

Size of the largest connected
component of the graph,
where F is the set of all
connected components in
the graph.

PLE

1+ n(Zyev log(

d(u)

dmin

D

Exponent of the power-law
distribution of the graph.

N-Component

|F|

Number of connected
components, where F is the
set of all connected
components in the graph.

Table 3: Graph statistics for measuring network properties.

N
o
o
o

1000

Running time

1000 2000 3000 4000 5000
of nodes

(a) Running time vs. # of nodes

0.01 0.02 0.03 0.04 0.05
Edge density

(b) Running time vs. edge density

Figure 10: Scalability Analysis

	Abstract
	1 Introduction
	2 Problem Definition
	3 Model
	3.1 A Generic Learning Framework
	3.2 Optimization Algorithm

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Quantitative Results for Graph Generation
	4.3 Case Studies in Data Augmentation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Notations
	B Algorithm Analysis
	C Data Statistics
	D Implementation Details
	E Additional Results

