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Visualizing probabilistic models in Minkowski space with intensive
symmetrized Kullback-Leibler embedding
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‘We show that the predicted probability distributions for any N-parameter statistical model taking the form of an
exponential family can be explicitly and analytically embedded isometrically in a N+N-dimensional Minkowski
space. That is, the model predictions can be visualized as control parameters are varied, preserving the natural
distance between probability distributions. All pairwise distances between model instances are given by the
symmetrized Kullback-Leibler divergence. We give formulas for these intensive symmetrized Kullback-Leibler
(isKL) coordinate embeddings, and illustrate the resulting visualizations with the Bernoulli (coin-toss) problem,
the ideal gas, n-sided die, the nonlinear least-squares fit, and the Gaussian fit. We highlight how isKL can be
used to determine the minimum number of parameters needed to describe probabilistic data, and conclude by
visualizing the prediction space of the two-dimensional Ising model, where we examine the manifold behavior

near its critical point.
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I. CONTEXT

Many features of multiparameter models are best under-
stood by studying the manifold of model predictions [1].
Within this paradigm, a model manifold is constructed, repre-
senting the space of possible model predictions. The manifold
is embedded in a larger behavior space, representing the space
of all possible observables and experimental measurements.
Surprisingly, model manifolds are usually observed to be
well approximated by relatively flat hyperribbons, defined
as objects whose successive cross sectionals are successively
smaller by a roughly constant factor [2,3]. This has now been
found in numerous nonlinear least-squares models [4] and
helps explain the parameter indeterminacy or “sloppiness”
observed in systems biology [5], quantum Monte Carlo [6],
and critical phenomena [7]. The hyperribbon geometry of the
model manifold has inspired new algorithms for nonlinear
least-squares fits [2,3,8,9] and for the control of complex
instrumentation such as particle accelerators [10].

Many statistical models are not of least-squares form.
For example, the Ising model of magnetism and the lambda
cold dark matter (ACDM) model of the cosmic microwave
background predict the underlying statistics for experimental
observation or, more generally, a distribution of possible
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observations. Local analysis of parameter sensitivity shows
that the Ising model [7] and the ACDM model [11] are sloppy,
in the sense that they have a hierarchy of sensitivity eigen-
values spanning many decades. These local sensitivities are
quantitatively measured by the natural distance in the space of
probability distributions, the Fisher information metric (FIM)
[12].

In Ref. [11], it was shown that the model manifold of
probability distributions can be visualized using Intensive
Principle Component Analysis (InPCA) by embedding in a
Minkowski space. For a model whose parameters 6 corre-
spond to a probability distribution Pg(x) over observable data
x, InPCA allows visualization of the model manifold with
pairwise distances between models with parameters  and 8
given by the Bhattacharyya divergence [13],

Diy(Pg. P) = —1n <Z 1 /P(,(x)P@(x)). (1

For the Ising and ACDM models, x runs over spin configu-
rations and observed spatial cosmic microwave background
(CMB) maps, respectively. The manifold visualized with In-
PCA reveals its hyperribbon structure, thereby capturing most
of the model variation with only a few principal components.
The key trick in InPCA, where the limit of zero data is
considered to extract an infensive property, can be applied
using a more general class of pairwise distances given by the f
divergences [14] and, in return, yields a collection of intensive
distance measures, expressed as a linear combinations of the
Rényi divergences [15] (details of which are provided in
Appendix A). All Rényi divergences locally reproduce the
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FIM, so distances in behavior space reflect how sensitive the
model predictions are to shifts in the model parameters.

Here we show, for a large class of important multiparame-
ter models, that a different intensive embedding, built on the
symmetrized Kullback-Leibler divergence [16],

Py(x

Dy, (Pg. Pj) = ) [Pp(x) — P3(x)]In [#ﬁxﬂ &)
generates an explicit, analytically tractable embedding in a
Minkowski space of dimension equal to twice the number of
parameters. We call this the intensive symmetrized Kullback-
Leibler (isKL) (pronounced “icicle”) embedding, and provide
the corresponding isKL coordinates in Sec. III. Our result is
obtained for models which form the exponential families [17]:

Py(x) = h(x)exp |:Z ni(0)Pi(x) — A(”)], 3

where h(x) is the base measure, 1;(#) is the ith natural
parameter, ®;(x) is the ith sufficient statistic, and A(@) is the
log partition function. Many models in statistical mechanics
form exponential families, e.g., the Boltzmann distribution
defined on most Hamiltonians. Moreover, while our method
can be used to visualize the manifolds of probabilistic models
described by exponential families, we explain in Sec. V how
we can use this method to determine the minimum number of
parameters needed to describe probabilistic data.

II. CURSE OF DIMENSIONALITY

Both large data sets and multiparameter probabilistic mod-
els of large systems suffer from the curse of dimensionality
[18]: as the dimension of the system increases, it becomes
more difficult to establish meaningful relationships between
points as the distance measure becomes saturated. This effect
obscures meaningful features within the data set and renders
contrast in distances between different data points nonexistent
[19].

Intensive embeddings such as InPCA and isKL break the
curse of dimensionality for probabilistic models, allowing
for low-dimensional projections of model manifolds in a
suitable Minkowski space [11]. Big data applications have
attempted to resolve this dimensionality issue by embedding
the manifold in a curved space [20-22] or in an Euclidean
space with an alternative distance measure [23—26], which can
yield lower-dimensional projections that capture dominant
components of the variation in the data set. For example,
Ref. [26] makes use of the extensive [27] and nonisometric
[28] potential distance in generating useful visualizations of
large data sets for biological data in Euclidean space. Our
methods suggest an alternative approach.

To prove the utility of embedding probability distributions
in a Minkowski space, we consider discrete probability distri-
butions, ZX P(x) = 1, for simplicity. We first introduce the
following three type of distances: (1) A geodesic distance
dg between two distributions, defined as the shortest path
through the space of all possible probability distributions.
Because probability distributions are normalized and non-
negative, they can be interpreted as unit vectors y(x) = /P(x)
in a high-dimensional space, thus forming a high-dimensional

FIG. 1. (a) The geodesic path (with path length ds) between
two probability distributions P and Q is given by an inter-

Pr(x) = “‘“siidc)«/P( + = ( fG )h/Q(x ). This equals
sin [(1 ;)”]«/P(x ) + sin ('\g )/ QO(x) in the hmlt when P and Q are

orthogonal. As 0 < A < 1, the interpolation remains positive and
normalized. The length of this path under the Fisher information
metric (FIM) equals the arc length of the great circle, which is
dg(P, Q) = 2arccos Y, +/P(x)y/O(x). (b) The shortest path through
the model manifold, with path length given by d) between two
Gaussian distributions with fixed o, is given by sliding the Gaussian
up to o, dy = o up — gl (c) The global pairwise distance,
ds, between distributions as compared to dg and dy,. The pairwise
distance ds is determined by the Euclidean distance between points
and is represented here as a straight line from P to Q. The octant of
the sphere schematically represents the space of all possible prob-
ability distributions (due to the normalized, non-negative nature of
distributions, discussed further in Sec. II), and so the great-circle path
dg is the arc-length distance from P to Q. The manifold path length
dy is the minimum distance between the two distributions when
one considers the path through the model manifold of a complex,
nonlinear model. When dy > dg, the path must curl around in
multiple dimensions to fit inside the sphere; mutually orthogonal
distributions [as in (b)] will form a hypertetrahedron inside the
model manifold. Note that (c) represents a 3D projection of a much
higher-dimensional space.

polation:

sphere. Thus, the path between two distributions would be
the great-circle distance between them. (2) The shortest path-
length distance through the model manifold, which we call the
manifold distance dj;. (3) The pairwise straight-line distance
ds in the embedding space, with a metric which here will be a
particular divergence measure. These distances are illustrated
in Fig. 1(c). First, note that the path-length distance for d; and
dy is computed by integrating the Fisher information metric
(FIM) along said path,

BHnP@w @

L) = —(— =
#®) < 30,005

giving

B 1 [dPr(0) 7
d(P,Q) = / Z %[d—k} dx, )

where A parametrizes the path between P(x) and Q(x). Upon
letting P} (x) = y% (x), Eq. (5) simplifies to

d
d(P, Q) = / Z[”(X)} , ©)
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representing the familiar path length in Euclidean space. The
requirement Y P;(x) = Y y?(x) = 1 restricts the path to lie
on a sphere, and thus Eq. (5) yields the arc length of a great
circle connecting the two distributions [29],

dg(P, Q) = 2 arccos Z vV P(x)\/O(x). 7)

Alternatively, one could perform a variational calculation on
Eq. (5) to find the shortest path connecting P(x) and Q(x) and
its length. This has been worked out in [30] and the path is
given by

(l—k)dc]
Px)+

sin[ 3
VPi) = ————
* sin (%)
where A € [0, 1] and dg is given by Eq. (7). Thus, the geodesic
path between two probability distributions P and Q is a
linear interpolation between /P and /0, renormalized to
unit length.

When considering a more specific path through a model
manifold generated by a specific physical model (e.g., the
Ising model), Eq. (5) no longer reduces to such a simple form.
Instead, we obtain a more complicated expression, which
represents a path through the manifold, dj,. However, since
the manifold is confined to the surface of the hypersphere,
it is bounded from below by the geodesic distance dg < dy.
To illustrate the difference between dg and d), consider the
example illustrated in Fig. 1: If P and Q are nonoverlapping
Gaussians of mean up and g, the geodesic path dy, along
the model manifold of Gaussians of fixed width o is given
by sliding the Gaussian from wp to g, while the shortest
path in the space of all probability distributions dg is given
by shrinking P and growing Q in place [see Figs. 1(a) and
1(b)].

A key point is that for any embedding that takes general
families of probability distributions isometrically into a Eu-
clidean space, the straight-line distance dg is constrained by
the diameter of the hypersphere containing the probability
distributions [Eq. (7)]. To further illustrate the differences
between the three types of distances, we embedded simple
Gaussians with a fixed variance on a hypersphere by us-
ing the Hellinger divergence dﬁel =1-> VPX)/OK) as
the straight-line distance ds. Figure 1(c) depicts the three-
dimensional projection of the Hellinger embedding. Here, the
octant represents the space of all possible probability distri-
butions schematically. In our simple example, if up and (o
are many standard deviations apart, the path-length distance
dy; between them on the fixed-Gaussian model manifold has
length

v
20w ®
2

si
sin(d‘)

p O o

o ( -
dM=/ _”“=|/“LP—MQ|‘ )
i

When dy; > dg, the path must curl around to fit inside the
sphere of radius 2. Thus, low-dimensional projection will,
at best, show a crumpled tangle that usually rapidly escapes
into higher, undisplayed dimensions. In other words, a useful
low-dimensional projection should be able to take any set of
M probability distributions and project them in a way that
maintains their distinguishability.

More generally, consider any type of general-purpose Eu-
clidean embedding, derived from any divergence which lo-
cally agrees with the FIM (hence isometric). The straight-
line divergence distance ds between any two distributions
is bounded above by the “great-circle” distance dg < 7
[Fig. 1(c)]. Consider now a low-dimensional visualization of
a physical model, where D is the number of dimensions. Since
all pairs in this visualization must have distances bounded
by 7, the low-dimensional visualization must be contained
in a sphere in dimension D of diameter w. We certainly
would want a good visualization to keep nearly orthogonal
probability distributions at least some minimum distance A
apart, where we could wish that A < 7. Hence, the minimum
acceptable embedding dimension is determined by whether
one can pack spheres of diameter A into a sphere of diameter
7 in D dimensions. Whenever A ~ 7, oneneeds D ~ M — 1
projection directions—the curse of dimensionality.

Note that in a Euclidean space, the global pairwise dis-
tance dg is always smaller than the geodesic path through
the hypersphere (great-circle length) di [bounded by ; see
Eq. (7)]. The geodesic distance dg sets a lower bound on the
manifold path length, dj, since the manifold is confined to
the surface of the hypersphere. We shall illustrate many times
in the rest of this manuscript that this bound no longer holds
when one considers embeddings in Minkowski space. These
Minkowski space embeddings can be constructed by defining
a pairwise distance between probability distributions dy that
violates the triangle inequality, which in turn breaks the curse
of dimensionality, as noted in [11]. For example, Fig. 4 in
Ref. [11] shows the InPCA model manifold for the coin-flip
problem (different from the isKL. embedding in Sec. V A).
The straight-line distance between the two endpoints (all
heads and all tails) in Minkowski space goes to infinity, but
the model manifold hugs a light cone, and the embedding
distances from either endpoint to a fair coin are finite. We have
shown here how the curse of dimensionality manifests in the
Euclidean space of probability distributions. To circumvent
this problem, we instead consider embeddings in a Minkowski
space, and develop our isKL method in the following section.

III. isKL COORDINATES

In this section, we derive the iSKL coordinates for a general
exponential family, giving an explicit isometric embedding for
probability distributions in a Minkowski space. Our embed-
ding space is similar to Minkowski space but not identical to
it, in that it has N spacelike coordinates (positive metric el-
ements) with N corresponding timelike coordinates (negative
metric elements), forming an N 4+ N-dimensional space. We
shall generate two coordinates S;(6) and 7;(6) for each natural
parameter 1(@), one spacelike (with positive squared distance)
and one timelike (with negative squared distance), such that

Dy (Pg. Py) = D_1Si(0) = S@)F
— Y [Ti6) — T, (10)

where Py and P‘~9 are two probability distributions produced

by the model for parameters evaluated at 6 and 6. The squared
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term with a positive sign is thus a spacelike coordinate, and
the term with a negative sign is the corresponding timelike
coordinate. Since the symmetrized Kullback-Leibler distance
is non-negative, no pair of points can be timelike separated.
The length of the model manifold projection along the time-
like coordinates will typically be smaller than the length of
its projection along the spacelike coordinates. However, the
timelike coordinates are both physical and important, as we
shall illustrate in particular using the two-dimensional (2D)
Ising model.

The symmetrized Kullback-Leibler (K-L) divergence
(D?%,) from Eq. (2), evaluated for the exponential families
considered in this manuscript [shown in Eq. (3)], reduces to

Dl (Py, Pp) = Z [7:(0) — m:(®)]((®i)g — (®ig) (11

l

Now, notice that we can rearrange the terms in the above
equation, and we obtain

[7:(8) — m@)1((Pi)g — (Di)g)
= (1/H{0:(0) + (P)g] — [ni(®) + (D)1}
= (1/H{[:(8) — (Pi)g] — [1:(B) — (Pi)5])?
= [Si(0) — SiO) — [T:(6) — Ti(0)1’, (12)

with the two Minkowski coordinates for the ith statistic,
determined from model parameters from Eq. (3):

Si(0) = (1/2)[ni(0) + (Pi)g,
Ti(0) = (1/2)[n:(0) — (Pi)g], 13)

now summing to Dy, (Py, Pfg)' The terms quadratic in the

parameters and quadratic in the expectation values all cancel,
and the cross terms give the contribution of statistic [defined
from model parameters in Eq. (3)]. From Eq. (13), the space-
like coordinate is indeed greater than the timelike coordinate
for each parameter, [S;(0) — Si(0)1> > [T:(0) — T;(8)]%. This
is our main result.

IV. FAMILIES OF EMBEDDINGS: ISOMETRIES
OF MINKOWSKI SPACE

The coordinates produced from isKL represent projections.
Just as any rotation or translation of an object isometri-
cally embedded in Euclidean space forms another isometric
embedding, so also there is a family of iSKL. embeddings
formed by the isometries of Minkowski space. Translating the
coordinates can be used to center the sampled points of the
model manifold; certain Lorentz boosts can be valuable in
minimizing the total squared length of the coordinates (and
hence reducing the importance of the timelike coordinates).
The rotational isometries within the spacelike and timelike
subspaces can then be used to focus attention on the directions
of the model manifold that show the largest variations.

As afirst step in considering the effects of these isometries,
let us consider other embeddings, similar to Eq. (13), that also
preserve pairwise distances. Clearly, one can add a constant
Cl.ﬁE to each coordinate (translations in Minkowski space). One
also notes that the two terms 7;(#) and (®;)g being subtracted
may have different units. This can be fixed by rescaling

these two terms up and down by a scale factor A; with units
VI{®@i)gl/[n:(O)]:

Si(0) = (1/2)[1:ni(0) + (1/2:)(Pi)g + C11,

Ti(0) = (1/2)[Aimi(0) — (1/2:)(Pi)g + C/ ], (14)

with different rescaling parameter A; and shifts Cii for each
pair of coordinates.

We can view Eq. (14) as a composition of two
transformations—a translation and a rescaling. The transla-
tion is, of course, one of our isometries. The average of ®;
over parameters 6 is written as (®;)g = (®;) in the subse-
quent discussion for brevity. Rescaling by A; corresponds to
a Lorentz boost 7/ = y(T —vS), &' = y(S§ — vT) of our
timelike and spacelike coordinates, where y = 1/+/1 — v2:

T = (1/2)y{[n:(0) — (P;)] — v[n:(6) + (P;)]}
= (1/2)[y (1 —v)ni(0) — y (1 + v)(P)]
= (1/2)[Aini(0) — (1/2:){(P:)],
S = (1/2)y{[n:(0) + (®;)] — v[n:(0) — (P;)1}
= (1/2)[y (1 — v)n;(0) + y (1 + v)(Dy)]
= (1/2)[2n:(8) + (1/1;){P;)]. (15)

A natural criterion for a good projection of the model
manifold would be one which minimizes the sum of squares
of the coordinates. In Euclidean space, this just translates
the manifold so that its center of mass sits at the origin.
Indeed, using C;" and C; to shift our two coordinates to their
centers of mass corresponds nicely to shifting the sampled
parameters 7;(6) — 1;(@) — n;(#) and resulting means (®;) —
(®;) to their respective centers of mass. Now, presuming for
simplicity that the data is centered, let us examine the sum of
the squares of our two coordinates S; and 7;,

1 1
(SO + [Ti(O)) = 5[%-2’7,'2(0) + E(®i>2:|- (16)

To get a good point of view in Minkowski space, we seek to
minimize the sum of squares of the coordinates by optimiz-
ing A;. This yields A} = (®;)2/n?(#). As the parameters are
shifted with respect to their centers of mass, we can recast
Ai = [Var((®;))/Var(n;)]'/*, where the variance is averaged
over the ensemble of parameters and the mean (®;) is taken
at a fixed parameter 6. It turns out our isKL embedding has
a close connection to principal component analysis (PCA)
and multidimensional scaling (MDS) techniques. We refer
interested readers to Appendix B for an in-depth discussion.

V. EXAMPLES

To demonstrate how isKL embeddings optimize the total
squared distance of coordinates to produce a good visualiza-
tion, we consider several probabilistic models that form expo-
nential families: the Bernoulli (coin-toss) problem (Sec. V A),
the ideal gas model (Sec. V B), the n-sided die (Sec. VC)
the nonlinear least-squares problem (Sec. V D), Gaussian fits
to the data (Sec. VE), and the two-dimensional Ising model
(Sec. VF). We will be using 7}*(0) to denote spacelike S;(@)
and timelike 7;(0) coordinates, respectively, for subsequent
discussion for brevity.
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10t
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1.5 —— Analytical
Numerical

1.0
0.5
0.0
-0.5
-1.0

-1.5

Timelike projection T~ (p)

Spacelike projection T*(p)

FIG. 2. (a) Squared principal length of intensive embedding with different symmetrized Rényi choices for the coin-toss manifold. o = 1/2
corresponds to Bhattacharyya divergence and o« — 1 leads to the symmetrized Kullback-Leibler (sKL) divergence. Throughout the exponential
family models considered in subsequent sections, sSKL provides the lowest embedding dimension, while other Rényi choices gives an
embedding into which the manifold projection widths decrease geometrically over several decades. This implies that the sloppiness of the
embedding is influenced by the choice of divergence used. (b) Model manifold for the Bernoulli (coin-toss) problem is visualized with our
isKL embedding. The analytical calculation matches well with the numerical result returned from multidimensional scaling (MDS).

Before diving into the examples, it is worth highlighting
that the finite embedding dimension for exponential families
appears to be a unique feature of D%, . As D%, is part
of a family of intensive distance measures known as the
symmetrized Rényi divergence,

1
DyP.Q) = — [ > InPx)*Q(x)' ™

+ Zln Q(x)“P(x)1“:|, 17)

with @« — 1, we embed the coin-toss manifold with other
symmetrized Rényi divergences by varying o« to illustrate
this uniqueness. As shown in Fig. 2(a), the embedding is
sloppy for all o (geometrically decreasing manifold widths
that span several decades), but only for « = 1 does it truncate
after two dimensions. This exact truncation is true for all the
probabilistic models considered in this paper. This also serves
to illustrate that while the symmetrized Rényi divergences
locally reproduce the FIM that describes the local structure of
a model manifold, they have a varying degree of performance
in utilizing the number of dimensions to embed a model man-
ifold isometrically. Therefore, we can reduce the embedding
dimension significantly by choosing an optimal divergence. In
principle, we could perform experiments or simulations with-
out knowing the number of parameters that the exponential
family distribution needs to describe the behavior. If the isKL
embedding gives a cutoff after N 4+ N dimensions, it suggests
that a hidden N-parameter exponential family describes the
experiment.

A. Bernoulli problem

The Bernoulli problem or coin-toss experiment is one of
the simplest probabilistic models. As a function of the fairness
parameter p, the result x € {0, 1} of a coin toss is distributed
by P(x|p) = p*(1 — p)!=*. This probability distribution can
be written in the form of an exponential family with n(p) =
In[p/(1 = p)], ®(x) = x, h(x) =1, and A(p) = —In(1 — p).

The FIM for this model is given by

2
(ds)* = (di. (18)
p(1=p)
Known embeddings. By defining p = sin” @, we have ds =
2d6. This produces a one-dimensional embedding onto a
Hellinger quarter-circle of radius 2 with 6 € [0, 7 /2]. Upon
taking the limit of zero data, the Hellinger distance transforms
into the Bhattacharyya divergence. It is known that with the
Bhattacharyya divergence, the coin-toss manifold is embed-
ded into a Minkowski space [11]. This embedding is illus-
trated in Fig. 2(a) with o = 1/2. We worked out the analytical
expression for each projection coordinate in Appendix C. Our
analytical calculation suggests that the embedding is at least
high dimensional. We would presume the inPCA embedding
does not truncate and continues to have a smaller and smaller
amount of variation out to an infinite number of dimensions.
With isKL embedding, the coin-toss manifold can be iso-
metrically embedded into (1 4 1) dimensions. As (®) = p, its
pairwise distance is given by

(1-q)
D%, (p.q) = (p—q)n ;’(1—_; (19)

Here, we will illustrate the utility of Eq. (13) in obtaining
the analytical expression for each embedding coordinate.
With the Jeffrey’s prior as the sampling measure, the cen-
ters of mass are 7j = 0 and (®) = 1/2, respectively. Further-
more, Var(n) = 7> and Var((®)) = 1/8, and we have A =
[Var((®))/Var(n)]'/* = (23/4 /7). With these, the space-
like and timelike 7= (p) projection coordinates are determined
to be

T*(p) = 1[A<n -m+ 1(@ - @)]
2 A

1 p JT 1

Figure 2(b) shows the coin-toss manifold.
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B. Ideal gas

The ideal gas is a model of noninteracting particles. At
pressure P and temperature 8!, the probability that N par-
ticles will be found in a configuration with momenta P,
positions @, and container volume V is

p(P,Q,VIP, B) =Z"(P, B)exp (—pP*/2m — BPV),
ey

where the partition function Z(P,B) =
Qmam/B)N2(BP)"N*D normalizes the distribution. This
probability distribution is in the form of an exponential
family with [1(6), n2(0)] = (=B, —BP), [P1(x), P2(x)] =

(P2/2m,V), h(x)=1, and A(#)=In[Z(P,B)]. Using
the coordinates (p, ), where p= 8P, its FIM is
(ds)> = (N + 1)(dp/p)* + (3N/2)(dB/B)>. The scalar

curvature of the resulting manifold is zero everywhere,
implying that it is a developable surface.

Known embedding. By defining a new pair of coordi-
nates (x,y) = [+ 1+ Nlog(p), ~/3N/21og(B)], we have a
two-dimensional Euclidean embedding. However, the pair-
wise distance in this embedding is not given by D2, and,
in fact, it is not obtainable from any symmetrized Rényi
divergence [31].

The isKL isometrically embeds the ideal gas into (2 + 2)
dimensions. To determine the axis of projection analytically,
note that the ideal-gas law PV = N/g yields the sufficient
statistics (P2/2m) = N/B and (V) = N/p. Hence, the pair-
wise KL divergence between two distributions is

D?KL(pl’ P2, ﬂla ﬂ2)

=N =5 =) N = o o)
_pzplpl J2) 2B B

(22)

Letting the centers of mass be (n) = (n) and (®) = (D), the
projection coordinates are given by

T (p) = 5[Ap(—=p+ () £NA (p = (p'))],
T (B) = 5[rp(=B+ (B ENA (B~ = (B7'))]. (23)

From Eq. (23), the coordinate pairs yield (T,:r —C,j ) —
(T, —C;)* = —r?, where k={p, B}, » =N and C; =
(1/2)(Ai (k) q:NA;' (k=')) are constants that depend on the
sampling range. Therefore, the ideal-gas manifold is a four-
dimensional Minkowskian torus (topologically a hyperboloid)
with radii r; = r, = iv/N. Its projections are illustrated in
Fig. 3(b). Just as the 4D Euclidean torus has zero curvature
[32], so it does in Minkowski space.

We can map our isKL embedding onto the known em-
bedding into R? above. Roughly speaking, this works be-
cause our torus is the Cartesian product of two circles with
zero Gaussian curvature. We are thus able to provide a
mapping to the Euclidean embedding discussed by shifting
the coordinates, TkﬁE — Tki — C,f, and parametrizing the co-

ordinate pairs as (Tk+, 1,7)= (VN sinh(¢y), \/ﬁcosh(m)],

Manifold projections

| NGRS

(a) J_ (b)

()
>
: TS ) @R
_Isotherm i 2 .5 o T
A \*\ 4 = I I (T, Tp)
N g i
58 | @™
2 =
- ,\&& ) @
(TN & & Yk
Dre: SUre . < H B p
Yeg, t/bn /I/(e ,\Q,&Q . \QS"
O
& N

FIG. 3. Model manifold for the ideal gas. The flat ideal-gas
manifold is embedded into a (2 + 2)-dimensional Minkowski space.
The manifold is “rolled” twice in the four-dimensional space, giving
it a torus appearance in Minkowski space. (a) The three-dimensional
projection of the ideal-gas manifold is colored based on the inverse
temperature B8 and the Carnot cycle is illustrated on the manifold.
(b) The manifold projections are depicted in a descending order
based on the manifold widths along the spacelike/timelike compo-
nents. The spacelike directions are denoted by 7" and the timelike
directions are denoted by 7~. The analytical expression for each
projection is given by Eq. (23). The torus appearance in Minkowski
space can be deduced from the curves in (Tﬂ+, Tﬁ’) and (T[fr ,T7)
coordinate pairs, both of which have the form of (7" — C;")* —
(T —-C )2 = —r? for some constants Cki and r.

where ¢y = In(kii/~/N) and k € {p, B}. This gives

(x,y)= <\/1 +N|:1n (i—ﬁ> +¢>p:|,

P

3N VN
= [m (E) + ¢,3D, (24)

where the “circles” have been unwound to straight lines
through the hyperbolic angle ¢y.

Figure 3(a) shows the three-dimensional projection of the
ideal-gas manifold, which is colored based on the inverse tem-
perature 8. Discussion of the ideal gas is often accompanied
by that of the thermodynamic cycles with which it can be used
to extract work from a heat bath. The Carnot cycle, which
is often considered to cost no entropy, was recently shown
[33] to have a subextensive entropy cost proportional to the
arc length of the cycle’s path on the model manifold. This
challenges Szilard’s argument that information entropy and
thermodynamic entropy can be freely exchanged. The path of
a Carnot cycle is shown on the model manifold in Fig. 3(a).

C. The n-sided die

The n-sided die is a model for a process with n outcomes.
It has a discrete probability distribution of n states, with p; as
the probability of the ith state. This distribution can be written
as P(x|p) = []i_, p*="!, where [x = i] is the Iverson bracket
which evaluates to 1 if x =i, 0 otherwise, and Zl'f:] pi =
1. The probability distribution can be written in the form
of an exponential family with n;(p) = In(pi/p,), ®; = [x],
h(x) =1,and A(p) = —In(1 — Z;:ll pi). Its FIM is (ds)? =

Yidp)/pi.
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Known embedding. Taking ,/p; as parameters instead of p;
gives an embedding onto a Hellinger n sphere. This implies
that in the Hellinger embedding, the n-sided die manifold has
both permutation and spherical symmetry. Moreover, since
this mapping is a universal cover of n sphere, its scalar curva-
ture must be positive [34]. For example, the scalar curvature
of a three-sided die and a four-sided die are 1/2 and 2,
respectively.

The isKL produces an embedding in (n — 1) + (n — 1) di-
mensions. As (®;) = p;, the pairwise KL divergence between

P, and F, is
. bi
D? ,a) = ;i —ai)In| — ). 25
*L (P @) ;p a) n(m) (25)
By letting (n;) = (1;) and (®;) = (®P,), the projection coordi-
nates are
TE(Pr, - Pa)
1 Pk Pk 1
=—{A|In|— ) —(In| — + —(pr — ,
sl () - G)] =50-0)

(26)

wherek=1,...,n—landp, =1-) 1" 11 pi. As examples,
we consider three- and four-sided dice. The isKL gives (2 +
2)- and (3 4 3)-dimensional embeddings in Minkowski space.
There are only two eigenvalues returned in both cases, sig-
naling the existence of symmetries in our embeddings. With
uniform sampling of the parameter space, for n = 3,

1
T (p1. p2) = <61/4\/_ ( ) 61/4«/_<pk—§))

27
wherek =1,2and p3; =1 — p;

1{ 1 3 p
T(p1, p2. p3) = <51/4,/—ln (p—i)
47 1
+54 (== ). 28
3\ P g (28)

where k =1,2,3 and ps =1 — p; — p» — p3. Finally, the
projection coordinates for n = 2 (a coin toss) are

Ti”(pupz)z%(ﬁl (1_ >iJ_<p__))

(29)
As expected, comparing Eq. (29) with Eq. (20), the form does
not depend on the sampling choice, while the constant A,
does. Figure 4(b) shows the numerically calculated manifold
projections. The manifold is colored based on the fairness
parameter p;. Unlike the Hellinger embedding, the lack of
spherical symmetry is manifest. We do, however, see a per-
mutation symmetry among p;’s and a reflection symmetry
along Ti TjE in the (TjE Ti) coordinate pairs. One can
extract the submanlfold of a coin-toss problem by restricting
p> = 0. This submanifold is shown by the red line in Fig. 4(a).
In general, any discrete probability distribution is a subset of
the n-sided die distribution, implying that other discrete expo-

— p2. Forn =4,

(b) Manifold projections

(Tl’l P2

(T, Tp,)
(T3, Tpy)
(T2 Tpy)
(T

%
3rd . . —
projection, Ty,

‘\U)\.

P2’ Pl)

(TPI Pl)

FIG. 4. Model manifold for the three-sided die is embedded into
(2 + 2) dimensions with isKL embedding. (a) The three-dimensional
projection of the three-sided die manifold is colored according to the
fairness parameter p;. Depicted also is the coin-toss submanifold in
red. (b) The manifold projections are arranged based on the manifold
widths. The spacelike directions are denoted by 7+ and the timelike
directions are denoted by 7~. The analytical expression for each
projection is given by Eq. (27). We have permutation symmetry in
(Tf, v ) coordinate pairs and reflection symmetry along the p, =

P2 line (dotted line) in (7}, Tpf) coordinate pairs.

nential family distributions may have hidden low-dimensional
representation within the n-sided die model manifold.

D. Nonlinear least-squares models

Nonlinear least-squares models are ubiquitous in fitting
deterministic models to data with noise. These models take
the form of a nonlinear vector-valued function f;(#) predicting
the value of experimental data points x; with uncertainties o;.
Their associated probability distribution is

i(0) — x;]?
P10y =] exp <—{W2)Tx]}) (30)

i J2mo?

This probability distribution takes the form of an expo-
nential family with n;(0) = f;(0)/0;, ®(x;) = x;/0;, h(x) =
—Y . x}/o?, and A(6) =Y, f}(0)/20} + In(270?)/2. Un-
like the other models discussed, which have the same number
of natural parameters 7;(f) and model parameters 6;, here
the number of natural parameters is given by the number
of data points being fit. The FIM is given by J;Jia, where
Jiw = 0fi(0)/06, is the Jacobian.

Known embedding. Least-squares models with N data
points have a natural “prediction embedding” into N-
dimensional Euclidean space, with one coordinate per data
point x; given by the error-normalized model prediction
fi(@)/o;. While the number of data points can be much
larger than the number of parameters, this embedding remains
valuable because the model predictions are surprisingly of-
ten well approximated by low-dimensional, flat model man-
ifolds that we call hyperribbons [2—4]. Hyperribbons have
a hierarchy of manifold widths—Ilike a ribbon, their dimen-
sions (length, width, thickness, etc.) become geometrically
smaller—yielding predictions that depend mostly on the first
few principal components. Our least-squares model has N
natural parameters, so isKL will produce an embedding into
an N + N-dimensional Minkowski space. Can we find one
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FIG. 5. Model manifold for the muon lifetime, our two-
parameter least-squares model, evaluated at three time points. The
isKL embedding is confined to three Euclidean dimensions, with
the three timelike coordinates identically zero. (a) The manifold is
colored with the muon lifetime 6. The model manifold is bounded
with four edges at ; = 0 and 6; = oo and a tight fold along 6, = 6,.
Also depicted is the experimental data point in red, which is in
close proximity to the 6; = 6, boundary; see Fig. 1 in Ref. [2].
(b) The manifold projections of the muon lifetime model manifold
are arranged based on the manifold widths. The analytical expression
for each axis is given by Eq. (32).

that makes the timelike distances equal to zero, reproducing
the N-dimensional prediction embedding?

The symmetrized Kullback-Leibler divergence between
two models is indeed given by the Euclidean distance between
the two model predictions,

N L0 — f:(02)T
Dy (0,0 = 3 O )Y

i=1 t

€29

This appears promising: the isSKL distance is the same as
that of the prediction embedding above. Interestingly, any
Rényi divergence (such as the Bhattacharyya distance used by
InPCA [11]) gives the same pairwise distance measure. Since
(®(x;)) = fi(6)/0, the projection coordinates are

T5(0) = i(k + l)[ﬁ(@) —(fiON). (32
20 i A
By taking A =1, the timelike coordinates vanish and we
reproduce the N-dimensional prediction embedding.

Figure 5 shows this prediction embedding for the classical
nonlinear least-squares model of two exponential decays, here
in the context of a cosmic muon lifetime experiment. Approx-
imately half of the muons generated by cosmic ray collisions
are negative muons, which can be captured by a proton of
the host nuclei. The effective negative muon lifetime 1/6,
(including capture) is therefore expected to be shorter than
the decay-only lifetime of positive muons 1/6;. The model
prediction for the number of muons surviving after some time
N(t) is thus the sum of two exponentials. Mathematically, we
have

(re™" &7, (33)

N 1
N(@6,,0r,r,t)=
01,0, 1,1) T+

where N(7) is the normalized number of muons and r =
N,+/N,- =1.18£0.12 is the ratio of incident positive
muons to negative muons formed by the cosmic rays [35].
Figure 5 shows the muon lifetime model manifold via the
isKL embedding (identical to the prediction embedding), with
three sampled time points. The manifold is colored based on
the muon lifetime 6;. The projection coordinates are N )/ oi.
Since r & 1, there is a tight fold in the model manifold along
0; = 0,. The experimental data point is close to the manifold
fold, implying that the negative muon capture event only leads
to a slight change in negative muon lifetime.

E. Gaussian fits to data

The Gaussian distribution is an exceptionally good approx-
imation for many physical problems and thus serves as a good
model to explore in the context of manifold visualization.
For example, the distribution of women’s heights with mean
height © and variance in height o in a country is fitted
to a normal (Gaussian) distribution. The Gaussian distri-
bution P(x|u, o) = 2no?)" 2 exp[—(x — 1)?/20*] has two
parameters: the mean . and the variance o'2. It can be written
in the form of an exponential family with [n(0), n,(8)] =
(1/0?, =1/20%), [®(x), D2(x)] = (x, x*), h(x) = 27)~'/2,
and A(u, o) = n?/20% +Ino. Its FIM is given by (ds)* =
o2 [(dp)* +2(do)*].

Known embeddings. The Gaussian distribution FIM has a
close resemblance to the Poincaré half-plane metric (ds)* =
y~2[(dx)? + (dy)?], both of which have a constant negative
scalar curvature: —1 and —2, respectively. In differential
geometry, it is known [36] that the Poincaré half plane has
an isometric canonical embedding into (2 + 1)-dimensional
Minkowski space and takes the form of an imaginary sphere
with radius squared equal to minus one. By rescaling, the
corresponding embedding for the Gaussian fit manifold is
therefore an imaginary sphere of radius squared equal to —2.
Its spacelike components are given by X, (u,0) = (u* +
202 +2)/2v/202, X;f (1, 0) = u/o and its timelike com-
ponent is given by X; (u,0) = (U2 4202 —2)/(23/202).
The pairwise distance which generates such an embedding is
therefore

_ 2 2 _ 2
D2(1, 01, iy o) = PA M) F2O1 700 gy
20’10’2

However, there is no obvious way of writing Eq. (34) in terms
of P(x|u, o).

With the isKL embedding, the Gaussian distribution can
be isometrically embedded into (2 + 2) dimensions. As
(®1(x)) = pand (P,(x)) = u? + o2, the pairwise distance is
given by

D?KL(H’]? :u“Zv 0127 022)
M1 “2
= (—2 — —2)(M1 — u2)
0y 0;

1 1 1 2 2 2 2
_§<U_12_0_22)(M1+01 —//L2—0’2). (35)
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FIG. 6. Viewing “Heaven and Hell” in Minkowski space. The
Gaussian fit manifold is embedded into (2 + 2) dimensions with
isKL embedding. (a) The three-dimensional projection of the Gaus-
sian fit manifold is decorated with Escher’s art, Circle Limit IV,
which is also known as “Heaven and Hell.” The submanifold of
a least-squares model with a single Gaussian distribution of fixed
02 =1 is depicted in green. (b) The manifold projections are de-
picted in a descending order based on the manifold widths along the
spacelike/timelike components. The spacelike directions are denoted
by T and the timelike directions are denoted by 7 ~. The analytical
expression for each axis is given by Eq. (36). Reflection symmetry
is illustrated with a dashed line along projections with a /o>
component.

Letting () = (1) and (®) =
by

1 % 7 1
M/az(ﬂ’ y ) a |: wee (; B <;>) * Aujo?

1 1 1
+ 2
T7 (i, 07) = §|: —1/202(; - <;>>

(®), the coordinates are given

(1 — (M))j|,

+ (1*+o02 — (1> + 02)):|. (36)
A_1/202
Upon closer inspection, the coordinate pairs can be written
as
—_Ct _ _
(7, njo? Cu/m) (T, njo? M/UZ)

+ — —
_(T—I/ZJZ o C—1/203) + (T—1/202 -C

Cpe =1 GD)

where C* are constants. This suggests the isKL embedding
is a four-dimensional hyperboloid in Minkowski space. To
get a good pictorial sense of how the probability distribu-
tions are arranged, we embedded ‘“Heaven and Hell” (Es-
cher’s Circle Limit IV 1960, depicting a Poincaré disk) in
Minkowski space via our isKL embedding. Figure 6(a) shows
the three-dimensional projection of the manifold and, in
Fig. 6(b), the manifold projections along the spacelike (black)
and timelike (red) axes are to scale and accurately capture
the manifold widths The probabilistic manifold projection
along the (T, ., T ), (T2 T2 ), (T 0 T ),
and (T~ 00 L, /202) components exhibit a reflection sym-
metry about . = 0, manifesting the even-parity coordinates.
Moreover, the bats become stretched as o2 — 0, along the
projected edge of the Poincaré disk. The submanifold of a
least-squares model with a single Gaussian distribution of
fixed 02 = 1 from Sec. I in shown in green.

F. 2D Ising model

Most statistical mechanics models form exponential fami-
lies, and of particular interest is the behavior of their model
manifolds near phase transitions. Here we show how the
two-dimensional Ising model manifold is embedded using our
method. The Ising model is a model of magnetism comprised
of a lattice of n spins that can take the values £1, “pointing
up” or “pointing down.” At temperature S~ and in an external
magnetic field H, the probability of observing a particular
configuration s = (s, ..., s,) of the spins is given by the
Boltzmann distribution,

p(B Doy Sisj R 5:)
Z(B, h)

where h = BH, (ij) denotes a sum over neighboring sites,
and the partition function Z(B, h) normalizes the distri-
bution. The Ising model is an exponential family with
[71(8), ()] = (B, h), [P1(s), Pa(s)] = Qi) Sisjs Dy 80)
h(s) =1, and A(@) = In Z. The Fisher information metric is
given by the mixed partial derivatives g;; = 9;0;InZ, with
i,je{B, h}.

Known embeddings. The Hellinger embedding of the Ising
model manifold is 2" dimensional. The curse of dimension-
ality manifests through an increase of “wrapping” around the
unit hypersphere as the number of spins increases, rendering
low-dimensional projections increasingly useless for visual-
ization [4]. The wrapping phenomenon can be ameliorated
by using the InPCA embedding. Though InPCA still embeds
the Ising model manifold in a high-dimensional Minkowski
space, the length scales of adjacent principal components are
well separated.

The isKL embeds the Ising model manifold into (2 + 2)
dimensions. Not only is the curse of dimensionality broken,
the Ising model manifold is embedded into finite-dimensional
Minkowski space. The expectation values of the sufficient
statistics can be related directly to the Ising average energy E
and magnetization M by ((®,), (®,)) = (HM — E, M). The
pairwise distance is then

D%, (B, B2, hi, ha) = (B2 — B1)(Mahy/ Ba—Es—Mihy | B
+ E)) 4 (hy — )My — My). (39)

The Ising model manifold is centered at the critical point
(B, h) = (B¢, 0), with the projection coordinates being

; (38)

P(s|B. h) =

+_1 _ ! _

TF = 2[}\ﬂ(ﬁ B.) + w (Mh/B E+EL.)1|,
+_1 1

T = Z(Ahhzl: AhM),

where E, is the average energy at the critical point. Figure 7
shows the isKL. embedding of the 2D Ising manifold with
E and M estimated from Monte Carlo simulations at n =
128 x 128 spins using a rejection-free variant of the Wolff
algorithm in an external field [37]. The exact solution for
the zero field is included in the embedding as well and is
illustrated with a black line [38,39]. For completeness, we also
show all the manifold projections. The first and third principal
components are fieldlike directions, and the second and the
fourth components are temperaturelike directions. Reflection

(40)

033221-9



HAN KHENG TEOH et al.

PHYSICAL REVIEW RESEARCH 2, 033221 (2020)

(a) (b)

Manifold projections

----- (T i)
(Th Th)
(Th Tp)
(Tw TH)
)

(T7.Th)

O
M(B,h— 0%)

timelike
h <‘£ ..... %
spacelike

spacelike

FIG. 7. Two-dimensional Ising model isKL embedding is used
to illustrate the geometric structure of statistical models with a
phase transition. The Ising model manifold is embedded into (2 + 2)
dimensions. (a) The three-dimensional projection of the Ising model
manifold is colored based on the external magnetic field 4. For
B > B., there is an opening on the manifold due to the spontaneous
magnetization. The two illustrated arms correspond to magnetization
M(B, h) = £1 with 8 > B, and are lightlike. The values of Ising
average energy E and magnetization M used were estimated from
simulations with n = 128 x 128 spins. The exact solution at zero
field is depicted by the black line. (b) The Ising model manifold
projections are shown in a descending order based on the manifold
widths along the spacelike/timelike directions. The spacelike direc-
tions are denoted by T and the timelike directions are denoted by
T~. The analytical expression for each axis of projection is given by
Eq. (40). Reflection symmetry is illustrated with a dotted line along
projections with a external magnetic field 4 component.

symmetry along H = 0 is depicted with a dotted line. This
observation is further highlighted by having the Ising model
manifold colored based on the external magnetic field 4.

At the critical point, there is an opening that corresponds
to the growing spontaneous magnetization. This resolves a
serious-seeming problem with any embedding based on the
Fisher information metric. The FIM can be written in terms
of the free energy, and the free energies for the two zero-
field branches =M (T') agree: the two magnetizations are zero
distance apart, even though they manifestly are far apart
in probability space. Any Euclidean embedding will place
them at the same point. The embedding in Minkowski space
resolves this: the zero distributional distance manifests itself
in a large, physically sensible opening in the embedding,
along a line of lightlike separation. This highlights the crucial
role of timelike coordinates in qualitatively differentiating
unlike systems that have the same free energy. This is not the
whole story of lightlike separations, however: the two arms
highlighted at large B in Fig. 7 are also lightlike. These have
a more conventional interpretation: for sufficiently high field,
the configuration with all spins in the direction of the field
becomes the most probable and the resulting distributions are
difficult to distinguish. The isKL spreads these points out as
well.

The connection between phase transitions and differential
geometry has been widely investigated [40—43]. Researchers
have argued that the scalar curvature R can be viewed as
a measurement of interactions and that the divergence of
the scalar curvature signals a phase transition. The leading

singularity in the scalar curvature of the 2D Ising model
manifold as the critical point is approached can be com-
puted from the metric above and the asymptotic scaling form
—logZ >~ t> F(ht='3/%) + *logt* for t = B. — B to be R ~
—t72/1og(¢?). For small 8 — B, R diverges. Near the critical
point, one might expect to see a cusp as a result. Instead, there
is an opening near the critical point in our embedding and
the surrounding manifold looks smooth. The identification of
each point along the opening with an opposing point suggests
that we may have disguised the cusp in our embedding by
“cutting” the manifold with lightlike displacements, the way
one might remove the point of a cone by cutting up the side.
The connection between the geometry of our manifold and
the singularity of its scalar curvature will be further explored
in future work.

VI. NONEXPONENTIAL FAMILIES: CAUCHY
DISTRIBUTION

The success of the isKL embedding in obtaining an analyt-
ical expression for each coordinate is special to exponential
family distributions. As an example of a nonexponential fam-
ily, we consider the long-tailed Cauchy distribution,

%
7ly? 4+ (x —x0)?

Interestingly, its FIM, (ds)> = (2y2)~'[(dxo)* + (dy)?], has
a constant negative scalar curvature just as the Gaussian fit in
Sec. V E. In fact, there is a deeper connection between the
Gaussian and Cauchy distributions: they both belong to the
location scale family distributions, f(x) = ¢~ f((x — §)/c),
where § is the location parameter and c is the scale parameter.
It is known that any location scale distribution has a constant
negative curvature [44]. That the Gaussian and Cauchy dis-
tributions share this property but are distinct indicates that
being locally isometric is not enough to distinguish them.
This demands the use of a global distance as an additional
measure to characterize the model manifold. We embed the
Cauchy distribution manifold using the isSKL embedding with
the distance measure [45], which gives

P(x|xo, y) = (41)

1+ 7)) + (x1 — x2)?
dviys

Interestingly, the isKL embedding returns a Euclidean em-
bedding for the Cauchy manifold (Fig. 8) to the number
of components we have explored. To compare it with the
Gaussian fits manifold, we have colored the Cauchy manifold
with Escher’s art, Circle Limit IV, as well. Here, we observe
well-preserved bat shapes as compared to Fig. 6. Strikingly,
not only is this also true for any symmetrized Rényi choices,
as shown in Fig. 8(b), but the projections obtained from
different symmetrized Rényi choices appear to be virtually the
same. Thus, D2, is not obviously better than other intensive
Rényi divergences for models not in exponential families.

D2 (X1, 1, X2, y2) = 21n[ } (42)

VII. SUMMARY

In this paper, we demonstrate that any N-parameter proba-
bilistic model that takes the form of an exponential family can
be embedded isometrically into a low-dimensional (N + N)
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FIG. 8. The Cauchy distribution is considered to exemplify
the rough equivalence of the isKL. embedding with various other
Minkowski embeddings for visualizing non-exponential-family dis-
tributions. (a) The three-dimensional projection of the Cauchy dis-
tribution manifold is shown on the left. To compare it with the
Gaussian fits manifold, we have colored the Cauchy manifold with
Escher’s art, Circle Limit IV. Here, the bat shapes are well preserved
as compared to Fig. 6. The first five manifold projections are shown
on the right in a descending order based on the manifold widths along
the (m, n) principal components. (b) Squared principal length of
intensive embedding with different symmetrized Rényi divergences
for the Cauchy manifold. Here, we observe geometrically decreasing
manifold widths that spans many decades for all &’s.

Minkowski space via the isKL. embedding technique. This is
done by using the symmetrized Kullback-Leibler divergence
(sKL) as the pairwise distance between model predictions.
This could potentially be used to determine the number of
parameters needed to describe an experiment or a simulation
should the underlying distribution belong to the exponential
family. To illustrate how the isKL embedding technique can
be used to visualize the exponential family probabilistic man-
ifold in a simple and tractable way, we consider the Bernoulli
(coin-toss) problem, the ideal gas, the n-sided die, the non-
linear least-squares models, Gaussian fits to data, and the
two-dimensional Ising model. Additionally, we use the non-
exponential Cauchy distribution to illustrate the importance
of preserving both global and local structures in embeddings.
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APPENDIX A: REPLICA ZERO LIMIT OF f DIVERGENCE

To visualize the underlying geometry of probabilistic
model data, a distance measure in probability space is needed.
In this Appendix, we will generalize the limit of zero data
procedure in obtaining an intensive distance measure to a
family of divergences, specifically from f divergence to Rényi
divergence. f divergence measures the difference between
two probability distributions P and Q with a convex function
f such that f(1) = 0 and takes the form

Dy(P. Q) = / f(p E ;) @) ().

By assuming f is analytic [46], we can Taylor expand it about
x=1fx)=Y>, %f(”‘)(l)(x — 1)™. Thus, f divergence
takes the form

D¢(P, Q) = /f(%)q(ﬂdx

Z f f<’">(1>[”(x) ]q(x)dx

(AD)

= Z f“")(l)x1 (P, Q), (A2)
m= 0
where
m [p(x) — q(x)]"
X (P.Q) = / eds (A3)

is the x* divergence with parameter 1. Expanding the polyno-
mial and simplifying,

X, (P.Q) = / 3 (Z)(—l)m_kql_k(x)pk(x)dx
k=0

=> ('Z)(—l)’""‘ / ¢ @pkdr. (A4

k=0

Suppose we increase the number of data samples by N,
which amounts to having an N-replicated system,

X (Py, On) = Z<’Z>(—l)m_k|:/.../ql_k(x1,...,xN)pk(xl,...,xN)dxl...de:|

k=0

Since p(xy, ...

i=1

k=0

k=0

N
xy) =[] p(x) and g(x1, ...,

N
w) = [Tat,
i=1

m N
> ('Z)(—l)m-"[ / ql‘kmp"(x)dx}
m N m
> (’Z)(—l)’""{ [ / q“‘(x)p"(x)dx] - 1} +3 (’Z)(—l)"”‘.

k=0
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m

'Notethat(l—x)” Z( > (—x)", SOZ( )(_l)mkzo

n=0
k=0

Upon closer inspection, each x™ term contains partition-
function-like terms ( [ ¢'*pfdx)" that are known as
Hellinger divergence of the order of k that increase geomet-
rically with N. Upon sending N continuously to zero, we have

xi'g(Pns On)
N*)O N
-y <m)(—1)m’< In [ f qlk(x)pk(x)dx:|. (A6)
par
As D, (P, Q) = ;1 n(fp* g'~%dx) is the Rényi divergence,
P,
tim Th ‘1( o) ( >(—1)’“"‘(k— DD(P. Q).
=0
(A7)
Thus, for any f divergences,
i D¢(Py, On)
im 4——~
N—0 N
o0 m (m)(l) ek
=Z ( >( D"k — 1)Di(P, Q). (A3)
m=1 k=0 '

APPENDIX B: CONNECTIONS TO PRINCIPAL
COMPONENT ANALYSIS (PCA) AND
MULTIDIMENSIONAL SCALING (MDS)

The interested reader will note a connection to both prin-
cipal component analysis (PCA) [47] and multidimensional
scaling (MDS) [48]. Principal component analysis uses the
isometries of Euclidean space to optimally display data in a
space of many dimensions. PCA translates the data to center
it, then uses singular-value decomposition to rotate and diago-
nalize the “moment of inertia” tensor of the data set. The data
remain many dimensional, but PCA allows one to examine the
directions for which the data varies the most. The principal
components are the orthogonal directions which best describe
the data set—minimizing the sum of squared distances of
the remaining data from an approximation restricted to the
subspace that they span.

Multidimensional scaling generalizes these ideas to sit-
uations where the data vectors are not known, but some
measure of the pairwise distance is available. MDS generates
an isometric embedding maintaining the pairwise distances,
usually in a vector space of dimension equal to the number
of data points. Again, this manifold can rotate or translate for
a given system, depending on the sampling used. Indeed, the
eigensystem solved in MDS often has negative eigenvalues
[49-51] corresponding to timelike coordinates, and changing
the sampling can also induce Lorentz boosts. MDS, using
the symmetrized Kullback-Leibler divergence D% as the

:Xm: ('Z)(—l)mk{[/qlk(x)pk(x)dx]N - 1}.

(A5)

(

pairwise distance, in fact produces an isKL embedding [52].
Our main result [Eq. (13)] implies that MDS applied with
DfKL to high-dimensional data produced by an N-parameter
exponential family will embed its predictions in a much
smaller space, with only N spacelike and N timelike nonzero
coordinates. Furthermore, the resulting manifold will be given
by the explicit isSKL embedding of Eq. (13) up to isometries.

We can now establish a connection with the multidimen-
sional scaling (MDS) technique. Given n sampled points from
the parameter space, MDS generates an embedding whose ith
projection is given by +/A;v;, where A; and v; are the eigen-
value and eigenvector of the double mean centered pairwise
distance matrix, D> = —(1/2)PD*P, where P, ; = 1/n—§; ;
and D? is the pairwise distance matrlx ertlng out the ma-
trix explicitly, we have (D?); ; = — D2 + nz YuxD k v —
ﬁ > (D}, +Df 1. We will solve for the eigensolutions in a
more general settlng by taking a continuous sampling limit.
This yields an integral eigenvalue problem,

/Dﬁ(a, 0)v(0)d () = Av(D), (B1)

with

D*0.6) = — %[Dz(o, 0) — / D*(0, £)d (&)

- / D*(&, 0)d (&) + / / D*(8, 9)du(0)du(9)},
(B2)

where d () is the sampling measure, v is the eigenfunction,
and A is the eigenvalue. One can recover MDS by having
a discrete measure wu(0) = Zx cx6:(0)d0, where §.(0) is the
Dirac measure. For D2, , the double mean centered distance
measure takes the form

- 1 ~ _
D20.9) = 5 Y L@ —T)(®i)g — @)

+ (1:(0) — ﬁi)((q)i>b — (@], (B3)
where [ 1;(6)du(0) =7; and [(P odu(O) (®,). It turns
out that the coordinates S; and 7; dlscussed in Sec. IV,

1
Si(6) = {A [7:(6) — 7] + — ( g — ﬂ}
(B4)

1
Ti(0) = E{k;[m(O) -

—m)},

where Az &/ Var((®;))/Var(n;), are indeed the solutions
to Eq. (Bl) with the ith elgenvalue pairs being AjE

[Cov(n,, V) £ +/Var(n;)Var({®;))]. Here we will prove it

_ 1
nil — X—f((‘bﬂg
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FIG. 9. (a)-(f) Normalized projection of the coin-toss manifold onto the first six principal axes. The dashed line is the numerical
approximation of the analytical expressions given in Eq. (C6) and Eq. (C7) with N = 2000.

as follows:

~ 1
f Dc<o.o>§{x,-[m<0> Al o

‘Letting / 1i(0)(®;)gd 1 (6) = (&)1, / n2(0)du(®) = 7. and / (@:)gdn () = ()

1 -
—{A,-[n,-(m (@0 — (@) -

1 7))+ 2i((Pi)g

4

‘ Rewriting (®;)n; — (®;) - 7; = Cov(n;, (;)),

1
= Z[COV(W (@i) & —Var( ] (n:(® —7)

‘ Since A = /Var((®;))/Var(n;),

1 1
= E[COV(nl, i)) £/ Var(n;) Var((®;))] 5 { [n:(6) — ni]ik—i((@)é

As promised, S;(f) and 7;(@) are indeed the solutions to
Eq. (B1), with eigenvalues
1
AF = 5[ Covin, (@) £ Var(mVar(@:)) .

In general, when the eigenvalues are degenerate, the axes
of the projections are free to rotate within the degenerate
spacelike and timelike subspaces, depending on du. Hence,

(B6)

(@) — ) }du(())-

~ @) - 7))

7 — 7 = Var(y), and (®7) — {

11 ~ -
+ {;[m(f)) — (PF) — <(Di>2) + ;((Cbz’)a — (PPN — (D)) ﬂ)}.

@) = Var((®;)) :

1 2
Z[COV(% (q)i)):l:)n,-Var(m)] (( ilg — (i)

— ﬁ)} (B5)

(

the solution will be a linear combination of the degenerate
coordinates described in Eq. (B1), i.e., S'(0) = >, axSk(0)
and 7'(0) = Y, BcTv(0), where Y ,af =1land Y , g7 =1
and the index k runs over coordinates that share the same
eigenvalue. In all of our examples except the generalized die,
the symmetry keeps the rotations from mixing directions and
the projection coordinates can be calculated from Eq. (B1)
regardless of degeneracy.
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APPENDIX C: COIN TOSS AND INPCA: THE BERNOULLI
PROBLEM MODEL MANIFOLD EMBEDDED WITH THE
BHATTACHARY YA DISTANCE

In the Bernoulli problem, the inPCA embedding is given
by the following pairwise distance:

d*(0y, 6,) = In[cos(6; — 65)]. (C1)

To find the embedding, we need to solve the eigenvalue prob-
lem discussed in Sec. B. As the double mean centering matrix
P gives rotation and boost transformation to the coordinates,
for simplicity we proceed our calculation for each projection
with just our distance function as an infinite matrix, acting on
continuous variables ¢ and 6: In cos(¢ — 0). This implies the
evaluation of the following eigenvalue problem:

/2
f Incos(¢p — 0)v,(0)dO = ryvy (), (C2)
0

where v,(¢) are the eigenfunctions with the corresponding
eigenvalues A,. We solve this numerically by expanding
the pairwise distance function in terms of Chebyshev poly-
nomials, d2(6, ¢) = —In(2) + 352, E cos[2k(6 — ¢),
and assuming that the eigenfunction v,(6) is odd with re-

J

(—1)k+!
k

(71)k+l

LA
4

E(k,m) =

k m2 e [kcos (k;)sm (%)

spect to & = /4 and can be expanded as a Fourier series:
Y iy bisin[k(0 — %)]. Thus we have

Z( pyert om F$) = Zbksm[ (9—%)], (C3)

k,m=1

with F(¢) = [7/> d6 cos[2k(6 — ¢)] sin[m(6 — T)], where,

as F(¢) only produces terms containing sin[2k(¢ — 7)] and
cos[2k(¢p — %)] for all values of m € Z¥, it is thus natural
to conjecture that the Fourier-series expansion must have its
coefficient by, 1 = 0. Hence,

Ve (6) = ink sin [2k<9 - %)] (C4)

k=1

With this assumption, the eigenvalue equation simplifies into
matching the coefficient of each Fourier mode sin[2k(¢ —

> & (k. m)byy = Aabor. (C5)
m=1
or, more succinctly, & b= Ao 1_5, where b=
(ba, by, ...,boN,...). The matrix &(k,m) is computed

via F (¢) to be

(m =k)

(Co)
mcos (%) sin ()] (m #k).

For even eigenfunctions v, (6) = Z;:io cr cos[k(@ — m /4)], the argument is almost identical, except we now have an extra
contribution from the constant ¢, term which needs to be handled separately. Going through the same derivation, we again have

the matrix eigenvalue equation, i.e., ¢ = A,¢, where ¢ = (cy, ¢3, - . -,

~Z1In(2)

n(k,n) =  “—sin ()

St [neos (5) sin (%) -

kecos (Z)sin ()] > 1,k>

cay), and we have

(n=k=0)

(k=0,n>1)

(k=1,n=0) (C7)
(k=nz=1)

ln#k).

One could get a numerical approximation for the analytical calculation above by taking 1 and & to be finite-dimensional matrix

N x N, where N > 1, as shown in Fig. 9.
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