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Hybridizing physical and data-driven prediction
methods for physicochemical properties†

Fabian Jirasek, *‡ Robert Bamler and Stephan Mandt

We present a generic way to hybridize physical and data-driven

methods for predicting physicochemical properties. The approach

‘distills’ the physical method’s predictions into a prior model and

combines it with sparse experimental data using Bayesian inference.

We apply the new approach to predict activity coefficients at

infinite dilution and obtain significant improvements compared to

the physical and data-driven baselines and established ensemble

methods from the machine learning literature.

Prediction methods for physicochemical properties are indis-

pensable for process design and optimization in chemical

engineering since experimental studies are expensive and

tedious. The most widely used approaches are group-

contribution methods (GCMs) that model the properties of

pure components or mixtures based on the structural groups

that build up the components.1–4 GCMs can also be used for

predicting properties of mixtures of which the composition is

unknown.5–7 The most successful GCMs for mixtures are the

different versions of UNIFAC8–10 that model the excess

Gibbs energy based on binary group-interaction parameters.

The group-contribution concept greatly reduces the number

of model parameters and the amount of data needed for

fitting GCMs. However, the practical applicability of UNIFAC

is still restricted, mainly due to necessary group-interaction

parameters that have not been fitted yet. Another successful

approach is the quantum chemistry-based COSMO-RS,11 which

describes the properties of mixtures referring to the polariza-

tion charge densities of the constituent components, and

which depends only on a small number of adjustable

parameters.12 However, expensive COSMO calculations are

required for each component.

In previous work,13 we have introduced a novel, purely data-

driven approach to predict physicochemical properties of

mixtures. Specifically, we considered activity coefficients at

infinite dilution g
N

ij in binary mixtures at a constant tempera-

ture, but this approach generalizes to other properties. The data

for gNij can be represented as a matrix whose rows and columns

correspond to solutes i and solvents j, respectively. For g
N

ij at

298.15� 1 K, which we studied in our previous work, the matrix

containing the available experimental data from one of the

largest databases for physicochemical properties, the Dort-

mund Data Bank,14 is very sparse, cf. Fig. S.1 (ESI†). The data

set covers 240 solutes and 250 solvents, but only 4094 entries

are observed. The prediction of the unobserved entries, i.e., the

prediction of gNij for not yet studied mixtures, can be framed as

a matrix completion problem.15,16

The basis of our previously introduced approach13 is a

probabilistic matrix completion method (MCM). We modeled

ln g
N

ij (the logarithm of gNij is used for scaling purposes) as a

stochastic function of initially unknown features of the solutes

i and solvents j, specifically as the dot product of two vectors:

ln g
N

ij = ui�vj + eij (1)

where ui and vj are learned feature vectors for solute i and

solvent j, respectively, and the random variable eij captures both

measurement noise and inaccuracies of the model. The feature

vectors of all considered solutes and solvents can be aggregated

to two feature matrices U and V, respectively. Rather than

selecting features based on physical considerations, the data-

driven approach infers useful features from available experi-

mental data on ln g
N

ij alone, using the laws of probability theory

and (approximate) Bayesian inference.17–19 The inferred

features can then be used to predict ln g
N

ij for mixtures for

which no experimental data are available, cf. eqn (1).

While the purely data-driven approach13 already outper-

forms the state-of-the-art physical method for predicting activ-

ity coefficients modified UNIFAC (Dortmund)10,20 (to which we

simply refer as UNIFAC in the following) in terms of average

predictive performance, it leaves substantial room for improvement
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as it ignores available physical knowledge about the mixtures.

In thermodynamics, such knowledge is often abundant, e.g., in

pure component properties or physical laws and models. In this

paper, we therefore propose a hybrid physics-based/data-driven

prediction method that combines the best of both worlds. We

show that the framework of probabilistic models and Bayesian

inference provides a principled way to incorporate scientific

domain knowledge into machine learning (ML) models by

specifying a so-called prior probability distribution over model

parameters. Specifically, we propose to use model distillation21

to extract physical domain knowledge from UNIFAC in a format

that can be used to construct an informative prior distribution

for the MCM.

In the following, we describe the details of our proposed

hybrid approach. Once again, we consider predicting ln g
N

ij in

binary mixtures at 298.15 � 1 K as a prime example and

evaluate the predictive performance on the same data set as

in our previous work.13 As physical base method, we use the

current publicly available version of UNIFAC.10,20 As data-

driven base method, we adopt the Bayesian MCM from our

previous work.13 We compare the performance of our hybrid

method to the performances of the constituent base methods

as well as two established ML ensemble methods.

Fig. 1 summarizes our proposed hybrid method, which we

call whisky. Just like the manufacturing of whisky, our whisky

method involves a distillation step, in which we distill knowl-

edge from an existing model into a prior distribution using an

approach known as model distillation in the ML literature,21

and a maturation step, in which we allow the prior to mature by

combining it with experimental data. Both steps are based on a

probabilistic MCM similar to our previous work13 to fit model

parameters (i.e., feature matrices U and V) to a data set of ln g
N

ij .

The difference between the distillation and maturation step is

that they operate on different data sets. The distillation step

fits an MCM to all predictions for ln g
N

ij at 298.15 K that can be

obtained with UNIFAC, denoted as ln g
UNIFAC. Thus, the

distillation step extracts the physical knowledge encoded

in UNIFAC, which is implicitly exposed via its predictions for

ln g
N

ij , into parameters of an MCM. By contrast, the maturation

step builds upon the results of the distillation step and refines

the parameters by fitting an MCM to the available experimental

data, denoted as ln g
exp.

The two different data sets ln g
UNIFAC and ln g

exp are illu-

strated in the two blue/red matrices in Fig. 1. Here, rows and

columns correspond to solutes and solvents, respectively, and

blue or red entries indicate binary mixtures for which data

points are available or absent, respectively. As can be seen,

UNIFAC predictions are available for a lot more mixtures than

experimental observations (ln g
UNIFAC has more blue entries

than ln g
exp, cf. Fig. S.1 and S.3, ESI†), meaning that the

distillation step trains on a larger data set. While the experi-

mental data set is more sparse, it is considered more reliable

than the UNIFAC predictions.

The main novelty of our proposed whisky method lies in the

way how it combines physical knowledge with experimental data.

We realize the interface between distillation and maturation

(purple and green parts of Fig. 1) by specifying an informative

prior distribution over model parameters. To understand the role

of the prior, it is instructive to recall the principles of Bayesian

inference on which our MCM builds. Bayesian inference describes

the relationship between three probability distributions, called

prior, likelihood, and posterior. The prior is a probability dis-

tribution over model parameters that encodes a-priori knowledge,

i.e., information on the model parameters before the model is

fitted to the training data. In a purely data-driven approach, no a-

priori information is used, and the prior is typically a very broad

(i.e., noninformative) probability distribution. The likelihood

encodes howmodel parameters manifest themselves in physically

observable quantities, i.e., the data to which the model is trained.

Together, prior and likelihood define a probabilistic model over

observable quantities, such as ln g
N

ij here. Bayesian inference

takes such a probabilistic model and compares its predictions

to actual observed data. The task of Bayesian inference is to find

the so-called posterior probability distribution over model

parameters that are consistent with the observed quantities

and the a-priori knowledge.

This framework of probabilistic modeling and Bayesian

inference provides a principled way of hybridizing different

methods using probability distributions as interfaces. Our

approach, illustrated in Fig. 1, follows the principle that ‘one

man’s ceiling is another man’s floor’. In analogy to this

proverb, the posterior of the distillation step, which encodes

knowledge after seeing the UNIFAC predictions, can be turned

into a prior of the maturation step, which encodes knowledge

before seeing the experimental data. Specifically, we construct a

physically informed prior for the maturation step by taking the

posterior means mU and mV from the distillation step, and we

form Gaussian prior distributions with a rather small standard

deviation of s = 0.5 around these means. Thus, this choice of

prior encodes physical knowledge from the UNIFAC model. At

the same time, the nonzero prior standard deviation allows the

maturation step to overrule prior knowledge if the experimental

data provide enough evidence to justify this.

For some of the considered mixture components (eight

solutes and 41 solvents), UNIFAC is not applicable. Since the

Fig. 1 Scheme of the whisky method. We first fit an MCM to UNIFAC

predictions for ln gNij (distillation, purple). We then use the fitted parameters

from the distillation step to construct informative priors for the component

feature matrices U and V and fit the model to experimental data on ln gNij
using these priors (maturation, green). ln g

UNIFAC and ln g
exp denote the

available data sets from UNIFAC20 and experiments,14 respectively.
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distillation step does not provide any information about these

components, we use a broader (i.e., less informative) Gaussian

prior here in the maturation step, with a standard deviation

of s = 3 centered around zero. For the task of (approximate)

Bayesian inference, we use the Stan framework22 and resort to

variational inference.18,19 More details on the proposed whisky

method are given in the ESI.†

In Fig. 2(a), we compare the overall performance of the

whisky method for predicting ln g
N

ij with the performances of

the base methods UNIFAC20 and MCM13 (without the informa-

tive prior), and with two alternative hybrid approaches, boot-

strap aggregation (aka bagging)23 and boosting.24 We compare

mean absolute deviation (MAD) and mean square error (MSE).

Bagging is realized here by averaging the predictions from

UNIFAC and the data-driven MCM for each data point; boosting

is implemented by training an MCM to the matrix of the

residuals of UNIFAC. Bagging and boosting are described in

detail in the ESI.† To simulate predictive performances, the

predictions with MCM, whisky, and boosting (and the MCM

contribution of bagging) are obtained by using leave-one-out

cross-validation,25 i.e., by training the models to all experi-

mental data points except for one, which is then used as a test

data point and predicted. The training set of UNIFAC is not

disclosed; hence, no statements on whether the UNIFAC results

are obtained by regression or prediction can be made here.

Fig. 2(a) demonstrates that the proposed whisky method

outperforms all other methods in both MAD and MSE. The

poor scores of UNIFAC, bagging, and boosting can mainly be

attributed to only a handful of data points that are extremely

poorly predicted by UNIFAC as shown in Fig. S.8 (ESI†). How-

ever, even if we, as an example, ignore the worst eight outliers

of UNIFAC (marked in Fig. S.8, ESI†) for the evaluation, the

proposed whisky method still performs significantly better

than all baselines, cf. Fig. 2(b).

If the worst eight UNIFAC outliers are ignored (Fig. 2b), the

results show that the hybrid baselines – bagging and boosting –

also improve the predictions of the base methods UNIFAC and

MCM: bagging and boosting have smaller MAD and MSE values

than the base methods. Bagging is widely used if the available

base methods for a specific problem tend to overfit, i.e., if they

fit the training data but do not generalize well to unobserved

data.25 By contrast, boosting is commonly applied in ML to

tackle the opposite problem of underfitting, which arises if the

base methods are not expressible enough for a specific

problem.24 The observation that our proposed whisky method

performs better than both bagging and boosting indicates that

the base methods UNIFAC and data-driven MCM tend to overfit

to parts of the data set. At the same time, they also seem to

underfit on other combinations, so that neither bagging nor

boosting is universally applicable. This may in part be

explained by the fact that the experimental data set is very

imbalanced: while we have data for at least 86 different binary

mixtures for each of the 5% most common solutes, we only

have six or fewer data points for each of the 50% most

uncommon solutes (see also Fig. S.1, ESI†). The proposed

whisky approach seems more robust to such an imbalanced

data set than the other hybrid approaches.

In Fig. 3, we compare the predictions of the whisky method

with those of the data-driven MCM and UNIFAC in a parity plot.

Points on the diagonal line correspond to perfect predictions.

The whisky method reliably reduces outliers of both base

methods. By contrast, both bagging and boosting, shown in

Fig. S.7 (ESI†), only partially compensate for outliers of the

data-driven MCM but severely suffer from outliers of UNIFAC.

The whisky method also yields the highest coefficient of

determination R2 (with R2 = 1 being optimal) of all compared

methods, irrespective of whether the worst eight UNIFAC out-

liers (OL) are considered or not (see table insets).

Another major advantage of the proposed whisky method

is its broader applicability compared to the other hybrid

approaches. For a fair comparison, Fig. 2 and 3 consider only

data points that can be predicted with UNIFAC, which is also a

prerequisite for applying bagging and boosting. By contrast, the

whisky method (and the data-driven MCM) can be used to

predict ln g
N

ij for any binary mixture of the considered solutes

and solvents. In Fig. S.9 (ESI†), we compare the performance of

Fig. 2 Mean square error (MSE) and mean absolute deviation (MAD) for

the prediction of ln gNij using the individual base methods UNIFAC and

data-driven MCM, the proposed hybrid whisky method, and the hybrid

baselines bagging and boosting. Lower is better for both metrics. Error

bars show the standard errors of the means. (a) Considering all applicable

data points. (b) Ignoring the worst eight outliers of UNIFAC.
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the whisky method with the data-driven MCM for predicting all

available experimental data points. Again, we observe a signifi-

cant improvement with the proposed whisky method.

In conclusion, we introduce a novel approach to hybridize

physical and data-driven prediction methods for physicochem-

ical properties. In this paper, we focused on predicting activity

coefficients at infinite dilution, but the approach can directly be

transferred to other properties. The proposed method is termed

whisky, reflecting its similarities with the manufacturing of

whisky as it combines model distillation with maturation. As a

Bayesian approach, it incorporates physical knowledge in the

form of a prior belief, and allows to combine it with empirical

data evidence in a theoretically well-motivated and convenient

way. The proposed method outperforms all considered base-

lines in predicting activity coefficients at infinite dilution in

binary mixtures: the physical gold standard UNIFAC,10,20 the

purely data-driven MCM from our previous work,13 and two

established machine learning ensemble methods, bagging and

boosting. We further show that the whisky method is more

robust to outliers in the base methods and has a broader

applicability than the hybrid baselines. We demonstrate that

probabilistic machine learning is perfectly suited for incorpor-

ating physical knowledge (that is often abundant in thermo-

dynamics) in powerful data-driven models. We emphasize the

generic nature of the proposed whisky approach that opens

perspectives to a new generation of hybrid prediction methods

for physicochemical properties beyond purely data-driven or

purely physical approaches. The transfer to further mixture

properties and other physical and data-driven base methods is

straightforward. We expect additional improvements if explicit

physical information is incorporated and exciting insights by

elucidating relations between the learned component features

and physical component descriptors.
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Fig. 3 Parity plot of the predictions (pred) for ln gNij with the proposed

whisky method over the corresponding experimental values (exp) and

comparison to UNIFAC and data-driven MCM. Coefficients of determina-

tion R2 (higher is better, 1 implies perfect correlation) are given, both

including and excluding the worst eight UNIFAC outliers (OL).
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