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Abstract: Existing models of intracontinental deformation have focused on plate-like rigid body motion v. viscous-flow-like
distributed deformation. To elucidate how plate convergence is accommodated by intracontinental strike-slip faulting and block
rotation within a fold–thrust belt, we examine the Cenozoic structural framework of the central Qilian Shan of northeastern Tibet,
where the NW-striking, right-slip Elashan and Riyueshan faults terminate at the WNW-striking, left-slip Haiyuan and Kunlun
faults. Field- and satellite-based observations of discrete right-slip fault segments, releasing bends, horsetail termination splays
and off-fault normal faulting suggest that the right-slip faults accommodate block rotation and distributed west–east crustal
stretching between the Haiyuan andKunlun faults. Luminescence dating of offset terrace risers along the Riyueshan fault yields a
Quaternary slip rate of c. 1.1 mm a−1, which is similar to previous estimates. By integrating our results with regional deformation
constraints, we propose that the pattern of Cenozoic deformation in northeastern Tibet is compatible with west–east crustal
stretching/lateral displacement, non-rigid off-fault deformation and broad clockwise rotation and bookshelf faulting, which
together accommodate NE–SW India–Asia convergence. In this model, the faults represent strain localization that approximates
continuum deformation during regional clockwise lithospheric flow against the rigid Eurasian continent.
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Plate tectonics is complicated by intracontinental deformation due
to the continental lithosphere’s inherent weakness compared with
the oceanic lithosphere (Chen and Molnar 1983) and vertical
heterogeneity that can lead to lithospheric decoupling and the
propagation of detachment horizons (Burchfiel et al. 1989; C.S.
Wang et al. 2011; Mouthereau et al. 2013). As a result, continental
plate boundaries are often not expressed as single fault systems, but
rather wide (hundreds to thousands of kilometres) zones of diffuse
deformation that accommodate relative plate motion, such as the
Himalaya–Tibet orogen and the San Andreas–Basin and Range
system of western North America (Atwater 1970; Davis and
Burchfiel 1973; Molnar and Tapponnier 1975; Flesch et al. 2000;
Yin 2010; Thatcher et al. 2016). Whether continental tectonics can
be quantified by plate-like rigid bodymotion (Luyendyk et al. 1980;
Tapponnier et al. 1982;Weldon and Humphreys 1986; Avouac et al.
1993; Meade and Hager 2005; Meade 2007) or viscous-flow-like

distributed deformation (England and Houseman 1986; Yin and
Taylor 2011; Haproff et al. 2018) remains a fundamental question.

With regard to the Himalaya–Tibet orogen and the western North
American Cordillera, this question focuses on whether major faults
such as the left-slip Altyn Tagh fault and the right-slip San Andreas
fault act as discrete boundaries of internally rigid crustal blocks or
simply localized zones of high strain within a larger deforming
continuum (Tapponnier et al. 1982; England and Houseman 1986;
Avouac et al. 1993; Platt and Becker 2010; Johnson 2013; Platt and
Becker 2013; Evans et al. 2016). A better understanding of the
kinematic history of the strike-slip fault systems across the
Himalaya–Tibet orogen allows us to explore their role in
accommodating India–Asia plate convergence and answer the
question of discrete v. distributed intracontinental deformation.

The Qilian Shan fold–thrust belt marks the northeastern margin
of the Tibetan Plateau (Fig. 1a) and is bounded by the internally

© 2021 The Author(s). Published by The Geological Society of London. All rights reserved. For permissions: http://www.geolsoc.org.uk/permissions.
Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

Research article Journal of the Geological Society

https://doi.org/10.1144/jgs2020-207 | Vol. 178 | 2021 | jgs2020-207

 by GSL Maintenance User on July 7, 2021http://jgs.lyellcollection.org/Downloaded from 

http://orcid.org/0000-0001-8734-6183
http://orcid.org/0000-0001-6130-5121
http://orcid.org/0000-0002-3119-2290
http://orcid.org/0000-0002-4449-2655
http://orcid.org/0000-0002-2279-437X
http://orcid.org/0000-0003-3491-8824
http://orcid.org/0000-0003-3461-4265
mailto:cfcf.chengfeng@gmail.com
https://doi.org/10.17605/OSF.IO/CR9MN
https://doi.org/10.17605/OSF.IO/CR9MN
https://doi.org/10.17605/OSF.IO/CR9MN
https://www.lyellcollection.org/cc/fold-and-thrust-belts
https://www.lyellcollection.org/cc/fold-and-thrust-belts
https://www.lyellcollection.org/cc/fold-and-thrust-belts
http://www.geolsoc.org.uk/permissions
http://www.geolsoc.org.uk/pub_ethics
http://crossmark.crossref.org/dialog/?doi=10.1144/jgs2020-207&domain=pdf
https://doi.org/10.1144/jgs2020-207
http://jgs.lyellcollection.org/


rigid Tarim and Qaidam basins to the WSW and the North China
craton to the NE (Braitenberg et al. 2003; Guo et al. 2005; Kusky
and Mooney 2015; Cheng et al. 2017; Xu et al. 2020). The fold–
thrust belt has accommodated Cenozoic India–Asia convergence
through a combination of NE-directed shortening and NW- and
WNW-striking strike-slip faulting (Dewey and Burke 1973;
Tapponnier et al. 1990; Gaudemer et al. 1995; Murphy et al.
1997; Métivier et al. 1998; Meyer et al. 1998; Yin and Harrison
2000; Yin et al. 2008a; Taylor and Yin 2009; Yin 2010; Zuza et al.
2016; Allen et al. 2017; Cheng et al. 2019b). Major WNW-striking
left-slip faults in the Qilian Shan (i.e. the Haiyuan fault) and the
Kunlun fault to the south are considered to behave as the respective
northern and southern boundaries of clockwise-rotating crustal
blocks (Fig. 1b) that resemble a bookshelf fault system (England
and Molnar 1990; Zuza et al. 2016). Crustal blocks are bounded to
the east and west by NNW-striking right-slip faults such as the
Riyueshan and Elashan faults (Fig. 1b).

Over the last few decades, geological and geophysical studies
have improved our understanding of the geometry and kinematics of
Cenozoic deformation in the Qilian Shan fold–thrust belt (Zhang
et al. 2004; Ghosh et al. 2006; Bovet et al. 2009; Zheng et al. 2010;
Yin and Taylor 2011; Zuza et al. 2016; Pan et al. 2020). Despite
disagreement regarding the Cenozoic growth history of the Qilian
Shan (Bovet et al. 2009; Allen et al. 2013; He et al. 2018; Zuza et al.
2018a; Cheng et al. 2019b; Li et al. 2020b), most studies agree that
strike-slip faulting has been active since theMid-Miocene (Lin et al.
2011; W.-T. Wang et al. 2011; X. Wang et al. 2011; Duvall et al.
2013; Li et al. 2019). However, the mechanism that generated the
sets of NW-striking right-slip faults and WNW-striking left-slip
faults and their kinematic evolution since the Mid-Miocene remain
inadequately understood (Wang and Burchfiel 1997; Duvall and
Clark 2010; Yuan et al. 2013).

Continental strike-slip faults are commonly accompanied by a
variety of structures, including horsetail splay faults at their tips,
local contractional faults at restraining bends, local extensional
faults at releasing bends and bookshelf faults (Fig. 2) (Cunningham
and Mann 2007; Duvall et al. 2013; Zuza and Yin 2016). In
addition, the geometric arrangement of Riedel shears and associated
structures along strike-slip faults can provide information on the

kinematics within the wrench zone (Fig. 2) (Bartlett et al. 1981).
Here, we integrate the results of satellite imagery analysis and
geological field mapping along the right-slip Elashan and
Riyueshan faults and existing temporal constraints of deformation
associated with these faults to evaluate the mechanism(s) that drove
the strike-slip faulting and block rotation in the Qilian Shan. By
combining measurements of offset terrace risers along the right-slip
Riyushan fault with the luminescence ages of terraces, we determine
a late Quaternary slip rate of c. 1.1 mm a−1. Using these results, we
discuss the late Cenozoic evolution of the Qilian Shan, which
informs how intra-thrust belt block rotation and strike-slip faulting
accommodate plate convergence.

Geological setting

Pre-Cenozoic tectonic evolution of the Qilian Shan

The pre-Cenozoic tectonic evolution of the Qilian Shan orogen
consists of Neoproterozoic continental break-up, Early Paleozoic
subduction and subsequent continental collision, followed by
Mesozoic extension (Yin and Harrison 2000; Yang et al. 2001;
Yin et al. 2007; Song et al. 2009; Xiao et al. 2009; Song et al. 2013;
Huang et al. 2015; T. Wang et al. 2016; Cheng et al. 2017; C. Wang
et al. 2017; Wu et al. 2017; Zuza et al. 2018b; Cheng et al. 2019c).
Precambrian basement rocks are sporadically exposed in the Qilian
Shan and record the tectonic–magmatic events related to the early
Neoproterozoic subduction between the South Tarim–Qaidam and
North Tarim–North China continents and subsequent late
Neoproterozoic continental rifting (Wan et al. 2001; K. Tung
et al. 2007; Song et al. 2012; K.-A. Tung et al. 2013; Zuza et al.
2018b; Cheng et al. 2019a; Cheng et al. 2019b).

The Qilian Shan orogen also contains early Paleozoic flysch
sequences, plutons, ophiolitic mélange and metamorphic rocks.
These rocks record the early Paleozoic closure of the Qilian Ocean
as the Kunlun–Qaidam terrane collided with the North China craton
(Song et al. 2009; Xiao et al. 2009;Wu et al. 2017). Mesozoic strata
overlie Paleozoic strata and Precambrian basement (Zuza et al.
2018b). Triassic plutons that intrude the Paleozoic strata and
Precambrian basement probably record the Mesozoic closure of the

Fig 1. (a) Map of the Himalaya–Tibet
orogen showing major strike-slip faults in
northeastern Tibet. (b) Map of the Qilian
Shan region showing major strike-slip and
thrust faults. Base maps were generated
using GeoMapApp (www.geomapapp.
org) (Ryan et al. 2009). The geometry and
kinematics of the faults are derived from
Zuza et al. (2016) and Taylor and Yin
(2009).

2 Cheng et al.

 by GSL Maintenance User on July 7, 2021http://jgs.lyellcollection.org/Downloaded from 

http://www.geomapapp.org
http://www.geomapapp.org
http://jgs.lyellcollection.org/


Palaeotethys andMesotethys oceans (Pullen et al. 2008; L. Yu et al.
2017). Slab rollback in the south and shearing along the Altyn Tagh
fault zone (Cheng et al. 2019c) might have led to regional extension
in the Qilian Shan during the Jurassic–Cretaceous.

As summarized by Zuza et al. (2018b) and Wu et al. (2016), the
pre-Cenozoic history of this orogen is still ambiguous, with current
disputes focused on the polarity of oceanic subduction, the number
and location of suture zones, and the onset timing and duration of
orogenesis. Several disparate belts of suture zone material are
exposed in the Qilian Shan, which form zones of pre-existing
weakness that were reactivated in the Cenozoic (Zuza et al. 2018b;
Li et al. 2020a).

Cenozoic tectonic evolution of the Qilian Shan

Cenozoic structures of the Qilian Shan consist of series of NW-
striking fold–thrust belts and the WNW-striking, left-slip Haiyuan
and Kunlun faults (c. 100–110° strike) (Fig. 1b). Several NNW-
striking right-slip faults, including the Elashan and Riyueshan

faults, are located at high angles between the Haiyuan fault to the
north and the Kunlun fault to the south (Fig. 1b) (Meyer et al. 1998;
Yin et al. 2008b; Lease et al. 2011; Lease 2014; Cheng et al. 2015b;
Zuza et al. 2016; Allen et al. 2017).

As indicated by existing low-temperature thermochronological
data and sedimentological records, the southern part of Qilian Shan
experienced significant crustal shortening during the Paleocene to
Eocene shortly after India–Asia collision, followed by Oligocene
exhumation of the central and northern parts of the Qilian Shan
(Jolivet et al. 2001; Bovet et al. 2009; Zhuang et al. 2011; He et al.
2017; He et al. 2018; Cheng et al. 2019b). Given the general
northwards younging initiation ages of Cenozoic structures within
the Qilian Shan, some studies advocate for a progressive northwards
propagation of deformation from the Miocene to Pliocene (George
et al. 2001; Bovet et al. 2009; D. Zheng et al. 2010, 2017; W. Wang
et al. 2016; Cheng et al. 2019b). However, several pulses of out-of-
sequence thrusting have been reported throughout the Qilian Shan
(Zuza et al. 2018a; Li et al. 2020b). Aside from the NE–SW-
directed shortening across the Qilian Shan fold–thrust belt, the

Fig 2. Diagram showing various types and
orientations of structures as part of a
larger non-linear strike-slip fault system.
Note the horsetail splay, restraining bend,
releasing bend and bookshelf fault system.
Also shown is Riedel’s model of faults
within a larger strike-slip fault zone,
showing the local stress field and
geometric relations between structures
formed in a simple shear regime.
Modified from Davis et al. (2000).
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>1000 km long, WNW-striking, left-slip Haiyuan fault (Fig. 1)
probably played an important part in accommodating crustal
deformation in northeastern Tibet from the Mid-Miocene
(Burchfiel et al. 1991; Duvall et al. 2013; Yuan et al. 2013; Zuza
et al. 2016; Li et al. 2019).

Rotating bookshelf faulting

The Elashan and Riyueshan faults are sub-parallel, NW-striking
(c. 325–340° strike), right-slip faults situated between the left-slip
Haiyuan fault to the north and the left-slip Kunlun fault to the south,
forming a rotating bookshelf fault system (Fig. 1b). Slip initiated
along the Elashan and Riyueshan faults at 9 ± 3 and 10 ± 3 Ma,
respectively (Duvall et al. 2013; Yuan et al. 2013). The reported late
Quaternary slip rates along the middle segments of the Elashan and
Riyueshan faults are 1.1 ± 0.3 and 1.2 ± 0.4 mm a−1, respectively
(Yuan et al. 2011).

Methods

Geological field mapping, satellite image analysis and
seismic profile interpretation

To investigate the geometry and kinematics of the structures within
the Qilian Shan, we conducted geological field mapping along the
Riyueshan and Elashan faults within the central part of the Qilian
Shan fold–thrust belt (sites 1, 2, 3 and 4 in Fig. 1b). Detailed field
observations across much of the Qilian Shan have been reported
previously (Wu et al. 2017; Zuza et al. 2018a; Zuza et al. 2018b;
Cheng et al. 2019a). Google Earth imagery and field observations
were used to document the surface trace and kinematics of these two
faults. In addition, we reinterpreted a previously published seismic
reflection profile across Lake Qinghai adjacent to the Riyueshan
fault (Fig. 1b) (An et al. 2006) to further understand the kinematics
of the bookshelf faults.

Luminescence geochronology

Two samples (RF001 and RF002) were collected for optically
simulated luminescence dating from one site (site 4) along the
northern segment of the Riyueshan fault near its termination at the
Haiyuan fault (Fig. 1b). Sample RF001 was collected from a north-
facing wall along the south side of a stream drainage at a depth of
85 cm below the channel-incised wall or riser (site 4a). Sample
RF002 was collected south of sample RF001 from the north-facing
wall along the south side of a stream drainage at a depth of 65 cm
below the channel-incised wall (site 4c). The sampled sediment is
mainly composed of massive pebbly silty clay with rootlets
extending 90 cm below the ground surface and the uppermost 20–
25 cm consists of modern day soil. Angular pebbles appear to be
locally derived and therefore the sediments are probably colluvial
with an aeolian component.

Samples RF001 and RF002 were collected by hammering steel
tubes into the cleaned surfaces of the terrace walls. The tubes were
subsequently removed from the terrace wall and wrapped in light-
proof plastic for transport to the Desert Research Institute E.L. Cord
Luminescence Laboratory (Reno, NV, USA) for further sample
preparation. Detailed sample preparation and analytical procedures
are described in the Supplementary Material.

Initial luminescence measurements and dose recovery tests
showed that potassium-rich feldspar (Brookfield) grains were
better suited to dating than the quartz grains in these samples (see
Supplementary Material for details). Infrared-stimulated lumines-
cence (IRSL) ages were therefore measured from small (1 mm
diameter) aliquots of fine sand-sized grains. The age distributions
from c. 45 measurements from both samples were tight with an
overdispersion of <10%. This indicates that the measured fine

sand-sized feldspar grains were well bleached prior to burial. We
therefore interpret an aeolian origin for much of the sediment and/or
shallow slope aggradation, which supports an aeolian and/or
shallow colluvial origin for the deposit.

Results of field- and satellite-based observations

Elashan fault

The northern tip of the Elashan fault is expressed as a horsetail splay
structure consisting of a series of NW- to NNW-striking faults that
merge to the south (site 1, Fig. 3a). Regional geological maps show
that these faults offset Triassic shallow marine and terrestrial strata
along a right-slip sense (Fig. 3b, c) (Qinghai-Geology-Bureau
1976). By contrast, the northwesternmost tip of the Elashan fault
features minor faults with both right-slip and left-slip separation
(Fig. 3d, e). Previous geological mapping (Qinghai-Geology-
Bureau 1976) and satellite-based observations suggest that these
structures are high-angle faults as a result of their relatively linear
traces across the topography and the displacement of gently SW-
dipping strata (Fig. 3d, e). We suggest that the right-slip and left-slip
map view separation along these faults reflects dominantly dip-slip
normal kinematics.

To the south of site 1, just north of the city of Wulan (site 2,
Fig. 1b), the middle segment of the Elashan fault has two right-
stepping releasing bends that form a local pull-apart basin featuring
several north- and NNW-striking faults (Fig. 4a, b). The north-
striking fault traces are sub-parallel to the trend of the local river
drainage and several triangular facets are observed along the faults
(Fig. 4a, b). In addition, the north-striking linear faults do not
laterally displace the local stream drainage (Fig. 4a) or topography
(Fig. 4b). We therefore interpret the north-striking faults to have
dominantly dip-slip kinematics. By contrast, the NW-striking faults
feature sub-horizontal striations in vertical fault planes (Fig. 4d),
suggesting dominantly strike-slip kinematics (Fig. 4e).

Riyueshan fault

The northern segment of the Riyueshan fault shows a complex
variability between strike-slip and normal-slip kinematics. The
Riyueshan fault along the western flank of the Lakeshan Range (site
3 on Fig. 1b), which strikes c. 338°, features triangular facets and
displays no evidence of laterally displaced stream drainage (Fig. 5),
which suggests dominantly dip-slip kinematics. However, the
northernmost segment of the Riyueshan fault (site 4 on Fig. 1b),
which strikes c. 328°, features right-laterally displaced stream drainage
(Fig. 6a). We did not observe any dip-slip displacement at this latter
site. This structural geometry is similar to that of the Elashan fault,
wherein the more northerly striking fault segments have normal-slip
normal kinematics segments, whereas the fault segments with a more
NW-striking orientation have strike-slip kinematics.

At the northernmost site along the Riyueshan fault, we surveyed
right-laterally displaced fluvial terrace risers at three locations (sites
4a–4c, Fig. 6a). To mitigate potential errors in measuring the
displaced fluvial terrace risers (Cowgill 2007), we systematically
measured the right-lateral displacements of the thalweg and
bounding risers on both sides of the drainage to determine a range
of plausible displacement magnitudes. Based on riser morphology,
we report an average displacement magnitude and standard
deviation (1σ), which typically excludes measurements of
rounded, eroded and/or ambiguous riser crests.

At site 4a, we determined that the northern riser, thalweg and
southern riser are displaced by 7.41, 8.04 and 5.60 m, respectively
(Fig. 6b). At site 4b, we determined that the northern riser, thalweg
and southern riser are displaced by 9.45, 7.66 and 5.63 m,
respectively (Fig. 6c). At site 4c, the northern riser, thalweg and
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southern riser are displaced by 8.30, 7.90 and 8.85 m, respectively
(Fig. 6d). The average (1σ) right-slip displacement magnitudes
along the Riyueshan fault at sites 4a, 4b and 4c are 7.73 ± 0.45 m
(Fig. 6b), 8.56 ± 1.27 m (Fig. 6c) and 8.10 ± 0.28 m (Fig. 6d),
respectively. Erosion and degradation of the southern risers at each
site added to the uncertainty of the displacement measurements. For
this reason, our reported average displacement estimates exclude the
displacement measurements of the southern risers.

Results of geophysical observations

A previous geophysical survey by An et al. (2006) across Lake
Qinghai (Fig. 1b) shows a series of WNW-striking, high-angle
faults (Fig. 7). By comparing the isobaths of subsurface reflectors
on either side of these faults, we observed that the faults have both
apparent right-slip and left-slip separation (Fig. 7) and divide the
Lake Qinghai Basin into several internally rigid blocks (Fig. 7a).

The orientation of these WNW-striking, high-angle faults
compared with the larger WNW-striking Haiyuan fault to the
north and the Kunlun fault to the south are roughly consistent with
the expected orientation of subsidiary normal faults parallel to the

minimum compressive stress within a strike-slip system (Fig. 7b). In
a north–south-trending seismic reflection profile, we observe sets of
growth strata that indicate a >5 Ma initiation timing of normal
faulting (Fig. 7c) (Fu et al. 2013).

Results of luminescence geochronology and slip rate of
the Riyueshan fault

Samples RF001 and RF002 yield respective IRSL ages of 7.15 ±
0.42 and 7.16 ± 0.42 ka (Table 1). The nearly identical IRSL ages of
samples RF001 and RF002, despite being collected c. 550 m apart
from two displaced stream drainages (Fig. 6), suggest spatially
uniform erosion and aggradation processes over time and relatively
minor aggradation during most of the Holocene. Both samples were
taken within a metre of the ground surface and below the soil
horizon and no paleosol was observed at depth in the terracewalls. It
is therefore possible that aggradation rates were higher in the late
Pleistocene–early Holocene before slowing at c. 7 ka. Assuming
that the sampled sediments aggraded prior to channel incision and
fault slip, the average IRSL ages reflect the maximum ages for the
most recent displacement along the Riyueshan fault.

Fig 3. Google Earth based map (© 2021
Maxar Technologies) of faults along the
northern segment of the Elashan fault.
(a) Horsetail splay structure, (b, c) right-
slip displacement of Triassic strata and
(d, e) several subsidiary faults cutting
Triassic strata. The locations of the maps
are shown in Figure 1b.
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Given the 7.73 ± 0.45 m displacement and 7.15 ± 0.42 ka IRSL
age at site 4a, we determine a late Quaternary slip rate of 1.1 ±
0.1 mm a−1 (1σ) along the Riyueshan fault. Given the 8.35 ±

0.47 m displacement and 7.16 ± 0.42 ka IRSL age at site 4c, we
determine a late Quaternary slip rate of 1.2 ± 0.1 mm a−1 along the
Riyueshan fault. We thus estimate the mean late Quaternary slip rate

Fig 4. Images of faults and fabrics along the northern segment of the Elashan fault. (a) Oblique view Google Earth based image (© 2021 Maxar
Technologies) of the pull-apart basin. (b) Topographic base map of the pull-apart basin (location shown in Fig. 4a). Note that the river drainage and
contour lines are not laterally displaced by the faults, indicating dominant dip-slip kinematics. (c) Google Earth based map (© 2021 Maxar Technologies) of
a restraining bend along the Elashan fault (location shown in Fig. 4a). (d) Field photographs showing the sub-horizontal striations on the Elashan fault
surface. (e) Field photograph showing strike-slip and normal faults along the Elashan fault.
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along the northern part of the Riyueshan fault to be 1.1 ±
0.1 mm a−1 (1σ).

Discussion

Strike-slip faulting and block rotation related to the
Riyueshan and Elashan faults

Our field- and satellite-based observations allow us to better
characterize the geometry and kinematics of the right-slip Elashan
and Riyueshan faults. The northwestern termination of the Elashan
fault constitutes a horsetail splay fault system (Fig. 3) that probably
distributes lateral shear. Directly north of this structure is the western
segment of the WNW-striking Haiyuan fault, which is not displaced
right-laterally by the Elashan fault (Fig. 1b). This requires right-slip
faulting to terminate at the mapped tip of the Elashan fault and not
continue northwards across the Haiyuan fault (Fig. 1b). The middle
segment of the Elashan fault is expressed as a pull-apart basin
(Fig. 4). The northern and middle segments of the Riyueshan fault
are right-lateral normal oblique-slip faults. The development of these
subsidiary structures suggests that both the Riyueshan and Elashan
faults probably accommodated regional extension since their
inception. Based on their geometries and transtensional setting,
these faults accommodate west–east stretching of Qilian Shan.

Previous studies have inferred that right-lateral slip along the
Elashan and Riyueshan faults initiated at 9 ± 3 and 10 ± 3 Ma,
respectively (Yuan et al. 2011; Duvall et al. 2013). The west- to
WNW-striking Qinghai–Nanshan and Gonghe–Nanshan thrusts
(Fig. 1b), which form kinematically linked thrust ramps between the
Elashan and Riyueshan faults, initiated at 11–9 Ma (Zhang et al.
2012) and 10–7 Ma, respectively (Craddock et al. 2011). This
coeval Late Miocene initiation of the timing of deformation
(Fig. 8a) implies a regional rather than local driving force, possibly
induced by a NE-trending maximum principal compressive stress
related to NE–SW India–Asia convergence. As a consequence,
right-lateral slip along the Elashan and Riyueshan faults resulted in
coeval Miocene extension by the Lake Qinghai fault system in the
north and shortening by the Qinghai–Nanshan and Gonghe–
Nanshan thrusts (Fig. 1b). A Miocene onset of faulting in the Lake
Qinghai fault system is roughly supported by the >5 Ma age
revealed by the growth strata (Fig. 7) (Fu et al. 2013).

Given that the Miocene onset of left-slip motion along the
Kunlun and Haiyuan faults (Jolivet et al. 2003; Lin et al. 2011;

W.-T. Wang et al. 2011; X. Wang et al. 2011; Duvall et al. 2013;
Cheng et al. 2014; Li et al. 2019) is roughly consistent with the
initiation ages of the right-slip structures between these left-slip

Fig 5. Oblique view Google Earth based
images (© 2021 Maxar Technologies) of
the northern segment of the Riyueshan
fault. (a) Linear trace of the Riyueshan
fault. (b) Annotated sketch map showing
the surface trace, triangular facets and
undeformed stream channel along the
Riyueshan fault.

Fig 6. Google Earth based image (© 2021 Maxar Technologies) and field
photographs along the northern segment of the Riyueshan fault.
(a) Google Earth based image of the fault trace. (b–d) Field photographs
of sites 4a, 4b and 4c with displacement measurements and sample
locations. Samples RF001 and RF002 were collected at sites 4a and 4c,
respectively, for IRSL dating. Dating results are shown in Table 1.
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faults, we propose that the Elashan and Riyueshan right-slip faults
initiated in the Miocene as part of a bookshelf fault system
embedded within the left-lateral shear zone between the Haiyuan
and Kunlun faults (e.g. Duvall and Clark 2010). For a bookshelf
fault system that is controlled by a broad left-slip shear zone, the
internal fault-bounded blocks are predicted to rotate counterclock-
wise (Fig. 8b). This kinematic prediction is complicated because
northern Tibet is part of a broad NE-trending right-lateral shear zone
that experiences clockwise rotation against the fixed Tarim block
and left-slip Altyn Tagh fault (Cobbold and Davy 1988; England
and Molnar 1990; Zuza and Yin 2016), including the Haiyuan and
Kunlun left-slip faults, their fault-bounded wallrock and the right-
slip fault system.

Previous palaeomagnetic studies adjacent to this right-slip fault
domain between the Haiyuan and Kunlun faults do not yield
significant rotation since the Miocene (Dupont-Nivet et al. 2003;
Fang et al. 2003) (Fig. 8a). However, if most of northern Tibet
experienced clockwise rotation, local counterclockwise rotation
within the bookshelf fault system might be obscured as the integrated
rotation magnitudes cancel each other out within uncertainties
(Fig. 8c). We therefore propose a hybrid model with regional right-
lateral shear and clockwise rotation in northern Tibet that drives left-

slip motion along the Haiyuan and Kunlun faults, which ultimately
causes smaller scale counterclockwise rotation and right-slip
bookshelf faulting between the left-slip faults (Fig. 8d).

Crustal stretching and lateral displacement along strike-
slip faults in northern Tibet

It remains debatable whether there has been significant crustal
stretching and lateral displacement along strike-slip faults in
northern Tibet since the Miocene (Gaudemer et al. 1995; Ding
et al. 2004; Harkins et al. 2010; Cheng et al. 2015b). This type of
potential deformation is likely to be limited to the upper crust
(Hubbard and Shaw 2009; Tian et al. 2016; Shen et al. 2019). As
shown by recent earthquake focal mechanisms in the Qilian Shan
region (Pan et al. 2020), most earthquakes are associated with NW-
striking reverse faults and strike-slip faults (Fig. 9a). Earthquake
focal mechanisms indicate right-slip motion along the Elashan and
Riyueshan faults and reverse fault motion along the Qinghai–
Nanshan and Gonghe–Nanshan thrusts (Fig. 9a). The recent
earthquake activity and geometrical relationships between these
faults suggest a kinematic linkage between the reverse faults and the
Riyueshan and Elashan faults.

Fig 7. (a) Simplified tectonic map,
(b) Riedel’s model of faults, showing the
local stress field, and (c) seismic profile
of the Lake Qinghai fault system,
modified from An et al. (2006). The ages
of the strata are based on
magnetostratigraphy data from a Lake
Qinghai drilling core (Fu et al. 2013) and
regional seismic profile correlation. Note
that an alternative interpretation that
shows a north-dipping normal fault (F0)
is shown in orange. Reprinted from An
et al. 2006 with permission from Springer
Nature.
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Our field observations and IRSL ages allow us to constrain a
late Quaternary average slip rate of 1.1 ± 0.1 mm a−1 along the
northernmost segment of the Riyueshan fault. This estimate is
consistent with the previously estimated late Quaternary slip rates
of 1.2 ± 0.4 mm a−1 along the middle segment of the Riyueshan

fault (Yuan et al. 2011) and 1.1 ± 0.3 mm a−1 along the middle
segment of the Elashan fault. We therefore infer that both the
Riyueshan and Elashan faults have shared a c. 1 mm a−1 uniform
slip rate since the Late Quaternary. Assuming this constant long-
term slip rate, eastwards crustal displacement in the Qilian Shan

Fig 8. (a) Map showing the onset timing
of the faulting along the strike-slip faults
in northern Tibet. Base map was
generated using GeoMapApp (www.
geomapapp.org) (Ryan et al. 2009).
(b) Map view diagram showing bookshelf
faulting driven by the left-slip motion
along the Haiyuan fault to the north and
the Kunlun fault to the south. (c) Map
view diagram showing the regional right-
slip shear accommodating the clockwise
rotation of northern Tibet (including the
Haiyuan and Kunlun faults). (d) Hybrid
model combining the bookshelf fault
model shown in part (b) and the regional
right-slip shear model shown in part (c).
The onset timing of deformation is
compiled from Duvall et al. (2013), (Li
et al. 2019) and references cited therein.

Table 1. IRSL age data for samples RF001 and RF002

Sample
No.

Depth
(cm)

Altitude
(m) n*

Overdispersion
(%) Db (Gy)

‡
U

(ppm)
Th

(ppm) K

External β
dose rate wet
(Gy ka−1)

External γ
rate wet
(Gy ka−1)

Cosmic dose
rate

(Gy ka−1)‡

Total dose
rate

(Gy ka−1)§ Age (ka)||

RF001 85 3643 45 (48) 7 27.79 ± 0.38 2.72 14.0 2.74 2.334 1.468 0.345 5.10 ± 0.26 7.15 ± 0.42
RF002 65 3618 46 (48) 6 30.50 ± 0.37 3.03 16.2 3.03 2.611 1.663 0.363 5.59 ± 0.28 7.16 ± 0.42

*n, number of De determinations accepted after screening. The total number of aliquots measured is given in parentheses.
†The burial dose, Db, was determined using the central age model (Galbraith et al. 1999) prior to fading correction and the error is the standard error.
‡Cosmic dose rates (Gy ka−1) were calculated according to Prescott and Hutton (1994).
§Dose rates (Gy ka−1) were calculated using the conversion factors of Liritzis et al. (2013) and are shown rounded to two decimal places; ages were calculated using values prior to
rounding; central values are given for dose rates and errors are incorporated into that given for the total dose rate.
||Luminescence ages are expressed as thousands of years before AD 2019 and rounded to the nearest 10 years. Error is 1σ. Final ages are corrected for fading using the model of Huntley
and Lamothe (2001) and a measured fading rate of 3.03 ± 0.22% decade−1.
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would correspond to >10 km of displacement along each of the
right-slip faults.

As shown in the compilation of the Quaternary slip rates in the
Qilian Shan region in Figure 9b, the estimated slip rate of the
Haiyuan fault ranges from 1–3 to 19 ± 5 mm a−1. However, the
study sites of Lasserre et al. (1999, 2002), from which faster slip
rates of 19 ± 5 and 12 ± 4 mm a−1 were derived, have come into
question due to a bias towardsthe systematic use of lower terrace
reconstructions in interpreting the age of offset (Zheng et al. 2013b;
Yao et al. 2019). With the exception of these two possibly
overestimated slip rates, the Haiyuan fault slip rates vary from 1–3 to
6.4 ± 0.7 mm a−1 along the western fault segment and 3.2 ± 0.2 to
8–10 mm a−1 along the eastern fault segment (Li et al. 2009; Yuan
et al. 2011; Zheng et al. 2013b; Matrau et al. 2019; Yao et al. 2019).
Assuming a constant long-term slip rate (c. 4 and c. 6 mm a−1 along
the western and eastern segments, respectively), a left-slip initiation
at 15 Ma along the Haiyuan fault (Duvall et al. 2013; Li et al. 2019;
Yu et al. 2019) yields c. 60–90 km of total displacement. This slip
estimate overlaps published offset measurements (Gaudemer et al.
1995; Ding et al. 2004). For the West Qinling fault, given the
estimated slip rate of 2.5–3 mm a−1 (Fig. 9b) (Chen and Lin 2019),
c. 38–45 km of displacement would have occurred since 15 Ma.

Published slip rate estimates for the Kunlun fault are
c. 16 mm a−1 along its western segment and gradually decrease to

8.9 ± 0.7 to 10.9 ± 0.5 mm a−1 along its central segment and to 2.0
± 0.4 mm a−1 along its eastern segment (Fig. 9b) (Van Der Woerd
et al. 1998, 2002; Li et al. 2005; Kirby et al. 2007; Harkins and
Kirby 2008; Lin and Guo 2008; Harkins et al. 2010). Assuming a
constant long-term slip rate (c. 16, 8.9 ± 0.7 to 10.9 ± 0.5 and 2.0 ±
0.4 mm a−1 along the western, central and eastern segments,
respectively) and left-slip initiations of 12–8, 20–15 and 8–5 Ma
along the western, central and eastern segments of the Kunlun fault,
respectively, displacement magnitudes of 130–200, 120–230 and
8–20 km would have occurred for these fault segments.

Although the use of a constant slip rate may overestimate or
underestimate the total displacement along these faults, these estimates
provide a perspective on tens to hundreds of kilometres of eastwards
displacement of crust in northern Tibet since the Miocene. Whether
these amounts of eastwards displacement of crust in the Qilian Shan
along strike-slip faults can be balanced with the magnitude of crustal
lateral displacement transferred from >300 km of left-slip displace-
ment along the Altyn Tagh fault (Meyer et al. 1998; Searle et al. 2011;
Cheng et al. 2015b, 2016b) remains uncertain.
The geometries of the Riyueshan and Elashan faults imply that

c. 1 mm a−1 of slip along each fault corresponds to c. 0.5 mm a−1 of
west–east-oriented stretching per fault, or c. 1 mm a−1 of west–east
stretching across the Lake Qinghai fault system. This interpretation
based on Quaternary slip rates is comparable with the

Fig 9. (a) Shaded relief map showing
recent earthquake focal mechanisms and
(b) Late Quaternary slip rates along the
strike-slip faults of northern Tibet. The
earthquake focal mechanism data are from
Pan et al. (2020) and the slip rate data are
compiled from previous studies
(Gaudemer et al. 1995; Van Der Woerd
et al. 1998, 2000, 2002; Lasserre et al.
1999, 2002; Hetzel et al. 2002; H. Li
et al. 2005; Xu et al. 2005; Lin et al.
2006; Kirby et al. 2007; Liu-Zeng et al.
2007; Zhang et al. 2007; Harkins and
Kirby 2008; Lin and Guo 2008; C. Li
et al. 2009, 2011; Champagnac et al.
2010; Harkins et al. 2010; Yuan et al.
2011; Zheng et al. 2013a, 2013b, 2013c;
Luo et al. 2015; Gold et al. 2017; Jiang
et al. 2017; J.-X. Yu et al. 2017; Elliott
et al. 2018; Yuan et al. 2018; Chen and
Lin 2019; Matrau et al. 2019; Ren et al.
2019; Yao et al. 2019; Zhang et al. 2019;
Pan et al. 2020; Shao et al. 2020). Base
maps were generated using GeoMapApp
(www.geomapapp.org) (Ryan et al. 2009).
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west–east-oriented stretching rates of 1–2 mm a−1 in the same
region derived from global positioning system (GPS) velocities
(Duvall and Clark 2010). The NE–SW-oriented convergence rate
across the central Qilian Shan is 6–7 mm a−1 based on a tabulation
of shortening estimates over the past 10 Ma (Zuza et al. (2018a) and
c. 5–7 mm a−1 based on modern convergence rates from GPS
velocities (Zhang et al. 2004; Gan et al. 2007). We therefore infer
that, since the Mid- to Late Miocene, the Qilian Shan has
accommodated c. 6 mm a−1 of NE–SW-oriented crustal shortening
and slower west–east-oriented stretching of 1–2 mm a−1.

Mechanism of Late Cenozoic deformation in the Qilian
Shan

Most studies have reached a consensus that strike-slip faulting in the
Qilian Shan fold–thrust belt has been active since the Mid-Miocene
(Lin et al. 2011; W.-T. Wang et al. 2011; X. Wang et al. 2011;
Duvall et al. 2013; Li et al. 2019) and accommodated a considerable
amount of Cenozoic crustal deformation in northern Tibet (Dewey
and Burke 1973; Murphy et al. 1997; Yin and Harrison 2000;
Dupont-Nivet et al. 2002; Yin et al. 2002, 2008a; E. Wang et al.
2006; Taylor and Yin 2009; Yin 2010; Cheng et al. 2016a; Zuza
et al. 2016; L. Wang et al. 2020).

Two broad end-member models have been proposed to explain
this Cenozoic deformation associated with this strike-slip faulting:
the eastwards lateral displacement model (Meyer et al. 1998; Cheng
et al. 2015b) and the non-rigid passive bookshelf faulting model
(Zuza and Yin 2016). The eastwards lateral displacement model
emphasizes that the strike-slip faults (e.g. the Kunlun, Haiyuan,
Riyueshan, Elashan and West Qinling faults) are the dominant
structures in accommodating convergence in northern Tibet. By
contrast, the non-rigid passive bookshelf faulting model involves
discrete left-slip faulting in northern Tibet, which accommodates
distributed off-fault deformation during the regional clockwise
rotation of crustal blocks and faults. Despite the merits of the non-
rigid passive bookshelf faulting model, it is challenged by
palaeomagnetic studies that indicate limited rotation in northern
Tibet (Dupont-Nivet et al. 2002, 2003; Fang et al. 2003; Yu et al.
2014) v. others that demonstrate appreciable Neogene clockwise
rotation (Cogné et al. 1999; Chen et al. 2002; Halim et al. 2003; Liu

et al. 2003; Yin et al. 2008a). The eastwards displacement model is
questioned by whether the NW-striking strike-slip faults (e.g. the
Riyueshan and Elashan faults) within the Qilian Shan can absorb
such a large amount of eastwards crustal motion across northern
Tibet (Meyer et al. 1998; Cheng et al. 2015b).

As a result of this study, we suggest that the non-rigid passive
bookshelf faulting model can be reconciled with a new integrative
model that better explains the kinematics framework of northern
Tibet by taking the significant fault-parallel west–east stretching
into consideration. We thus propose a hybrid model that combines
these two end-member models to describe the Cenozoic deform-
ation pattern of northern Tibet.

In the early Cenozoic, as a result of India–Asia convergence,
shortening strain in northern Tibet caused the translation of the
Qaidam Basin northwards against the Altyn Tagh fault (Ritts and
Biffi 2000; Cowgill et al. 2003; Cheng et al. 2015a, 2015b, 2016b)
(Fig. 10a). Greater shortening in the west than in the east (Yin et al.
2008a; Zuza et al. 2016) led to broad right-lateral shear strain and
net clockwise rotation against the rigid Tarim Basin and may have
resulted in greater crustal thickening in the west than in the east.
Progressive displacement along the Altyn Tagh fault was ultimately
transferred into the fold–thrust Qilian Shan (Meyer et al. 1998;
Searle et al. 2011; Cheng et al. 2015b, 2016b) (Fig. 10b).

As a result of progressive crustal thickening in northern Tibet, it
became more mechanically efficient for strike-slip faulting to
initiate at c. 15 Ma (Duvall et al. 2013; Li et al. 2019) along the pre-
Cenozoic suture zones (Wu et al. 2017, 2019; Zuza et al. 2018b)
and continued clockwise rotation drove left-slip bookshelf faulting
of the Haiyuan and Kunlun faults (England and Molnar 1990; Zuza
and Yin 2016) (Fig. 10b). The initiation of a broad left-slip
transpressional system established a four-quadrant strain pattern,
with fault-parallel shortening in the NWand SE quadrants and fault-
parallel extension in the NE and SW quadrants. This included the
activation of the right-slip Elashan and Riyeshan faults at the SW tip
of the Haiyuan fault, which simultaneously accommodated fault-
parallel west–east stretching and counterclockwise rotation embed-
ded between the left-slip Kunlun and Haiyuan faults (e.g. Duvall
and Clark 2010; this study). The overprinting clockwise and
counterclockwise rotation led to variable net rotation that might
appear negligible (Fig. 8).

Fig 10. New hybrid model of crustal
deformation in northern Tibet
incorporating the eastwards displacement
model (Cheng et al. 2015b) with the non-
rigid passive bookshelf faulting model
(Zuza and Yin 2016). Note the more
significant crustal shortening in the
western Qilian Shan than in the middle
and eastern Qilian Shan, which indicates
the eastwards migration of crustal
materials in the Qilian Shan during the
Cenozoic. ELSF, Elashan fault; RYSF,
Riyueshan fault; WQF, Western Qinling
fault. Reprinted from Cheng et al. 2015b
with permission from John Wiley and
Sons.
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The thicker crust and greater shortening in the west established a
local stress state where eastward crustal stretching was favoured,
which may be analogous to the conditions in southern Tibet (Yin
et al. 1999; Bian et al. 2020). This strain condition was
superimposed over the bookshelf fault kinematics outlined here
and the crust between the Kunlun and Haiyuan faults extended
eastwards. This explains the prevalence of normal fault structures
and bulk west–east stretching (Figs 4 and 5). In this sense,
progressive crustal thickening and north–south shortening in the
Qilian Shan is balanced by net eastwards extrusion, as suggested by
Cheng et al. (2015b). Therefore, net north-directed convergence
across the Qilian Shan (Zhang et al. 2004; Wang and Shen 2020) is
accommodated via a combination of north–south crustal shortening,
tens to hundreds of kilometres of displacement along strike-slip
faults, eastwards crustal stretching and clockwise rotation (Fig. 10).

As revealed by GPS and seismic anisotropy studies (Gan et al.
2007; Y. Li et al. 2011; Pan et al. 2020), there is a regional
clockwise flow pattern across northern Tibet. Our work suggests
that major strike-slip faults accommodate the continuum deform-
ation of this region. None of these faults is a rigid block boundary,
but rather they are structures of localized high strain approximating
viscous flow. We acknowledge that pre-existing weaknesses
throughout the Qilian Shan (e.g. suture zones) and crustal
heterogeneities are reactivated as discrete faulting within this
flowing body. As a result of conservation of mass requirements, this
NE–SW-oriented contractional system requires NW-SE-oriented
stretching, which causes the strike-slip faults to have subsidiary
normal splay faults.

Conclusions

A better understanding of the geometry and kinematics of the strike-
slip faults and associated structures within the Qilian Shan allows us
to explore how intra-fold–thrust belt block rotation and strike-slip
faulting accommodate plate convergence.We examined the Elashan
and Riyueshan right-slip faults in the central Qilian Shan and our
observations and slip rate constraints lead to the following
conclusions.

(1) We document horsetail termination splays, discrete right-slip
faults, off-fault normal faulting and releasing bends, which suggest
that the right-slip faults actively accommodated block rotation and
distributed west–east-oriented crustal stretching between the left-
slip Haiyuan and Kunlun faults.

(2) New IRSL dating of displaced terrace risers along the
Riyueshan fault provides a c. 1.1 mm a−1 slip rate estimate, similar
to other published rates along this fault.

(3) The pattern of Cenozoic deformation in northern Tibet is
compatible with west–east-oriented crustal stretching, non-rigid off-
fault deformation and broad clockwise rotation and bookshelf
faulting, which together accommodate the NE–SW-oriented India–
Asia convergence.

(4) The faults in northern Tibet represent strain localization that
together accommodates continuum deformation during regional
clockwise lithospheric flow against the rigid Eurasian continent.
Pre-existing weaknesses and strength heterogeneities cause the
partitioning of deformation along dip-slip and strike-slip faults.
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