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Abstract

Although it iswell knownthatabundantproteinsevolve slowlyacross the treeof life, there is little consensus forwhy this is true.Here,

I report that abundant proteins evolve slowly in the hypermutator populations of Lenski’s long-term evolution experiment with

Escherichia coli (LTEE). Specifically, the density of all observedmutations per gene, asmeasured inmetagenomic time series covering

60,000 generations of the LTEE, significantly anticorrelates with mRNA abundance, protein abundance, and degree of protein–

protein interaction. The same pattern holds for nonsynonymous mutation density. However, synonymous mutation density, mea-

sured across the LTEE hypermutator populations, positively correlates with protein abundance. These results show that universal

constraintsonproteinevolutionare visible indata spanning threedecadesof experimental evolution. Therefore, it shouldbepossible

to design experiments to answer why abundant proteins evolve slowly.

Key words: purifying selection, experimental evolution, protein evolution.

Introduction

One consequence of the high complexity and intricate func-

tional organization of organisms is that most mutations are

deleterious. Natural selection resists the loss of function and

fitness caused by mutation accumulation over time (Leiby and

Marx 2014; LaBar and Adami 2017; Grant et al. 2021). This

process, called purifying selection, maintains the complexity

and functional integrity of evolved organisms.

Despite its importance, purifying selection has been little

studied in experimental systems (Alvarez-Ponce et al. 2016), in

contrast to adaptive evolution (Barrick and Lenski 2013). In

two recent papers, my colleagues and I reported evidence for

purifying selection in metagenomic time series of Lenski’s

long-term evolution experiment with Escherichia coli, often

called the LTEE for short (Lenski et al. 1991; Good et al.

2017). We considered the molecular evolution of the six

hypermutator LTEE populations, which have elevated muta-

tion rates due to evolved defects in DNA repair (Tenaillon et al.

2016; Maddamsetti and Grant 2020a). These populations

continue to increase in fitness due to adaptive evolution,

even though genome evolution in these populations largely

reflects the accumulation of nearly neutral mutations (Couce

et al. 2017). In Grant et al. (2021), we reported evidence for

purifying selection on aerobic- and anaerobic-specific genes in

E. coli. In Maddamsetti and Grant (2020b), we then reported

evidence for purifying selection on genes that were found to

be essential in the ancestral LTEE strain, REL606, in a transpo-

son mutagenesis screen (Couce et al. 2017).

Here, I report evidence that purifying selection in the LTEE

reflects a universal constraint on protein evolution found

across the tree of life, namely that highly abundant and highly

interacting proteins evolve slowly (Fraser et al. 2002; Hahn
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et al. 2004; Drummond et al. 2005; Hahn and Kern 2005;

Drummond and Wilke 2008; Alvarez-Ponce et al. 2017).

Despite the universality and simplicity of this pattern of puri-

fying selection, its proximate causes continue to be debated

(Plata et al. 2010; Plata and Vitkup 2018; Razban 2019;

Usmanova et al. 2021). A number of compelling hypotheses

have been proposed, but consensus has not been reached.

The findings reported here will not settle this debate.

Nonetheless, an important consequence of my findings is

that it may be possible to resolve the causes of this universal

pattern by experimental means.

Results

Rationale and Study Design

This study takes a novel approach to study the anticorrelation

between protein abundance and evolutionary rates (P�al et al.

2001; Drummond et al. 2005, 2006; Drummond and Wilke

2008; Lobkovsky et al. 2010; Yang et al. 2010; Wylie and

Shakhnovich 2011; Serohijos et al. 2012; Serohijos and

Shakhnovich 2014). In this section, I present the logical struc-

ture of the hypotheses and predictions under consideration

and explain the methods that I use (fig. 1).

I assume that the mutation rates in the hypermutator LTEE

populations are high enough that the vast majority of ob-

served mutations are nearly neutral hitchhikers, whose dy-

namics are driven by a relatively small number of highly

beneficial mutations (Barrick and Lenski 2009; Levy et al.

2015; Maddamsetti, Lenski, et al. 2015; Tenaillon et al.

2016; Couce et al. 2017; Good et al. 2017; Ba et al. 2019;

Maddamsetti and Grant 2020a). This allows us to infer infor-

mation about mutation rates and biases (Couce et al. 2017;

Maddamsetti and Grant 2020a) even under environmental

and population-genetic conditions that favor strong positive

selection. It follows that the mutations observed across the

nonmutator and hypermutator LTEE populations, to a large

extent, reflect different parts of the distribution of mutation

fitness effects (DFE) per gene.

With this assumption in hand, I start from the hypothesis

that purifying selection causes abundant proteins to evolve

slowly. This means that the DFE for abundant proteins should

contain more deleterious mutations than the DFE for less

abundant proteins, all else being equal. It follows that highly

abundant proteins should have fewer observed mutations in

the hypermutator LTEE populations, because it is unlikely that

highly deleterious mutations will reach observable allele fre-

quencies in the LTEE, given the population-genetic conditions

of the LTEE (Good et al. 2017). This is the logical basis for

using the hypermutator LTEE populations to test for purifying

selection on abundant proteins.

The key technical trick is that we do not need to calculate

evolutionary rates for the LTEE—in fact, we can completely

ignore the phylogenetic structure of each population. Instead,

we only need to count the number of observedmutations per

gene across all hypermutator populations, and normalize by

gene length (fig. 1). An additional benefit of this approach is

that the effects of clonal interference and frequency-

dependent selection (Maddamsetti, Lenski, et al. 2015;

Good et al. 2017) can be ignored, because these phenomena

do not affect the density of mutations that are ever observed

in the LTEE. By contrast, clonal interference and frequency-

dependent selection may have significant effects on evolu-

tionary rates (Lang et al. 2013; Serohijos and Shakhnovich

2014; Maddamsetti, Lenski, et al. 2015; Good et al. 2017).

The great advantage of the LTEE, and other evolution

experiments with microbes, is the “fossil record” of frozen

samples that can be revived for comparison with later sam-

ples. The vast majority of mutations in the LTEE lie off the line

of descent, but are still accessible from sequencing those fro-

zen population samples (Good et al. 2017). By contrast, anal-

yses of natural sequence data are largely restricted to extant

within-population polymorphism and between-species fixa-

tions. The use of mutations off the line of descent in the

LTEE, along with its multidecade duration, provides sufficient

(and ever increasing) statistical power to discern patterns of

purifying selection, such as the one discussed in this work.

Correlations between mRNA and Protein Abundance and
Mutation Density per Gene in LTEE Populations

I compared the density of observed mutations in the LTEE

(Good et al. 2017) with mRNA and protein abundance data

for the LTEE ancestral strain, REL606, grown in DM500 media

(Caglar et al. 2017). These comparisons are shown in figure 2;

note that throughout this section, all significant Spearman

correlation coefficients and associated P values are labeled

on the figures. In the hypermutator LTEE populations,

mRNA abundance during exponential growth significantly

anticorrelates with mutation density, whereas protein abun-

dance, at all time points, significantly anticorrelates with mu-

tation density. The same anticorrelation holds, for all time

points, when only nonsynonymous (i.e., missense and non-

sense) mutations are considered (fig. 3). The significance of

these anticorrelations increases when genes with no observed

mutations in the metagenomic data are excluded (supple-

mentary fig. S1, Supplementary Material online, for all muta-

tion types; supplementary fig. S2, Supplementary Material

online, for nonsynonymous mutations). By contrast, the den-

sity of synonymous mutations across the hypermutator pop-

ulations shows a significant positive correlation with mRNA

and protein abundance for REL606 in DM500 media, across

all phases of growth (fig. 4). When genes with no mutations

in the metagenomic data are excluded, significant positive

correlations remain between synonymous mutation density

and mRNA and protein abundance, although to a lesser de-

gree (supplementary fig. S3, Supplementary Material online).

In the nonmutator LTEE populations, both mRNA and protein
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abundance for REL606 grown in DM500 show significant

positive correlations with the density of observed mutations

(supplementary fig. S4, Supplementary Material online).

I also asked whether the strength of the Spearman corre-

lations between protein abundance and mutation density in

the hypermutator populations increased over the course of

the LTEE (fig. 5). In analyses of natural sequence variation, it is

understood that the strength of anticorrelation between pro-

tein evolutionary rates and protein abundance increases with

divergence time among the taxa under consideration

(Serohijos et al. 2012). Based on protein biophysics,

Serohijos et al. (2012) additionally predicted that the strength

of the anticorrelation between evolutionary rates and protein

abundance would increase, but at declining rates over time.

Even though the differences in measurements, units, and

timescales make direct comparisons to those theoretical pre-

dictions impossible, it is striking that a similar functional form

of the relationship between time and the strength of the rate-

abundance anticorrelation occurs with the mutations ob-

served across the LTEE hypermutator populations (fig. 5A

FIG. 1.—Study design. (A) Many studies have reported that highly abundant proteins evolve slowly. If this fact is caused by purifying selection, then

mutations in highly abundant proteins, should be more deleterious than mutations in less abundant proteins, on average. This logic leads to the prediction

that highly abundant proteins should have fewer observed mutations than less abundant proteins across the hypermutator populations of the LTEE, taking

gene length into account. (B) Previous studies inferred evolutionary rates using DNA and protein sequence comparisons across species. (C) This study sums all

observed mutations per gene in metagenomic time series of the long-term evolution experiment with Escherichia coli (LTEE), considering nonmutator and

hypermutator populations separately. This approach increases statistical power over a rate-based approach and is affected by neither clonal interference nor

frequency-dependent selection. To give a concrete example, the top panel in (C) shows the number of observedmutations (stars) in the adhesin gene yeeJ in

the nonmutator population Ara�6 over 60,000 generations. The bottom panel in (C) shows the number of observed mutations (stars) in yeeJ in the

hypermutator population Araþ6 over the same period. For comparison across genes, the number of observed mutations is normalized by gene length.
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FIG. 2.—The density of observed mutations per gene across all hypermutator LTEE populations anticorrelates with mRNA abundance in exponential

growth phase, and anticorrelates with protein abundance at all time points. RNA and protein abundance were measured for the ancestral LTEE clone

REL606, grown in DM500media (Caglar et al. 2017). Each point represents a protein-coding gene in the genome of the ancestral LTEE clone, Escherichia coli

B strain REL606. The abundance of mRNA or protein expressed per gene is shown on the x axis of each plot. The density of observed mutations per gene is

shown on the y axis of each plot. Comparisons to mRNA abundance are shown in purple, whereas comparisons to protein abundance are shown in green.

Statistically significant correlations are shown in blue, whereas nonsignificant correlations are shown in light gray. Spearman correlation coefficients (rho) and

associated P values are shown on each panel.

FIG. 3.—The density of observed nonsynonymousmutations per gene across all hypermutator LTEE populations anticorrelates withmRNA abundance in

exponential growth phase, and anticorrelates with protein abundance at all time points (see fig. 2 legend for further details).
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and B). By contrast, the positive Spearman correlation coeffi-

cient between synonymous mutation density and protein

abundance remains steady at �0.075 for at least 40,000

generations, ranging from the 20,000-generation mark

through 60,000 generations (fig. 5C).

A limitation of these analyses is that these RNA and protein

abundance data come from the ancestral LTEE clone, REL606,

and so these patterns may not hold for evolved strains. To

address this limitation, I examined RNA abundance data for

eleven 50,000 generation LTEE clones, grown to exponential

FIG. 4.—The density of observed synonymousmutations per gene across all hypermutator LTEE populations positively correlates withmRNA and protein

abundance at all time points (see fig. 2 legend for further details).
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FIG. 5.—Correlations between protein abundance in REL606 and mutation density are consistent over time. Points represent Spearman correlation

coefficients, calculated using the cumulative number of mutations observed by each 10,000-generation mark in the metagenomic time series for the LTEE

hypermutator populations. Colors indicate the growth time at which protein abundance was sampled for REL606; the growth times correspond to the

separate panels in figures 2–4. (A) Correlations between protein abundance in REL606 and mutation density across all hypermutator LTEE populations. (B)

Correlations between protein abundance in REL606 and nonsynonymous mutation density across all hypermutator LTEE populations. (C) Correlations

between protein abundance in REL606 and synonymous mutation density across all hypermutator LTEE populations.
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phase in DM4000 media (Favate et al. 2021). In every single

case, the density of observed mutations per gene, measured

across all hypermutator populations, significantly anticorre-

lates with mRNA abundance (supplementary fig. S5,

Supplementary Material online). In addition, a significant anti-

correlation is seen with nonsynonymous mutations for all 11

clones (supplementary fig. S6, Supplementary Material on-

line), whereas a positive correlation is seen with synonymous

mutations, again for all 11 evolved clones (supplementary fig.

S7, Supplementary Material online). The density of observed

mutations per gene in the nonmutator populations signifi-

cantly correlates with mRNA abundance in seven out of 11

clones (supplementary fig. S8, Supplementary Material

online).

As an additional check for the robustness of these correla-

tions, I compared the density of observed mutations per gene

in the LTEE with protein abundance data in the ProteomeVis

database (Razban et al. 2018). Although these data only cover

664 out of 4,205 genes analyzed in the LTEE metagenomic

data, they still reveal significant anticorrelations between mu-

tation density per gene in the hypermutator populations and

protein abundance, when all mutations and nonsynonymous

mutations are analyzed (supplementary fig. S9,

Supplementary Material online). Corresponding results for

synonymous mutations in the hypermutator LTEE popula-

tions, and for all mutation types in the nonmutator LTEE pop-

ulations, are not statistically significant.

Highly Interacting Proteins Evolve Slowly in Hypermutator
Populations

Another universal pattern is that highly interacting proteins

evolve more slowly than those with fewer interaction partners

(Fraser et al. 2002; Hahn et al. 2004; Hahn and Kern 2005;

Alvarez-Ponce et al. 2017). I hypothesized that highly inter-

acting proteins would be under strong selection in the LTEE,

based on those reports, as well as previous results showing

that the E. coli core genome is under positive selection in the

LTEE (Maddamsetti et al. 2017), and that global regulators of

gene expression show evidence of strong positive selection in

both nonmutator and hypermutator LTEE populations

(Maddamsetti and Grant 2020b). In particular, I hypothesized

that highly interacting proteins should evolve rapidly in the

nonmutator LTEE populations due to positive selection, but

should evolve slowly in the hypermutator populations during

to purifying selection.

I compared the number of protein–protein interactions

(PPI) with the density of observed mutations across LTEE pop-

ulations for every protein-coding gene in the E. coli genome,

using three curated data sets of PPI in E. coli (Razban et al.

2018; Cong et al. 2019; Zitnik et al. 2019), which I refer to as

the Cong data set, the Zitnik data set, and the Razban data

set. These comparisons are shown in figure 6 and supplemen-

tary figure 10, Supplementary Material online. I find

significant negative correlations between mutation density

and PPI degree in the hypermutators (Spearman’s

rho¼�0.056, P¼ 0.00037 for Cong data set; Spearman’s

rho¼�0.11, P< 10�11 for Zitnik data set; Spearman’s

rho¼�0.068, P< 10�4 for Razban data set). However, the

weak positive correlations between mutation density and PPI

degree in the nonmutators are not significant (supplementary

fig. 10, Supplementary Material online).

Discussion

I show that a number of well-known but poorly understood

correlations between mRNA abundance, protein abundance,

PPI degree, and evolutionary rates across the tree of life are

also found in the hypermutator populations of the LTEE. In

some cases, I find significant anticorrelation between muta-

tion densities and mRNA abundance in exponential phase,

but not during stationary phase. The simplest explanation

for this finding is that mRNAs decay more rapidly than the

proteins they encode. Protein abundance consistently shows a

negative correlationwith the density of all observedmutations

(fig. 2) and with nonsynonymous mutation density across all

time points (fig. 3).

It is widely believed that these correlations are driven by

purifying selection on universal aspects of protein evolution

(Drummond et al. 2006; Drummond and Wilke 2009;

Serohijos et al. 2012; Serohijos and Shakhnovich 2014), and

indeed, this is the most parsimonious explanation for why

similar patterns are seen in the LTEE. An intriguing difference,

however, is the positive correlation that I find between syn-

onymous mutation density across LTEE hypermutator popu-

lations and protein abundance (fig. 4)—which contrasts with

the anticorrelation between the rate of synonymous muta-

tions and gene expression seen in nature (Drummond and

Wilke 2008). In part, this may be explained by the differences

in the distribution of synonymous mutations observed in the

LTEE, and the distribution of synonymous diversity per gene in

nature (Maddamsetti, Hatcher, et al. 2015; Maddamsetti and

Grant 2020a), although the causes for this difference be-

tween natural variation and experiment is still a matter for

hypothesis generation (Maddamsetti 2016), data collection,

hypothesis testing, and debate.

An important limitation of these results is that the protein

and mRNA abundance data for LTEE strains were collected in

DM500 and DM4000 media (Caglar et al. 2017; Favate et al.

2021). These media contain much more than the 25mg/l glu-

cose in the DM25 media used in the LTEE. This represents a

technical compromise due to the fact that researchers have

not yet succeeded in isolating sufficient mRNA from exponen-

tial phase cultures in DM25 for RNA-seq (Jagdish T and Grant

N, personal communication). With this caveat in mind, my

findings support the conclusion that highly abundant proteins

evolve slowly in the hypermutator LTEE populations.
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The causes for why highly abundant proteins evolve slowly

may emerge from a number of different, and nonmutually

exclusive phenomena, so many explanations have been pro-

posed (Razban 2019). These include the protein misfolding

avoidance hypothesis (Yang et al. 2010), the protein misinter-

action avoidance hypothesis (Levy et al. 2012; Yang et al.

2012), the mRNA folding hypothesis (Park et al. 2013), puri-

fying selection on protein function (Konat�e et al. 2019), fold-

ing stability (Serohijos et al. 2012; Serohijos and Shakhnovich

2014), and others (Tartaglia et al. 2007; Plata et al. 2010;

Kepp and Dasmeh 2014).

Differentiating among these possibilities is difficult, be-

cause it is challenging to study the causes of patterns that

span millions of years of protein evolution. I do not draw

conclusions about the causes of these correlations. Rather,

my results show that evolution experiments are reasonable

model systems to study the causes of evolutionary rate varia-

tion in proteins. A concrete approach would be to recode the

genomes of hypermutator strains to modulate the anticipated

action of purifying selection per protein, based on the predic-

tions of a particular explanation, and then ask whether those

predictions are borne out during experimental evolution.

Breakthroughs that allow for the inexpensive recoding of

whole bacterial genomes may be needed, but it is plausible

that such experiments will be feasible in the future.

Many other experimental directions are possible. First, a

better understanding of how chaperones and other molecular

mechanisms of protein quality control affect evolutionary rates

and fitness (Chen et al. 2017; Alvarez-Ponce et al. 2019;

Samhita et al. 2020) is needed. We also need to better under-

stand purifying selection on synonymous mutations (Walsh

et al. 2020). Second, studies on how RNA transcription error

rates (Li and Lynch 2020) and RNA folding errors affect evo-

lutionary rates would be valuable. Indeed, mRNA accessibility

seems to be an important predictor of protein abundance

(Terai and Asai 2020)—and RNA chaperones buffer deleteri-

ous mutations in LTEE hypermutator strains (Rudan et al.

2015). Third, it would be interesting to experimentally test

the hypothesis that protein and RNA chaperones evolve under

more and more stringent purifying selection during long-term

experimental evolution, which follows from the premise that

hypermutator LTEE populations are affected by a mutation

load that affects protein folding and stability. Studies on the

existence and relevance of phenomena like evolutionary ca-

pacitance caused by the contributions that PPI make to folding

stability (Dixit and Maslov 2013; Jarzab et al. 2020; Mateus

et al. 2020), including cryptic genetic variation hidden by pro-

tein and RNA chaperones (Queitsch et al. 2002; Bergman and

Siegal 2003; Masel 2005, 2006, 2013; Trotter et al. 2014;

Geiler-Samerotte et al. 2016; Zheng et al. 2019) during exper-

imental evolution, and the effects of such phenomena on rates

of protein evolution may be especially valuable in this regard.

Finally, it would be valuable to develop a better understanding

of the temperature sensitivity of evolved LTEE populations

(Mongold et al. 1996, 1999; Leiby and Marx 2014), and to

collect data on protein evolutionary rates in long-term experi-

ments conducted at elevated temperatures (Bennett et al.

1990; Tenaillon et al. 2012). Much remains to be explored,

in regard to how evolution experiments can deepen our un-

derstanding of purifying selection on molecular and cellular

organization and function.

Materials and Methods

Preprocessed LTEE metagenomic data were downloaded from:

https://github.com/benjaminhgood/LTEE-metagenomic.

Transcriptomic and proteomic data for REL606, grown in Davis

minimal media with 500mg/l glucose (DM500), were taken

from the supplementary tables for Caglar et al. (2017). For ro-

bustness, I also analyzed the transcriptomic data for eleven

FIG. 6.—The density of observedmutations per gene across all hypermutator LTEE populations negatively correlateswith PPI degree. Comparisons to the

PPI data from Cong et al. (2019) are shown in light blue, comparisons to the PPI data from Zitnik et al. (2019) are shown in orange, and comparisons to the

PPI data in the ProteomeVis database (Razban et al. 2018) are shown in red. Significant Spearman correlations are shown in blue. For improved visual

dispersion, PPI degree is square-root transformed; the Spearman correlation is unaffected by this monotonic data transformation. (A) Proteins with more

interactions in the Cong et al. (2019) data set tend to evolve more slowly than those with fewer interactions in the hypermutator LTEE populations. (B)

Proteins with more interactions in the Zitnik et al. (2019) data set tend to evolve more slowly than those with fewer interactions in the hypermutator LTEE

populations. (C) Proteins with more interactions in the ProteomeVis Escherichia coli PPI data set (Razban et al. 2018) tend to evolve more slowly than those

with fewer interactions in the hypermutator LTEE populations.
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50,000 generation LTEE clones grown in DM4000 media

(Favate et al. 2021) available at: https://github.com/shahlab/

LTEE-gene-expression. I analyzed three different data sets of

PPI in E. coli. First, I used the PPI network for E. coli K-12

MG1655 in the STRING database (Szklarczyk et al. 2021) as

curated by Zitnik et al. (2019). Second, I used the data set of

high confidence E. coli PPI interactions reported by Cong et al.

(2019), which combines coevolutionary information in large

protein multiple sequence alignments with gold-standard pro-

tein complexes in E. coli reported in the Ecocyc and Protein

Databank (PDB) databases (Berman et al. 2000; Keseler et al.

2013). PPI network statistics were calculated using the SNAP

toolkit (Leskovec and Sosi�c 2016; Zitnik et al. 2019). Third, ad-

ditional data on E. coli PPI interactions and protein abundance

were downloaded using the web interface to the ProteomeVis

database (Razban et al. 2018), available at http://proteomevis.

chem.harvard.edu/. Associated metadata for ProteomeVis were

downloaded from: https://github.com/rrazban/proteomevis/

blob/master/make_database/proteomevis_inspect.csv.

All statistical analyses involve two-sided tests for Spearman

correlation coefficients that are significantly different from

zero, using the cor.test function in the R statistical program-

ming language, version 4.0 (R Core Team 2020). Unless

stated otherwise, all correlations include genes with no muta-

tions (i.e., zeros are included).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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