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We present a generic way to hybridize physical and data-driven
methods for predicting physicochemical properties. The approach
‘distills’ the physical method's predictions into a prior model and
combines it with sparse experimental data using Bayesian inference.
We apply the new approach to predict activity coefficients at
infinite dilution and obtain significant improvements compared to
the physical and data-driven baselines and established ensemble
methods from the machine learning literature.

Prediction methods for physicochemical properties are indis-
pensable for process design and optimization in chemical
engineering since experimental studies are expensive and
tedious. The most widely used approaches are group-
contribution methods (GCMs) that model the properties of
pure components or mixtures based on the structural groups
that build up the components."™ GCMs can also be used for
predicting properties of mixtures of which the composition is
unknown.>” The most successful GCMs for mixtures are the
different versions of UNIFAC®*'® that model the excess
Gibbs energy based on binary group-interaction parameters.
The group-contribution concept greatly reduces the number
of model parameters and the amount of data needed for
fitting GCMs. However, the practical applicability of UNIFAC
is still restricted, mainly due to necessary group-interaction
parameters that have not been fitted yet. Another successful
approach is the quantum chemistry-based COSMO-RS,"" which
describes the properties of mixtures referring to the polariza-
tion charge densities of the constituent components, and
which depends only on a small number of adjustable
parameters.'> However, expensive COSMO calculations are
required for each component.
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In previous work,"® we have introduced a novel, purely data-
driven approach to predict physicochemical properties of
mixtures. Specifically, we considered activity coefficients at
infinite dilution ;7 in binary mixtures at a constant tempera-
ture, but this approach generalizes to other properties. The data
for ;7 can be represented as a matrix whose rows and columns
correspond to solutes 7 and solvents j, respectively. For y; at
298.15 £ 1 K, which we studied in our previous work, the matrix
containing the available experimental data from one of the
largest databases for physicochemical properties, the Dort-
mund Data Bank,' is very sparse, cf, Fig. S.1 (ESIt). The data
set covers 240 solutes and 250 solvents, but only 4094 entries
are observed. The prediction of the unobserved entries, i.e., the
prediction of y; for not yet studied mixtures, can be framed as
a matrix completion problem.'>"®

The basis of our previously introduced approach' is a
probabilistic matrix completion method (MCM). We modeled
Iny; (the logarithm of y;” is used for scaling purposes) as a
stochastic function of initially unknown features of the solutes
i and solvents j, specifically as the dot product of two vectors:

Inyf = upv;+ g (1)

where u; and v; are learned feature vectors for solute i and
solvent j, respectively, and the random variable ¢; captures both
measurement noise and inaccuracies of the model. The feature
vectors of all considered solutes and solvents can be aggregated
to two feature matrices U and V, respectively. Rather than
selecting features based on physical considerations, the data-
driven approach infers useful features from available experi-
mental data on Iny; alone, using the laws of probability theory
and (approximate) Bayesian inference.'””"® The inferred
features can then be used to predict Iny; for mixtures for
which no experimental data are available, c¢f. eqn (1).

While the purely data-driven approach®® already outper-
forms the state-of-the-art physical method for predicting activ-
ity coefficients modified UNIFAC (Dortmund)'®*° (to which we
simply refer as UNIFAC in the following) in terms of average
predictive performance, it leaves substantial room for improvement
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as it ignores available physical knowledge about the mixtures.
In thermodynamics, such knowledge is often abundant, e.g, in
pure component properties or physical laws and models. In this
paper, we therefore propose a hybrid physics-based/data-driven
prediction method that combines the best of both worlds. We
show that the framework of probabilistic models and Bayesian
inference provides a principled way to incorporate scientific
domain knowledge into machine learning (ML) models by
specifying a so-called prior probability distribution over model
parameters. Specifically, we propose to use model distillation>"
to extract physical domain knowledge from UNIFAC in a format
that can be used to construct an informative prior distribution
for the MCM.

In the following, we describe the details of our proposed
hybrid approach. Once again, we consider predicting Iny; in
binary mixtures at 298.15 + 1 K as a prime example and
evaluate the predictive performance on the same data set as
in our previous work." As physical base method, we use the
current publicly available version of UNIFAC.'%?*° As data-
driven base method, we adopt the Bayesian MCM from our
previous work."* We compare the performance of our hybrid
method to the performances of the constituent base methods
as well as two established ML ensemble methods.

Fig. 1 summarizes our proposed hybrid method, which we
call whisky. Just like the manufacturing of whisky, our whisky
method involves a distillation step, in which we distill knowl-
edge from an existing model into a prior distribution using an
approach known as model distillation in the ML literature,*"
and a maturation step, in which we allow the prior to mature by
combining it with experimental data. Both steps are based on a
probabilistic MCM similar to our previous work™ to fit model
parameters (i.e., feature matrices U and V) to a data set of In y;".
The difference between the distillation and maturation step is
that they operate on different data sets The distillation step
fits an MCM to all predictions for Iny; at 298.15 K that can be
obtained with UNIFAC, denoted as Iny“"™™€, Thus, the
distillation step extracts the physical knowledge encoded
in UNIFAC, which is implicitly exposed via its predictions for
Iny;, into parameters of an MCM. By contrast, the maturation

Step 1: Distillation Step 2: Maturation
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mixture components
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Fig.1 Scheme of the whisky method. We first fit an MCM to UNIFAC
predictions for Iny;” (distillation, purple). We then use the fitted parameters
from the distillation step to construct informative priors for the component

feature matrices U and V and fit the model to experimental data on Iny;”

using these priors (maturation, green). Iny"N"A< and Iny®® denote the

available data sets from UNIFAC?® and experiments,* respectively.
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step builds upon the results of the distillation step and refines
the parameters by fitting an MCM to the available experimental
data, denoted as In y**®

The two different data sets Iny"™"€ and Iny®®P are illu-
strated in the two blue/red matrices in Fig. 1. Here, rows and
columns correspond to solutes and solvents, respectively, and
blue or red entries indicate binary mixtures for which data
points are available or absent, respectively. As can be seen,
UNIFAC predictions are available for a lot more mixtures than
experimental observations (Iny"™'""¢ has more blue entries
than Iny®P, ¢f Fig. S.1 and S.3, ESI{), meaning that the
distillation step trains on a larger data set. While the experi-
mental data set is more sparse, it is considered more reliable
than the UNIFAC predictions.

The main novelty of our proposed whisky method lies in the
way how it combines physical knowledge with experimental data.
We realize the interface between distillation and maturation
(purple and green parts of Fig. 1) by specifying an informative
prior distribution over model parameters. To understand the role
of the prior, it is instructive to recall the principles of Bayesian
inference on which our MCM builds. Bayesian inference describes
the relationship between three probability distributions, called
prior, likelihood, and posterior. The prior is a probability dis-
tribution over model parameters that encodes a-priori knowledge,
i.e., information on the model parameters before the model is
fitted to the training data. In a purely data-driven approach, no a-
priori information is used, and the prior is typically a very broad
(i.e., noninformative) probability distribution. The likelihood
encodes how model parameters manifest themselves in physically
observable quantities, i.e., the data to which the model is trained.
Together, prior and likelihood define a probabilistic model over
observable quantities, such as Iny;” here. Bayesian inference
takes such a probabilistic model and compares its predictions
to actual observed data. The task of Bayesian inference is to find
the so-called posterior probability distribution over model
parameters that are consistent with the observed quantities
and the a-priori knowledge.

This framework of probabilistic modeling and Bayesian
inference provides a principled way of hybridizing different
methods using probability distributions as interfaces. Our
approach, illustrated in Fig. 1, follows the principle that ‘one
man’s ceiling is another man’s floor’. In analogy to this
proverb, the posterior of the distillation step, which encodes
knowledge after seeing the UNIFAC predictions, can be turned
into a prior of the maturation step, which encodes knowledge
before seeing the experimental data. Specifically, we construct a
physically informed prior for the maturation step by taking the
posterior means uy and uy from the distillation step, and we
form Gaussian prior distributions with a rather small standard
deviation of ¢ = 0.5 around these means. Thus, this choice of
prior encodes physical knowledge from the UNIFAC model. At
the same time, the nonzero prior standard deviation allows the
maturation step to overrule prior knowledge if the experimental
data provide enough evidence to justify this.

For some of the considered mixture components (eight
solutes and 41 solvents), UNIFAC is not applicable. Since the
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Fig. 2 Mean square error (MSE) and mean absolute deviation (MAD) for
the prediction of Iny; using the individual base methods UNIFAC and
data-driven MCM, the proposed hybrid whisky method, and the hybrid
baselines bagging and boosting. Lower is better for both metrics. Error
bars show the standard errors of the means. (a) Considering all applicable
data points. (b) Ignoring the worst eight outliers of UNIFAC.

distillation step does not provide any information about these
components, we use a broader (i.e., less informative) Gaussian
prior here in the maturation step, with a standard deviation
of ¢ = 3 centered around zero. For the task of (approximate)
Bayesian inference, we use the Stan framework** and resort to
variational inference.'®'® More details on the proposed whisky
method are given in the ESL¥

In Fig. 2(a), we compare the overall performance of the
whisky method for predicting Iny; with the performances of
the base methods UNIFAC*® and MCM"? (without the informa-
tive prior), and with two alternative hybrid approaches, boot-
strap aggregation (aka bagging)*® and boosting.>* We compare
mean absolute deviation (MAD) and mean square error (MSE).

Bagging is realized here by averaging the predictions from
UNIFAC and the data-driven MCM for each data point; boosting
is implemented by training an MCM to the matrix of the
residuals of UNIFAC. Bagging and boosting are described in
detail in the ESI.f To simulate predictive performances, the
predictions with MCM, whisky, and boosting (and the MCM
contribution of bagging) are obtained by using leave-one-out
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cross-validation,? ie., by training the models to all experi-
mental data points except for one, which is then used as a test
data point and predicted. The training set of UNIFAC is not
disclosed; hence, no statements on whether the UNIFAC results
are obtained by regression or prediction can be made here.

Fig. 2(a) demonstrates that the proposed whisky method
outperforms all other methods in both MAD and MSE. The
poor scores of UNIFAC, bagging, and boosting can mainly be
attributed to only a handful of data points that are extremely
poorly predicted by UNIFAC as shown in Fig. S.8 (ESIt). How-
ever, even if we, as an example, ignore the worst eight outliers
of UNIFAC (marked in Fig. S.8, ESIt) for the evaluation, the
proposed whisky method still performs significantly better
than all baselines, c¢f. Fig. 2(b).

If the worst eight UNIFAC outliers are ignored (Fig. 2b), the
results show that the hybrid baselines — bagging and boosting -
also improve the predictions of the base methods UNIFAC and
MCM: bagging and boosting have smaller MAD and MSE values
than the base methods. Bagging is widely used if the available
base methods for a specific problem tend to overfit, i.e., if they
fit the training data but do not generalize well to unobserved
data.”® By contrast, boosting is commonly applied in ML to
tackle the opposite problem of underfitting, which arises if the
base methods are not expressible enough for a specific
problem.>* The observation that our proposed whisky method
performs better than both bagging and boosting indicates that
the base methods UNIFAC and data-driven MCM tend to overfit
to parts of the data set. At the same time, they also seem to
underfit on other combinations, so that neither bagging nor
boosting is universally applicable. This may in part be
explained by the fact that the experimental data set is very
imbalanced: while we have data for at least 86 different binary
mixtures for each of the 5% most common solutes, we only
have six or fewer data points for each of the 50% most
uncommon solutes (see also Fig. S.1, ESIt). The proposed
whisky approach seems more robust to such an imbalanced
data set than the other hybrid approaches.

In Fig. 3, we compare the predictions of the whisky method
with those of the data-driven MCM and UNIFAC in a parity plot.
Points on the diagonal line correspond to perfect predictions.
The whisky method reliably reduces outliers of both base
methods. By contrast, both bagging and boosting, shown in
Fig. S.7 (ESIY), only partially compensate for outliers of the
data-driven MCM but severely suffer from outliers of UNIFAC.
The whisky method also yields the highest coefficient of
determination R> (with R* = 1 being optimal) of all compared
methods, irrespective of whether the worst eight UNIFAC out-
liers (OL) are considered or not (see table insets).

Another major advantage of the proposed whisky method
is its broader applicability compared to the other hybrid
approaches. For a fair comparison, Fig. 2 and 3 consider only
data points that can be predicted with UNIFAC, which is also a
prerequisite for applying bagging and boosting. By contrast, the
whisky method (and the data-driven MCM) can be used to
predict Iny;7 for any binary mixture of the considered solutes
and solvents. In Fig. S.9 (ESI}), we compare the performance of
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Fig. 3 Parity plot of the predictions (pred) for Iny;” with the proposed
whisky method over the corresponding experimental values (exp) and
comparison to UNIFAC and data-driven MCM. Coefficients of determina-
tion R? (higher is better, 1 implies perfect correlation) are given, both
including and excluding the worst eight UNIFAC outliers (OL).

the whisky method with the data-driven MCM for predicting all
available experimental data points. Again, we observe a signifi-
cant improvement with the proposed whisky method.

In conclusion, we introduce a novel approach to hybridize
physical and data-driven prediction methods for physicochem-
ical properties. In this paper, we focused on predicting activity
coefficients at infinite dilution, but the approach can directly be
transferred to other properties. The proposed method is termed
whisky, reflecting its similarities with the manufacturing of
whisky as it combines model distillation with maturation. As a
Bayesian approach, it incorporates physical knowledge in the
form of a prior belief, and allows to combine it with empirical
data evidence in a theoretically well-motivated and convenient
way. The proposed method outperforms all considered base-
lines in predicting activity coefficients at infinite dilution in
binary mixtures: the physical gold standard UNIFAC,'®?° the
purely data-driven MCM from our previous work,"> and two
established machine learning ensemble methods, bagging and
boosting. We further show that the whisky method is more
robust to outliers in the base methods and has a broader
applicability than the hybrid baselines. We demonstrate that
probabilistic machine learning is perfectly suited for incorpor-
ating physical knowledge (that is often abundant in thermo-
dynamics) in powerful data-driven models. We emphasize the
generic nature of the proposed whisky approach that opens
perspectives to a new generation of hybrid prediction methods
for physicochemical properties beyond purely data-driven or
purely physical approaches. The transfer to further mixture
properties and other physical and data-driven base methods is
straightforward. We expect additional improvements if explicit
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physical information is incorporated and exciting insights by
elucidating relations between the learned component features
and physical component descriptors.
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