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Abstract

All organisms encode enzymes that replicate, maintain, pack, recombine, and repair their genetic material. For this
reason, mutation rates and biases also evolve by mutation, variation, and natural selection. By examining metagenomic
time series of the Lenski long-term evolution experiment (LTEE) with Escherichia coli (Good BH, McDonald MJ, Barrick JE,
Lenski RE, Desai MM. 2017. The dynamics of molecular evolution over 60,000 generations. Nature 551(7678):45-50.),
we find that local mutation rate variation has evolved during the LTEE. Each LTEE population has evolved idiosyncratic
differences in their rates of point mutations, indels, and mobile element insertions, due to the fixation of various hyper-
mutator and antimutator alleles. One LTEE population, called Ara+3, shows a strong, symmetric wave pattern in its
density of point mutations, radiating from the origin of replication. This pattern is largely missing from the other LTEE
populations, most of which evolved missense, indel, or structural mutationsin topA, fis, and dusB—Iocithat all affect DNA
topology. The distribution of mutations in those genes over time suggests epistasis and historical contingency in the
evolution of DNA topology, which may have in turn affected local mutation rates. Overall, the replicate populations of the
LTEE have largely diverged in their mutation rates and biases, even though they have adapted to identical abiotic
conditions.
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Significance

Bacteria often evolve elevated mutation rates during adaptation to challenging environments. Less is known about
how mutation rates vary over the chromosome, and how those local biases evolve during adaptive evolution. To
answer this question, we analyzed metagenomic data from an ongoing experiment with Escherichia coli in which 12
replicate populations of bacteria, started from a single clonal strain in 1988, were allowed to evolve for more than
30years. We find that each replicate population has a different genomic distribution of observed mutations, indicating
that local mutation rates have evolved idiosyncratically, even though each population has adapted to the same
laboratory conditions. Intriguingly, our results indicate that adaptive mutations that change DNA topology may also
affect local mutation rates.

Introduction rates. This idea—that second-order selection adaptively modi-

fies the evolutionary process itself—is debated (Tenaillon et al.
Loci that modify DNA repair and recombination modify the 2001; Lynch et al. 2016). Nonetheless, populations of
evolutionary process. Therefore, one might ask whether nat- Escherichia coli, engineered to have constitutive sexual recom-
ural selection adaptively tunes mutation and recombination bination and elevated mutation rates, adapt faster than
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control populations in the laboratory (Cooper 2007; Peabody
et al. 2016, 2017).

To study second-order selection on mutation rates, one
can use experimental evolution. By running experiments in
which replicate populations evolve under controlled condi-
tions, with different starting mutation rates, one can ask
whether particular mutation rates are favored over others
(Chao et al. 1983; Loh et al. 2010; Sprouffske et al. 2018).
Here, we use metagenomic time series data from the Lenski
long-term evolution experiment (LTEE) with E. coli to study
how mutation rates evolve in real time.

In the LTEE, 12 populations of E. coli, descended from a
common ancestral strain, have adapted for more than 73,000
generations to carbon-limited minimal media. Six of the pop-
ulations are labeled Ara+, whereas the other six are labeled
Ara—, based on the presence or absence of an evolutionarily
neutral arabinose marker (Lenski et al. 1991). The LTEE pop-
ulations are strictly asexual. Some populations have evolved
defects in DNA repair which vastly increase their point muta-
tion rates. The causative hypermutator alleles likely went to
fixation by linkage with highly beneficial mutations, rather
than being beneficial per se (Sniegowski et al. 1997;
Tenaillon et al. 2016). We refer to the LTEE populations that
have evolved large increases in point mutation rates as
“hypermutator populations,” and refer to the others as
“nonmutator populations.”

Molecular evolution in the hypermutator populations of
the LTEE is dominated by “genetic draft,” in which large
numbers of nearly neutral passenger mutations hitchhike
with a small number of beneficial driver mutations (Neher
2013). This phenomenon has obscured the genomic signa-
tures of adaptation in those populations (Tenaillon et al. 2016;
Couce et al. 2017; Good et al. 2017; Maddamsetti et al.
2017). In this regime, also called “emergent neutrality”
(Schiffels et al. 2011), the evolutionary dynamics inferred
from whole-population samples of the hypermutator popula-
tions (Good et al. 2017) provides good data on mutation rates
and biases, even though natural selection drives the dynamics.
Here, we examined LTEE metagenomics data (Good et al.
2017) for mutation rate variation and biases over the chro-
mosome (Foster et al. 2013; Paul et al. 2013; Jee et al. 2016;
Niccum et al. 2019).

Results

Cumulative Number of Observed Mutations in Each
Population Reveals Dynamics Caused by Both
Hypermutator and Antimutator Alleles

We examined the number of observed mutations over time in
each LTEE population (figs. 1 and 2, supplementary figs. S1-
S3, Supplementary Material online). These results show that
mutation rates have evolved idiosyncratically over the LTEE.
Figure 1A shows the number of point mutations over time in

each population. The rate of observed point mutations de-
creased in three of the six hypermutator populations (Ara—2,
Ara+3, and Ara+6). The decrease in the rate of molecular
evolution in these populations was previously ascribed to the
evolution of antimutator alleles (Tenaillon et al. 2016; Good
et al. 2017). Although antimutator alleles of mutY compen-
sating for defects in mutT have been reported in Ara—1
(Wielgoss et al. 2013), the change in slope observed at
40,000 generations in Ara—1 is subtle compared with the
slope changes in Ara—2, Ara+3, and Ara+6.

Figure 1B shows the number of observed indel mutations
over time in each population. Five of the six point-mutation
hypermutator populations also show an indel hypermutator
phenotype. These five populations all evolved defects in mis-
match repair (MMR) (table 1 and fig. 4). The exception is
Ara—1, which evolved a frameshift mutT allele (table 1 and
fig. 3) that induces a high point mutation rate, absent a cor-
responding indel hypermutator phenotype.

The hypermutator dynamics in Ara—2 are particularly strik-
ing. An antimutator allele eventually fixes, and reverts both
the point and indel hypermutator phenotype back to ances-
tral or near ancestral levels (fig. 1A and B). The hypermutator
phenotype is caused by phase variation of a (TGGCGC)s re-
peat in mutL (table 1). Reversions to the triplet state reverse
the hypermutator phenotype. The number of new point and
indel mutations in Ara—2 (supplementary figs. S1 and S2,
Supplementary Material online) fluctuates with the allele fre-
guency dynamics of this mutl repeat (fig. 4). Although fixa-
tions are usually irreversible in large asexual populations,
phase variation is an exception: polymerases often slip on re-
petitive sequences, causing those repeats to expand or con-
tract at relatively high rates (Moxon et al. 2006).

At first glance, figure 1B seems to show that Ara+6 fixed a
mutation reverting the indel hypermutator phenotype.
However, a close examination of the indel mutation rate
and allele frequency dynamics in Ara+6 reveals that a
super-hypermutator clade evolved within the first 1,000 gen-
erations (supplementary fig. S2, Supplementary Material on-
line). Additional evidence for the super-hypermutator clade
comes from the evolution and extinction of an A:T—G:C
and G:C—A:T hypermutator phenotype (fig. 2) that parallels
the evolution of the indel hypermutator phenotype. This
super-hypermutator clade carries a frameshift allele of the
MMR gene mutS (table 1 and fig. 4), is distinguished by
marker alleles of the nucleotide excision repair genes uvrA
and uwrB (fig. 3), and persists at low frequency until going
extinct by 20,000 generations (figs. 3 and 4, supplementary
fig. S2, Supplementary Material online). The majority clade in
Ara+6 evolved a mutation in mutT at 4,750 generations (ta-
ble 1 and fig. 3) that causes a point mutation hypermutator
phenotype without causing an indel hypermutator pheno-
type. The coexistence of clades with different hypermutator
phenotypes, and the eventual extinction of the super-
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Fic. 1.—Divergent evolution of mutation rates in the LTEE. Each panel shows the cumulative number of observed mutations, subdivided by mutation
class, over time in each LTEE population. The top six panels show the nonmutator LTEE populations, and the bottom six panels show the hypermutator LTEE
populations. (4) Point mutations are shown in red. (B) Indel mutations are shown in purple. (C) sv associated with transposons are shown in green, whereas

those that are not associated with transposons are shown in gray.

hypermutator clade, most reasonably explains the loss of the
indel hypermutator phenotype from Ara+6.

Figure 1C shows the number of observed structural muta-
tions over time. As described in the original report for this data
set (Good et al. 2017), structural mutations (or structural var-
iants, sv) are defined by junctions between two distinct loca-
tions in the reference genome. The vast majority of these
structural mutations are caused by insertion sequence (IS)

transpositions. Three of the canonical nonmutator popula-
tions (Ara—5, Ara—6, and Ara+1) show an IS hypermutator
phenotype. The IS hypermutator phenotype in Ara+1 was
reported previously (Papadopoulos et al. 1999; Tenaillon
et al. 2016). In contrast, only one of the canonical hypermu-
tator populations, Ara—3, shows an IS hypermutator pheno-
type. The rate of observed structural mutations in Ara—3
shows three different slopes. Ara—3 evolved an IS
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Fic. 2—The dynamics of hypermutator and antimutator alleles affect the spectrum of observed point mutations over time. (A) Spectrum of point
mutations over time in the hypermutator LTEE populations. (B) Inset figure showing nondominant point mutation spectra over time in the hypermutator LTEE

populations.

hypermutator phenotype very early in the LTEE. Around
30,000 generations, the IS rate intensifies, either due to ge-
netic evolution, or as a consequence of stress induced by the
citrate metabolic innovation that evolved around that time
(Blount et al. 2012, 2020). Finally, the IS rate decreases
around 45,000 generations. More than 100 mutations go
to fixation in the selective sweep at 45,000 generations in
Ara—3, including mutations in the DNA repair genes recR,
reck, ligA, uvrA, and ybaZ. The distinct IS rates observed in
Ara—3 may, in part, reflect clonal interference between
deeply diverged, competing lineages in that population
(Blount et al. 2012; Leon et al. 2018), especially if those line-
ages have different IS transposition rates.

We also examined the spectrum of point mutations in each
hypermutator population over time (fig. 2). Ara—1 and Ara+6
show a high frequency of A:T—C:G transversion mutations,
characteristic of defects in mutT (Tajiri et al. 1995; Fowler et al.
2003; Wielgoss et al. 2013). Ara-2, Ara-3, Ara-4, and
Ara+3, which all have defects in MMR (table 1 and fig. 4),
show a high frequency of AT—G:C and G:C—A:T muta-
tions. These findings are consistent with genomic analyses
of LTEE hypermutators (Couce et al. 2017). Furthermore,
Ara—1, Ara—3, and Ara+6 all show late increases in the

frequency of G:C—T:A transversion mutations, characteristic
of defects in mutY (Tajiri et al. 1995; Fowler et al. 2003;
Wielgoss et al. 2013).

In examining mutT, we noticed that two of the three
cases of mutT alleles arising to high frequency in the LTEE
occur on an uvrA background (Ara—2 and Ara+6), whereas
the third, in Ara—1, occurs on an uvrC background (fig. 3).
The mutT allele in Ara—2 does not cause the characteristic
mutT A.T—C:G hypermutator phenotype found in Ara—1
and Ara+6 (fig. 2), so its association with uvrA may be co-
incidental. However, the same uvrA substitution that goes to
fixation with mutT in Ara+6 also occurs in a 40,000 gener-
ation isolate from the Ara—1 population called REL10939
(Tenaillon et al. 2016), which suggests that this particular
uvrA allele may be beneficial in those contexts.
Furthermore, it has been reported that uvrA/mutT and
uvrB/mutT double knockouts have a substantially lower mu-
tation rate than mutT knockouts, in the presence of hydro-
gen peroxide (Hori et al. 2007). Based on these observations,
we hypothesize that the mutT alleles that successfully went
to fixation in the LTEE may have evolved on an uvrABC ge-
netic background that reduced the intensity of the mutT
hypermutator phenotype.
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Table 1.
Putative Hypermutator and Antimutator Alleles Described in the Text
Population Gene DNA Repair Pathway Appearance Time (Generations) Position (bp) Mutation
Ara—1 uvrC Oxidative damage repair 26,250 1,972,086 Q183P
Ara—1 mutT Oxidative damage repair 26,250 114,034 Q67
Ara—1 mutY Oxidative damage repair 28,750 2,988,792 L40W
Ara—1 mutY Oxidative damage repair 32,250 2,989,164 L164*
Ara—2 mutL MMR 2,250 4,375,786 (TGGCGQ)3_,4
Ara—2 uvrA Oxidative damage repair 12,250 4,251,585 A407T
Ara—2 mutT Oxidative damage repair 13,750 114,113 R89H
Ara—2 mutlL MMR *This in-frame reversion 4,375,781 (TGGCGQ)5_.»
fixes at 42,250 generations
Ara—3 mutS MMR 34,750 2,753,768 Q606*
Ara—3 mutY Oxidative damage repair 48,250 2,989,624 A1 bp
Ara—4 mutlL MMR 7,250 4,375,781 (TGGCGQ)3_,,
Ara+3 mutS MMR 2,750 2,752,473 +G
Ara+6 mutS MMR 1,250 2,752,473 +G
Ara+6 uvrA Oxidative damage repair 4,750 4,250,341 1821M
Ara+6 mutT Oxidative damage repair 4,750 114,034 Qe_s
Ara+6 mutY Oxidative damage repair 31,750 2,988,917 Y82D
Ara+6 mutY Oxidative damage repair 49,750 2,989,297 c08W

Gene-Orientation Mutation Bias Evolves in the LTEE

Several reports indicate that mutation rates differ between
the leading and lagging strands of the DNA replication bubble
(Lee et al. 2012; Paul et al. 2013). Potential causes include
asymmetry in nucleotide composition around the replication
origin (GC skew) (Marin and Xia 2008), context-dependent
mutation rates that are asymmetric around the replication
origin (Sung et al. 2015), and head-on collisions between
the replication and transcription molecular machinery (Paul
et al. 2013). Such reports motivated us to ask whether the
LTEE metagenomics data showed evidence of gene-
orientation mutation biases, such that genes oriented with
(or against) the leading or lagging strand of DNA synthesis
have different mutation rates.

Our null expectation is that the distribution of synonymous
mutations on each strand of the chromosome should be re-
lated to the amount of coding sequence on each strand (i.e.,
the density of genes multiplied by their length). Furthermore,
the spectrum of nucleotide substitutions on each strand
should reflect local G:C content in the ancestral LTEE clone
REL606: for example, G:C—A:T substitutions should be more
common in G:C-rich regions. Figure 5A shows this null expec-
tation. Both the amount of coding sequence and G:C content
per strand are asymmetric about the replication origin of
REL606. At the replication origin, one DNA strand switches
from leading to lagging, while its complement switches from
lagging to leading. This switch occurs because DNA replica-
tion is bidirectional, such that two replisomes move in oppo-
site directions from the replication origin. Even in the absence
of gene-orientation mutation bias, figure 5A shows that some
asymmetry in the distribution of synonymous mutations over
the replication origin is expected.

The observed distributions of synonymous mutations on
each strand of the chromosome are shown in figure 5B.
We separately analyzed MMR- and MutT-deficient hypermu-
tator populations. In both cases, the number of observed
mutations significantly differs between genes oriented with
or against the movement of the replisome, based on compar-
ing the expected ratio of mutations to the observed ratio of
mutations. The MMR-deficient hypermutator populations
show significantly more gene-orientation mutation bias than
expected (two-tailed binomial test: observed ratio of
2,066:2,664  mutations vs. expected ratio  of
1,730,238:2,066,587 nucleotides; P=0.0090), whereas the
MutT-deficient hypermutator populations show significantly
less gene-orientation bias than expected (two-tailed binomial
test: observed ratio of 947:1,033 mutations vs. expected ratio
of 1,730,238:2,066,587 nucleotides; P=0.0446). Note that
these calculations do not account for the characteristic muta-
tion spectra of MMR- and MutT-deficient hypermutators
(fig. 5B). For example, the extreme rate of A:-T—C:G muta-
tions seen in MutT-deficient hypermutators (Foster et al.
2015) should cause AT rich genes to mutate faster than
AT poor genes.

The Genomic Distribution of Observed Mutations in
Ara+3 Shows a Strong, Symmetric Wave Pattern over the
Origin of Replication

Multiple studies (Sharp et al. 1989; Lang and Murray 2011;
Foster et al. 2013; Dillon et al. 2018; Niccum et al. 2019) have
reported correlations between local mutation rates and dis-
tance from the origin of replication. One hypermutator LTEE
population, called Ara+3, shows a symmetric wave pattern
reflected over oriC (fig. 6). Indeed, the genomic distribution of
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Fic. 3.—Oxidative damage repair alleles in hypermutator LTEE populations. This visualization uses computer code from Good et al. (2017). Stars indicate
the time (and allele frequency) at which mutations are reliably estimated to appear in the time series. The allele frequency trajectories for all observed
mutations in the hypermutator populations are shown in gray. The allele frequency trajectories of de novo mutations (excepting synonymous mutations) in
oxidative damage repair genes (supplementary file 1, Supplementary Material online) are colored and labeled in each population.

observed mutations in Ara+3 is significantly different from
the genomic distribution of observed mutations summed
over all  hypermutator  populations  (two-sample
Kolmogorov-Smirnov test: D=0.0567, P<107'%). The
wave in Ara+3 has a trough-to-peak ratio of ~25:75
(fig. 6). Excluding Ara+3, the genomic distribution of ob-
served mutations summed over the remaining MMR-
deficient LTEE populations shows a weak wave pattern,
whereas the populations with defects in mutT shows no ev-
idence of the wave pattern (fig. 7). The genomic distribution
of observed mutations in the MMR-deficient populations (ex-
cluding Ara+3) is significantly different from the genomic

distribution of observed mutations in the MutT-deficient pop-
ulations (two-sample Kolmogorov—Smirnov test:
D=0.040916, P< 107°).

Evidence for Epistasis and Historical Contingency in the
Evolution of DNA Topology

Why does a strong wave pattern only appear in Ara+3?
Others have hypothesized that local chromatin structure
affects local mutation rates (Foster et al. 2013; Niccum et al.
2019). Furthermore, DNA topology has evolved in parallel in
the LTEE, and artificially increasing DNA supercoiling is
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beneficial under LTEE conditions (Crozat et al. 2005, 2010).
Therefore, we hypothesized that mutations in genes that af-
fect DNA topology might affect the wave pattern. To test this
hypothesis, we examined the timing and distribution of muta-
tions in topA, fis, and dusB (yhdG). We focused on these
genes for several reasons. First, these loci show strong parallel
evolution in the LTEE (Crozat et al. 2010). Second, introducing
evolved alleles of topA and fis into the ancestral genome are
sufficient to confer a fitness benefit as well as additive
changes to DNA topology (Crozat et al. 2005). Finally, statis-
tical analysis of the pattern of evolution for dusB and fis in the
LTEE led to the discovery that dusB regulates fis expression
(Crozat et al. 2005, 2010). We excluded synonymous muta-
tions from this analysis. We counted both fixations and

mutations destined for extinction, because many beneficial
mutations go extinct in large asexual populations due to
clonal interference (Gerrish and Lenski 1998; Lang et al.
2013; Levy et al. 2015; Maddamsetti, Lenski, et al. 2015; Ba
et al. 2019).

All LTEE populations evolved missense, indel, or structural
mutations in topA, fis, and dusB within the first 10,000 gen-
erations, except two: Ara+2 and Ara+3 (fig. 8). The timing
and distribution of mutations in these genes across popula-
tions suggests epistasis and historical contingency (Good et al.
2017). The early arrival times for mutations in these genes
suggests that there is an early, limited window of opportunity
for those mutations to go to fixation. Quantitative evidence
comes from Ara+3, which has no missense, nonsense, indel,
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or structural mutations in topA, fis, and dusB whatsoever,
despite its strong hypermutator phenotype. The probability
of this event is P = (1—(t/g))", where t is the effective muta-
tional target size, g is the length of the chromosome
(9=4,629,812), and n is the number of observed missense,
indel, and structural mutations in Ara+3 (n=4,368). Given
the wave pattern in Ara+3, the effective mutational target
size of topA, fis, and dusB could be smaller than their com-
bined physical target size (3,861 bp), say if they occurred in
the trough of the wave. To take this into account, we parti-
tioned the chromosome into bins, counted mutations per bin,
and calculated the effective mutational target size by multi-
plying the physical target size (length) of topA, fis, and dusB
by the number of mutations per base pair in their respective
bins. These genes are significantly depleted of mutations in
Ara+3, for bin sizes ranging from 100 kb to the entire chro-
mosome (one-tailed randomization tests with 10,000 boot-
straps: P< 0.05 in all cases).

The distribution of synonymous mutations in topA, fis, and
dusB across the LTEE populations is interesting (supplemen-
tary fig. S4 and Supplementary Material online). A single, syn-
onymous A312A substitution in dusB went to fixation at

~4,000 generations in Ara+3, simultaneously with alleles in
the MMR genes mutS and mutH that apparently caused the
early hypermutator phenotype in this population. No other
synonymous mutations in dusB are observed in Ara+3.
Furthermore, there is evidence of parallel evolution at this
particular position in dusB. The same synonymous mutation
occurs in Ara+6, and another synonymous mutation, one
base pair downstream in the next codon, is the only synony-
mous mutation in topA, fis, or dusB observed in Ara—2 (sup-
plementary fig. S4, Supplementary Material online). This
parallelism suggests that positive selection may be acting on
these synonymous variants. Overall, it is striking how few syn-
onymous mutations in topA, fis, and dusB occur in the hyper-
mutator LTEE populations, which implies that synonymous
variants in these genes may not be evolving neutrally.
Indeed, STIMS (Maddamsetti and Grant 2020) finds a signif-
icant signal of purifying selection on synonymous mutations in
topA, fis, and dusB in Ara—1 and Ara—3 (one-tailed random-
ization test with 10,000 bootstraps: P < 0.0001).

We also examined the genes that encode the nucleoid-
binding protein HU and the terminus-organizing protein
MatP, as deletions of these loci were shown to affect the
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Fic. 6.—One hypermutator LTEE population, Ara+3, shows a strong wave pattern of mutation rate variation centered on the replication origin. Each
panel shows the genomic distribution of mutations observed in each hypermutator LTEE population in the metagenomics data. The x axis is the reference
genome, centered on the replication origin, partitioned into 46 equally sized bins of ~100kb. Indels are in purple, missense mutations are in dark blue,
noncoding mutations are blue green, nonsense mutations are sea green, sv are green, and synonymous mutations are yellow.

wave pattern (Niccum et al. 2019). Notwithstanding the rel-
evance of HU and MatP in Niccum et al. (2019), these genes
show limited evidence of parallel evolution in the LTEE (sup-
plementary fig. S5, Supplementary Material online).

Synonymous Nucleotide Diversity in Natural E. coli
Populations Does Not Predict Mutation Rate Variation in
the LTEE

Finally, we used the LTEE metagenomic data to revisit previous
work, which found that the distribution of synonymous

mutations in the LTEE does not reflect patterns of synony-
mous variation among natural E. coli isolates (Maddamsetti
et al. 2015). During our reanalysis, we found a potential cod-
ing error affecting the results of the Kolmogorov—Smirnov test
reported in that paper. Therefore, we used Poisson regression
to ask whether the estimates of synonymous nucleotide di-
versity 05 published in Martincorena et al. (2012), when
treated as gene-specific estimates of the point-mutation
rate per base pair, predict the distribution of synonymous
mutations observed in the LTEE. A null model in which muta-
tions occur uniformly over the chromosome (Akaike's
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and synonymous mutations are yellow.

Information Criterion, AIC = 8,529.6) fits the data far better
than the 0, model (AIC = 9,171.3). When we fit both models
to Ara+3, we again find that the null model is better than the
0s model at predicting the observed distribution of synony-
mous mutations (AIC = 2,168.2 for null model vs. AIC =
2,190.8 for 6 model). This finding validates the conclusions
reported in Maddamsetti et al. (2015), despite the potential
problems in that analysis.

Discussion

By examining the distribution of observed mutations over
more than 60,000 generations of the LTEE (Good et al.
2017), we find that mutation rates and biases have diverged
idiosyncratically, despite identical abiotic conditions. One LTEE
population, Ara+3, shows strong evidence of the wave pat-
tern in mutation rate variation. Similar patterns have been
seen in mutation accumulation experiments with MMR-
deficient strains of E. coli as well as in Vibrio bacteria (Dillon
et al. 2018; Niccum et al. 2019). Our result shows that geno-
mic biases in mutation rates evolve dynamically on laboratory
timescales. It is likely that the identity and effects of many
hypermutator and antimutator alleles in the LTEE remains un-
known. For instance, we do not know what alleles, if any,
cause the apparent late decrease in mutation rate seen in
Ara+3. Experiments are needed, both to discover those un-
known alleles, and to test for genetic interactions that mod-
ulate mutation rates in the LTEE, as we have hypothesized for
alleles of uvrABC and mutT.

The divergence in the rates, biases, and spectra of muta-
tions across replicate populations in this simple long-term evo-
lution experiment makes one wonder about the scope of
natural variation in mutation rates, biases, and spectra. An
evolution experiment with replicate mouse microbiomes has
indicated that microbial evolution in the gut is probably char-
acterized by long-term maintenance of intraspecies genetic
diversity, including mutation rate polymorphism (Ramiro et al.
2020). Phylogenomic studies have also found extensive evi-
dence for horizontal gene transfer in DNA repair genes
(Denamur et al. 2000), which suggests that polymorphism
in DNA repair genes may cause extensive natural variation
in mutation and recombination rates within and across bac-
terial (meta-) populations and communities.

We find statistical evidence for historical contingency and
epistasis in the evolution of DNA topology in the LTEE, and for
Ara+3 in particular. These findings suggest a relationship be-
tween local DNA topology and local mutation rate variation,
consistent with the experiments reported by Niccum et al.
(2019). These findings immediately suggest the need for
experiments to test whether local DNA topology causes local
mutation rate variation, and to test whether local DNA topol-
ogy affects strand-specific and gene-orientation mutation
biases.

A comparison of synonymous genetic variation estimated
from natural E. coli isolates to the distribution of observed
synonymous mutations in the LTEE confirms the conclusion
of earlier work (Maddamsetti et al. 2015) using richer data,
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and is consistent with other reports as well (Lee et al. 2012;
Chen and Zhang 2013; Lynch et al. 2016). In sum, gene-
specific variation in synonymous nucleotide diversity 6s, esti-
mated from natural isolates of E. coli, does not predict the
genomic distribution of synonymous mutations observed in
the LTEE. In any case, the other results that we have pre-
sented, in addition to prior reports (Foster et al. 2013; Paul
et al. 2013; Sung et al. 2015; Jee et al. 2016; Niccum et al.
2019), strongly indicate that mutation rates vary over the
E. coli chromosome.

These results add to the robust debate on the causes and
consequences of mutation rate evolution. It is clear that a
deeper understanding of the relationships among chromatin
structure, genomic variation in mutation and recombination
rates, and natural selection, and their consequences for short-
and long-term genome evolution, will be a fruitful goal for
further research.

Materials and Methods

Preprocessed LTEE metagenomic data, and associated analysis
and visualization code was downloaded from: https:/github.
com/benjaminhgood/LTEE-metagenomic. Analysis codes are
available from: https:/github.com/rohanmaddamsetti/LTEE-
purifying-selection/blob/master/mutation-rate-analysis.R  and
https:/github.com/rohanmaddamsetti/LTEE-purifying-selec-
tion/blob/master/metagenomics-library.R. We systematically
examined DNA repair genes in E. coli (Eisen and Hanawalt
1999; Lee et al. 2016; Deatherage et al. 2018), as well as
annotated DNA polymerases, and other proteins of the repli-
some. A table of these genes and their annotations is in sup-
plementary data file 1, Supplementary Material online. We
cross-checked the evolutionary dynamics of alleles of these
genes in the LTEE metagenomic data against the observed
changes in mutation rates and spectra in each LTEE popula-
tion. We also examined the LTEE genomic data (Tenaillon
et al. 2016) for mutations in these genes, using the R Shiny
web app interface at www.barricklab.org/shiny/LTEE-Ecoli. In
this manner, we curated a list of putative hypermutator and
antimutator alleles in the LTEE (table 1). Those alleles, and
alleles of other genes in their respective DNA repair pathways,
are shown in figures 3 and 4. Figure 3 shows the evolutionary
dynamics of alleles in genes encoding base excision repair,
nucleotide excision repair, and degradation of oxidized nucle-
otide triphosphates. Figure 4 shows the evolutionary dynam-
ics of alleles in genes encoding DNA MMR. Data sets and
analysis codes to replicate the findings and figures in this pa-
per are available on the Dryad Digital Repository (DOI: https:/
doi.org/10.5061/dryad.kprrdxh2z.).
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