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Indirect dark matter (DM) detection typically involves the observation of standard model (SM) particles

emerging from DM annihilation/decay inside regions of high dark matter concentration. We consider an

annihilation scenario in which this reaction has to be initiated by one of the DMs involved being boosted

while the other is an ambient nonrelativistic particle. This “trigger” DM must be created, for example, in a

previous annihilation or decay of a heavier component of DM. Remarkably, boosted DM annihilating into

gamma rays at a specific point in a galaxy could actually have traveled from its source at another point in

the same galaxy or even from another galaxy. Such a “nonlocal” behavior leads to a nontrivial dependence

of the resulting photon signal on the galactic halo parameters, such as DM density and core size, encoded in

the so-called “astrophysical” J-factor. These nonlocal J-factors are strikingly different than the usual

scenario. A distinctive aspect of this model is that the signal from dwarf galaxies relative to the Milky Way

tends to be suppressed from the typical value to various degrees depending on their characteristics. This

feature can thus potentially alleviate the mild tension between the DM annihilation explanation of the

observed excess of approximately GeV photons from the Milky Way’s Galactic Center vs the apparent

nonobservation of the corresponding signal from dwarf galaxies.
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I. INTRODUCTION

The search of dark matter (DM) annihilation or decay in
experiments designed primarily to detect cosmic-ray par-
ticles (such as positrons and antiprotons) and gamma rays,
despite being called indirect detection of DM, can provide
direct information on many properties of DM particles
inside galactic halos. For instance, the morphology of the
signal shows the DM distribution inside galaxies, and the
signal’s energy and flux indicate the mass and the inter-
action strength of DM particles, respectively. Using a novel
indirect DM detection scenario, we will illustrate in this
work that a comparison of signals from different DM halos
may even allow us to identify additional details of the
generating process.
Over the past few years, several anomalies in astro-

physical signatures have provided strong motivations to
study such signals from DM models. Among the different
searches, the Fermi-LAT experiment [1] produced a
gamma-ray survey of the sky for 100 MeV–100 GeV scale
photons for both the Milky Way (MW) and dwarf sphe-
roidal galaxies (dSph). The experiment also observed an
intriguing excess of gamma rays from the MW center [2]
[thus called the Galactic Center excess (GCE)] that has the

right morphology to be explained by DM physics [3].
1
As

future experiments like e-ASTROGAM [13], Gamma-400
[14], and DAMPE [15] have been proposed to extend
the energy coverage of the gamma-ray signal, we expect
significant improvements in the observations of MW and
dSph. We will therefore use the DM production of gamma-
ray signal as an example to discuss how we can probe the
dynamics of DM from an ensemble of such detections from
different objects.
The differential photon flux dΦ=dEγ arising from DM

annihilation or decay in any astrophysical target for indirect
DM detection is [16–19]

dΦ

dEγ

¼
dN

dEγ

8

<

:

hσannvi
8πm2

χ
× Jann ðannihilationÞ

1

4πmχτχ
× Jdec ðdecayÞ

ð1Þ

where the so-called J-factor encodes all the astrophysical
contributions. dN=dEγ is the photon spectrum produced per

1
It has also been proposed that unresolved gamma-ray point

sources could account for the GCE; see, for example, Refs. [4–6].
For a more recent discussion on this topic, see Refs. [7–12].
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annihilation or decay, mχ is the DM particle mass, hσannvi
is the DM’s thermally averaged annihilation rate with
annihilation cross section σann, and τχ is the DM lifetime.

In the most simple DM scenarios, everything except the
J-factor is independent of the galactic environment and
originates from the underlying particle physics. For in-
stance, the J-factors for the “canonical” DM annihilation
[by which we mean the process of two ambient DM
particles annihilating into standard model (SM) particles]
and decay that happen in a faraway galaxy at a distance d
much larger than the galaxy’s size are

Jann ¼ d−2
Z

dVρ2ðrÞ; Jdec ¼ d−2
Z

dVρðrÞ; ð2Þ

where ρ is the DM density and the integral is performed
over the galaxy’s volume. The reader can consult
Appendix A for a derivation.
Since these J-factors are galaxy dependent, once the

gamma-ray signals from different galaxies are measured,
we can fit the power of ρ and determine the production
mechanism of the signal. As is illustrated in Fig. 1, which

assumes that DM follows the Navarro-Frenk-White
(NFW) distribution [20], the two scenarios of canonical
annihilation (black) and decay (red) can be distinguished
by their ratio of J-factors with a reference galaxy

2

after taking into account the uncertainty of the
NFW fit. We will be using the NFW profile, ρðrÞ ¼
ρ0ðr=rsÞ

−1ð1þ r=rsÞ
−2, for DM halos throughout this

paper; however, many of our qualitative results are valid
for other choices of the DM profile. In fact, depending on
the process of the gamma-ray production from DM, the
indirect detection signal can carry a more complex
dependence on galactic parameters, such as DM density
and halo size, than in Eq. (2). In this work, we discuss the
possibility of bringing in such new galactic dependence in
the J-factor using the idea of “nonlocal” annihilation
processes, as explained below.
For a schematic framework of nonlocal annihilation, we

consider the possibility of a DM interaction occurring at a
given point, P, inside the halo first producing a boosted
DM particle; see Fig. 2. This boosted particle travels some
distance and annihilates with another ambient DM particle
producing SM particles at a different location in the galaxy,
P0, hence dubbed nonlocal. As we shall illustrate, due to its
mechanism or kinematics, this second annihlation requires
the presence of the boosted DM. Not surprisingly, several
nonminimal DM models already contain the architecture to
include these nonlocal effects. For instance, such an
annihilation process can naturally happen in the semi-
annihilation model (see, for example, Refs. [21,22]) with

FIG. 2. An illustration of the nonlocal annihilation model. A
χ1χ1 annihilation first happens at the blue point P a distant q from

the halo’s center. The produced χb
2
travels a distance s and

annihilates with a slow-moving ambient χ2 at the red point P
0 into

ϕ’s that decay promptly on galactic scales into gamma rays which

are observed at the green point. χb
2
can also escape their source

galaxy and annihilate in another galaxy as noted by the extra-
galactic arrow.

FIG. 1. The ratio of dSph J-factors to the MWs for various dark
matter models assuming a NFW DM profile. The dSphs are
ordered by increasing values of ρ0rs from left to right. The width
of the colored bands at each galaxy represents the 1σ and 2σ

uncertainties. DSph NFW profile parameters were obtained from
Ref. [16], and their central values are listed in Table I along with
those for MW. As MW is used only as a reference here, we take

JMW as its central value. σb
2
is the cross section of the second

annihilation process in the nonlocal model; see the text for details.

σb
2
is chosen such that all galaxies have entered the nonlocal

regime. The vertical arrow is a reminder that the nonlocal J-factor
ratio can be larger for larger cross sections. At its maximum, the
J-factor ratio is indistinguishable from canonical annihilation.
For the nonlocal annihilation, we only include intragalactic
contributions in this figure as noted by IG. Here, the region of
interest was taken to be θ < 0.5° for the dSph and θ < 45° for
MW. The line-of-sight integration extends out to 500 kpc.

2
Throughout this work, we take the Milky Way as our

reference galaxy; however, the results can be generalized to
other choices of reference.
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asymmetric DM (ADM) [23] (for a review on ADM, see
Ref. [24]) density in which a boosted DM antiparticle (χc)
is produced at P from a χχ annihilation via the χχχX
coupling (where X is an unspecified particle satisfying
mX ≪ mχ). The boosted χc later annihilates with a slow

moving χ at P0 giving SM particles through a coupling that
contains χχc. Note that in ADMmodels there is no ambient
χc for initiating this annihilation, thus requiring production
from the first interaction to trigger the second. Of course,
the interactions that correspond to each annihilation process
are still local.
We define the J-factor in the nonlocal process in a

manner analogous to canonical annihilation from Eq. (2)
with σann and mχ substituted for properties of the first

annihilation event (σ1 and m1). The nonlocal J-factor has
additional dependence on the core size and density of the
DM halos and the secondary DM annihilation cross
section, the latter being part of the intrinsic particle physics.
It is noteworthy that the J-factor for the nonlocal model no
longer encapsulates only astrophysics. This generates
another distinct fingerprint in Fig. 1 (blue), with the results
depending on an additional product of the galaxy’s DM
density and size, as we discuss below.

3

To better illustrate the general concept of nonlocal
annihilation, we first present a toy model that generates
such a nonlocal annihilation process. The toy model
assumes boosted DM production by another heavier DM
annihilation process. It is thus a two-component DMmodel
with a two-step annihilation process. This is the nonlocal
model shown in Fig. 1. We then discuss the characteristic
features of the nonlocal J-factors in galaxies. Finally, we
show an application of the nonlocal DM annihilation
process for explaining the GCE signal and predicting the
corresponding gamma-ray signal from the dSph to be
smaller than in the canonical model, consistent with
observations, unlike the mild tension in the canonical case.
Technical details for the J-factor calculations are given in
the Appendixes.

II. DM WITH NONLOCAL

ANNIHILATION PROCESSES

We present a concrete toy model that exhibits the
properties of nonlocal annihilation which were outlined
in the Introduction. We begin with a summary of the
general process, followed by a consideration of the moti-
vated parameter space.
In our toy model, we have a heavy component of DM,

denoted by χ1 annihilating into a lighter DM, χ2; thus the

latter is produced with a boost, being therefore labeled with

appropriate superscript, χb
2
:

χ1χ1 → χb
2
þ X: ð3Þ

The X particle from the first annihilation can either be
another dark sector or an SM particle. In this work, we
simply assume X is an invisible particle that does not
participate further in any interactions. This first step is

followed by χb
2
annihilating with a stationary χ2 into

another new scalar particle ϕ,

χb
2
þ χ2 → 2ϕ; ð4Þ

which ultimately decays into SM particles, namely, photons
in our case:

ϕ → 2γ: ð5Þ

The need for such a mediator between DM and SM will be
made clear shortly.

We assume m1 ≫ m2 for the χ1;2 masses, so χb
2
is

relativistic and moves much faster than the escape velocity
of the galaxy. We therefore treat all trajectories to be a
straight line path; see Fig. 2. For the nonlocal process to be
interesting, there is a requirement on the second annihila-

tion cross section, σb
2
. Once produced, χb

2
can travel through

a typical annihilation length lann ∼ ðσb
2
ρ2=m2Þ

−1 before

annihilating into ϕ’s, where ρ2 is the density of the χ2
background. To have a gamma-ray signal to detect, we
require a significant fraction, greater than or approximately

equal to Oð10%Þ, of χb
2
to annihilate inside a dSph with

radius approximately kpc. Thus, lann should not be much
larger than the halo’s characteristic size. We therefore need
to satisfy

�

ρ2

10 GeV · cm−3

��

10 MeV

m2

��

σb
2

ð110 MeVÞ−2

�

≳ 1: ð6Þ

Note that in our toy model presented in Eqs. (3)–(5)
the peak photon energy is approximately m1. Therefore,
to be within gamma-ray thresholds of the Fermi-LAT
experiment, m1 should be in the range approximately
Oð100 MeV–100 GeVÞ.
To produce large boosts, we require m2 ≪ m1, and thus

by our choice of m1 ∼Oð100Þ MeV, we are motivated to
choose m2 ∼Oð10 MeVÞ. The existence of DM particles
lighter than 10 MeV usually encounters strong bounds
from the cosmic microwave background (CMB) and big
bang nucleosynthesis (BBN) measurements (see, e.g.,
Refs. [31–33]). Some studies nevertheless have suggested
the possibility of accommodating sub-MeV scale thermal
DM with these constraints. For example, Ref. [32] found

that allowing a small fraction (like 10−4) of the DM
annihilation into neutrinos as compared to eþe−=γ can

3
Nontrivial galaxy dependent J-factors have been considered

in the literature previously, e.g., velocity-dependent DM annihi-
lation [25–27], DM annihilation into mediators which have long-
lived decays into SM [28,29], and DM annihilating into its
excited state then decays back into the lighter state plus an SM
photon [30].
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alleviate the ΔNeff and proton-neutron ratio constraints to
allow a sub-MeV DM mass. This can help keep a MeV
scale χ2 without changing the gamma-ray signal signifi-
cantly. Since our main focus is on the unique feature of
gamma-ray signal from the nonlocal annihilation, we will
present results for both m2 ¼ 10 MeV and m2 ¼ 1 MeV
without specifying the full details of the dark sector that
validate the latter case.

The large σb
2
cross section required for the second

annihilation has two implications. A direct χ2 annihilation
into photons with such a rate would violate millicharged
DM bounds (see, e.g., Refs. [34,35] and the references
therein). We therefore introduce a singlet mediator ϕ [see
Eqs. (3)–(5)] that has a strong coupling to χ2 and a
suppressed coupling to photons. Second, such a large
annihilation cross section suggests that χ2 cannot obtain
its relic abundance from a thermal freeze-out process.
There are different ways to decouple the χ2 abundance
from its annihilation cross section. For example, in an
asymmetric DM scenario, a net χ1;2 abundance versus the

antiparticles χc
1;2 can be produced from an out-of-equilib-

rium decay of a heavy particle that strongly violates CP
symmetry. If the heavy particles were produced from a
thermal freeze-out process and have an abundance close to
the required DM number density, χ1;2 can obtain the right

relic density.
4
After the efficient χ2χ

c
2
annihilation depletes

χc, there is only χ2 around, and a sizable ρ2 can be obtained
inside halos even for a large χ2χ

c
2
annihilation.

To produce the indirect detection signal in such an
asymmetric DM scenario, we consider a more specific
model where the two DM particles are complex scalars that
carry charges ð−1;þ2Þ for ðχ1; χ2Þ under a dark Udð1Þ
symmetry and have the following couplings:

λχ1χ1χ2X þ C:c:þ y2jχ2j
2ϕ2 þ λ̂jχ2j

4 þ
ϕ

f
FμνF

μν: ð7Þ

To simplify the discussion, we only keep couplings that are
relevant to the nonlocal indirect detection signals. The first
coupling allows a production of the antiparticle χ1χ1 →

χ�
2
þ X as in Eq. (3). Here, we consider σ1 to be similar to

the cross section for thermal weakly interacting massive
particle (WIMP) DM. Since χ1 already has the required
abundance right after being produced from the out-of-
equilibrium decay of a heavy particle [as indicated above,
but not explicitly shown in Eq. (7)], χ1 annihilation with
such a rate is never efficient to significantly change its relic
density.
The annihilation cross section of χ�

2
χ2 → 2ϕ, see Eq. (4),

in the center-of-mass frame is

σ2 ¼
α2

4m1m2

ð8Þ

for mϕ ≲m2. We choose m1 ∼Oð100Þ MeV and m2 ¼

Oð1–10Þ MeV, so we need α2 ¼ y2
2
=4π ∼ 1 to obtain a

short enough lann for the gamma-ray signal; see Eq. (6).
Motivated by examples in the lattice studies (e.g.,
Ref. [38]), we take the perturbativity constraint α2 ≤ 1.2
in this work. Note that a much heavier χ1 and χ2 would
need larger α2, making the theory nonperturbative.
The large y2 coupling may generate an efficient self-

scattering between the ambient χ2’s through a ϕ loop

contribution α2
2π
logΛcutoff to the λ̂jχ2j

4 coupling. To

satisfy bounds from the various astrophysical constraints,

σχ2χ2→χ2χ2
=m2 ¼

λ̂2

64πm3

2

≲ 1 cm2=g (see Ref. [39] for a

review of the bounds), we need the total coupling λ̂eff ≈

λ̂þ α2
2π
logΛcutoff ≲ ðm2=10 MeVÞ3. Assuming Λcutoff ∼

10 GeV to be larger than all the DM energies we con-
sider, the largest coupling (α2 ≤ 1.2) and the lightest χ2
(m2 ¼ 1 MeV) require a tuning in λ̂eff no worse than 0.2%.

After being produced from the χ1 annihilation, the χb
2
can

also scatter with the ambient χ2 with cross section σscatt ¼
αλ̂

4m1m2

and lose its kinetic energy. If the penetration length

lpen of losing most of the kinetic energy is shorter than

lann, we cannot assume χb
2
to fly in a straight line before the

annihilation. However, even if χb
2
loses most of its energy

from a single scattering to χ2 giving lpen ∼ ðσscattn2Þ
−1 ¼

lannð
α2
αλ̂
Þ, χb

2
annihilation still happens well before the

particle slows down for the large α2 we consider.
Finally, ϕ couples to photons, see Eq. (5), via the last

term in Eq. (7). In principle, mϕ can be larger than m2 as

long as the nonlocal annihilation is kinematically allowed,
Eq. (4). However, in the ADMmodel that we consider here,
we need ambient (nonrelativistic) χ2’s to efficiently anni-
hilate into ϕ’s to deplete the symmetric part of the χ2
density; thus, we require mϕ < m2. When showing exam-

ples with m2 ≲ 10 MeV under this assumption, we need
mϕ < 10 MeV, and the allowed f will be tightly con-

strained by various bounds on the axionlike particle,
possibly making ϕ have a decay length comparable to
galactic scales. One way to have mϕ ∼OðMeVÞ while

making the ϕ’s to decay promptly is to consider the cos-
mological models that can alleviate the mϕ − f bound in

the “cosmological triangle” region, namely, mϕ ∼ 1 MeV

and f ∼ 105 GeV. For example, as is shown in Ref. [40],
the parameters in the cosmological triangle can be allowed
either with the presence of ΔNeff , a nonvanishing neutrino
chemical potential, or a lower reheating temperature. In this
work, we will present results by assuming mϕ ¼ 1 MeV

and f ¼ 105 GeV without discussing the details of the
cosmological model. For larger m1;2;ϕ, the relevant bounds

can easily be satisfied under standard cosmology; however,
such mass choices will reduce the gamma-ray signal. For
the DM mass we consider, the choice of ϕ mass and

coupling leads to ϕ decay within 10−8 pc after being4
A similar setup is discussed in Refs. [36,37] for baryogenesis.
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produced. The decay is thus prompt compared to galac-
tic sizes.
Note that the nonlocal behavior of the annihilation still

exists even with a smaller coupling and larger ðm2; mϕÞ that
can trivially satisfy the cosmological bounds. Our main
motivation for discussing the above scenarios that may
require nonstandard cosmology is to relate the nonlocal
signal to the known observational sensitivity of the Fermi-
LAT experiment. The nonlocal signal from a simpler dark
sector can also show up in a different energy scale with a
different rate.

III. J-FACTOR FROM THE NONLOCAL

DM ANNIHILATION

Here, we study the halo dependence of the J-factor for
the nonlocal (NL) annihilation process, denoted by JNL.

There are two main sources of χb
2
involved in the secondary

annihilation. χb
2
can either come from a χ1 annihilation

inside the same halo [“intragalactic” (IG)] or from a χ1
annihilation in another galaxies [“extragalactic” (EG)].
The two types of signal carry different dependence in
DM density. We therefore have

JNL ≈ JIG þ JEG ð9Þ

for the nonlocal J-factor. There are also signals coming

from χb
2
produced in the intergalactic region, but the signal

rate is negligible due to the low DM density outside of
galaxies.

In the limit of large σb
2
, JNL is dominated by the

intragalactic contribution and reproduces the galactic
dependence from the canonical DM annihilation scenario,
whereas in the other extreme of small annihilation cross
section, both the intra- and extragalactic sources contribute.
The intragalactic contribution, JIG, behaves similarly to
the canonical DM annihilation with an additional galaxy
dependent modulation factor. The extragalactic contribu-
tion, JEG, has the galactic dependence of the decay DM
scenario. Dominance of intra- versus extragalactic depends
on galactic parameters with larger galaxies favoring the
intragalactic contribution and vice versa. In this section, we
will demonstrate these expected results explicitly. To avoid
confusion, we will refer to the J-factors for canonical
annihilation and decay, as given in Eq. (2), by Jann and Jdec,
respectively.

A. Annihilation from intragalactic χ b2

We first present the expression for JIG, then provide
some intuition behind it based on simplifying assumptions.
Details of the derivation are given in Appendix B. After first
defining the coordinates as in Fig. 2, JIG can be written as

JIG ¼

Z

ROI

dΩl

Z

LOS

dl

×

Z

s⃗

d3 ⃗ŝ

ŝ2

dPχb
2
χ2
ðr̂; ŝÞ

dŝ
½ρ1;0η1ðq̂Þ�

2
dN

dΩs⃗

ð ⃗ŝ; l⃗Þ: ð10Þ

The result contains four components. ½ρ1;0η1ðq̂Þ�
2 gives the

number density product between two χ1 particles that

annihilate into χb
2
. This is essentially the source term for

χb
2
production. dP=dŝ gives the probability of having χb

2

annihilate after traveling a displacement s⃗ from the first

(χ1) annihilation point. The ŝ−2 factor takes into account

the geometrical suppression of χb
2
flux that reaches the

second annihilation point. Finally, the angular distribu-

tion of the signal due to the χb
2
boost in the second

annihilation is described by dN=dΩs⃗. We perform over a
region-of-interest (ROI) and a line-of-sight (LOS) integral
for the final result.
To better identify the galaxy-dependent parameters in the

expression, we define the dimensionless lengths ðr̂; ŝ; q̂Þ ¼
ðr; s; qÞr−1s so that the integral over the lengths is inde-
pendent of the galaxy’s size. In this notation, the q̂ is a
function of ðr̂; θ; ŝÞ as in Fig. 2. We also define ηiðr̂Þ ¼
ρiðrsr̂Þ=ρi;0 to separate the galaxy-dependent properties

from the characteristic profile, where i corresponds to
χi¼1;2. The annihilation probability

dPχb
2
χ2
ðr̂; ŝÞ

dŝ
¼ Λη2ðr̂Þ exp

�

−Λ

Z

ŝ

0

dŝ0η2ðŝ
0Þ

�

ð11Þ

contains a surviving probability of χb
2
that is exponentially

suppressed by the distance ŝ that χb
2
travels.

R

dŝ0 integrates the annihilation probability χb
2
on its way

to the final annihilation point. The probability function is
solely dependent on the characteristic density profile and
the dimensionless quantity

Λ≡ rsρ2;0σ
b
2
=m2; ð12Þ

which is roughly just the inverse of the typical annihilation
length (lann) introduced in the earlier section in units of the
halo/core size. In the case of rs ≪ lann, it corresponds to

the probability of χb
2
annihilating inside a halo with constant

χ2 density ρ2;0 and characteristic size rs. The exponential

factor in Eq. (11) indicates the surviving probability of χb
2

after traveling a distance s to the second annihilation point.
As mentioned before, dN=dΩs⃗ is the angular distribution of
the signal as a result of the second annihilation occurring in
a boosted frame and is dependent on the angle between the

direction of χb
2
’s momentum, r⃗, and the observer, l⃗. To

write it in the form shown in Eq. (1), we assumed the
spectrum does not depend on this angle. This is supported
by our assumption discussed later of approximating the
angular distribution with a delta function. For a more
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complete equation including spectral angular dependence,
see Appendix B. However, in the limit d ≫ rs where d is
the distance the galaxy is away from the observer, this
effect can be approximated as effectively isotropic. This
isotropy is a result of all points in the galaxy being equally

far from the observer, resulting in the various χb
2
directions

averaging out over the final volume integral. In this faraway
galaxy approximation,

JIG ¼ d−2
Z

r⃗

dV

Z

s⃗

d3 ⃗ŝ

4πŝ2

dPχb
2
χ2
ðr̂; ŝÞ

dŝ
½ρ1;0η1ðq̂Þ�

2: ð13Þ

For detailed calculations of J-factors in this work, we use
the full expression Eq. (10) assuming dN=dΩs⃗ is a delta

function in line with s⃗ due to the high boost of χb
2
in the

second annihilation.
Next, we consider two limiting cases of JNL throughΛ in

order to understand analytically the morphology of the NL
signal versus the canonical annihilation scenario. Recall
from Eq. (12) that Λ is effectively the inverse of the free-

streaming length of χb
2
in units of galactic size. This also

serves as a useful cross-check.

In the Λ ≫ 1 limit, it is clear that χb
2
annihilates right

after its production from the χ1 annihilation. The expo-
nential factor in Eq. (11) is non-negligible only for
s≲ rs=Λ ≪ rs. We thus expect the J-factor for the NL

model to be proportional to ρ2
1
as in Eq. (2) for the

canonical case. Indeed, by taking the large Λ limit in
Eq. (11), since limΛη2→∞ Λη2 expð−Λη2ŝÞ ≈ δðŝÞ for ŝ ≥ 0,

Eq. (13) recovers the result for the canonical annihilation
process:

JIG ¼ d−2
Z

dVρ2
1
ðrÞ ð14Þ

On the other hand, when Λ ≪ 1, the exponential factor
in Eq. (11) reduces to 1 if we expand the expression to
linear order in Λ. It is also convenient to perform the

volume integral
R

d3s⃗ in terms of
R

d3q⃗ ∼ 4π
R

dqq2.

Equation (13) thus reduces to

JIG ¼ 4πρ2
1;0r

3
sd

−2
Λ

Z

r̂2dr̂η2ðr̂Þ

Z

q̂2dq̂

ŝ2
½η1ðq̂Þ�

2; ð15Þ

where the integrals are dimensionless and only depend on
the characteristic profile. They are thus identical for all
galaxies with the same profiles ηi. Following the assump-
tion of the NFW profile, we can further relate this
expression to Jann in the canonical annihilation case.
Since the gamma-ray signal is mainly produced in the
inner part of the halo (so r̂; q̂≲ 1), the integral gets its

dominant contribution when the DM profile is η1ðxÞ ¼
η2ðxÞ ∼ x−1 for x ¼ r̂ or q̂. The ŝ in the integrand is
approximately ŝ ∼ r̂ when 0≲ q̂≲ r̂ and ŝ ∼ q̂ when
r̂≲ q̂≲ 1. After performing the dq̂ integral for 0≲ q̂≲ 1

and using the relation between DM profiles, we can rewrite
the J-factor as

JIG ∼ Λd−2
Z

dVρ2
1
ðrÞ ∼ ΛJann: ð16Þ

The result is rather intuitive since it is the Jann in Eq. (2) that
initiates the process from a canonical χ1 annihilation times
a suppression factorΛ that corresponds to the probability of

χb
2
annihilation. Under the same assumption of the NFW

profile and the isotropy of the signal, a similar estimate can
be done for the MW, and it can be shown that the J-factor is
also approximately ΛJann but with Λ derived for the MW
halo. Thus, NL annihilation produces an additional ρ2;0rs
dependence via Λ to the J-factor that is not present in the
canonical framework. This additional term is a galaxy-
dependent modulation to the J-factor. In Fig. 1, we have
therefore ordered the dSphs in the horizontal axis by
increasing ρ0rs; see Table I. As we can see, the variations
of the J-factor ratios from canonical annihilation do indeed
follow the same ordering.
Traditionally, we can separate the galaxy-dependent

factor from the particle physics contribution to the signal
rate and define J-factors to be independent of DM physics
such as mass and cross section. For the nonlocal model, we
define the J-factor as in Eq. (10) so that in the limit of large
secondary (or prompt χ2) annihilation it reproduces the
canonical expression with σann andmχ in Eq. (1) substituted

for properties of the first annihilation event. With this
definition of the J-factor, we see that in the opposite limit of

a very small cross section [see Eqs. (15)–(16)] σb
2
depend-

ence survives via the Λ factor, and the cross section is still
separable. However, except in these most extreme cases of
Eq. (10) as observed in Eqs. (14) and (15), the secondary
annihilation cross section is genuinely inseparable from the
astrophysics. This region corresponds to the critical value

TABLE I. Best-fit galactic halo density and radius parameters

for various galaxies. The ratios of ρ0rs for each galaxy with the
Milky Way are also shown. The DM distribution is assumed to be
the NFW profile. Values for the Milky Way are derived using a

local density of 0.4 GeV=cm−3, rs ¼ 20 kpc, and our local radius
of 8.1 kpc. The dSph values are derived from Ref. [16].

Galaxy ρ0 ðGeV=cm−3) rs (kpc) ðρ0rsÞ
MW

ðρ0rsÞ
Gal .

MW 0.345 20 1
Sextans 0.218 2.10 15.1
Canes Venatici I 0.381 1.70 10.7
Fornax 0.359 2.44 7.89
Carina 1.18 0.812 7.22
Leo I 1.13 1.17 5.25
Sculptor 1.74 0.920 4.33
Leo II 2.57 0.636 4.23
Ursa Minor 2.54 0.804 3.38
Draco 2.96 0.728 3.20
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of Λ ∼ 1 where we transition between these two
extreme cases.
In this work, we present numerical results for the four

example models described in Table II. Besides the different
choices of DM masses, we also keep the fraction of χ2
density as a variable,

fi ≡
ρ0;i

ρ0;1 þ ρ0;2
; i ¼ 1; 2; ð17Þ

and assume both particles follow the same NFW profile
in all cases. One can relax the assumption and follow the
same analysis as we describe for different DM profiles.
In Fig. 3 (left), we show an example of the constraints
using model A that can be placed on the NL process

described in Eqs. (3)–(5) in the σ1 − σb
2
plane by requiring

the gamma-ray flux to be constant.
5
We rescale the required

annihilation cross sections shown in the axes labels by f1;2
and m1;2, so the result (black) curve is the same for all

the Table II models. This is observed in Fig. 3 (right)
where the only difference between the various scenarios
is the CMB and the perturbativity constraints. The CMB
bound (dashed black line) on the photon injection
from χ2 annihilation assumes the second annihilation
is prompt around reionization due to increases in χ2’s

density. The CMB bound requires hσ1vi≲ 2 × 6 ×

10−26ðm1=7 GeVÞð1 − f2Þ
−2 cm3= s [41,42]. We therefore

set a lower bound on σb
2
=m2 by requiring that the lower 1σ

error bar on σ1 needed to fit the flux be below the CMB
bound. The factor of 2 and f2 are a result of rescaling to
account for only half of the annihilation energy going into
SM particles and a different ρ1, respectively. For the DM
masses we consider, the α2 coupling in Eq. (8) becomes

nonperturbative when σb
2
=m2 > 3 × 104 GeV−3; this sets

an upper bound on the χb
2
annihilation. The allowed range

of σb
2
=m2 is displayed in purple.

The signal in Fig. 3 originates from the MW with an
ROI 2° < θ < 20° from the Galactic Center, and we only
consider the intragalactic contribution; however, the extra-
galactic contribution is negligible for the MW as shown
later. Note that, even though we use a normalization

FIG. 3. The χ1 annihilation rate in the NL model (solid) for producing gamma-ray signals consistent with a fixed flux in the MW for
model A (left) and a combined image of all example models (right). The width of the band corresponds to 1σ error bars assuming the

local ρMW ¼ 0.4� 0.1 GeV=cm3 and rEarth ¼ 8.1 kpc. The required hσ1vi to fit the flux decreases linearly for σb
2
=m2 that is much

smaller than the critical value of σb
2
=m2 corresponding to Λ ∼ 1; see the text for details. At larger σb

2
=m2 where Λ ≫ 1, hσ1vi is constant

as the MW exits the nonlocal regime. The CMB upper bound (dashed) on hσ1vi for the model is also shown, and we translate it into a

lower bound on σb
2
for a fixed flux (the intersection between the solid and dashed curves). Model masses are shown in Table II as

benchmark examples. We take α2 ≤ 1.2 as the nonperturbativity constraint and set an upper bound on σb
2
via Eq. (8). Allowed regions for

σb
2
=m2 are shaded in purple with the left edge set by violating CMB constraints and the right set by the model becoming nonpertubative.

TABLE II. DM masses and energy density fraction used in the
different example models. Them1 of the “GCE” case comes from
fitting the gamma-ray spectrum to the GCE signal. As discussed
in Sec. II, we choose mϕ ¼ 1 MeV in all the examples. We

assume the NFW profile ρ1=ρ1;0 ¼ ρ2=ρ2;0 ¼ ½r=rsð1þ r=rsÞ�
−1

for all the models.

Model m1 (GeV) m2 (MeV) f2

A 0.1 10 0.9
B 0.1 1 0.1
C 0.1 1 0.9
GCE 5.68 1 0.1

5
We require the flux to be described by Eq. (25) with f0 ¼

9.38 × 10−8 cm−2 s−1 sr−1 described later in this work. This
particular value for f0 is the best-fit spectral normalization for
our toy model to the GCE, which requires m1 ¼ 5.68 GeV.
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influenced by the GCE to obtain these results, the choice of

m1 for models A, B, and C produces a E2
γdNγ=dE spectrum

peaked around 50 MeV and thus cannot explain the GCE;
however, the resulting gamma rays are still energetic
enough to be potentially observable in the future.
The requirement of the signal flux determines hσ1vi in

Fig. 3 as a function of f2σ
b
2
=m2. The relevant J-factors

are calculated by numerically solving Eq. (10) for the
galactic signal. As anticipated from Eq. (16), the MW
signal for the NL model is linearly suppressed for small

Λ ¼ ðρ2;0rsÞσ
b
2
=m2, thus necessitating a larger hσ1vi to

obtain the required signal rate. The NL suppression no

longer applies for Λ≳ 1, i.e., when f2σ
b
2
=m2 ≳ 105 GeV−3

for the MW. Thus, the J-factor asymptotes to the canonical
DM annihilation as we have discussed, and the required

hσ1vi no longer depends on σb
2
=m2.

Next, using our toy NL model, we study the signal rate

for different dSphs as a function of σb
2
=m2. In Fig. 4, we

show the ratio of J-factors between dSphs and the MW
signals using the same ROI as Fig. 1. The solid and dashed
curves are from the nonlocal and the canonical DM
annihilations for Sextans (blue) and Draco (red). In the

small χb
2
=m2 annihilation limit, we observe a clear reduc-

tion of the ratio between the nonlocal signals compared

with their canonical counterpart due to both MW and
dSph annihilations suffering a similar Λ ≪ 1 suppression.
From the discussion below Eq. (16), the ratio of the
J-factors for dSph vs MW is modified in the non-
local model relative to the canonical by approximately

Λ
dSph=ΛMW ¼ ðρ2;0rsÞ

dSph=ðρ2;0rsÞ
MW. Crucially, ρ2;0rs is

different for each galaxy with the MW being the largest in
our local group by a factor of a few, which explains the
suppression of J-factor ratios shown in Fig. 4; see Table I.
Moreover, this effect varies with the specific dSph in
consideration; it is, however, independent of both χ1 and
χ2 particle parameters. Indeed, as seen in Fig. 4, this
dilution is more significant for Sextans because its ρ2;0rs is

smaller than Draco’s. This small cross section regime
is what is plotted in Fig. 1. The J-factor suppression is
clearly seen, and its magnitude decreases as we move
horizontally on the figure to larger ρ2;0rs, matching the

above expectation.
As already indicated in Fig. 3 for MW, upon increasing

σb
2
, the galaxies start exiting from the NL suppression and

become canonical for σb
2
=m2 ≳ 1=ðρ2;0rsÞ. At this scale, the

annihilation length of χb
2
is smaller than the galaxy, and

the J-factor eventually asymptotes to the canonical result.
This transition from NL to canonical gives rise to interest-
ing features in the ratio of J-factors. Because each galaxy
has a different ρ2;0rs, they each transition at a different

σb
2
=m2. This behavior is directly observed in Fig. 4. The rise

in the ratios of J-factors around 105 GeV−3 corresponds
with MW’s transition, while the flattening of the ratio

around 106 GeV−3 corresponds to each dSph’s transition.
Again, note that the particular ordering and scale of the
flattening of the J-factor ratio for the two galaxies
corresponds to the hierarchy in ρ2;0rs.

Conceptually, it is convenient to consider these two
transitions and the three distinct regions they produce with
decreasing cross section moving from right-to-left on Fig. 4
in contrast to our earlier discussion, which moved from left-

to-right. For large σb
2
=m2, we identify the canonical region

where both the MWand the dSph are in the Λ ≫ 1 regime;
here, their J-factors do not depend on the second particles
properties and are thus constants. Note that the ratio merges
with the canonical annihilation ratio as expected. As we
lower the cross section, because ρ2;0rs of Sextans is smaller

than Draco, Sextans exits the canonical regime at a slightly

larger σb
2
=m2 than Draco, as seen in Fig. 4. Next, the

intermediate region where the galaxy with smaller ρ2;0rs
becomes NL, while the other is still canonical. This results

in the J-factor ratio having linear dependence on σb
2
=m2 via

Λ
dSph. Finally, in the pure NL region where both galaxies

are NL, each galaxy has its own Λ dependence. This results

in the ratio approximately ðρ2;0rsÞ
dSph=ðρ2;0rsÞ

MW, inde-

pendent of σb
2
, as discussed earlier.

In summary, the intragalactic NL contribution possesses
a striking feature as seen in Figs. 1 and 4. For a fixed MW

FIG. 4. Ratio of J=JMW for select dSphs. The nonlocal J-factor
(solid) is constant at large σ2=m2, drops when the dSph enters the
nonlocal regime, and then levels out when MW also becomes
nonlocal. The canonical annihilation case is also shown (dashed).
These two models are the same at large σ2=m2 as they are both
local. Estimates for the extragalactic nonlocal contribution from
each galaxy are also shown (dotted). The bands are 1σ error
estimates. The error bars for the extragalactic portion only reflect
errors in the second annihilation galaxy and do not include any

portion from uncertainties in determining the background χb
2
flux

from the extragalactic sources, which may be large due to both
our method for the halo production rate and our treatment of
evolution of halo populations and subhalos. We also show the
allowed regions due to CMB and nonperturbativity bounds
discussed in Fig. 3 using purple for the four models in Table II.
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flux, not only is there a suppression of the signal relative to
the canonical model for each dSph, but the level of
suppression depends on the density and size of the galaxy

as well as the χb
2
annihilation cross section, as shown

in Fig. 4.

B. Annihilation from extragalactic χb2

Since most of the χb
2
s can escape their source galaxy in

the Λ ≪ 1 limit, we should also consider χb
2
produced in

other galaxies traveling to and annihilating in a given target
galaxy. As we will discuss, the signal produced by

extragalactic χb
2
has a J-factor halo dependence similar

to the decay DM scenario, unlike the intragalactic dis-
cussed above. The extragalactic signal magnitude is
roughly comparable to the intragalactic signal, and either
can be the dominant contributor depending on the number

of halos in the Universe which produce the extragalactic χb
2

flux and the characteristics of the target galaxy. Larger
galaxies are more likely to be intragalactic dominated due

to their large internal χb
2
production.

We first provide an order of magnitude estimate of the

signal rate. We assume the χb
2
flux to be mainly produced

from MW-sized main galaxies (MGs) that are uniformly
distributed throughout the whole Universe. We take the

average galactic mass to be approximately 8 × 1011 M⊙

based on the Virgo Cluster.
6
This mass is near MW’s,

supporting our χb
2
estimate. With the average matter density

in the Universe
7
ρm ¼ 4.1 × 1010 M⊙= Mpc3, we estimate

the average galaxy density nhalo ∼ 0.05 Mpc−3.

We assume Λ ≪ 1, and most χb
2
leave their source

galaxy, so the rate of χ2 annihilation in a nearby “target”
galaxy (dubbed TG) that we observe is given by

dNann
χ2

dt
∼
hσ1vi

2m2

1

Φhalo

�
Z

dV̄
nhalo

4πr̄2

�

ðπr2sΛÞ
TG: ð18Þ

The leading terms in front of the square brackets in general

estimate the production rate of χb
2

and their escape

probability from a single main galaxy. Since here we are

working in the Λ ≪ 1 limit where most χb
2
’s escape their

parent galaxy, it reduces to simply the χb
2
production rate

with

Φhalo ≈

Z

dVðρMG
1

ðrÞÞ2: ð19Þ

The number density integral in square brackets estimates
the total number of halos in the visible Universe with an

area suppression which accounts for dilution of χb
2
flux due

to distance from the target galaxy. The final term is the

capture cross section of the target galaxy, ðπr2sΛÞ
TG, with

the physical area multiplied by the probability of capture.
The corresponding J-factor can thus be obtained through an

ROI and LOS integration: Jann ¼
2mχ

hσviχ

R

ROI

R

LOS dldΩ
dNann

χ

dt
.

In the d ≫ rs and Λ ≪ 1 limits,

JEG ∼ ðπnhaloRðr
2
sÞ

TGÞ
Λ
TG

d2

Z

dV½ρMG
1

ðrÞ�2

∼ ðπnhaloRðr
2
sÞ

TGÞ
ðρ2

1;0r
3
sÞ

MG

ðρ2
1;0r

3
sÞ

TG
ðΛJannÞ

TG; ð20Þ

where R is the radius of the visible Universe from which χb
2

originate.
8
We use the usual expression for canonical

annihilation Jann from Eq. (2) and simply rewrite the result
such that the final set of parentheses is similar to the
J-factor estimate from the intragalactic contribution in
Eq. (16) for ease of comparison.
The JEG carries an additional suppression relative to the

intragalactic contribution of πnhaloRðr
2
sÞ

TG ∼ 10−3, where

ðrsÞ
TG ∼ kpc is the typical size of dSphs and we take

R ¼ 9 Gpc for the distance back to redshift z ≈ 8 at the
reionization and assume the opacity factor to be 1 [47]. On
the other hand, the middle term in Eq. (20) gives an
enhancement for a target galaxy smaller than the typical
main galaxies. This term originates from the conversion of

the galactic volumetric integral which characterizes the χb
2

production rate from a main galaxy. For dSph, this ratio is

of Oð103Þ.
Combining all these factors, we see that the resulting JEG

is of the same order of magnitude as the intragalactic
Eq. (16) for dSphs and subdominant for MG sized galaxies.
For extragalactic NL annihilation, since we integrate over

the χb
2
source galaxies in the whole Universe, the only halo

6
Estimates on the Virgo cluster assume a mass MVirgo ¼ 1.2 ×

1015 M⊙ [43] and a galaxy count NGalaxies;Virgo ¼ 1500 [44,45].
7
The average matter density is based on h ¼ 0.7 and

Ωm ¼ 0.3.

8
Note that for JEG calculations the extragalactic volume

integration is performed in comoving coordinates. Our constant
nhalo therefore naturally includes factors related to expansion of
the Universe when working in other coordinates. However, we do
not include any additional alterations to the halo population. We
estimate inclusion of changes to the halo population to be less
than an order of magnitude correction to our result due to the
growth of virial overdensity as a function of redshift [46,47] as
well as using a more rigorous treatment for the halo mass
function. Additionally, an interesting outcome of the expansion
which we omitted in this calculation is the redshift dependence of
χb
2
’s energy, which would result in an altered gamma-ray spectra.

In addition, we have omitted substructure considerations to our
analysis; however, we estimate it to also at worst introduce an
order 1 correction to the J-factor ratios shown in Fig. 4 due to the
substructure boost factor (see, e.g., Ref. [48]). This is due to halo
concentration, number density, and substructure boost factor
dependencies on halo mass competing with each other to produce
a near constant χb

2
production rate per halo mass range. We leave a

more detailed analysis of these redshift- and halo-dependent
effects to an upcoming work [49].
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dependence originates from the target galaxy yielding

JEG ∝ ρ2;0=m2r
3
s=d

2, which has similar galactic depend-

ence as the J-factor for decaying dark matter; see Eq. (2).
A more exact calculation of the extragalactic con-

tribution can be derived from Eq. (10) by substituting

ðρ1;0η1Þ
2
→ nhaloΦhalo. This substitution alters the produc-

tion method for χb
2
. Instead of being produced inside the

target galaxy, they are now produced uniformly from all

space. This simulates an average background of χb
2
s that are

produced inside and escape from main galaxies throughout
the Universe.

To account for a possible χb
2
annihilation in the inter-

galactic medium, Λη2 in the exponential of Eq. (11) is

replaced with ΛInterG where InterG denotes the intergalactic

values (note that ηInterG
2

¼ 1) making the integration trivial.
9

With these changes, extragalactic J-factor becomes

JEG ≈ ReffnhaloΦhalo

�

Λ

rs

�

TG
Z

LOS

Z

ROI

dldΩηTG
2
ðr̂Þ ð21Þ

with

Reff ¼ l
InterG
ann ð1 − e−R=l

InterG
ann Þ; ð22Þ

where lInterGann ¼ m2=ðσ
b
2
ρInterG
2

Þ is the typical annihilation

length in the intergalactic medium and R is the same from

Eq. (20). Reff originates from χb
2

suppression due to

intergalactic annihilations integrated over the entire vol-
ume. In the limit that omits intergalactic annihilations, Reff

becomes R. Furthermore, by taking lInterGann ≫ R, we recover
the estimate from Eq. (20) up to the cross section with

ðπr2sÞ
TG becoming

R

dVðη2ðr̂Þ=rsÞ
TG in the d ≫ rs limit.

This variation in the cross section is expected as all paths
through the galaxy are not of equal thickness. For larger

cross sections, we calculate Φhalo numerically by Φhalo ¼
d2ðJann − JIGÞ in the d ≫ rs limit.
In Fig. 4, we also present the J-factor ratios for the

extragalactic contribution. The contribution is comparable
to the intragalactic contribution, dominating slightly for

Sextans and subdominant for Draco. The dip at σb
2
=m2 ∼

105 GeV−3 is due to fewer χb
2
escaping from their source

galaxy as observed by the simultaneous transition in

the ðJ=JMWÞIG.
One effectwe have not taken into account is the blockingof

the external χ2 flux due to the presence of other galaxies.
Althoughwe take the escapingprobability exp ½−Λη2ðr̂Þ� ∼ 1

in the small Λ limit, this assumption can fail if χ2 ’s fly
across many galaxies. To see this is not actually the case, we
can calculate the solid angle in the sky that is occupied by

MilkyWay size galaxies (assuming core radius rs ∼ 10 kpc).
A single galaxy that is r̂ away from us covers a fraction of the

sky approximately πr2s
4πr̂2

. The total fraction of the sky being

covered by all galaxies is

Z

dr̂4πr̂2nhalo
r2s

4r̂2
∼ 0.1: ð23Þ

Thismeans χ2 produced in one galaxy only has a 10%chance
to hit another galaxy before reaching the target galaxy. Thus,
when the escaping probability in each galaxy is close to 1, this
blocking does not change the χ2 flux significantly.
Besides creating the extragalactic signal thus far dis-

cussed, these extragalactic χb
2
can also annihilate with χ2

outside of galaxies and generate the isotropic gamma-ray
background (IGRB) that is also measured by the Fermi-
LAT experiment [50]. This signal is produced by the
intergalactic annihilations discussed in the context of
Eq. (21) and can be simply derived by taking Eq. (21)
with the intergalactic medium as the target. The generated
IGRB flux is

dΦIGRB
γ

dEγdΩ
∼
nhalo

8π

hσ1vi

m2

1

ΦhaloRð1− e−R=l
InterG
ann Þ

dN

dEγ

∼
1.5× 10−9

cm2 ssr

�

ρ2
0
f2
1
hσ1vi=m

2

1

10−29 cm−3 s−1

�

ð1− e−R=l
InterG
ann Þ

dN

dEγ

;

ð24Þ

where ρ0 is the characteristic density of MG and we have

assumed rMG
s ¼ 20 kpc. Interestingly, the result does not

depend on χ2’s properties except in the exponential
suppression, which will be minimal when this effect

may be important (ΛMG ≪ 1). The parameters used in

Table II produce a peak flux E2
γdΦ

IGRB
γ =dEγdΩ ≈ 3×

10−8 GeV cm−2 s−1 sr−1. Comparing the flux with the

IGRB bound E2
γdΦ

IGRB
γ =dEγdΩ≲ 10−7 GeVcm−2 s−1 sr−1

derived in Ref. [51] for a similar gamma-ray spectrum,
our signal should be well within the current constraint
(especially once additional cosmological factors are taken
into account as discussed above). Nevertheless, this diffuse
gamma-ray background is a generic signature of the non-
local annihilation model, and future experiments may be
sensitive to it.

Additionally, producing χb
2
through χ1 annihilation in the

intergalactic medium is also feasible. However, since the
average number density of DM particles in the intergalactic

medium is approximately 10−5 smaller than in the galaxies,
even if the volume of the observable Universe is approx-

imately 106 times larger than the sum of main galaxies,

such χb
2
production is negligible.

9
Note that, even though rInterGs from Λ

InterG has no physical
connection to the target galaxy, it should remain as rTGs in order to
maintain a consistent definition for the dimensionless integration
variables; see the discussion below Eq. (10).

AGASHE, CLARK, DUTTA, and TSAI PHYS. REV. D 103, 083006 (2021)

083006-10



IV. RECONCILING THEGCEAS A SIGNALOF DM

WITH DSPH CONSTRAINTS

Since the nonlocal annihilation process suppresses the
dSph gamma-ray signal relative to the signal from the MW
comparative to canonical annihilation, an application of the
nonlocal annihilation is to explain the potential mild
tension between the DM explanation of the GCE signal
[3] and the null result in dSph observations (see, e.g.,
Refs. [52,53]). Note that, while this discrepancy may not be
very significant [54], we discuss it here simply as an
illustrative application of a specific NL model. The NL
mechanism, however, is much broader and is independent
of this particular result.
For canonical annihilation, a dSph signal produced by

the same process can have a tension that is up to 2σ level for
some annihilation channels [55–57]. If we take the tension
seriously, the dSph signal needs to be suppressed by less
than an order of magnitude in order to satisfy the bound. As
we will show, the mild tension can be naturally addressed
by the Λ factor in NL annihilation. Additionally, the
nonlocal signals with the distinct fingerprints in Fig. 1
are only lower than the canonical annihilation signals by a
factor of a few; they are thus still within the sensitivity of
future observations.

10

In the right panel of Fig. 3, the model labeled “GCE,” see
Table II, shows the required hσ1vi for explaining the GCE
via Eqs. (3)–(5). We obtain the energy spectrum of the
photons by numerically convolving the analytically calcu-
lated spectra of ϕ particles from the annihilation and the
boosted spectra of an isotropic decay of ϕ into photons.
Although the signal comes from a monochromatic decay,
ϕ → 2γ, in ϕ’s rest frame, since ϕ has a broad energy

distribution from the χb
2
χ2 annihilation, the dNγ=dEγ also

has a rather smooth spectrum.
We follow the technique outlined in Ref. [55] for

calculating the χ2 statistic for fitting to the GCE.
11

As
noted in Ref. [55], the best-fit parameters may not visually
appear to be optimal due to large cross-correlations

between individual bins. The reduced χ2 for our model

is 2.03 compared with 1.08 (1.52) for canonical bb̄ (ττ̄)
annihilation obtained in Ref. [55] with 22 d.o.f. While the
significance for this toy model is weaker than other more

standard models, it is used here solely as an example of the
behavior rather than a claim to fit the GCE. We obtain the
best fit of the GCE signal with the spectrum as shown in
Fig. 5 withm1 ¼ 5.68 GeV. For comparison, we also show

the best-fit spectra for canonical χχ → bb̄ and χχ → ττ̄

annihilation. The result has only a mild dependence on
m2;ϕ;X as long as m1 ≫ m2;ϕ;X. For concreteness, we take

m2 ¼ mϕ ¼ mX ¼ 1 MeV for the analysis. For a single set

of model masses, the fitting routine has one additional free
normalization parameter f0, such that the observed flux
from the GCE is

ΦGCE

ΔΩROI

¼ f0

Z

Emax

Emin

dNγ

dEγ

dEγ: ð25Þ

For each value of a set of m1 with fixed m2;ϕ;X, we

optimized f0 to produce the minimum χ2. We then com-

pared all the χ2s to find the global best fit m1. Comparing
with Eq. (1) and making proper conversions, it is obvious
that for NL annihilation

f0;NL ¼
hσ1vi

8πm2

1

×
JNL

ΔΩROI

: ð26Þ

f0 is thus equivalent to the observed event rate per solid
angle and is used to place constraints on hσ1vi in Fig. 3. We
take the ROI to be 2° < θ < 20° from the Galactic Center
where we have omitted the θ < 2° as in Ref. [55].
As before, constraints on the photon injection around

recombination set an upper bound on hσ1vi via CMB
measurements. Together with the bound from keeping α2 in

FIG. 5. Best-fit gamma-ray spectrum for our toy model

χ1χ1 → χb
2
X; χb

2
χ2 → 2ϕ;ϕ → 2γ. In the fit, most masses were

fixed m2 ¼ mϕ ¼ mX ¼ 1 MeV. These produced a best-fit value

of m1 ¼ 5.68 GeV. Note that for m1 ≫ m2;=;ϕ;X the spectrum is

largely independent of m2;=;ϕ;X. For comparison, the best fits for

the canonical bb̄ (dotted blue line) and ττ̄ annihilations (dashed
red line) are also shown.

10
Some other possible solutions to resolve this mild tension

have been proposed in literature. For instance, in Ref. [58], the
dSph signal is suppressed due to the p-wave DM annihilation
process. In Ref. [59], the gamma-ray signal comes from the
interaction between interstellar radiation and charged particles
produced from the DM annihilation. These scenarios, however,
predict much smaller dSph signals that are well below future
observational sensitivity.

11
We use their covariance matrix with our predicted spectra

χ2 ¼
P

ij ð
dN̄
dEi

ðθÞ − dN
dEi

ÞΣ−1
ij ð

dN̄
dEj

ðθÞ − dN
dEj

Þ, where dN=dEi is the

measured flux, dN̄=dEiðθÞ is the predicted flux with input
parameters θ, and Σij is the correlated covariance matrix.
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Eq. (8) perturbative, we find a window 1.7 × 103 <

σb
2
=m2 < 3.3 × 103 GeV−3 for which NL χb

2
annihilations

can produce a sufficient signal to explain the GCE. Based
on the differences observed between the NL and canonical
signals observed in Fig. 4, we therefore expect a factor of
≈3ð15Þ suppression for NL over canonical annihilation in
the dSph/MW signal comparison. Thus, the suppression is
enough to explain the absence of gamma-ray excess from
the existing dSph observations, while suggesting that dSph
signals can still be observed in the future.

V. CONCLUSION

In this paper, we have explored the scenario where the
indirect detection signal comes from two consecutive DM
annihilations. The boosted DM produced from the first
annihilation can travel a long distance before annihilating
with another at-rest DM particle into gamma rays. This
means the production of indirect detection signals becomes
nonlocal with respect to the first annihilation. In fact,
signals from a galaxy can arise either from boosted DM
particle production and annihilation in the same galaxy
(intragalactic) or be triggered by boosted DM particles
coming in from different, faraway, galaxies (extragalactic).
A robust consequence of the nonlocal annihilation is that

the J-factor of the gamma-ray signal is different from those of
the canonical DM annihilation and decay due to a further
dependence on the DM density and size of the halo and an
added dependence on the particle physics of the second
annihilation. This implies that the associated “ratio of ratios”
(the ratio of the signal between two galaxies, say dSph vs
MW, as well as a comparison between the nonlocal and
canonical models) will actually vary between galaxies.
The nonlocal modification is thus galaxy dependent. As
we show in Fig. 1, if DM distributions in these dSphs follow
the NFW distribution, we will be able to distinguish different
DM scenarios once we see the gamma-ray signal from an
ensemble of galaxies. We expect a nontrivial galaxy-depen-
dent J-factor can show up in other DMmodels. For example,
in scenarios that have DM annihilation into long-lived
particles and later decay into gamma rays [28,29], the
corresponding J-factor will be dependent on the lifetime of
the long-lived particle and the region of interest around the
target galaxy in the observation. The signal can therefore have
a different galaxy dependence to our model. The information
from the ensemble of galaxies then provides us a chance to
distinguish these different processes of signal generation.
The magnitude of this effect on the ratio of ratios heavily

depends on the second annihilation cross section; see
Fig. 4. Indeed, in the extreme case of a very large
DM annihilation cross section, requiring masses below
Oð10Þ MeV scale and/or couplings near the perturbative
limit, the nonlocal model mimics the canonical scenario,
whereas it is when the annihilation is less efficient that
the J-factor ratio for the nonlocal model differs from the
canonical model. However, in this opposite limit of a much

smaller annihilation cross section, the ratio of J-factors will
actually be independent of the annihilation cross section. In
this case, the effect still carries additional galaxy depend-
ence as compared to canonical annihilation. This is the case
observed in Fig. 1. We thus obtain a prediction for the J-
factor ratios for the nonlocal model based on only galactic
parameters. It is important to point out that in the
“intermediate” regime of annihilation cross sections the
ratio of J-factors also depends on the cross section,
providing a means for measuring this annihilation rate.
The nonlocal annihilation process not only generates

distinct galaxy-dependent signals but can also reconcile the
mild tension between gamma-ray signals from the MWand
dSphs, namely, explaining the DM annihilation interpre-
tation of the GCE and the null result from dSph. The crucial
observation is the gamma-ray signal from dSphs compared
with the MW is smaller in the nonlocal scenario than it is
for canonical annihilation, thus explaining the lack of
dSphs gamma-ray signals in the current observation.
However, unlike the explanation in Refs. [58,59], the
suppression of the dSph signal from the nonlocal process
is only by a factor of a few and would be detectable with
slight sensitivity improvements in dSph measurements.
Here, we present some additional examples for future

work [49]. While in this work we have discussed the signal
using a specific asymmetric DM model with NFW profiles,
there are many other scenarios that give the nonlocal
annihilation as long as the DM sector produces boosted
particles that have a large annihilation cross section with the
ambient DM, but the same annihilation process has not been
able to deplete the DM density. For example, the non-
local annihilation process may also happen in a forbidden
DM setup [60,61]. Similar to the model in Eqs. (3)–(5) but
withmϕ > m2, the relic abundance of both χ2 and χ

�
2
can be

maintained due to the kinematic barrier even with a large

jχ2j
2ϕ2 coupling. However, this barrier is overcome by the

boosted DM. In this case, the nonlocal annihilation comes

from χ1χ
�
1
→ χb

2
χb�
2
and χb

2
χ�
2
→ 2ϕð2γÞ. Moreover, although

we assume theX in Eq. (3), which produces the boosted dark
matter, to be an invisible particle for simplicity,X can also be
the ϕ particle that generates other gamma-ray signals at a

different location from the χb
2
annihilation. This generates

another interesting profile of the gamma-ray signal.
Additionally, most of our discussion has focused on pro-
ducing a gamma-ray signal; however, another source of
comparisonwould be between neutrino production rates and
the observed astrophysical neutrino flux [62]. As stated
before, we concentrated in this work on the NFW profile.
Qualitatively, other profiles, for example the cored Burkert
profile [63], exhibit the same NL features because they are

due to χb
2
escaping from their parent galaxy. However, each

profile’s signal will possess different radial dependencies as
well as a different allowed parameter space.
Finally, while a GCE explanation is intriguing and is

certainly possible with DM mass of several GeV, in our
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model, in order to naturally generate a nonlocal signal, the
boosted DM should have energy below 100 MeV, and the
resulting gamma-ray signal can be close to the threshold of
the Fermi-LATexperiment. However, future proposals such
as the e-ASTROGAM experiment are designed to cover the
less-explored 1–100 MeV gamma-ray region and can better
probe nonlocal signals.
To conclude, the nonlocal framework is a natural

outcome of multiple extended dark matter models and
predicts additional galaxy dependencies in annihilation
signals. This additional dependence results in smaller
galaxies having an even smaller signal compared with
larger counterparts. The comparison between the nonlocal
behavior and the canonical framework for different galactic
parameters stretches from a maximal difference to naturally
merging with the canonical.
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APPENDIX A: ALTERNATE FORMS

OF THE J-FACTOR

The J-factors are written in multiple forms, making
use of various assumptions throughout the text; in this
Appendix, we derive these simplifications. Similar deriva-
tions have been included in other works [18,64], and we
perform them here for convenience. The differential flux
from an interaction seen by an observer is commonly
written as Eq. (1). It can also be compactly written for
different interaction types as

dΦϕ

dE
¼

1

4π

Z

ROI

dΩl

Z

LOS

dl
dNðrÞ

dVdt

dNϕ

dE
; ðA1Þ

where ϕ is just a product from the interaction. The integral
is taken over the LOS and ROI observed. dNðrÞ=dVdt is
the interaction rate per unit volume and time. dNϕ=dE is the

spectrum of ϕ from the interaction. This form assumes that

the interaction is spherically symmetric. As mentioned in
the text, Eq. (A1) is typically separated into two parts,
namely, the astrophysical and the particle physics param-
eters. For canonical annihilating dark matter, Eq. (A1) can
be written identically to Eq. (1) using

Jann ¼
2m2

χ

hσannvi

Z

ROI

dΩl

Z

LOS

dl

�

dNðrÞ

dVdt

�

ann

ðA2Þ

with

�

dNðrÞ

dVdt

�

ann

¼
hσannvi

2m2
χ

ρ2χðrÞ; ðA3Þ

where χ is the dark matter particle with mass density ρχ. A

similar expression can be written for decay. For a general
expression, it is convenient to define

J ¼

Z

ROI

dΩl

Z

LOS

dlfðrÞ; ðA4Þ

where fðrÞ is a scaled version of the number density of
events per time which generates the signal, dN=dVdt. This
scaling is performed in such a way as to remove all possible
particle physics contributions. We assume fðrÞ is a spheri-

cally symmetric function centered at l⃗ ¼ ðd; 0; 0Þ in the l

coordinate system. In the canonical case, fðrÞ is ρ2χðrÞ for
annihilation and ρχðrÞ for decay.

1. J-factor in the d ≫ rs limit

The J-factors shown in Eq. (2) assume the observer is far
from the galaxy, d ≫ rs, such that all points in the galaxy
can be treated as at equal distance. To demonstrate this far
distance approximation, we restore some of the simplifi-
cations to the volume integral in Eq. (A4); this produces

J ¼ 4π

Z

dVl

4πl2
fðrÞ: ðA5Þ

For simplicity, we assume that we have captured all of the
signal from the galaxy and have thus taken the integration
over the volume of all space. dVl indicates the integral is

performed with l coordinates. The 1=4πl2 is a result of an
area suppression of flux with distance. The volumetric
integral can easily be shifted to a new coordinate system
centered at r, leading to

J ¼

Z

dVr

l
2
fðrÞ: ðA6Þ

Finally, because the profiles have a cutoff scale rcutoff ∼ rs
and d ≫ rs, the integral is dominated by the region where

r ≪ d and thus jl⃗j ¼ jd⃗ − r⃗j ≈ jd⃗j. This results in the
simplification quoted in Eq. (2). Note that a cutoff scale
must be imposed for decay with a NFW profile because
at arbitrarily large distances its volumetric integral is
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logarithmically divergent. In this work, we achieve this
through our choice of boundaries in our ROI and LOS
integrations for computational convenience. Tests showed
that this method resulted in percent-level differences from
the more traditional method of cutting off at the virial
radius. We can also write in this limit the J-factors in the
dimensionless integral format as defined in this work,

Jann ¼
ρ2
0
r3s

d2

Z

d3r̂η2ðr̂Þ; ðA7Þ

Jdec ¼
ρ0r

3
s

d2

Z

d3r̂ηðr̂Þ: ðA8Þ

APPENDIX B: JNL DERIVATION

In this Appendix, we derive the J-factors and associated
functions that arise from the nonlocal annihilation frame-
work, primarily focusing on models where the boosted DM
is produced via another annihilation within the same
galaxy. In a model where the observed dark matter signal
is produced through a secondary interaction, the two
interaction events do not necessarily need to occur at the
same location in space. Let us consider a two-component
dark matter annihilation model with particles χ1 and χ2.
The annihilation of χ1 produces a boosted χ2 referred to

from here on as χb
2
. Because of the current conditions, χ2 is

unable to annihilate with itself, but it can annihilate with χb
2
.

The general model setup is that one set of dark matter, χ1,
annihilates into another variety, χ2, but with a nonzero

velocity, χb
2
. The boosting allows it to access otherwise

forbidden channels; depending on the cross section, χb
2
may

annihilate at a different location from its creation.
For the discussion that follows, we assume all annihi-

lations occur within a galaxy. Subscripts 1 and 2 corre-
spond to the various parameters for particles χ1 and χ2,
respectively.

1. χb2 survival probability

Before calculating the spatial distribution of the χb
2
χ2

annihilation, let us derive the probability function

dPðr; sÞ=ds of having a χb
2

being produced at s ¼ 0

(from the χ1 annihilation) and annihilating at a distance
s away; see Fig. 6.
Let us first assume the number density of χ2 is constant,

n2ðsÞ ¼ n2. When slicing the distance s into infinitesimally

small pieces of length Δs, the probability of having χb
2
to

not have annihilated after traveling s but annihilated before
sþ Δs can be written as

ΔPðsÞ ¼ ð1 − n2σ
b
2
ΔsÞ

s
Δsðn2σ

b
2
ΔsÞ;

¼ exp

�

s

Δs
ln ð1 − n2σ

b
2
ΔsÞ

�

ðn2σ
b
2
ΔsÞ

≈ e−n2σ
b
2
sn2σ

b
2
Δs; ðB1Þ

where σb
2
is the cross section for a χb

2
χ2 annihilation.

Here, we assume fine enough divisions on s such that
the probability of having annihilations in each Δs window

n2σ
b
2
Δs ≪ 1. This gives the probability function

dPðsÞ

ds
¼ e−n2σ

b
2
sn2σ

b
2

ðB2Þ

for a constant χ2 density. When n2σ
b
2
s > 1, the chance for

χb
2
to survive is exponentially suppressed as a function of

distance. When n2σ
b
2
s ≪ 1, χb

2
is unlikely to have annihi-

lated, and the chance of annihilating in a short distance is a

constant (n2σ
b
2
) as expected.

If n2ðsÞ is instead a smoothly varying function of
distance, we can again divide the distance into infinitesimal
Δs pieces, such that the n2ðsiÞ in each ½si; si þ Δs� piece is
almost a constant. In this case, the probability of χb

2

annihilating in between s and sþ Δs can be written as
(s0 ≡ 0)

dPðsÞ

ds
¼

Y

s=Δs

i¼0

�

1 −

Z

Δs

0

dŝe−n̄iσ
b
2
ŝσ2n̄i

�

n2ðsÞσ
b
2
;

¼
Y

s=Δs

i¼0

ð1þ e−n̄iσ
b
2
Δs

− 1Þn2ðsÞσ
b
2
;

¼ exp

�

−

X

s=Δs

i¼0

n̄iσ
b
2
Δs

�

n2ðsÞσ
b
2
: ðB3Þ

Taking the limit Δs=s → 0, we have the probability
function for a general n2ðrÞ,

FIG. 6. A modified version of Fig. 2 to highlight particular
integration angles. A χ1χ1 annihilation first occurs at the blue

point P a distant q from the halo’s center. The produced χb
2
travels

a distance s and annihilates with a slow-moving ambient χ2 at the
red point P0 into ϕ’s that decay promptly on galactic scales into
gamma rays which are observed at the green point. ϕ’s are

produced isotropically in the χb
2
χ rest frame but are boosted in the

observer’s reference frame. This introduces an angular spectrum

that is dependent on ψ , the angle between
⃗
l̂ and ⃗ŝ

AGASHE, CLARK, DUTTA, and TSAI PHYS. REV. D 103, 083006 (2021)

083006-14



dPðr; sÞ

ds
¼ exp

�

−

Z

s

0

ds̃nðs̃Þσb
2

�

n2ðrÞσ
b
2
; ðB4Þ

where we have further generalized dP=ds to be the
probability to annihilate at point r after traveling a distance
s. Eq. (B4) is Eq. (11), which appeared in the main text with
a few cosmetic alterations.

2. Rate of the secondary annihilation

Here, we derive the χb
2
χ2 annihilation rate per volume as

a function of radius r from the halo center denoted by

dN2ðrÞ

dVdt
: ðB5Þ

We define the coordinates as in Fig. 6, where we assume a
spherically symmetric halo density profile n2ðrÞ and want

to calculate the χb
2
χ2 annihilation rate at the red dot P0.

Since the result will only depend on r, we can put the red

point on the z axis and integrate over the χb
2
coming from χ1

interactions at each blue point P around the halo [i.e.,

integrating over ðs; θ0Þ] to obtain the total χb
2
χ2 annihilation

rate. Note that the center of integration is taken at the
second annihilation location rather than the center of
the halo. This choice is to aid in the inclusion of a
nonspherically symmetric annihilation distribution for
the second annihilation originating from the boosted
particle’s trajectory.
First, χ1 annihilations happen at point P (blue) and

produce χb
2
. This is followed by χb

2
χ2 annihilation at point

P0 (red) with the rate given by

dN2ðrÞ

dt
¼

Z

d3s⃗
dn1ðqÞ

dt

ΔAs

4πs2
Pðr; sÞ

¼

Z

d3s⃗
dn1ðqÞ

dt

1

4πs2
dPðr; sÞ

ds
ΔVs: ðB6Þ

Here, n2ðqÞ is the number of χ1 annihilation per volume at

radius q, and Pðr; sÞ is the probability of χb
2
annihilating

after being produced from the blue point and then traveling
to the red point. This probability is derived in the previous

section. We assume the χb
2
are produced isotropically from

the χ1 annihilation, and the probability of having χb
2
reach

the red point is suppressed by dilution of the flux with

distance, ΔAs=4πs
2, where ΔAs is the infinitesimally small

area of the red point. After plugging in Eq. (B4), the rate
density can be written as

dN2ðrÞ

dVdt
¼

Z

d3s⃗

4πs2
dn1ðqÞ

dt
×
dPðr; sÞ

ds
; ðB7Þ

where

dn1ðqÞ

dt
¼

ðρ1ðqÞÞ
2hσ1vi

2m2

1

ðB8Þ

q ¼ qðr; s; cos θ0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s2 − 2rs cos θ0
p

; ðB9Þ

and the probability function

dPðr; sÞ

ds
¼ exp

�

−

Z

s

0

ds̃n2ðs̃Þσ2

�

σ2n2ðrÞ; ðB10Þ

n2ðs̃Þ ¼ n2 at radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ s̃2 − 2rs̃ cos θ0
p

: ðB11Þ

By defining dimensionless lengths, r̂ ¼ rrs, we can
further simplify these expressions down to normalized
density distributions, ηiðr̂Þ ¼ niðrsr̂Þ=ni;0, and a single

scale factor, Λ ¼ n2;0σ2rs,

dN2ðrÞ

dVdt
¼

n2
1;0hσ1vi

2

Λη2ðr̂Þ

4π

Z

d3 ⃗ŝ

ŝ2
ðη1ðq̂ÞÞ

2

× exp

�

−Λ

Z

s

0

dŝη2ðŝÞ

�

: ðB12Þ

Because we are working with boosted particles, we also
define the angular annihilation density to preserve the
particle velocities

dN2ðrÞ

dVdtdΩs⃗

¼

Z

ds⃗

4π

dn1ðqÞ

dt
×
dPðr; sÞ

ds

¼
n2
1;0hσ1vi

2

Λη2ðr̂Þ

4π

Z

dŝðη1ðq̂ÞÞ
2

× exp

�

−Λ

Z

s

0

dŝη2ðqŝÞ

�

; ðB13Þ

whereΩs⃗ denotes the angular dependence. Note that, due to
spherical symmetry, the azimuthal integral is trivial, only
appearing in dΩs⃗. However, due to a dependence in the

signal from the angle between s⃗ and l⃗, it is left unintegrated
here. This additional dependence is due to the introduction
of the observer, which breaks the spherical symmetry
assumed up to this point.
By utilizing Eq. (A1), Eq. (A4), and the annihilation rate

from Eq. (B12) and also assuming the spectra from the
second annihilation is isotropic, the differential flux for
nonlocal annihilation is

�

dΦϕ

dE

�

iso

¼
hσ1vi

8πm2

1

�

dNϕ

dE

�

Jiso ðB14Þ

with

Jiso ¼
2m2

1

hσ1vi

Z

ROI

dΩl

Z

LOS

dl
dN2ðrÞ

dVdt
; ðB15Þ
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similar to annihilation in Eq. (1) but with a different J-
factor. Note that this formulation does not separate the
astrophysics from all of the particle properties. It only
removes the χ1 dependencies but leaves χ2 in the form of Λ;
see Eq. (12). When the boosted spectra are not isotropic, the
differential flux is

dΦϕ

dE
¼

hσvi1
8πm2

1

J ðB16Þ

with

J ¼
8πm2

1

hσvi1

Z

ROI

dΩl

Z

LOS

dl

Z

dΩs⃗

×
dN2ðrÞ

dVdtdΩs⃗

dNϕ

dEdΩs⃗

ðs⃗; l⃗Þ; ðB17Þ

where dNϕ=dEdΩs⃗ðs⃗; l⃗Þ is the differential angular spec-

trum of the annihilation. dNϕ=dEdΩs⃗ðs⃗; l⃗Þ depends on the

angle between the χb
2
’s direction of motion and the direction

to the observer. Using the coordinates as shown in Fig. 6,

this angle is defined by cosðψÞ ¼ l⃗ · s⃗=jljjsj. Note that in
order to keep the same leading factor in Eq. (B16) and a
normalized definition for the differential angular spectrum,
an extra factor of 4π is included in Eq. (B17). This is
because the normalization of dNϕ=dEdΩs⃗ has already been

included in Eq. (B13). This factor can be easily identified
for a uniform distribution where dNϕ=dEdΩs⃗ ¼ 1=4π ×

dNϕ=dE. Combining Eqs. (B13) and (B17) yields the full

intragalactic J-factor defined in the text, Eq. (10):

JIG ¼

Z

ROI

dΩl

Z

LOS

dl

Z

s⃗

d3 ⃗ŝ

2πŝ2

×
dPχb

2
χ2
ðr̂; ŝÞ

dŝ
½ρ1;0η1ðq̂Þ�

2
dN

dEdΩs⃗

ð ⃗ŝ; l⃗Þ: ðB18Þ

Note that this version is more general than Eq. (10) as
explained below. Because of anisotropies, the spectral
dependencies of the interaction are not separable from
the rest of the calculation. But in the highly boosted case,
we assume dNϕ=dΩs⃗ ∝ δðψÞ, and the distribution becomes

separable

dNϕ

dEdΩs⃗

¼
dNϕ

dE

dNϕ

dΩs⃗

¼
1

4π

dNϕ

dE

dNϕ

dðcosðθ0ÞÞ
; ðB19Þ

where dNϕ=dðcosðθ
0ÞÞ ¼ δðψÞ, as all of the spectrum is

highly peaked in the direction of χb
2
’s momentum. To match

the form in Eq. (1), Eq. (10) is written with this approxi-
mation that the energy spectrum is separable from the
angular spectrum.
As noted by Eq. (B19), in this delta function limit,

the azimuthal dependence is trivial, and the zenith angle
is restricted to ψ ¼ π − θ0 − ψ 0 ¼ 0 with cosðψ 0Þ ¼
ðr2 þ l

2 − d2Þ=2rl, thus cosðθ0Þ ¼ − cosðψ 0Þ and
dNϕ=dðcosðθ

0ÞÞ ¼ δðcosðθ0Þ þ cosðψ 0ÞÞ. These angular

dependencies in the delta function limit permit the trivi-
alization of the dΩs⃗ integration, leaving just the ds integral.
The final result only depends on the distributions ηi and Λ,
as observed in Eqs. (B12)–(B13), and the observer inte-
grations over ROI and LOS.
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