
Local Motif Clustering on Time-Evolving Graphs
Dongqi Fu

University of Illinois at
Urbana-Champaign
dongqif2@illinois.edu

Dawei Zhou
University of Illinois at
Urbana-Champaign
dzhou21@illinois.edu

Jingrui He
University of Illinois at
Urbana-Champaign
jingrui@illinois.edu

ABSTRACT

Graph motifs are subgraph patterns that occur in complex net-
works, which are of key importance for gaining deep insights into
the structure and functionality of the graph. Motif clustering aims
at finding clusters consisting of dense motif patterns. It is com-
monly used in various application domains, ranging from social
networks to collaboration networks, from market-basket analy-
sis to neuroscience applications. More recently, local clustering
techniques have been proposed for motif-aware clustering, which
focuses on a small neighborhood of the input seed node instead of
the entire graph. However, most of these techniques are designed
for static graphs and may render sub-optimal results when applied
to large time-evolving graphs. To bridge this gap, in this paper,
we propose a novel framework, Local Motif Clustering on Time-
Evolving Graphs (L-MEGA), which provides the evolution pattern
of the local motif cluster in an effective and efficient way. The core
of L-MEGA is approximately tracking the temporal evolution of
the local motif cluster via novel techniques such as edge filtering,
motif push operation, and incremental sweep cut. Furthermore, we
theoretically analyze the efficiency and effectiveness of these tech-
niques on time-evolving graphs. Finally, we evaluate L-MEGA via
extensive experiments on both synthetic and real-world temporal
networks.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; • Infor-
mation systems → Clustering; • Computing methodologies

→ Cluster analysis; Motif discovery;

KEYWORDS

Local Clustering, High-Order Structure, Time-Evolving Graph

ACM Reference Format:

Dongqi Fu, Dawei Zhou, and Jingrui He. 2020. Local Motif Clustering on
Time-Evolving Graphs. In Proceedings of the 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’20), August 23–27, 2020,
Virtual Event, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3394486.3403081

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403081

Figure 1: An overview of local motif clustering on time-

evolving graphs. Part (a) illustrates the different order mo-

tif structures; Part (b) shows the difference between second-

order and third-order local clustering on a network example

given the yellow seed node; Part (c) shows the evolution pat-

tern of the triangle-based local cluster (red dash line) on the

time-evolving graphs for inserted edges and deleted edges.

1 INTRODUCTION

Local clustering aims to identify a qualified local cluster near a
given seed node. Previously, most existing local clustering meth-
ods [1, 28] take the connectivity of low-order structures (i.e., edges)
as the clustering metric. In other words, they largely ignore the
connection of high-order subgraph patterns, i.e., motifs [23], which
might be of key importance in real applications [18]. (Fig. 1(a)
illustrates a few motifs.) For example, triangle motifs may help
identify frequent flight patterns in air traffic networks [26]; star
motifs may indicate synthetic identities in social networks [12];
loop motifs may be associated with money laundering in financial
networks [36]; user-specified complex protein-pair motifs can be
helpful for better understanding the functional organization of the
proteome in protein-protein interaction networks [31]. To address
this problem, local motif clustering algorithms [33, 36] have been
proposed to find a cluster with densely connected motifs in the
neighborhood of the seed node. Fig. 1(b) illustrates the difference
between the traditional edge-based local clustering method [28]
and the emerging local motif clustering method [36], by setting
the triangle as the target motif being preserved from cut, the local
cluster identified by the local motif clustering method is much more
densely connected by the triangle motifs.

However, most existing local motif clustering techniques [33,
36] are designed for the static setting. On time-evolving graphs,
repeatedly applying these techniques at each time stamp from
scratch would be computationally prohibitive. A closely related
work is [35], where the authors extended local motif clustering to
dynamic graphs by integrating the time-respecting information

https://doi.org/10.1145/3394486.3403081
https://doi.org/10.1145/3394486.3403081
https://doi.org/10.1145/3394486.3403081

into one snapshot. However, their approach cannot be used with
regular motifs without the temporal information (e.g., a regular
triangle), and it does not take into consideration the evolution
pattern between time stamps of dynamic graphs.

To bridge this gap, in this paper, we propose a novel local motif
clustering framework for time-evolving graphs named L-MEGA.
Fig. 1(c) illustrates the triangle-based local cluster at each time
stamp identified by L-MEGA as the graph evolves over time. Given
a user-specified high-order motif, we formally define local motif
clustering problems on time-evolving graphs and propose L-MEGA
framework to solve the problem effectively and efficiently. The core
of L-MEGA is approximately tracking the stationary distribution
of high-order random walk [10] among time stamps by leveraging
temporal information, then input the tracked stationary distribution
into a vector-based sweep cut procedure [1] to get a local cluster
with a small motif conductance score. L-MEGA consists of three
parts, and we design speeding up strategies in each part. The first
part is updating transition tensors for representing the transition
probability for high-order random walk process [6], the second
part is tracking the stationary probability distribution at each time
stamp, and the third part is using the tracked stationary distribution
to get a qualified local cluster. We give the theoretical efficiency
and effectiveness analysis for each part and make experiments
to demonstrate L-MEGA with self-ablation and other state-of-art
algorithms on real-world temporal networks.

Our main contributions are summarized as follows.
• We define the local motif clustering problem on time-evolving
graphs, we then propose a novel model, L-MEGA, to solve the
dynamic local motif clustering problem effectively and efficiently.

• We theoretically analyze the effectiveness and efficiency of the
proposed L-MEGA model and practically evaluate it on real-
word temporal networks compared with self-ablation and other
state-of-art algorithms. We also study the scalability analysis and
parameter sensitivity of L-MEGA.
The rest of the paper is organized as follows. The problem of

local motif clustering on time-evolving graphs is formally defined
in Section 2. In Section 3, we introduce the preliminaries and the
proposed model with the analysis on effectiveness and efficiency.
Then we present the L-MEGA algorithm in Section 4. The experi-
mental results on multiple real and synthetic data sets are presented
in Section 5. Then we review the related work in Section 6 before
concluding the paper in Section 7.

2 PROBLEM DEFINITION

The main symbols are summarized in Table 3 of Appendix A. We
use lowercase letters (e.g., α) for scalars, bold lowercase letters for
column vectors (e.g., x), bold capital letters for matrices (e.g., P),
and parenthesized superscript to denote the time stamp (e.g., G(t)).
We index the elements in a matrix using a convention similar to
Matlab, P(i, :) is the i-th row of P , etc. We use overlined and bold
capital letters for tensors (e.g., P̄).

A time-evolving graph can be naturally presented as a collection
of graph snapshots over time, i.e., G̃ = {G(0),G(1), . . . ,G(T)}, where
G(t) = (V (t),E(t)), t = 1, . . . ,T . We let V (t) and E(t) denote the
sets of nodes and edges in G(t), d(t) ∈ Rn

(t)
denote the degree

vector of G(t), and d(t)(v) denote the specific degree of vertex v ∈

V (t). Following [30], we assume the number of nodes are fixed,
i.e., an inserted (or deleted) node at time stamp t is regarded as
an existed dangling node at all previous time stamps (or all future
time stamps), such that the size of adjacency matrix A(t) of each
snapshotG(t) are consistent over time. On top of that, we introduce
the notion of updated edge set ∆E(t) = ∆E

(t)
+ ∪ ∆E

(t)
− to simplify

the description of our algorithm, where ∆E(t)+ = {E(t+1) \ E(t)} and
∆E

(t)
− = {E(t) \ E(t+1)} are the sets of inserted edges and deleted

edges at time stamp t to transform graph G(t) to G(t+1).
In the context of classic local motif clustering [33, 36], we aim

to identify a local dense cluster C which sits near the given seed
node v and preserves rich user-defined motifs N. We let k denote
the order of the user-defined motif N, and k refers to the number of
vertices involved in the motif N. For example, an edge is a second-
order motif, a three-node line and a triangle can be classified as
the third-order motif. The quality of the identified motif cluster is
measured by motif conductance [33, 36], small motif conductance
indicates a good partition. For any local cluster C and user-defined
motif N, the corresponding motif conductance Φ(C,N) is defined as

Φ(C,N) =
cut(C,N)

min{µ(C,N), µ(C̄,N)}
(1)

where cut(C,N) denotes the number of motif structures broken
due to the partition of the graph G into local cluster C and its
complement C̄ , µ(C,N) and µ(C̄,N) denote the number of motif
structures N within C and C̄ , respectively. Here we generalize the
local motif clustering problem to the dynamic setting. Given a time-
evolving graph G̃, our goal is minimizing motif conductance to
obtain a good local cluster C(t) over time.

min
C (1), ...,C (T)

T∑
t=1

Φ(C(t),N) (2)

With above notations, we formally define our problem as follows:

Problem. Local Motif Clustering on Time-Evolving Graphs

Input: (i) a user-defined motif N, (ii) a sequence of snapshots of the
time-evolving graph G̃ = {G(0),G(1), . . . ,G(T)}, (iii) the seed
node v , and (iv) the motif conductance upper bound ϕ.

Output: a local clusterC(t) near seed node v such that Φ(C(t),N) ≤
ϕ at each time stamp t ∈ {1, 2, . . . ,T }.

3 PROPOSED MODEL

In this section, we introduce our proposed L-MEGA algorithm for
the problem local motif clustering on time-evolving graphs. We
start with the background and preliminaries on the local clustering
(Subsection 3.1) and discuss the technical details regarding how we
model the graph evolution over time (Subsections 3.2 to 3.4). We
then discuss how we identify the local cluster for the next time
stamp (Subsection 3.5). Due to space limit, we leave the proof of all
lemmas and theorems in Appendix B.

3.1 Preliminaries

PageRank andMultilinear PageRank. Given a random walk on
the graph, the PageRank framework [22] models a stochastic pro-
cess with a unique stationary distribution, which is the PageRank

vector solving the following linear system

x = αPx + (1 − α)u (3)

where x ∈ Rn is the PageRank vector, P ∈ Rn×n is a stochastic
column matrix encoding the transition probability for the random
walk, and u ∈ Rn is the stochastic vector.

Multilinear PageRank framework [10] is proposed based on the
spacey random walk [6] which is a high-order random walk de-
veloped on the high-order Markov Chain stochastic process. For
example, in the second-order Markov Chain, the next state of the
discrete time stochastic process only depends on the past two states,
the probability is expressed Prob(St+1 |St , St−1). With the rank-1
approximation [16] of high-order Markov Chain, authors in [10]
encode (k − 1)th -order Markov Chain into a kth -order probability
transition tensor, and then propose the multilinear PageRank. For
example, modelling third-order data, the stationary distribution
(i.e., multilinear PageRank vector) solves the following equation

x = α P̄(x ⊗ x) + (1 − α)u (4)

where x ∈ Rn is the multilinear PageRank vector, ⊗ denotes the
Kronecker product, the third-order transition tensor P̄ ∈ Rn×n×n

encodes the transition probability for second-order Markov Chain
(random walk), and u ∈ Rn is the stochastic vector.

Note that, the order of data is different from the order of Markov
Chain (random walk). In general, kth -order motif data correspond
to the (k −1)th -order Markov chain. Encoding kth -order motif data
into the kth -order probability transition tensor (i.e., (k − 1)th -order
Markov Chain) will be introduced in Subsection 3.2. Moreover, for
the tensor-vector multiplication operation, we define the one-mode
unfolding operation of tensors. For example, a three-mode (or third-
order) tensor P̄ ∈ Rn×n×n is unfolded as the matrix P = [P̄(:, :
, 1), P̄(:, :, 2), . . . , P̄(:, :,n)], where P ∈ Rn×n

2
and P̄(:, :, i) is the i-th

n × n block of the tensor P̄ .
Approximated PageRank for Local Clustering. The problem
of identifying a local cluster with minimum conductance has been
proven to be NP-complete [27]. To mitigate the intractable complex-
ity, a series of PageRank-based approximation methods [1, 28] have
been developed in the past. The key idea behinds these approaches
is to model the stochastic process of random walks on graphs and
then conduct vector-based sweep cut procedure on the obtained
PageRank vector to identify local clusters.

Solving the PageRank vector (i.e., stationary distribution) through
the power iteration method [22] is time-consuming, which iterates
Eq. 3 until convergence requiring time complexityO(m), wherem is
the number of edges of the graph. Instead, using the approximated
PageRank vector, PageRank-Nibble [1] could obtain a local cluster
with conductance ϕ in time complexity O(2b log3m/ϕ2), where b
is the constant parameter. First, PageRank-Nibble [1] solves the
approximated PageRank vector through the push operation. Push
operation maintains a residual vector to record the divergence be-
tween the approximated PageRank vector and the PageRank vector.
After sufficient iterations of moving probability mass to the approx-
imated PageRank vector from the residual vector, push operation
obtains the converged approximated stationary distribution as the
clustering indicator vector. Second, PageRank-Nibble feeds the ap-
proximated PageRank into the sweep cut procedure to obtain the
qualified local cluster satisfying statistical conditions.

More recently, a surge of research interest on motif clustering
has been observed in the data mining community [4, 5, 32, 33, 36].
To indicate a local cluster preserving rich user-defined high-order
motifs, (approximated) multilinear PageRank vector [10] has been
proven to be effective in many high-order clustering applications [4,
32, 36] as the clustering indicator vector.

Inspired by local motif clustering method [36], we extend the
statistical conditions of sweep cut [1] to high-order and dynamic
settings, such that we can identify a qualified motif cluster on the
approximated multilinear PageRank vector at each time stamp. For
notation simplicity, we ignore the superscript of time stamps below.
(C.1) Φ(Sj (x),N) ≤ ϕ /*motif conductance check*/
(C.2) λj (x) ≤ (2/3)µ(V) /*upper-bound volume check*/
(C.3) 2b ≤ λj (x) /*lower-bound volume check*/
Condition (C.1) guarantees that the returned local cluster C =

Sj (x) has a low motif conductance. Sj (x) denotes the sweep cut (or
sweep set) of x where x is the approximated multilinear PageRank
vector and Sj (x) = {π (1), . . . ,π (j)} is the set of top j vertices v
that maximize x(v)/d(v), where d is the degree vector, π is the
permutation of nodes as x (π (i))

d (π (i)) ≥
x (π (i+1))
d (π (i+1)) .

Condition (C.2) and Condition (C.3) limit the volume of the
returned local cluster Sj (x). The volume is defined as the summation
of vertex degrees, λj (x) =

∑
v ∈Sj (x) d(v) and µ(V) =

∑
v ∈V d(v).

b ∈ [1, log2m] is the parameter that controls the lower bound of
volume, andm is the number of edges.

During the sweep cut procedure, j starts from 1 to the number
of nodes, if a sweep cut Sj (x) satisfies the conditions (C.1) to (C.3),
then we suppose Sj (x) is a qualified motif-preserving local cluster.

3.2 Time-Evolving Motif Representation

Nonzero entries in the adjacency matrix indicate the existence of
edges (second-order motif), and the probability transition matrix
derived from the adjacency matrix provides matrix representation
of the first-order Markov Chain stochastic process. To explore high-
order motif data, we follow the indicator and transition tensor to
represent the high-order motif existence and the transition prob-
ability of high-order Markov Chain [4, 32, 36]. Furthermore, we
generalize the idea to the dynamic setting and propose the following
dynamic indicator tensor and dynamic transition tensor.

Definition 3.1 (Dynamic Indicator Tensor). At each time stamp
t , given an undirected and unweighted graph G(t) = (V (t), E(t)),
and the user-defined kth -order structure N, the k-mode dynamic
indicator tensor Ī (t) is defined as follows

Ī (t)(v1,v2, . . . ,vk) =

{
1 {v1,v2, . . . ,vk } ⊆ V (t) and form N
0 otherwise

(5)

Definition 3.2 (Dynamic Transition Tensor). At each time stamp t ,
given an undirected and unweighted graph G(t) = (V (t), E(t)), the
kth -order motif N, and the k-mode dynamic indicator tensor Ī (t),
the corresponding k-mode dynamic transition tensor P̄ (t) can be
computed as follows

P̄ (t)(v1,v2, . . . ,vk) =
Ī (t)(v1,v2, . . . ,vk)∑n(t)

v1=1 Ī
(t)(v1,v2, . . . ,vk)

(6)

At each time stamp t , the dynamic transition tensor P̄ (t) encodes
the transition probabilitywith respect tokth -ordermotifN based on
(k−1)th -orderMarkovChain, such that

∑n(t)

v1=1 P̄
(t)(v1,v2, . . . ,vk) =

1 and P̄ (t)(v1,v2, . . . ,vk) = Prob(St+1 = v1 |St = v2, . . . , St−k+2 =
vk) [16], where St denotes a discrete time stochastic process on
the state space. With the k-mode transition tensor P̄ (t) modelling
kth -order motif structure, at time t , the multilinear PageRank [10]
vector x (t) ∈ Rn

(t)
satisfies the following equation

x (t) = α P̄ (t) (x (t) ⊗ . . . ⊗ x (t))︸ ︷︷ ︸
(k−1 terms)

+(1 − α)u (7)

where ⊗ denotes the Kronecker product, and u ∈ Rn
(t)

is the sto-
chastic vector inherited from last time stamp t − 1. Stochastic vec-
tor u encodes a probability distribution over n(t) nodes, where∑n(t)

i=1 u(i) = 1 and its element associated with the seed node vseed
has a large personalized value, e.g., 1.

Push operation [1] is an efficient method for solving the approx-
imated PageRank vector for local clustering problems. It is widely
adopted for tracking the PageRank vector evolution on dynamic
graphs [21, 34]: first, the approximated PageRank vector and the
corresponding residual vector from the last time stamp are usually
used as the initial vectors for the current time stamp; then an itera-
tive procedure of reducing the probability distribution of the initial
residual vector is performed till convergence.

We extend the push operation to obtain the multilinear PageRank
vector (Subsection 3.4). Here, we first define the residual vector r (t)
of the multilinear PageRank vector x (t) at time stamp t as follows

r (t) = α P̄ (t) (x (t) ⊗ . . . ⊗ x (t))︸ ︷︷ ︸
(k−1 terms)

+(1 − α)u − x (t) (8)

Dynamic graphs change over time due to updated edges. With
the vectors x (t) and r (t), tensor P̄ (t), and local cluster C(t) from
time stamp t , we aim to efficiently obtain x (t+1) to feed into the
sweep cut procedure (i.e., Conditions (C.1) to (C.3)), in order to get
local cluster C(t+1). To obtain multilinear PageRank vector x (t+1)
for time stamp t + 1, we need to solve the following two problems
efficiently, which will be elaborated in the next two subsections.

• First, transition tensor P̄ (t) changes due to inserted (or deleted)
edges. Instead of building a new tensor P̄ (t+1) from the
scratch, we need to leverage the change in structural infor-
mation between time stamps to update the transition tensor
P̄ (t) efficiently (Subsection 3.3).

• Second, multilinear PageRank vector x (t) changes with the
new tensor P̄ (t+1). We need to track x (t+1) and r (t+1) with
the updates in the transition tensor P̄ (t+1) (Subsection 3.4).

3.3 Transition Tensor Update via Edge Filtering

To obtain the transition tensor P̄ (t+1), we start with P̄ (t) from the
previous time stamp, and update it based on the updated edge set
∆E(t). Furthermore, we propose an edge filtering model to identify
the subset of edges in ∆E(t) that have little or no impacts on the
resulting local cluster, which further speeds up the tensor compu-
tation. For example, some updated edges (inserted or deleted in the

current time stamp) are "far-away" from the seed node. Therefore,
their appearance (or disappearance) will not affect the local cluster
identified at the last time stamp. The proposed edge filtering model
is able to identify and filter these edges without affecting the gener-
ated local cluster at the current time stamp. To this end, we define
the "far-away" updated edges as follows.

Definition 3.3 ("Far-away" Updated Edge). At time t , given a kth -
order motif N, a multilinear PageRank vector x (t), a degree vector
d(t) and an identified local cluster C(t) = Sj (x (t)), an updated edge
e = (v1,v2) is "far-away" if it satisfies the following conditions:

x (t)(v1)

d(t)(v1)
<

x (t)(π (j + 1))
d(t)(π (j + 1))

,
x (t)(v2)

d(t)(v2)
<

x (t)(π (j + 1))
d(t)(π (j + 1))

(9)

γ + x (t)(π (j + 1))
d(t)(π (j + 1))

<
x (t)(π (j))

d(t)(π (j))
(10)

Dist (v1,C
(t)) > k − 1, Dist (v2,C

(t)) > k − 1 (11)

where π is the permutation that follows x (t)(π (i))
d (t)(π (i))

≥
x (t)(π (i+1))
d (t)(π (i+1)) ,

as stated in condition (C.1); the local cluster C(t) is formed by ver-
tices Sj (x (t)) = {π (1), . . . ,π (j)} from the sweep cut; Dist (v,C

(t))

denotes the shortest distance from the node v to reach any node
within the local cluster C(t); and γ denotes the largest probability
mass increment that updated edge e = (v1,v2) adds to node π (j+1),
which can potentially change the ranking of node π (j + 1) at time
stamp t + 1. Depending on whether the updated edge e = (v1,v2)
is an inserted edge or a deleted edge, it can be shown that γ has the
following values:

γ =


x (t)(v1) + x (t)(v2)

min(d (t)(v1), d (t)(v2))
if (v1,v2) is an inserted edge

x (t)(v1)
d (t)(v1)−1

+
x (t)(v2)

d (t)(v2)−1
if (v1,v2) is a deleted edge

(12)

We provide Lemma 3.4 which implies that even considering
one "far-away" updated edge, the ranking of the first j entries
{π (1), . . . ,π (j)} of permutation π at time t remains still at time
t + 1; and sweep cut procedure will still terminate at the same index
j at time t + 1 to return sweep set Sj (x (t+1)) as the local cluster
C(t+1). Therefore, one "far-away" updated edge is neglectable.

Lemma 3.4. If updated edge e = (v1,v2) is a "far-away" updated
edge, x (t) is the multilinear PageRank vector at time t , x (t+1) is the
approximated multilinear PageRank vector after sufficient spacey
random walk steps starting from vector x (t) on the new edge set
E(t+1) = {E(t) ∪ e}, then Sj (x (t)) = Sj (x (t+1)); and if the local
cluster C(t) = Sj (x (t)) is returned by sweep cut procedure through
conditions (C.1) to (C.3) regrading the parameter set B = {ϕ,b},
µ(C(t),N) < µ(C̄(t),N) when the updated edge e is inserted (or
µ(C(t),N) > µ(C̄(t),N) when the updated edge e is deleted), then
sweep cut procedure will still terminate at the same j index to return
local cluster C(t+1) = Sj (x (t+1)) at time t + 1 regarding the same
parameter set B.

Based on the above analysis, we are now ready to present the
main theorem with respect to the properties of multiple "far-away"
updated edges.

Theorem 3.5. Let Γ denote the summation of probability mass in-
crements of sampled "far-away" inserted (or deleted) edges {e1, . . . , em },
Γ =

∑m
i=1 γi , where γi of ei is obtained by Eq. 12. If

Γ + x (t)(π (j + 1))
d(t)(π (j + 1))

<
x (t)(π (j))

d(t)(π (j))
(13)

and µ(C(t),N) < µ(C̄(t),N) (or µ(C(t),N) > µ(C̄(t),N)), then C(t+1)

for time stamp t + 1 is the same as C(t).

According to Theorem 3.5, "far-away" updated edges can be
safely filtered before updating transition tensor P̄ (t). This greatly
saves the running time, as shown below.

Claim 1. For a kth -order motif N (k ≥ 3), the time complexity of
updating transition tensor P̄ (t) in terms of one single updated edge is
O(k (k−1)2 · dk−2max), where dmax is the max degree of the graph G(t).

Let n and m denote the numbers of nodes and edges of G(t),
respectively. Based on Claim 1, in the worst case (node degree
dmax ≈ n), the time complexity of updating transition tensor P̄ (t) of
one updated edge isO(nk−2). However, the edge filtering operations
Eq. 9 and 10 costO(1), and Eq. 11 costsO(n+m logn) [8]. Therefore,
our proposed edge filtering model identifies a "far-away" updated
edge in O(n +m logn) time instead of taking it into consideration
for updating the transition tenor in O(nk−2) time.

We summarize the proposed edge filtering model within the up-
dating process of the transition tensor in Alg. 1. Step 1 separates the
updated edges into inserted edges and deleted edges; Step 2 checks
whether these edges are "far-away" edges according to Theorem 3.5;
and Steps 3-5 (or Steps 7-9) filter "far-away" inserted (or deleted)
edges before updating the transition tensor.

Edge filtering model depends on the multilinear PageRank vec-
tor (i.e., stationary distribution). As we solve the approximated
multilinear PageRank vector at each time stamp, therefore, after
the long-term updating transition tensor via edge filtering model
based on the approximated multilinear PageRank vector, there may
be accumulated errors in the proposed L-MEGA framework. To
ensure the accuracy of the transition tensor, we need to construct
the transition tensor from the scratch after certain time stamps.

3.4 Motif Push Operation

With the updated transition tensor P̄ (t+1), we also need to update
the multilinear PageRank vector x (t+1) accordingly. To this end, we
initialize x (t+1) with x (t), and compute the initial residual vector
r (t+1) through Eq. 7 and 8 as follows,

r (t+1) = r (t) + α(P̄ (t+1) − P̄ (t))(x (t) ⊗ . . . ⊗ x (t)) (14)

Next, we aim to gradually decrease the residual vector in order to
obtain the updated multilinear PageRank vector. To this end, given
a user-defined high-order motif, we propose an iterative motif push
operation to track the multilinear PageRank vector. We use subscript
as iteration index. Therefore,x (t+1)0 = x (t), and r (t+1)0 is set to Eq. 14.
Motif push operation repeatedly updates the multilinear PageRank
vector x (t+1)v+1 and its residual vector r (t+1)v+1 as follows

x (t+1)v+1 = x (t+1)v + r
(t+1)
v (i)e (15)

Algorithm 1 Transition Tensor Update with Edge Filtering
Input:

local clusterC(t), transition tensor P̄ (t), updated edge set ∆E(t).
Output:

transition tensor P̄ (t+1).
1: Separate updated edge set ∆E(t) into inserted edge set ∆E+ and

deleted edge set ∆E−.
2: if µ(C(t),N) < µ(C̄(t),N) then
3: for edge e in ∆E+ do
4: Sample "far-away" edge set EF = {e1, . . . , em } which sat-

isfies the conditions of Eq. 9, 10, 11, and 13.
5: end for

6: else
7: for edge e in ∆E− do

8: Sample "far-away" edge set EF = {e1, . . . , em } which sat-
isfies the conditions of Eq. 9, 10, 11, and 13.

9: end for

10: Update P̄ (t+1) from P̄ (t) based on edge set (∆E(t) \ EF).
11: Save filtered edge set EF for next time stamp updates.
12: end if

r (t+1)v+1 = r
(t+1)
v −r

(t+1)
v (i)e+αr (t+1)v (i)P̄ (t+1)(e⊗x (t+1)v−1 . . .⊗x

(t+1)
v−k+2)

(16)
where r (t+1)v (i) is the largest entry of r (t+1)v , e ∈ Rn

(t)
is the basis

vector with the i-th entry equals to 1, and the other entries equal
to 0.

Intuitively, motif push operation iteratively extracts the largest
probability mass r (t+1)v (i) from the residual vector r (t+1)v , and adds it
to the approximated multilinear PageRank vector x (t+1)v , such that
the residual vector r (t+1) → 0 after sufficient iterations. During
each iteration of the motif push operation, the effect of increas-
ing the i-th entry of the vector x (t+1)v should also be considered,
as it produces the additive divergence between r (t+1)v+1 and x (t+1)v+1
according to Eq. 7. Therefore, we adopt the lazy updating rule of
HOSPLOC [36] (i.e., Eq. 17) to measure such additive divergence,
which works as follows

x (t+1)v+1 = P (t+1)(x (t+1)v ⊗ x (t+1)v−1 ⊗ . . . ⊗ x (t+1)v−k+2) (17)

Adding vector r (t+1)v (i)e on vector x (t+1)v (i.e., Eq. 15) produces
additive divergence αr (t+1)v (i)P (t+1)(e ⊗ x (t+1)v−1 . . . ⊗ x (t+1)v−k+2) de-
rived from Eq. 7 and 17, which should be added back to residual
vector r (t+1)v as the third item of the right-hand-side of Eq. 16.

Motif push operation terminates until r (t+1) = 0 at time stamp
t + 1. In practice, we define a threshold ϵ such that at the v-th
iteration, if the largest entry r (t+1)v (i) ≤ ϵ , thenmotif push operation
terminates. The following theorem shows the efficiency of the
proposed push operation with such a threshold.

Theorem 3.6 (Efficiency of motif push operation). At time
stamp t + 1, given a motif push operation threshold ϵ , the motif
push operation will terminate in 1

(1−α)ϵ number of iterations with

∥r (t+1)∥∞ ≤ ϵ , and each iteration has polylogarithmic time complex-
ityO(1

ξ k
)with respect to the number of edges, where ξ ∝ 1

log2(µ(V (t+1)))
,

µ(V (t+1)) is the volume of graph G(t+1), k is the order of motif N.

3.5 Incremental Sweep Cut

After we have obtained the approximated multilinear PageRank vec-
tor x (t+1) for time stamp t +1, we then use the sweep cut procedure
to compute permutation π , which leads to sweep set Sj (x (t+1)) as
local clusterC(t+1). However, in the sweep cut procedure, checking
condition (C.1) is costly: each iteration of the sweep cut algorithm
requires O(n2) for computing Φ(Sj (x (t+1)),N) with the support of
the motif weighted matrix from [5, 33], where n is the number of
nodes of graph G(t+1). Therefore, we aim to leverage the tempo-
ral information for identifying shared computation between two
consecutive time stamps. In this way, we can reduce the number
of iterations required in the sweep cut procedure. To this end, we
first introduce some properties of the local cluster as follows.

Claim 2. With the local cluster C(t) identified by the sweep cut
procedure through conditions (C.1) to (C.3), if µ(C(t),N) < µ(C̄(t),N),
and updated edge set ∆E(t) only contains inserted edges on C̄(t) after
edge filtering, then |C(t+1) | ≥ |C(t) |.

From Claim 2, when the updated edge set only consists of in-
serted edges on the complement of the local cluster identified by
the sweep cut procedure, and the motif volume of the local clus-
ter is smaller than its complement, then the local cluster can only
expand or remain the same at the next time stamp. Hence, it is
safe to conclude that the first q shared nodes of π (t) and π (t+1) are
included in the same local cluster.

Based on the above analysis, we propose incremental sweep cut
to speed up the computation. With Sj (x (t+1)), we need to determine
the value of j to return the local clusterC(t+1) in the sweep cut pro-
cedure. Here we use j(t) and j(t+1) to denote the values of j at time
stamps t and t + 1 respectively. In the original sweep cut procedure,
j(t+1) increases from 1. However, in incremental sweep cut, if the
condition of Claim 2 is satisfied, we first compare permutation π (t)

and π (t+1) to find the largest index q such that

π (t)(1) = π (t+1)(1) , . . . , π (t)(q) = π (t+1)(q) , and q ≤ j(t) (18)

then j(t+1) would start from q + 1 instead of 1. In this way, incre-
mental sweep cut reduces q iterations where each iteration costs
polynomial time complexity O(n2). However, incremental sweep
cut cannot deal with deletion updates. Because deleted edges may
keep some shared ranking but the local cluster shrinks, which
means the length of the shared ranking is larger than the size of
the optimal local cluster. If j(t+1) still iterates from q + 1, we may
miss the denser local cluster.

4 L-MEGA ALGORITHM

In this section, we introduce the L-MEGA algorithm in Alg. 2. It
receives as input the high-order motif N, the seed node vseed , and
the updated edge set ∆E. Notice that some inputs (e.g., x (0), P̄ (0),
C(0)) could be obtained from existing static algorithms, e.g., [36].
Then it incrementally tracks the local cluster as the graph evolves
over time, and outputs the local clusters associated with each time
stamp. First, Step 2 updates the transition tensor P̄ (t+1) with the
edge filtering model (Alg.1), which paves the way for calculating the
initial approximate multilinear PageRank vector x (t+1)0 and residual
vector r (t+1)0 in Step 3. Then Steps 6-8 call motif push operation

Algorithm 2 Local Motif Clustering on Time-Evolving Graphs
(L-MEGA)
Input:

the kth -order motifN, the transition tensor P̄ (0), the initial mul-
tilinear PageRank vector x (0) and initial residual r (0), the initial
local cluster C(0), the updated edge set {∆E(0), . . . ,∆E(T−1)},
the motif push operation threshold ϵ , the motif conductance
upperbound ϕ, and parameters b, c1.

Output:

clusters C(1), . . . ,C(T).
1: for t = 0 : T − 1 do
2: Update transition tensor P̄ (t+1) using Alg. 1.
3: Initialize x (t+1)0 = x (t), and r (t+1)0 through Eq. 14.
4: Initialize x (t+1)v = x (t+1)0 , r (t+1)v = r (t+1)0 , v = 1, . . . ,k .
5: Set v = k .
6: while the largest entry r (t+1)v (i) of r (t+1)v ≥ ϵ do

7: Get pushed x (t+1)v+1 ,r
(t+1)
v+1 through Eq. 15 and 16.

8: end while

9: if ∆E(t) only contains inserted edges on C̄(t)
then

10: Find the largest index q through Eq. 18.
11: else

12: Let q = 0.
13: end if

/*Incremental Sweep Cut*/
14: for j = q + 1 : n(t+1) do
15: if there exists j such that:
16: (C.1) Φ(Sj (x (t+1)),N) ≤ ϕ

17: (C.2) λj (x (t+1)) ≤ (2/3)µ(V)

18: (C.3) 2b ≤ λj (x (t+1)) then

19: Return C(t+1) = Sj (x (t+1)) and quit.
20: end if

21: end for

22: Return C(t+1) = Sq (x (t+1)).
23: end for

to converge the initial solution fit the probability distribution of
graph G(t+1) to obtain approximated multilinear PageRank vector
x (t+1). Steps 9-13 check whether updated edge set ∆E(t) meets the
conditions of the incremental sweep cut then set q with different
values for incremental sweep cut algorithm (i.e. Steps 14-22).

L-MEGA algorithm includes 3 major proposed techniques for
speeding up the computation. First, in updating transition ten-
sor P̄ (t+1), instead of considering every updated edge which costs
O(|V (t+1) |k−2), the edge filtering model filters out some "far-away"
edges in O(|V (t+1) | + |E(t+1) | log |V (t+1) |) time. Second, the mo-
tif push operation approximates multilinear PageRank vector in
constant number of iterations and each iteration costs polyloga-
rithmic time with respect to the number of edges (Theorem 3.6).
Third, incremental sweep cut reduces q iterations (O(|V (t+1) |2)
time complexity each iteration) compared with the original sweep
cut procedure. Moreover, the returned cluster C(t+1) is bounded,
which means if there is a cluster Ĉ(t+1) whose motif conductance
Φ(Ĉ(t+1),N) ≤ 1

2c1(l+2) and
x (t+1)(π (j))
d (t+1)(π (j))

≥ 1
c1(l+2)2b

, then µ(Ĉ(t+1)∩

C(t+1)) ≥ 2(b−1) [36], b and c1 are two constants, l is proportional
to the volume of the graph.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness and scalability of L-
MEGA on real-world and synthetic temporal networks. We provide
additional results of parameter sensitivity analysis in Appendix C.

5.1 Experiment Setup

Datasets: The real-world temporal networks are summarized in
Table 1, which are used to compare the effectiveness of the pro-
posed L-MEGA algorithm with other state-of-the-art methods. We
employ four real-world temporal networks. Alpha and OTC net-
works [14, 15] are rating networks from BitcoinAlpha and Bit-
coinOTC platforms, where an edge is a rating record between two
Bitcoin traders. Call network [25] records human mobile phone call
events among a set of core users. Contact network [25] is a human
contact network where nodes represent humans and edges between
them represent contacts in the physical world. Moreover, to com-
pare the efficiency scalability on different density level temporal
networks, we generate two kinds of synthetic networks: control
the edge density (i.e., 0.6%) and increase the number of vertices (i.e.,
from 1, 000 to 5, 000); control the number of vertices (i.e., 2, 000) and
increase the edge density (i.e., from 0.5% to 0.9%). The advantage
of using synthetic networks is that we can investigate the scalabil-
ity of efficiency of the proposed L-MEGA framework between the
growth of time consumed and the growth of the size of networks.

Table 1: Statistics of Real-world Networks

Network Category |V | |E | Time Span
Alpha Rating 3,783 14,124 62 months
OTC Rating 5,881 21,492 62 months
Call Communication 6,809 7,967 4 months

Contact Interaction 10,972 44,517 3 months

Prepossessing: We process all time-evolving networks as undi-
rected and unweighted. Due to different time spans shown in Ta-
ble 1, for each dataset we unify different granularities of time stamps
into 10 super time stamps, in each super time stamp, the updated
edge set ∆E(t) occupies 1 percent volume of the whole graph, the
initial graph occupies 90 percents volume of the entire graph.

Comparison Methods: We compare L-MEGA with different
categories of state-of-the-art clustering algorithms. Static edge-
based clustering algorithms (Nibble [28]), dynamic edge-based clus-
tering algorithms (TPPR [21], ISC [20]), static motif-based cluster-
ing algorithms (HOSPLOC [36], MAPPR [33]), and our L-MEGA
stands for the dynamic motif-based clustering method. Moreover,
we provide the self-ablation comparison. L-MEGA-1 replaces the
updating transition tensor of L-MEGA with the re-building the ten-
sor from the scratch, L-MEGA-2 replaces the tracking approximated
multilinear PageRank vector of L-MEGA with solving it by power
iteration, and L-MEGA-3 replaces the incremental sweep cut with
the original sweep cut procedure. We illustrate the reproducibility
of the proposed L-MEGA framework in Appendix D.

5.2 Effectiveness Comparison

Evaluation Metrics: We set the triangle as the motif N, triangle
is the widely adopted motif for high-order clustering in existing

work [4, 5, 32, 33, 36] for balancing the validity of experiments
with the heavy load of time complexityO(n(k)), also triangles have
the fundamental role in understanding the social network and
community structures [9, 11, 24]. Moreover, we use three metrics:
(1) conductance, whichmeasures the general quality of a cut on the
graph to indicate the compactness of the cut, and it is computed by
setting the undirected edge as the motif N in Eq. 1; (2) third-order
conductance, which could be computed with Eq. 1 by setting the
undirected triangles as the motif N; (3) triangle density, which
computes the ratio of triangles included in the returned local cluster.

Quantitive Results: The clustering effectiveness and consumed
time of each baseline are shown in Table 2, where we select different
seed nodes for representing the average and the standard deviation
of the first local minimum conductance score and its associated tri-
angle density under the same parameter ϕ of the sweep cut. For the
static algorithm, the clustering result is solely obtained at the tenth
time stamp, and for the dynamic clustering algorithms, the clus-
tering result is tracked from the first time stamp to the tenth time
stamp. Because the updating and tracking process of the L-MEGA
framework have the accumulated error, if L-MEGA performs well at
the tenth time stamp, it also performs well at previous time stamps.
From Table 2, we observe that our proposed L-MEGA achieves com-
parable performance with the baseline methods across real-world
dynamic networks in terms of three aforementioned metrics. For
example, L-MEGA performs slightly better than static algorithms
like HOSPLOC in both conductance and third-order conductance.
An intuitive explanation is that, the last time tracked approximated
multilinear PageRank is closer to the stationary distribution than
the approximated multilinear PageRank solved by HOSPLOC from
the scratch. Comparing L-MEGA with L-MEGA-1, we know that
building transition tensor occupies major time consumption of
the motif-based clustering algorithms, and our updating transition
tensor algorithm provides acceptable accuracy and reduces time
complexity to a large extent. Comparing L-MEGA with L-MEGA-2,
we know that tracking multilinear PageRank algorithm also reduces
the consumed time and provides adequate accuracy. Comparing
L-MEGA with L-MEGA-3, we observe that incremental sweep cut
also saves time and ensures preciseness. Observing the time con-
sumption of L-MEGA in Alpha network and Call Network, we find
running L-MEGA on Call is faster. We suppose that the growth of
the consumed time of L-MEGA may not relate with the size of the
graph but with the dynamics between two consecutive time stamps.
To prove our guess, we design the following scalability analysis.

5.3 Scalability Analysis

Here, we use the synthetic networks mentioned above, and the scal-
ability analysis is divided into the following three parts comparing
with PageRank-based clustering algorithms: Nibble and HOSPLOC.

First, we analyze the efficiency of constructing matrices/tensors
in Fig. 2.With the raw graph data, Nibble builds the two-dimensional
transition matrix, HOSPLOC builds the three-mode transition ten-
sor, and our L-MEGA tracks the three-mode transition tensor. We
plot their consumed time during one time stamp in Fig. 2. We test
the running time of processing the raw graph in terms of increas-
ing number of vertices (Fig. 2a) and increasing number of edges
(Fig. 2b). From Fig. 2a and Fig. 2b, when the number of vertices and

Table 2: Comparison of Local Motif Clustering Effectiveness and Efficiency

Methods Alpha OTC
conductance third-order conductance triangle density time conductance third-order conductance triangle density time

Nibble 0.4909 ± 0.0060 0.4555 ± 0.0454 0.2355 ± 0.1033 18.4073 ± 5.9853 0.4963 ± 0.0045 0.5091 ± 0.0941 0.1582 ± 0.1076 63.1869 ± 34.2154
TPPR 0.4923 ± 0.0089 0.4994 ± 0.1188 0.1613 ± 0.0934 12.4094 ± 5.7653 0.4970 ± 0.0021 0.5751 ± 0.1106 0.1524 ± 0.1320 39.1307 ± 19.3550
ISC 0.3334 ± 0.0000 1.0000 ± 0.0000 0.0000 ± 0.0000 56.6376 ± 0.0000 0.5999 ± 0.0000 0.5656 ± 0.0000 0.1908 ± 0.0000 195.5490 ± 0.0000

MAPPR 0.4947 ± 0.0008 0.5852 ± 0.0104 0.0712 ± 0.0030 43.0597 ± 2.9107 0.4890 ± 0.0015 0.5404 ± 0.0023 0.0904 ± 0.0001 207.5004 ± 1.1757
HOSPLOC 0.4915 ± 0.0080 0.4816 ± 0.0576 0.1891 ± 0.0859 237.6121 ± 12.5513 0.4957 ± 0.0041 0.5080 ± 0.0722 0.2000 ± 0.1172 753.3742 ± 51.6812
L-MEGA 0.4712 ± 0.0586 0.4097 ± 0.0278 0.2561 ± 0.1008 8.2032 ± 4.8534 0.4652 ± 0.0074 0.4102 ± 0.0620 0.2946 ± 0.0719 32.4308 ± 46.8278
L-MEGA-1 0.4728 ± 0.0102 0.4676 ± 0.0344 0.2490 ± 0.0736 241.4762 ± 13.3320 0.4733 ± 0.0074 0.4622 ± 0.0547 0.2578 ± 0.0961 778.5583 ± 33.4156
L-MEGA-2 0.4944 ± 0.0036 0.4369 ± 0.0428 0.3819 ± 0.0737 14.8578 ± 4.0788 0.4860 ± 0.0013 0.4750 ± 0.0175 0.5318 ± 0.0141 32.6827 ± 1.6759
L-MEGA-3 0.4712 ± 0.0586 0.4097 ± 0.0278 0.2561 ± 0.1008 11.4955 ± 4.2939 0.4652 ± 0.0074 0.4102 ± 0.0620 0.2946 ± 0.0719 45.5937 ± 45.6706

Methods Call Contact
conductance third-order conductance triangle density time conductance third-order conductance triangle density time

Nibble 0.0792 ± 0.0309 0.5675 ± 0.4809 0.0249 ± 0.0384 13.5155 ± 2.7236 0.3536 ± 0.0925 0.2878 ± 0.1857 0.0017 ± 0.0015 33.7139 ± 0.1147
TPPR 0.1910 ± 0.1399 0.5589 ± 0.4442 0.0274 ± 0.0420 8.3268 ± 2.1605 0.2643 ± 0.1323 0.2221 ± 0.1382 0.0025 ± 0.0023 25.0759 ± 0.1416
ISC 0.5893 ± 0.0000 0.5270 ± 0.0000 0.1700 ± 0.0000 27.3982 ± 0.0000 0.4765 ± 0.0000 0.5252 ± 0.0000 0.0035 ± 0.0000 1351.1732 ± 0.0000

MAPPR 0.5957 ± 0.0042 0.4401 ± 0.0291 0.2219 ± 0.1869 2938.3853 ± 81.2163 0.3317 ± 0.0573 0.2790 ± 0.0753 0.0006 ± 0.0003 88.6153 ± 0.2981
HOSPLOC 0.1652 ± 0.0485 0.2981 ± 0.3721 0.0296 ± 0.0416 768.4879 ± 1.1554 0.2646 ± 0.1346 0.2308 ± 0.1559 0.0034 ± 0.0051 3443.8829 ± 0.2193
L-MEGA 0.1542 ± 0.0544 0.2866 ± 0.3823 0.0395 ± 0.0448 1.1316 ± 0.9816 0.2438 ± 0.1676 0.1614 ± 0.1443 0.0042 ± 0.0052 3.4496 ± 3.0660
L-MEGA-1 0.1542 ± 0.0544 0.2866 ± 0.3823 0.0395 ± 0.0448 754.2537 ± 0.8341 0.2028 ± 0.1349 0.2172 ± 0.1921 0.0004 ± 0.0005 3492.1936 ± 3.2966
L-MEGA-2 0.2333 ± 0.1839 0.2713 ± 0.3883 0.0239 ± 0.0180 17.2451 ± 0.9250 0.2511 ± 0.1121 0.2166 ± 0.1304 0.0003 ± 0.0004 48.1245 ± 1.1528
L-MEGA-3 0.1542 ± 0.0544 0.2866 ± 0.3823 0.0395 ± 0.0448 1.2502 ± 1.0725 0.2438 ± 0.1676 0.1614 ± 0.1443 0.0042 ± 0.0052 3.5800 ± 3.1314

the number of edges are increasing, the running time of building
matrices/tensors is increasing, that is because more vertices are
involved in the formation of the matrix (or tensor). However, in
both settings, L-MEGA method is near constantly increasing, be-
cause L-MEGA takes advantage of the information from the last
time stamp, and updates it by locating the sphere which may be
influenced by updated edges. Hence, L-MEGA reduces much un-
necessary computation.

(a) The number of vertices (b) The edge density

Figure 2: Efficiency of constructing matrices/tensors.

Second, we test the running time of solving the approximated
(multilinear) PageRank and tracking the approximated multilinear
PageRank under the same converge condition. In Fig. 3a, solving the
multilinear PageRank from the scratch is increasing quadratically
with the number of vertices and linearly the number of edges;
solving the PageRank is increasing linearly in both settings; while
our tracking method is increasing constantly in Fig. 3a and Fig. 3b.
Also, there is an interesting observation: in both settings, Nibble
and HOSPLOC have an observable standard deviation due to their
intrinsic randomness for different selected seed nodes. However,
L-MEGA performs consistently for different given seed nodes.

Third, we test the efficiency of identifying a local cluster from the
cluster indicator vector, i.e, multilinear PageRank vector. In Fig. 4,
we compare the proposed incremental sweep cut with the original

(a) The number of vertices (b) The edge density

Figure 3: Efficiency of getting the cluster indicator vector.

(a) The number of vertices (b) The edge density

Figure 4: Efficiency of identifying the graph cut.

sweep cut, which is widely used by many clustering algorithms
like HOSPLOC and Nibble. In general, the incremental sweep cut
outperforms the original sweep cut method in running time, and
both of them are increasing linearly with the number of nodes and
edges. It is interesting that the standard deviation of incremental
sweep cut is larger than the original static sweep cut in Fig. 4. It is
because the random choice of seed node and the updated edges can
result in different value of q in increment sweep cut, which in turn
affects the number of iterations of incremental sweep cut. When q
is large, incremental sweep cut will reduce a considerable number
of iterations; on the contrary, when q is small, incremental sweep
cut will perform similarly as the original sweep cut.

6 RELATED WORK

The informative and representative nature of graph structures can
be extended tomany domains like anomaly detection [3], missing in-
formation imputation [17] and crowdsourcing [37, 38]. Graph clus-
tering is the task of grouping various graph connectivity patterns
(e.g., edges and motifs) into clusters, where rich connectivity pat-
terns are within each cluster while few are between clusters. Many
existing graph clustering approaches are known to be designed for
the edge-based connectivity patterns, such as the PageRank-based
methods [1, 28], the spectral-based clustering method [19], and
the kernel-based method [13]. The traditional dynamic method [7]
assumes that clustering results should not shift dramatically from
time stamp to time stamp, therefore, the clustering result produced
by that framework balances the history cost. Latter, some works
propose different techniques for the dynamic clustering like the
parameter-free clustering method [29], the incremental spectral
clustering method [20], and the matrix factorization method [2].
More recently, the high-order organization of complex networks has
received a surge of research interest in the graphmining area [5, 18].
For example, in [33], the authors come up with the motif-based
approximated personalized PageRank algorithm for the local mo-
tif clustering; in [36], the authors propose a high-order structure-
preserving local cut framework, which defines the adjacency tensor
and transition tensor regarding the given high-order substructure
then applies the high-order Markov Chain technique for computing
the proximity vector in an unfolded matrix of the transition tensor.
Different from the aforementioned static methods, in this paper,
our proposed dynamic local motif clustering algorithm is designed
for time-evolving graphs, which aims to update the motif clusters
over time in an effective and efficient way.

7 CONCLUSION

In this paper, we propose a novel framework named L-MEGA,
which performs dynamic local motif clustering effectively and effi-
ciently. In particular, we designed novel techniques such as edge
filtering, motif push operation, and incremental sweep cut to speed
up the computation. We theoretically analyze the efficiency and ef-
fectiveness of these techniques and evaluate L-MEGA via extensive
experiments on synthetic and real-world temporal networks.

ACKNOWLEDGEMENT

This work is supported by the United States Air Force and DARPA
under contract number FA8750-17-C-0153, National Science Foun-
dation under Grant No. IIS-1947203 and Grant No. IIS-2002540, the
U.S. Department of Homeland Security under Grant Award Number
17STQAC00001-03-03 and Ordering Agreement Number HSHQDC-
16-A-B0001. The views and conclusions are those of the authors
and should not be interpreted as representing the official policies
of the funding agencies or the government.

REFERENCES

[1] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning
using PageRank Vectors. In IEEE FOCS 2006.

[2] Ana Paula Appel, Renato Luiz de Freitas Cunha, Charu C. Aggarwal, and
Marcela Megumi Terakado. 2018. Temporally Evolving Community Detection
and Prediction in Content-Centric Networks. In ECML PKDD 2018.

[3] Yikun Ban, Xin Liu, Ling Huang, Yitao Duan, Xue Liu, and Wei Xu. 2019. No
Place to Hide: Catching Fraudulent Entities in Tensors. InWWW 2019.

[4] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2015. Tensor Spectral
Clustering for Partitioning Higher-order Network Structures. In SIAM SDM 2015.

[5] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science (2016).

[6] Austin R. Benson, David F. Gleich, and Lek-Heng Lim. 2017. The Spacey Random
Walk: A Stochastic Process for Higher-Order Data. SIAM Rev. (2017).

[7] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. 2006. Evolutionary
Clustering. In ACM SIGKDD 2006.

[8] Edsger W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs.
Numerische mathematik (1959).

[9] Nurcan Durak, Ali Pinar, Tamara G. Kolda, and C. Seshadhri. 2012. Degree
Relations of Triangles in Real-world Networks and Graph Models. In ACM CIKM
2012.

[10] David F. Gleich, Lek-Heng Lim, and Yongyang Yu. 2015. Multilinear PageRank.
SIAM J. Matrix Anal. Appl. (2015).

[11] Mark S. Granovetter. 1973. The Strength of Weak Ties. Amer. J. Sociology (1973).
[12] Chris Jay Hoofnagle. 2007. Identity theft: Making the known unknowns known.

Harv. JL & Tech. (2007).
[13] Brian Kulis, Sugato Basu, Inderjit S. Dhillon, and Raymond J. Mooney. 2005.

Semi-supervised Graph Clustering: A Kernel Approach. In ICML 2005.
[14] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and

V. S. Subrahmanian. 2018. REV2: Fraudulent User Prediction in Rating Platforms.
In ACM WSDM 2018.

[15] Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Faloutsos.
2016. Edge Weight Prediction in Weighted Signed Networks. In IEEE ICDM 2016.

[16] Wen Li and Michael K. Ng. 2014. On the limiting probability distribution of a
transition probability tensor. Linear and Multilinear Algebra (2014).

[17] Xu Liu, Jingrui He, Sam Duddy, and Liz O’Sullivan. 2019. Convolution-Consistent
Collective Matrix Completion. In ACM CIKM 2019.

[18] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science (2002).

[19] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral Clustering:
Analysis and an algorithm. In NeurIPS 2001.

[20] Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas S. Huang. 2010.
Incremental Spectral Clustering by Efficiently Updating the Eigen-System. Pattern
Recognition (2010).

[21] Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. 2015. Efficient
PageRank Tracking in Evolving Networks. In ACM SIGKDD 2015.

[22] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report.

[23] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal
Networks. In ACM WSDM 2017.

[24] Arnau Prat-Pérez, David Dominguez-Sal, JosepM Brunat, and Josep-Lluis Larriba-
Pey. 2012. Shaping Communities out of Triangles. In ACM CIKM 2012.

[25] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In AAAI 2015.

[26] Martin Rosvall, Alcides Viamontes Esquivel, Andrea Lancichinetti, Jevin West,
and Renaud Lambiotte. 2014. Memory in network flows and its effects on spread-
ing dynamics and community detection. Nature communications (2014).

[27] Jirí Síma and Satu Elisa Schaeffer. 2006. On the NP-Completeness of Some Graph
Cluster Measures. In SOFSEM 2006.

[28] Daniel A. Spielman and Shang-Hua Teng. 2013. A Local Clustering Algorithm for
Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning.
SIAM J. Comput. (2013).

[29] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. 2007.
GraphScope: Parameter-free Mining of Large Time-evolving Graphs. In ACM
SIGKDD 2007.

[30] Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos. 2008.
Proximity Tracking on Time-Evolving Bipartite Graphs. In SIAM SDM 2008.

[31] Konstantin Voevodski, Shang-Hua Teng, and Yu Xia. 2009. Spectral affinity in
protein networks. BMC Systems Biology (2009).

[32] Tao Wu, Austin R. Benson, and David F. Gleich. 2016. General Tensor Spectral
Co-clustering for Higher-Order Data. In NeurIPS 2016.

[33] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local
Higher-Order Graph Clustering. In ACM SIGKDD 2017.

[34] Hongyang Zhang, Peter Lofgren, and Ashish Goel. 2016. Approximate Personal-
ized PageRank on Dynamic Graphs. In ACM SIGKDD 2016.

[35] Dawei Zhou, Jingrui He, Hasan Davulcu, and Ross Maciejewski. 2018. Motif-
Preserving Dynamic Local Graph Cut. In IEEE Big Data 2018.

[36] Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong,
Hasan Davulcu, and Jingrui He. 2017. A Local Algorithm for Structure-Preserving
Graph Cut. In ACM SIGKDD 2017.

[37] Yao Zhou and Jingrui He. 2017. A Randomized Approach for Crowdsourcing in
the Presence of Multiple Views. In IEEE ICDM 2017.

[38] Yao Zhou, Lei Ying, and Jingrui He. 2017. MultiC2: an Optimization Framework
for Learning from Task and Worker Dual Heterogeneity. In SIAM SDM 2017.

A NOTATION

Table 3: Table of Notation

Symbol Definition and Description
N user-defined motif
G(t) time-evolving graph at time stamp t
∆E(t) updated edge set at time stamp t
d(t) degree vector of graph G(t)

x (t) multilinear PageRank vector at time stamp t
r (t) residual vector of multilinear PageRank vector x (t)

Ī (t) dynamic indicator tensor at time stamp t
P̄ (t) dynamic transition tensor at time stamp t
P (t) unfolded matrix of P̄ (t)

B ALGORITHM ANALYSIS

B.1 Proof of Lemma 3.4

If an updated edge e = (v1,v2) is a "far-away" updated edge, then
according to Eq. 9, we have

x (t)(v1)

d(t)(v1)
<

x (t)(π (j + 1))
d(t)(π (j + 1))

,
x (t)(v2)

d(t)(v2)
<

x (t)(π (j + 1))
d(t)(π (j + 1))

hence, we know that the "far-away" update e = (v1,v2) can only
occur on the complement of local cluster (i.e., C̄(t)), furthermore,
only on the nodes who rank after j + 1 in the permutation π at time
t . Also, from Eq. 11, v1 and v2 are at least k − 1 hops away from the
local clusterC(t) which meansv1 andv2 are not directly connected
with any nodes in C(t). Because permutation π is nonincreasing,
when a "far-away" update occurs on the complement C̄(t), node
π (j + 1) has the largest potential to break through and rank higher
than node π (j) at time t + 1 to change the structure of the local
cluster C(t). If node π (j + 1) fails to rank higher than node π (j) at
time t + 1, then any nodes behind π (j + 1) will also fail.

Next, we need to prove that adding the probability mass incre-
ment of the "far-away" updated edge e = (v1,v2) on node π (j + 1)
is not enough to make node π (j + 1) rank higher than node π (j) at
time t + 1.

In Eq. 10, γ is formed as the largest probability mass increment
that v1 and v2 can contribute to node π (j + 1). Based on Eq. 10, we
have

γ + x (t)(π (j + 1))
d(t)(π (j + 1))

<
x (t)(π (j))

d(t)(π (j))

which states that v1 and v2 are incapable to help the node π (j + 1)
to rank higher than π (j) at time t + 1. Because the permutation π
is nonincreasing which implies that nodes rank lower than π (j + 1)
at time t have also no chance to rank higher than π (j) at time t + 1.
So far, the first part of Lemma 3.4 is proved that the first j entries
of permutation π remains between two consecutive time stamps,
Sj (x (t)) = Sj (x (t+1)).

Moreover, the reason why the constructed γ represents the
largest contributed probability mass increment from nodes v1 and
v2 to node π (j + 1) states as below.

At time stamp t , assume node π (j + 1) is reachable from the "far-
away" updates v1, then the most efficient channel to transmit the

probability mass from node v1 to node π (j + 1) is that v1 is directly
connected with node π (j + 1). Then, in the kth -order setting, the
(k − 1)th -order Markov Chain is modeled as follows

Prob(St+1 = π (j + 1)|St = v1, St−1 = vi , . . . , St−k+2 = vi) (19)

where St denotes a discrete time stochastic process on the state
space 1, . . . ,n, vi is the node (i.e., state of the stochastic process)
such that i ∈ {1, . . . ,n}.

We reduce the (k − 1)th -order Markov Chain to a first-order
Markov Chain by omitting the tail from St−1 to St−k+2, which is
modeled as follows
Prob(St+1 = π (j + 1)|St = v1) ≥
Prob(St+1 = π (j + 1)|St = v1, St−1 = vi , . . . , St−k+2 = vi)

(20)

Then, we can take the Prob(St+1 = π (j + 1)|St = v1) = 1
d (t)(v1)

which means the next random walk step starting from node v1 will
reach node π (j+1)with probability 1

d (t)(v1)
. Therefore, nodev1 can

transmit probability mass x (t)(v1)
d (t)(v1)

to node π (j + 1). Analogously,

node v2 can transmit probability mass x (t)(v2)
d (t)(v2)

to node π (j + 1)
respectively.

Case 1. "Far-away" updated edge e = (v1,v2) is an inserted edge.

x (t)(v1)

d(t)(v1)
+
x (t)(v2)

d(t)(v2)
≤

x (t)(v1) + x (t)(v2)

min(d(t)(v1),d(t)(v2))
(21)

where the left-hand-side is the summation of the transmitted proba-
bility mass from nodev1 andv2 before the insertion; the right-hand
side is the maximum transmitted probability mass after the inser-
tion by takingv1 andv2 as one node and selecting the less transition
loss channel (i.e., minimum of degree). Therefore, in the insertion
scenario, we construct γ as x (t)(v1)+x (t)(v2)

min(d (t)(v1),d (t)(v2))
.

Case 2. "Far-away" updated edge e = (v1,v2) is a deleted edge.

x (t)(v1)

d(t)(v1)
+
x (t)(v2)

d(t)(v2)
<

x (t)(v1)

d(t)(v1) − 1
+

x (t)(v2)

d(t)(v2) − 1
(22)

where the left-hand-side is the summation of the transmitted proba-
bility mass from node v1 to π (j + 1) and the transmitted probability
mass from node v2 to π (j + 1) before the deletion; the right-hand-
side is the summation of the transmitted probability mass from v1
to π (j + 1) and from v2 to π (j + 1) after the deletion. Due to the
deletion, the probability mass increment of node π (j + 1) after one
randomwalk is actually (x (t)(v1)

d (t)(v1)−1
+

x (t)(v2)
d (t)(v2)−1

)−(
x (t)(v1)
d (t)(v1)

+
x (t)(v2)
d (t)(v2)

),

we enlarge it by forming γ as x (t)(v1)
d (t)(v1)−1

+
x (t)(v2)

d (t)(v2)−1
.

For Lemma 3.4, we have proved that one "far-away" update has
no impact on sweep set Sj (x (t)) = Sj (x (t+1)), i.e., the ranking of
first j nodes of permutation π between two consecutive time stamps
does not change. Now, we only need to prove that node π (j) is still
the first node to satisfy conditions (C.1) to (C.3) regrading the same
parameter set B = {ϕ,b}.

Proof of condition (C.1). At time t , we have the local cluster
C(t) = Sj (x (t)) such that Φ(Sj (x (t)),N) ≤ ϕ. According to Eq. 1, we
have

Φ(Sj (x
(t)),N) =

cut(Sj (x (t)))

min(µ(Sj (x (t)),N), µ(S̄j (x (t)),N))
≤ ϕ

According to Eq. 11, the "far-away" updated edge e = (v1,v2) is
not directly connected with the local cluster C(t) and at least k − 1
hops away from C(t), in other words, Eq. 11 denies any new kth -
order motif N involved into the cut identified at time t . Then, we
can derive that cut(Sj (x (t)) = cut(Sj (x (t+1)). Because Eq. 9 limits
the "far-away" update can only occur on the complement of the
local cluster, i.e., S̄j (x (t)), such that if µ(Sj (x (t)),N) < µ(S̄j (x (t)),N)
at time t , then an "far-away" inserted edge at time t + 1 will have

min(µ(Sj (x (t+1)),N), µ(S̄j (x (t+1)),N)) = µ(Sj (x
(t)),N) (23)

and if µ(Sj (x (t)),N) > µ(S̄j (x (t)),N) at time t , then an "far-away"
deleted edge at time t + 1 will have

min(µ(Sj (x (t+1)),N), µ(S̄j (x (t+1)),N)) = µ(S̄j (x
(t)),N) (24)

Thus, according to the motif conductance score of the sweep cut
procedure, node π (j) is still the first node satisfying condition (C.1)
at time t + 1.

Proof of conditions (C.2) and (C.3). Conditions (C.2) and (C.3)
limit the volume of the local cluster C(t) should not be too small or
too big, which is bounded by 2b ≤ λj (x (t)) ≤ (2/3)µ(V (t)).

Since Eq. 9 allows "far-away" updates can only occur on the
complement C̄(t), the volume of the local clusterC(t) is not changed,
which means λj (x (t)) = λj (x (t+1)). Because we assume the size of
updated edge set ∆E(t) is much smaller than the whole graph G(t),
not to mention the size of "far-away" updated edges, therefore,
µ(V (t)) ≈ µ(V (t+1)). Thus, node π (j) is still the first node satisfying
conditions (C.2) and (C.3) at time t + 1 is proved.

To summarize, we have proved that node π (j) is still the first
node satisfying conditions (C.1) to (C.3) in the sweep cut procedure
regarding the same parameter set B = {ϕ,b}.

B.2 Proof of Theorem 3.5

A single "far-away" updated edge has no impact on the evolu-
tion of the local cluster has been proved by the Lemma 3.4. Then,
Lemma 3.4 and Eq. 13 limit that the summation of probability mass
increments of sampled "far-away" inserted (or deleted) edges set
{e1, . . . , em } could also not improve node π (j + 1) rank higher than
node π (j) at time t + 1; and µ(C(t),N) < µ(C̄(t),N) (or µ(C(t),N) >

µ(C̄(t),N)) indicates that the node π (j) is still the first node to satisfy
conditions (C.1) to (C.3) of sweep cut procedure at time t + 1.

B.3 Proof of Theorem 3.6

We define the potential δv of r (t+1)v at thev-th iteration of the motif
push operation as follows

δv = ∥r (t+1)v ∥1 (25)

Based on Cauchy-Schwarz inequality, in Eq. 16, we have the third
term ∥αr

(t+1)
v (i)P (t+1)(e⊗x (t+1)v−1 . . .⊗x

(t+1)
v−k+2)∥1 ≤ αr

(t+1)
v (i). Thus,

thev-th iteration reduces δ0 by at least (1−α)r
(t+1)
v (i). Hence, after

an adequate number of iterations, motif push operation makes the
final residual vector r (t+1) = 0. Furthermore, for each motif push
operation iteration,

δv+1 ≤ δv − (1 − α)r
(t+1)
v (i) ≤ δv − (1 − α)ϵ (26)

since δv ≥ 0 and maximum of δv is δ0 ≤ 1, hence, motif push
operation will terminate in at most 1

(1−α)ϵ number of iterations. The

Figure 5: Parameter sensitivity.

compelling complexity of each iteration is the lazy updating rule
(i.e., Eq. 17) which runs in polylogarithmic timeO(1

ξ k
)with respect

to the number of edges [36], where ξ ∝ 1
log2(µ(V (t+1)))

, µ(V (t+1)) is

the volume of graph G(t+1), k is the order of motif N.

C PARAMETER SENSITIVITY

There are two important parameters in L-MEGA framework, they
are motif push operation threshold ϵ and motif conductance up-
per bound ϕ. The first parameter is responsible for limiting the
error of the approximated stationary distribution of the multilin-
ear PageRank vector, and the second parameter is responsible for
controlling the quality of the returned motif-aware local cluster.
Here, we generate a synthetic graph having 2, 000 vertices with
0.5% edge density. Setting the undirected triangle as the motifN, we
measure the third-order conductance of the returned local cluster
identified by different values of the third-order conductance upper
bound ϕ and the motif push operation threshold ϵ . In Fig. 5, we
have the following observations: (1) the quality (i.e., the first local
minimum third-order conductance) of the returned local partition
is positively correlated to the third-order conductance upper bound
ϕ and motif push operation threshold ϵ ; (2) the performance of
L-MEGA algorithm is sensitive to different values of the third-order
conductance upper bound ϕ but not very sensitive to the changes
of the motif push operation threshold ϵ , because during the process
of approximating stationary distribution of the multilinear PageR-
ank vector, much more precision may not change the ranking of
vertices in the Sj (x (t+1)) to a corresponding large extent, which
means less precise motif push operation threshold ϵ can achieve
the comparable accuracy.

D REPRODUCIBILITY

The real-world data sets (i.e., Alpha1, OTC2, Call3, Contact4) are
publicly available. The synthetic data and the code of the L-MEGA
framework are released on the author’s website5. The experiments
are programmed based on Python 3.7 on a Windows machine with
four 3.6GHz Intel Cores and 64GB RAM.

1http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
2http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3http://networkrepository.com/ia-reality-call.php
4http://networkrepository.com/ia-contacts-dublin.php
5https://github.com/DongqiFu/L-MEGA

	Abstract
	1 Introduction
	2 Problem Definition
	3 Proposed Model
	3.1 Preliminaries
	3.2 Time-Evolving Motif Representation
	3.3 Transition Tensor Update via Edge Filtering
	3.4 Motif Push Operation
	3.5 Incremental Sweep Cut

	4 L-MEGA Algorithm
	5 Experimental Results
	5.1 Experiment Setup
	5.2 Effectiveness Comparison
	5.3 Scalability Analysis

	6 Related Work
	7 Conclusion
	References
	A Notation
	B Algorithm Analysis
	B.1 Proof of Lemma 3.4
	B.2 Proof of Theorem 3.5
	B.3 Proof of Theorem 3.6

	C Parameter Sensitivity
	D Reproducibility

