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This paper presents a self-contained new theory of weak fractional differential calculus
in one-dimension. The crux of this new theory is the introduction of a weak fractional
derivative notion which is a natural generalization of integer order weak derivatives; it
also helps to unify multiple existing fractional derivative definitions and characterize
what functions are fractionally differentiable. Various calculus rules including a funda-
mental theorem calculus, product and chain rules, and integration by parts formulas
are established for weak fractional derivatives. Additionally, relationships with classical
fractional derivatives and detailed characterizations of weakly fractional differentiable
functions are also established. Furthermore, the notion of weak fractional derivatives is

also systematically extended to general distributions instead of only to some special dis-
tributions. This new theory lays down a solid theoretical foundation for systematically
and rigorously developing new theories of fractional Sobolev spaces, fractional calculus
of variations, and fractional PDEs as well as their numerical solutions in subsequent
works.
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1. Introduction

Similar to the classical integer order calculus, the classical fractional order calculus
also consists of two integral parts, namely, the fractional order integral calculus
and the fractional order differential calculus. It is concerned with studying their
properties/rules and the interplay between the two notions, which is often charac-
terized by the so-called Fundamental Theorem of Calculus. Fractional calculus also
has had a long history, which can be traced back to L’Hôpital (1695), Wallis (1697),
Euler (1738), Laplace (1812), Lacroix (1820), Fourier (1822), Abel (1823), Liouville
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(1832), Riemann (1847), Leibniz (1853), Grünwald (1867), Letnikov (1868) and
many others. We refer the reader to [11, 22, 24] and the references therein for a
detailed exposition about the history of the classical fractional calculus.

In the past 20 years fractional calculus and fractional (order) differential equa-
tions have garnered a lot of interest and attention both from the PDE community
(in the name of nonlocal PDEs) and in the applied mathematics and scientific com-
munities. Besides the genuine mathematical interest and curiosity, this trend has
also been driven by intriguing scientific and engineering applications which give
rise to fractional order differential equation models to better describe the (time)
memory effect and the (space) nonlocal phenomena (cf. [5, 11, 13, 15, 19] and the
references therein). It is the rise of these applications that revitalizes the field of
fractional calculus and fractional differential equations and calls for further research
in the field, including to develop new numerical methods for solving various frac-
tional order problems.

Although a lot of progress has been achieved in the past 20 years in the field of
fractional calculus and fractional differential equations, many fundamental issues
remain to be addressed. For a novice in the field, one would immediately be clogged
and confused by many (non-equivalent) definitions of fractional derivatives. The
immediate ramification of the situation is the difficulty for building/choosing “cor-
rect” fractional models to study analytically and to solve numerically. Moreover,
compared to the classical integer order calculus, the classical fractional calculus
still has many missing components. For example, many basic calculus rules (such
as product and chain rules) are not completely settled, the physical and geometric
meaning of fractional derivatives are not fully understood, and a thorough charac-
terization of the fractional differentiability seems still missing. Furthermore, at the
differential equation (DE) level, the gap between the integer order and fractional
order cases is even wider. For a given integer order DE, it would be accustomed for
one to interpret the derivatives in the DE as weak derivatives and the solution as a
weak solution. However, there is no parallel weak derivative and solution theory in
the fractional order case so far. As a result, various solution concepts and theories,
which may not be equivalent, have been used for fractional order DEs, especially,
for fractional (order) partial differential equations (FPDEs). The non-equivalence
of solution concepts may cause confusions and misunderstanding of the underlying
fractional order problem.

The primary goal of this paper is to develop a new weak fractional differential
calculus theory, starting from introducing the definition, proving various calcu-
lus rules, to establishing the Fundamental Theorem of Weak Fractional Calculus
(FTwFC). These results lay down the ground work for developing a new frac-
tional Sobolev space theory in a companion paper [8]. Together they provide a first
step/attempt in achieving the overreaching goal of providing the missing compo-
nents to, and to expand the reach of, the classical fractional calculus and fractional
differential equations, which will be continued in subsequent works [9, 10]. The
reader who is less familiar with these topics may wish to consult [7]; which presents
a combined and coherent exposition of the results from this paper and its companion
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paper [8]. In particular, written in the style of research notes, [7] offers numerous
details and additional results that may aid readers who are less familiar with the
fractional calculus.

The remainder of this paper is organized as follows. In Sec. 2, we recall the
definitions of some well-known classical fractional derivatives and a few relevant
properties, which all can be found in the beginning chapters of the reference [24]
(also see [7, Sec. 2]) and [2, 4, 12, 16–18, 21]. Additionally, we present an alter-
native perspective of the classical fractional derivatives. This is to introduce the
so-called Fundamental Theorem of Classical Fractional Calculus (FTcFC) and a
new interpretation/definition of the classical Riemann-Liouville fractional deriva-
tives. Such a viewpoint is essential to develop the weak fractional calculus theory
in this paper and the fractional Sobolev space theory in [8]. In Sec. 3, we first intro-
duce the notion of weak fractional derivatives using integration by parts and special
test functions, which is analogous to the notion of integer order weak derivatives.
It is proved that weak fractional derivatives inherit the fundamental properties of
classical fractional derivatives and the generality eliminates the need for numerous
definitions as seen in the classical theory. After having proved a characterization
result, we then establish the FTwFC, product and chain rules, and integration by
parts formulas. Many of these results and their proof techniques will look famil-
iar to the informed reader because they are adapted and refined from those used
in the integer order weak differential calculus theory (cf. [1, 6, 20]). The desired
differential calculus components are proved for both left and right weak fractional
derivatives and covers both finite and infinite domain cases. In Sec. 4, we extend
the notion of weak fractional derivatives to distributions. Unlike the existing frac-
tional derivative definitions which only apply to a certain subset of distributions,
we aim to define weak fractional derivatives for general distributions. Due to the
pollution effect of the fractional derivatives, the main difficulty to overcome is to
design a good domain extension for a given distribution, which is achieved by using
a partition of the unity idea in this section. Finally, the paper is concluded by a
short summary and a few concluding remarks given in Sec. 5.

2. Preliminaries

In this section, we first recall definitions of classical fractional integrals and deriva-
tives without stating their well-known properties, we refer the interested reader to
[7] for a collection of useful properties, and to [24] for a more extensive collection and
their detailed proofs. We then present a couple lesser known properties of classical
fractional derivatives which will be crucially and repeatedly used in the subsequent
sections. One of which is the pollution behavior of classical fractional derivatives of
compactly supported smooth function, the other is an equivalent definition of the
Riemann–Liouville fractional derivatives based on the FTcFC.

Since the definitions of fractional integrals and derivatives are domain-
dependent, it will be imperative for us to separate the cases when the domain is
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finite or infinite. In this section and in the later sections, we shall consider both finite
interval Ω = (a, b) for ∞ < a < b <∞ and the infinite interval Ω = R := (−∞,∞).

Throughout this paper, Γ : R → R denotes the standard Gamma function and
N stands for the set of all positive integers. In addition, C will be used to denote
a generic positive constant which may be different at different locations and f (n)

denotes the nth order classical derivative of f for n ∈ N. Unless stated otherwise,
all integrals

∫ b

a
ϕ(x) dx are understood as Riemann integrals in this section.

2.1. Definitions of classical fractional integrals and derivatives

In this subsection, we recall the definitions of classical Riemann–Liouville, Caputo,
Grünwald–Letnikov, and Fourier fractional integrals and derivatives.

2.1.1. Definitions on a finite interval

Historically, the integral calculus was invented before the differential calculus in
the classical Newton-Leibniz (integer) calculus and the two are intimately con-
nected through the well-known Fundamental Theorem of Calculus (or Newton–
Leibniz Theorem). It is interesting to note that the same is true for the classical
fractional calculus. Indeed, in order to give a definition of fractional derivatives, we
first need to recall the definition of fractional integrals.

Definition 2.1 (cf. [24]). Let σ > 0 and f : [a, b] → R. The σ order left Riemann–
Liouville fractional integral of f is defined by

aI
σ
xf(x) :=

1
Γ(σ)

∫ x

a

f(y)
(x− y)1−σ

dy ∀x ∈ [a, b] (2.1)

and the σ order right Riemann–Liouville fractional integral of f is defined by

xI
σ
b f(x) :=

1
Γ(σ)

∫ b

x

f(y)
(y − x)1−σ

dy ∀x ∈ [a, b]. (2.2)

aI
σ
x and xI

σ
b are respectively called the left and right Riemann–Liouville fractional

integral operators. We also set −Iσ := aI
σ
x and +Iσ := xI

σ
b .

Remark 2.1. It is well known ([24]) that both aI
σ
x and xI

σ
b are convolution-type

operators (with different kernel functions).

With the help of the above fractional integrals, the definitions of two popular
Riemann–Liouville fractional derivatives are given below.

Definition 2.2 (cf. [24]). Let n− 1 < α < n and f : [a, b] → R. The α order left
Riemann–Liouville fractional derivative of f is defined by

aD
α
xf(x) :=

dn

dxn

(
aI

n−α
x f(x)

)
=

1
Γ(n− α)

dn

dxn

∫ x

a

f(y)
(x− y)1+α−n

dy ∀x ∈ [a, b] (2.3)
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and the α order right Riemann–Liouville fractional derivative of f is defined by

xD
α
b f(x) := (−1)n dn

dxn

(
xI

n−α
b f(x)

)
=

(−1)n

Γ(n− α)
dn

dxn

∫ b

x

f(y)
(y − x)1+α−n

dy ∀x ∈ [a, b]. (2.4)

aD
α
x and xD

α
b are called the left and right Riemann–Liouville fractional derivative

(or differential) operators, respectively.

Another fractional derivative notion is the Caputo fractional derivative, which
is widely used in initial value problems of fractional order ODEs; particularly for
fractional differentiation in time.

Definition 2.3 (cf. [24]). Let n− 1 < α < n and f : [a, b] → R. The α order left
Caputo fractional derivative of f is defined by

C
a D

α
xf(x) :=

1
Γ(n− α)

∫ x

a

f (n)(y)
(x− y)1+α−n

dy ∀x ∈ [a, b] (2.5)

and the α order right Caputo fractional derivative of f is defined by

C
x D

α
b f(x) :=

(−1)n

Γ(n− α)

∫ b

x

f (n)(y)
(y − x)1+α−n

dy ∀x ∈ [a, b]. (2.6)

Remark 2.2. The definitions of the α order Caputo fractional derivatives require
that f (n) exists almost everywhere. The relationship between Riemann–Liouville
and Caputo fractional derivatives is given by the following identities:

C
a D

α
xf(x) = aD

α
xf(x) −

n−1∑
k=0

f (k)(a)
Γ(k + 1 − α)

(x− a)k−α, (2.7)

C
x D

α
b f(x) = xD

α
b f(x) −

n−1∑
k=0

f (k)(b)
Γ(k + 1 − α)

(b− x)k−α. (2.8)

The relations in Eqs. (2.7) and (2.8) may be used to extend the notion of Caputo
derivatives for functions whose first derivative, f ′(x), may not exist, but are defined
at the appropriate endpoint.

Unlike the Riemann–Liouville and Caputo derivatives which use an integral
operator to induce a fractional order derivative, a natural question is if a fractional
derivative can be defined as a limit of some difference quotient similar to the defi-
nition of the integer order derivative. Although there have been some attempts in
this direction (cf. [14]), we only recall the well-known Grünwald–Letnikov fractional
derivatives as they are related to the Riemann–Liouville derivatives.
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Definition 2.4 (cf. [24]). Let 0 < α < 1 and f : [a, b] → R. The left Grünwald–
Letnikov fractional derivative of f is defined by

GL
a Dα

xf(x) := lim
h→0+

1
hα

[(x−a)/h]∑
k=0

(−1)kΓ(1 + α)
Γ(k + 1)Γ(α− k + 1)

f(x− kh) ∀x ∈ [a, b]

and the right Grünwald–Letnikov fractional derivative of f is defined by

GL
x Dα

b f(x) := lim
h→0+

1
hα

[(b−x)/h]∑
k=0

(−1)k+1Γ(1 + α)
Γ(k + 1)Γ(α− k + 1)

f(x+ kh) ∀x ∈ [a, b].

Clearly, for the fractional derivative, the difference quotients are much more
complicated. It can be shown [24] that the Grünwald–Letnikov fractional derivative
and the Riemann–Liouville derivative are equivalent for sufficient smooth functions.

2.1.2. Definitions on an infinite interval

The fractional integrals over unbounded intervals are defined in the same way; here
we only consider the whole real line case, that is, (a, b) = (−∞,∞). There are two
different definitions of fractional order derivatives in the infinite interval case which
were proved to be equivalent. The first three definitions are direct generalizations
of Definitions 2.1–2.3.

Definition 2.5 (cf. [24]). Let σ > 0 and f : R → R. The σ order left Liouville
fractional integral of f is defined by

Iσ
xf(x) :=

1
Γ(σ)

∫ x

−∞

f(y)
(x− y)1−σ

dy ∀x ∈ R

and the σ order right Liouville fractional integral of f is defined by

xI
σf(x) :=

1
Γ(σ)

∫ ∞

x

f(y)
(y − x)1−σ

dy ∀x ∈ R.

Definition 2.6 (cf. [24]). Let n − 1 < α < n and f : R → R. The α order left
Liouville fractional derivative of f is defined by

Dα
xf(x) :=

1
Γ(n− α)

dn

dxn

∫ x

−∞

f(y)
(x− y)1+α−n

dy ∀x ∈ R

and the α order right Liouville fractional derivative of f is defined by

xD
αf(x) :=

(−1)n

Γ(n− α)
dn

dxn

∫ ∞

x

f(y)
(y − x)1+α−n

dy ∀x ∈ R.

Definition 2.7 (cf. [24]). Let n − 1 < α < n and f : R → R. The α order left
Caputo fractional derivative of f is defined by

CDα
xf(x) :=

1
Γ(n− α)

∫ x

−∞

f (n)(y)
(x− y)1+α−n

dy ∀x ∈ R
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and the α order right Caputo fractional derivative of f is defined by

C
x D

αf(x) :=
(−1)n

Γ(n− α)

∫ ∞

x

f (n)(y)
(y − x)1+α−n

dy ∀x ∈ R.

It should also be noted that all integrals over the infinite domain are understood
as standard improper integrals.

Similar to the finite interval case, we also can define the Grünwald–Letnikov
fractional derivatives for functions defined on the whole real line. In this case,
notice that the sums are infinite sums in the above definition.

Definition 2.8 (cf. [24]). Let 0 < α < 1 and f : R → R. The left Grünwald–
Letnikov fractional derivative of f is defined by

GLDα
xf(x) := lim

h→0+

1
hα

∞∑
k=0

(−1)kΓ(1 + α)
Γ(k + 1)Γ(α− k + 1)

f(x− kh) ∀x ∈ R

and the right Grünwald–Letnikov fractional derivative of f is defined by

GL
x Dαf(x) := lim

h→0+

1
hα

∞∑
k=0

(−1)k+1Γ(1 + α)
Γ(k + 1)Γ(α− k + 1)

f(x+ kh) ∀x ∈ R.

Next, we recall another definition of fractional derivatives that are based on the
Fourier transforms.

Definition 2.9 (cf. [24]). Let α > 0 and f : R → R. The α order Fourier fractional
derivative is defined by

FDαf(x) := F−1[(iξ)αF [f ](ξ)](x) ∀x ∈ R,

where F [·] and F−1[·] denote respectively the Fourier transform and its inverse
transform which are defined as follows: for any x, ξ ∈ R

F [f ](ξ) :=
∫

R

e−iξxf(x)dx, F−1[f ](x) :=
1
2π

∫
R

eiξxf(ξ) dξ.

Remark 2.3. The above Fourier fractional order derivative notion is based on the
following well-known property of the Fourier transform:

F [f (n)](ξ) = (iξ)nF [f ](ξ), f (n)(x) = F−1[(iξ)nF [f ]](x)

for any positive integer n.

2.2. Action on smooth functions with compact support

The action of the Riemann–Liouville integral and differential operators on smooth
functions with compact support is of special interest for our study in this paper. The
need for understanding these behaviors will become evident in the later sections.
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We now have a closer look at the support and the tail behavior of ±Dαϕ

for ϕ ∈ C∞
0 (R) so that supp(ϕ) ⊂ (a, b). To that end, a direct computation

yields

−Iσ
xϕ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ (−∞, a),

aI
σ
xϕ(x) if x ∈ [a, b],

L(x) if x ∈ (b,∞),

(2.9)

where

L(x) =
1

Γ(σ)

∫ b

a

ϕ(y)
(x− y)1−σ

dy. (2.10)

Taking the first derivative and letting σ = 1 − α yields

Dα
xϕ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ (−∞, a),

aD
α
xϕ(x) if x ∈ [a, b],

L′(x) if x ∈ (b,∞).

(2.11)

A similar formula can be shown for the right direction. The pollution function will
be denoted by R(x) corresponding to L(x).

Proposition 2.10. If ϕ ∈ C∞
0 (R) with supp(ϕ) ⊂ (a, b), then supp(Dα

xϕ) ⊂ (a,∞)
and supp(xD

αϕ) ⊂ (−∞, b).

Remark 2.4. (a) Riemann–Liouville fractional differential (and integral) operators
have a pollution effect on the support when acting on functions in C∞

0 (Ω). Left
derivatives pollute the support to the right and right derivatives pollute the
support to the left. This pollution effect is a consequence of the nonlocal char-
acteristics of fractional order differential and integral operators; in particular,
the “memory” effect.

(b) When x → ±∞, the integrands in L′(x) and R′(x) are shrinking. Moreover,
limx→∞ |L′(x)| = 0 (and limx→−∞ |R′(x)| = 0).

The next theorem states an integrability property of Dαϕ for ϕ ∈ C∞
0 (R).

Theorem 2.11. Let 0 < α < 1. If ϕ ∈ C∞
0 (Ω), then ±Dαϕ ∈ Lp(Ω) for each

1 ≤ p ≤ ∞.

Proof. The proof comes from direct calculations that can be found in [7].

Remark 2.5. A special class of compactly supported smooth functions are those
obtained through a mollification process (i.e. through a convolution with a com-
pactly supported mollifier). We refer the reader to [7] for a detailed discussion.
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2.3. Fundamental theorem of classical fractional

calculus (FTcFC)

In this subsection, we present an alternative understanding of the classical fractional
order integrals and derivatives. That is to interpret the fractional differentiation as a
by-product of the fractional integration through the so-called Fundamental Theorem
of Fractional Calculus. This new interpretation will play an important role in the
development of our weak fractional calculus theory to be given in the next section.

2.3.1. FTcFC on finite intervals (a, b) ⊂ R

We begin this subsection by recalling the following properties of the fractional
operators ±Iα and ±Dα.

Lemma 2.12 (cf. [24]). Let 0 < α < 1 and AC([a, b]) := AC((a, b)) ∩ C([a, b]).
The following properties hold :

(a) aD
α
xκ

α
−(x) ≡ 0 and xD

α
b κ

α
+(x) ≡ 0 where

κα
−(x) := (x− a)α−1, κα

+(x) := (b− x)α−1. (2.12)

(b) aD
α
x aI

α
xf(x) = f(x) and xD

α
b xI

α
b f(x) = f(x) for any f ∈ L1

loc((a, b)).
(c) If aI

1−α
x f ∈ AC([a, b]), then

f(x) = c1−α
− κα

−(x) + aI
α
x aD

α
xf(x) (2.13)

and if xI
1−α
b f ∈ AC([a, b]), then

f(x) = c1−α
+ κα

+(x) + xI
α
b xD

α
b f(x), (2.14)

where

cσ− :=
[aIσ

xf(x)]x=a

Γ(σ)
,

cσ+ :=
[xIσ

b f(x)]x=b

Γ(σ)
.

(2.15)

On noting the fact that ±DαF (x) = f(x) implies that ±I1−αF ∈ AC([a, b]),
then the above lemma immediately infers the following theorem.

Theorem 2.13. Let 0 < α < 1, f, F ∈ L1((a, b)). Then ±DαF (x) = f(x) on (a, b)
if and only if

F (x) = c1−α
± κα

±(x) + ±Iαf(x). (2.16)

Remark 2.6. The analogue of Theorem 2.13 in the integer order calculus is the
well-known Fundamental Theorem of Calculus (or Newton–Leibniz Theorem) which
says that F ′(x) := dF

dx (x) = f(x) if and only if

F (x) = F (a) +
∫ x

a

f(y)dy = F (a) +
∫ b

a

H(x− y)f(y)dy ∀x ∈ [a, b],
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where the kernel function κ(x, y) = H(x − y), the Heaviside function. Since the
kernel space of the derivative d

dx operator is R, this is why the first term on the
right-hand side must be a constant, because it must belong to the kernel space of
d
dx . Due to the above analogue, we shall call Theorem 2.13 FTcFC on finite intervals
in the rest of this paper.

In fact, given integral operators ±Iα, (2.16) can be used to define the corre-
sponding Riemann–Liouville derivatives as follows.

Definition 2.14. Let 0 < α < 1 and f, F ∈ L1((a, b)). Then f is called the α order
left/right Riemann–Liouville fractional derivative of F , and write ±DαF (x) = f(x),
if (2.16) holds,

F (x) = c1−α
± κ±(x) + ±Iαf(x). (2.17)

It is easy to check that the α order fractional derivative of f , if it exists, is
uniquely defined. In light of Theorem 2.13, we see that the original definition and
the above definition are equivalent. In this paper, we emphasize the above FTFC
approach of using a given integral operator (i.e. its kernel function is given) to
define the corresponding derivative notion by the FTFC identity. There are many
benefits/advantages of this approach. It is systematic (not ad hoc) and quite gen-
eral, because it is done in the same way for any given integral operator (see the
definition below). The FTFC is built into the definition; we regard that having such
an FTFC is essential for any fractional calculus theory.

We now give the alluded definition of fractional derivatives for general kernels
(and their associated integral operators).

Definition 2.15. Given any kernel function τ ∈ L1((a, b) × (a, b)), let Iτ denote
the subordinate (Riemann or Lebesgue) integral operator, namely,

Iτf(x) :=
∫ b

a

τ(x, y)f(y)dy ∀x ∈ [a, b]. (2.18)

Let f, F ∈ L1(Ω), then f is called the fractional/nonlocal derivative of F , and
written DτF = f , there exists some c ∈ [a, b] such that

F (x) = CF,cτ(x, c) + Iτf(x) ∀x ∈ [a, b] (2.19)

for some constant CF,c depending on both F and c.

2.3.2. FTcFC on the infinite interval R

The case for a FTcFC on the entire line is quite different, but simpler because of
the decay properties of kernel functions κα

± when |x| → ∞. Similarly, we start by
recalling the following properties of the fractional operators ±Iα and ±Dα.

Lemma 2.16 (cf. [24]). Let 0 < α < 1. The following properties hold :
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(a) Dα
x I

α
x f(x) = f(x) and xD

α
xI

αf(x) = f(x) for any f ∈ L1(R),
(b) Iα

xD
α
x f(x) = f(x) and xI

α
xD

αf(x) = f(x) for any I1−αf ∈ AC(R) so that
f(x) → 0 as |x| → ∞.

We then have

Theorem 2.17. Let 0 < α < 1, and f, F ∈ L1(R). If

F (x) = ±Iαf(x), (2.20)

then ±DαF (x) = f(x). The converse is also true if F (x) → 0 as |x| → ∞ is
required.

For the same reason as given in Sec. 2.3.1, we shall call Theorem 2.17 the FTcFC
on R in the rest of this paper.

Similarly, we also introduce the following definition.

Definition 2.18. Let 0 < α < 1 and f, F ∈ L1(R). Then f is called the α order
left/right Riemann–Liouville fractional derivative of F on R, and write ±DαF (x) =
f(x) (abusing the notation), if (2.20) holds.

It is easy to show that ±DαF is well defined and it coincides with the original
definitions of Riemann–Liouville derivatives on R. This FTcFC interpretation of
fractional derivatives will be emphasized in this paper.

2.4. Transform characterization of fractional integration

and differentiation

In this subsection, we shall present another (but related) view point for under-
standing Riemann–Liouville fractional integration and differentiation as a pair of
forward and inverse transforms. This function transform view point will also provide
a geometric interpretation for Riemann–Liouville fractional derivatives.

Definition 2.19. Let 0 < α < 1 and Ω = (a, b) or R. For any f ∈ L1(Ω), we define
the left/right Riemann–Liouville transforms ±Rα[f ] of f by

−Rα[f ](ξ) :=
1

Γ(α)

∫ ξ

a∗

f(x)
(ξ − x)1−α

dx ∀ ξ ∈ Ω, (2.21)

+Rα[f ](ξ) :=
1

Γ(α)

∫ b∗

ξ

f(x)
(x− ξ)1−α

dx ∀ ξ ∈ Ω, (2.22)

where a∗ = a or −∞ and b∗ = b or ∞.

Remark 2.7. Clearly, f̂±
α := ±Rα[f ] = ±Iαf are the left and right Riemann–

Liouville fractional integrals of f . We intentionally use a different notation ξ to
denote the independent variable for the transformed function f̂±

α to indicate that
it is defined in the “frequency” domain (â, b̂) = (a, b).

By the Lp mapping property (cf. [24]), we know that ±Rα map L1(Ω) into itself.
We are interested in knowing inverse transforms of ±Rα which are defined below.
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Definition 2.20. Let 0 < α < 1 and Ω = (a, b) or R. For any f ∈ L1(Ω), we
define the left/right inverse Riemann–Liouville transforms ±Rα

−1 as mappings
from L1(Ω) into itself such that

±R−1
α

[
±Rα[f ](ξ)

]
(x) = f(x) ∀x ∈ Ω. (2.23)

By Lemmas 2.12 and 2.16 we immediately get the following.

Proposition 2.21. The left/right inverse Riemann–Liouville transforms ±R−1
α are

uniquely defined and ±R−1
α = ±Dα.

Remark 2.8. (a) The above transform interpretation of the fractional Riemann–
Liouville integration and differentiation is consistent with the FTFC interpreta-
tion. Moreover, it reveals some more insights about these fractional derivatives
in the sense that the integration was done in the “physical domain” Ω, on the
other hand, the differentiation is performed in the “frequency domain” Ω̂, which
is topologically the same as Ω, but metrically not equivalent.

(b) To give a geometric interpretation of α order fractional Riemann–Liouville
derivatives, recall that ±Dαf(ξ) = d

dξ

(
±R1−α[f ](ξ)

)
, hence ±Dαf(ξ) mea-

sures the rate of change (or the slope of the tangent) of ±R1−α[f ] at ξ in the
“frequency domain” of the mapping ±R1−α.

3. A Weak Fractional Differential Calculus Theory

We saw in the previous section that the classical fractional calculus theory has
several difficulties arising from the change to non-integer order integration and dif-
ferentiation. Unlike the well formulated and understood integer order calculus, the
basic notion of fractional derivatives is domain-dependent and has several differ-
ent (and nonequivalent) definitions; familiar calculus rules do not hold or become
fairly complicated and restricted; fractionally differentiable functions are difficult to
characterize; there is no local characterization of non-local fractional integral and
derivative operators; more importantly, although the Riemann integration can be
generalized to the Lebesgue integration in the definitions of all fractional integrals,
unlike the integer order case, there is no weak fractional derivative concept/theory,
which in turn has caused some difficulties and confusions for studying/interpreting
fractional order differential equations.

The primary goal of this section (and this paper) is to develop a weak fractional
differential calculus theory, which is parallel to the integer order weak derivative
theory (cf. [1, 3, 6]). The anticipated weak fractional theory lays down the ground
work for developing a new fractional Sobolev space theory in a companion paper
[8]. Together they will provide a solid theoretical foundation and pave the way for a
systematic and thorough study of initial value, boundary value and initial-boundary
value problems for fractional order differential equations and fractional calculus of
variations problems as well as their numerical solutions in the subsequent works
[9, 10].
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In this section, unless it is stated otherwise, all integrals are understood in the
Lebesgue sense. We use −Dα and +Dα to denote respectively any left and right α
order classical derivative introduced in Sec. 2. ±Dα denotes either −Dα or +Dα. Ω
denotes either a finite interval (a, b) or the whole real line R. In the case Ω = (a, b),
for any ϕ ∈ C∞

0 (Ω), ϕ̃ is used to denote the zero extension of ϕ to R.

3.1. Definitions of weak fractional derivatives

Like in the integer order case, the idea of defining weak fractional derivative ±Dαu of
a function u is to specify its action on any smooth compactly supported function ϕ ∈
C∞

0 (Ω), instead of knowing its pointwise values as done in the classical fractional
derivative definitions.

Definition 3.1. For α > 0, let [α] denote the integer part of α. For u ∈ L1(Ω),

(i) a function v ∈ L1
loc(Ω) is called the left weak fractional derivative of u if∫

Ω

v(x)ϕ(x) dx = (−1)[α]

∫
Ω

u(x)+Dαϕ̃(x)dx ∀ϕ ∈ C∞
0 (Ω),

we write −Dαu := v;
(ii) a function w ∈ L1

loc(Ω) is called the right weak fractional derivative of u if∫
Ω

w(x)ϕ(x)dx = (−1)[α]

∫
Ω

u(x)−Dαϕ̃(x)dx ∀ϕ ∈ C∞
0 (Ω)

and we write +Dαu := w.

The next proposition shows that weak fractional derivatives are well-defined.

Proposition 3.2. Let u ∈ L1(Ω). Then a weak fractional derivative of u, if it
exists, is uniquely defined.

Proof. Let v1, v2 ∈ L1
loc(Ω) be two left (respectively, right) weak fractional deriva-

tives of u, then∫
Ω

v1(x)ϕ(x)dx = (−1)[α]

∫
Ω

u(x)±Dαϕ̃(x)dx =
∫

Ω

v2(x)ϕ(x)dx ∀ϕ ∈ C∞
0 (Ω).

Thus,

0 =
∫

Ω

(
v1(x) − v2(x)

)
ϕ(x)dx ∀ϕ ∈ C∞

0 (Ω).

Therefore, v1 = v2 almost everywhere. The proof is complete.

A few remarks are given below to help understand the above definition.

Remark 3.1. (a) The introduction of ϕ̃ in the definitions makes the weak fractional
derivatives intrinsic in the sense that ±Dαϕ̃ is independent of the choice of ±Dα,
because Dα

x ϕ̃ = aD
α
x ϕ̃ = FDαϕ̃ and xD

αϕ̃ = xD
α
b ϕ̃ = FDαϕ̃ (cf. [7, Sec. 2.2]).
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(b) The constant (−1)[α] helps guarantee consistency with the integer order case.
(c) Integration by parts is built into the definitions.
(d) The reason to require u ∈ L1(Ω) is because ±Dαϕ̃ ∈ L∞(R) is not compactly

supported. When α ∈ N, this condition can be relaxed to L1
loc(Ω). In fact, the

restriction u ∈ L1(Ω) can be relaxed to the weighted L1 space u ∈ L1(Ω, ρ)
with the weight ρ = L′ or ρ = R′.

(e) As expected, weak fractional derivatives are domain-dependent. However, unlike
the classical fractional derivatives, whose domain dependence is explicitly
shown in the limits of the integrals involved, the domain dependence of weak
fractional derivatives is implicitly introduced by using domain-dependent test
functions ϕ ∈ C∞

0 (Ω).
(f) The above definitions can be easily extended to non-interval domains or sub-

domains of Ω. Indeed, given a bounded set E ⊂ R, the only changes which
need to be made in the definitions are to replace Ω by E and ϕ ∈ C∞

0 (Ω) by
ϕ ∈ C∞

0 ((a∗, b∗)) where (a∗, b∗) = ∩{(c, d) : E ⊂ (c, d)}, the smallest interval
which contains E.

(g) Extensions of the above definitions to distributions will be given in Sec. 4.

The following result is trivial and expected, see [7, Theorem 2.5] for a proof.

Proposition 3.3. Let u be Riemann–Liouville differentiable such that ±Dαu ∈
L1

loc(Ω). Then ±Dαu = ±Dαu almost everywhere.

The next result shows the consistency with integer order weak derivatives.

Proposition 3.4. Let n − 1 < α < n. The α order weak fractional derivative
converges to the nth order weak derivative almost everywhere as α → n.

Proof. Consider the case when n = 1; the others follow similarly. In order to prove
that ±Dαu→ Du almost everywhere as α→ 1, we see that

0 =
∫

Ω

uϕ′ dx+ lim
α→1

(−1)[α]

∫
Ω

u∓Dαϕdx

= lim
α→1

∫
Ω

±Dαuϕdx−
∫

Ω

Du · ϕdx

= lim
α→1

∫
Ω

(±Dαu−Du)ϕdx,

which follows by the consistency of classical derivatives on functions ϕ ∈
C∞

0 (Ω).

3.2. Relationships with other derivative notions

Although the notion of a weak fractional derivative is analogous to the integer order
weak derivative and hence is deserving of the name in this sense, we provide simple
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examples to illustrate the following points.

(a) The notion of a weak fractional derivative is a unifying concept of fractional
differentiation with respect to the derivatives defined in Sec. 2.

(b) Weak fractional derivatives can exist for functions whose classical fractional
derivatives do not exist.

(c) Functions that do not have first-order weak derivatives may have weak frac-
tional derivatives.

First, we give a simple example to demonstrate that the weak fractional deriva-
tive is a unifying concept (item (a) above). To illustrate this point, we consider
Ω = R, 0 < α < 1, and c ∈ R\{0}, let u(x) ≡ c. Trivially,

CDα
xu(x) =

1
Γ(1 − α)

∫ x

−∞

u′(y)
(x− y)−α

dy = 0,

hence, the Caputo derivative is identically zero. However,

Dα
xu(x) =

1
Γ(1 − α)

d

dx

∫ x

−∞

c

(x− y)α
dy =

c

Γ(1 − α)
d

dx

⎛⎝(x− y)1−α

1 − α

∣∣∣∣∣
y=−∞

y=x

⎞⎠,
which does not exist as a function because the singular integral diverges, hence, the
Riemann–Liouville fractional derivative does not exist on R. Thus in the classical
case, the choice of fractional derivative definition becomes essential.

We now compute the weak fractional derivative of u below. For any ϕ ∈ C∞
0 (R),∫

R

c+Dαϕ(x)dx =
∫

R

c
d

dx
I1−α

x ϕ(x)dx = c
[
I1−α

x ϕ(x)
]∣∣∞

−∞ = 0.

Therefore, the weak derivative exists and is equal to zero, which coincides with the
Caputo derivative. Here we see that by forcing the integration by parts formula to
hold, the definition automatically selects the appropriate fractional derivative.

What if Ω = (a, b) is finite? In this case, we know that 0 = C
a D

α
xc 
= aD

α
xc =

cΓ(1 − α)−1(x− a)−α. A simple calculation yields that∫ b

a

c+Dαϕ(x)dx = c

∫ b

a

d

dx
xI

α
b ϕ(x)dx = c

[
xI

α
b ϕ(x)

]∣∣b
a

= c aI
α
b ϕ(b)

holds for all ϕ ∈ C∞
0 ((a, b)), which shows that the Caputo derivative of constant c

(that is zero) cannot satisfy the integration by parts formula. Hence, C
a D

α
xc 
= −Dαc.

However, a direct computation shows that∫ b

a

c+Dαϕdx =
∫ b

a

ϕaD
α
xc dx ∀ϕ ∈ C∞

0 ((a, b)).

Hence, −Dαc = aD
α
xc. Again, we see that the built-in feature of an integration by

parts formula effectively selects an appropriate fractional derivative.
Next, we illustrate that the notion of weak fractional derivatives is truly a gen-

eralization of the notion of classical fractional derivatives by showing that there are
functions whose weak derivatives exist, but classical fractional (Riemann–Liouville)
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derivatives do not. Moreover, we give a characterization of functions that are weakly
differentiable, which parallels the characterization for first-order weakly differen-
tiable functions. In lieu of concrete examples, we demonstrate that there is a proce-
dural way to produce functions that are not Riemann–Liouville differentiable, but
are weakly differentiable. Notice that for u ∈ L1(Ω) and ϕ ∈ C∞

0 (Ω), there holds∫
Ω

u∓Dαϕdx =
∫

Ω

u∓I1−αϕ′ dx =
∫

Ω

±I1−αuϕ′ dx.

In order to perform an integration by parts on the right side, we need that ±I1−αu ∈
W 1,1(Ω) (or at least absolutely continuous). In that case, the function u then has
a weak fractional derivative. On the other hand, we want the function u not to
be Riemann–Liouville differentiable, which requires that ±I1−αu 
∈ C1(Ω). Since
±I1−αu ∈ W 1,1(Ω) does not imply ±I1−αu ∈ C1(Ω), then we want to find u ∈
L1(Ω) so that ±I1−αu = f for a given function f ∈W 1,1(Ω), but f 
∈ C1(Ω). There
are many such f functions, the best known example perhaps is f(x) = |x|.

It follows from Lemma 2.12 that we obtain the desired examples by taking
u = ±D1−αf for any f ∈ {W 1,1(Ω); f 
∈ C1(Ω) and ±D1−αf exists

}
. By the char-

acterization of functions in W 1,1(Ω), we conclude that u is weakly fractional differ-
entiable with ±Dαu ∈ L1(Ω) if and only ±I1−αu is absolutely continuous.

Remark 3.2. The above procedure can be relaxed to characterize all weakly frac-
tional differentiable functions by requiring f to be only first-order weakly differen-
tiable; rather than f ∈W 1,1(Ω). However, the above procedure does produce a rich
(and nearly complete) validation of item (b) above.

Finally, we compare the weak fractional derivative to the integer order weak
derivative; in particular, we demonstrate that the notion of weak fractional deriva-
tive is indeed consistent with, and extends, the notion of integer order weak deriva-
tives by identifying a class of functions so that their weak fractional derivatives
exist, but their integer order weak derivatives do not.

To that end, consider Ω = (−1, 1) and λ, μ ∈ R so that λ 
= μ, then define

u(x) :=

{
λ if −1 < x < 0,

μ if 0 < x < 1;

a genuine step function. Let D denote the first-order weak derivative operator.
Obviously, Du does not exist (cf. [3]) because u 
∈ C((−1, 1)); such a function has
only a distributional derivative. However, a direct calculation shows that∫ 1

−1

u∓Dαϕdx =
∫ 1

−1

ϕ±Dαu dx ∀ϕ ∈ C∞
0 ((−1, 1))

holds, where

−Dαu(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(1 − α)
λ

(x+ 1)α
if x ∈ (−1, 0],

1
Γ(1 − α)

(
λ

(x+ 1)α
− λ

xα
+

μ

xα

)
if x ∈ (0, 1).
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A similar formula also holds for +Dα. Note that the weak derivative is locally
integrable. In fact, since 0 < α < 1, it is globally integrable; an observation that
is foundational to density properties in the fractional Sobolev spaces introduced in
[8]. Thus, we have shown that all step functions are weakly fractional differentiable,
but are not weakly differentiable to any integer order. In fact, it can be shown that
the same conclusion also holds for all piecewise smooth, but globally discontinuous
functions. Simple exams are given in [3, 6].

3.3. Approximation and characterization of weak

fractional derivatives

In this subsection, we present a characterization for weak fractional derivatives so
that they can be approached/understood from a different, but equivalent point of
view. Like in the integer order case, we prove that weakly fractional differentiable
functions can be approximated by smooth functions. Unless it is stated otherwise,
we assume 0 < α < 1 in this subsection.

3.3.1. The finite interval case

We first consider the case when Ω := (a, b) ⊂ R is a finite interval. Let ε > 0, define
the ε- interior of Ω as Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.
Lemma 3.5. Suppose ±Dαu ∈ L1

loc(Ω) exists. Then
±Dαũε = ηε ∗ ±Dαu a.e. in Ωε, (3.1)

where ηε denotes the standard mollifier and ũε stands for the mollification of ũ, the
zero extension of u.

We omit the proof to save space and refer the reader to [7, Lemma 3.3] for
details.

The next theorem gives a characterization of fractional order weak derivatives.

Theorem 3.6. Let u ∈ L1(Ω). Then v = ±Dαu in L1
loc(Ω) if and only if there

exists a sequence {uj}∞j=1 ⊂ C∞(Ω) such that uj → u in L1(Ω) and ±Dαuj → v in
L1

loc(Ω) as j → ∞.

Proof. Let u ∈ L1(Ω) and uε denote its mollification.

Step 1: Suppose that v = ±Dαu ∈ L1
loc(Ω). Let ũε denote the mollification of ũ.

By the properties of mollification, ũε → u in L1(Ω) as ε → 0. From lemma, we
have ±Dαũε = ηε ∗ ±Dαu → ±Dαu in L1

loc(Ω) as ε → 0. Hence, {ũε} is a desired
sequence.

Step 2: Suppose that {uj}∞j=1 ⊂ C∞(Ω) and uj → u in L1(Ω) and ±Dαuj → v in
L1

loc(Ω). Then for any ϕ ∈ C∞
0 (Ω)∣∣∣∣∫

Ω

(u− uj)(x)∓Dαϕ(x)dx
∣∣∣∣ ≤ M‖u− uj‖L1(Ω) → 0 as j → ∞,
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Ω

(±Dαuj − v
)
(x)ϕ(x)dx

∣∣∣∣ =
∣∣∣∣∫

K

(±Dαuj − v
)
(x)ϕ(x)dx

∣∣∣∣
≤ M

∥∥±Dαuj − v
∥∥

L1(K)
→ 0 as j → ∞,

because K := supp(ϕ) is compact. It follows from the definition of weak fractional
derivatives that

(−1)[α]

∫
Ω

u(x)∓Dαϕ(x)dx = (−1)[α] lim
j→∞

∫
Ω

uj(x)∓Dαϕ(x)dx

= lim
j→∞

∫
Ω

±Dαuj(x)ϕ(x)dx =
∫

Ω

v(x)ϕ(x)dx.

By the uniqueness of the weak fractional derivative, we conclude that v = ±Dαu

almost everywhere. The proof is complete.

Corollary 3.7. Let u ∈ Lp(Ω) for 1 ≤ p < ∞. Then v = ±Dαu in Lq
loc(Ω) for

1 ≤ q <∞ if and only if there exists a sequence {uj}∞j=1 ⊂ C∞(Ω) such that uj → u

in Lp(Ω) and ±Dαuj → v in Lq
loc(Ω) as j → ∞.

Remark 3.3. The conclusion of the above corollary still holds if Lq
loc(Ω) is replaced

by Lq(Ω) in the statement.

3.3.2. The infinite domain case

We now consider the case Ω = R. It turns out this case is significantly different from
the finite interval case. In particular, it requires the construction of a compactly sup-
ported approximation sequence for each fractionally differentiable function, which
turns out is quite complicated.

First, we establish the following analogue of Lemma 3.5. We refer the reader to
[7, Lemma 3.3] for its proof.

Lemma 3.8. Suppose ±Dαu ∈ L1
loc(R) exists, then

±Dαuε = ηε ∗ ±Dαu a.e. in R. (3.2)

The next theorem gives a characterization of weak fractional derivatives on R.

Theorem 3.9. Suppose u ∈ L1(R). Then ±Dαu = v ∈ L1
loc(R) exists if and

only if there exists a sequence {uj}∞j=1 ⊂ C∞
0 (R) such that uj → u in L1(R) and

±Dαuj → v in L1
loc(R).

Proof. Step 1: Suppose that there exists v ∈ L1
loc(R) and {uj}∞j=1 ⊂ C∞

0 (R) such
that uj → u in L1(R) and ±Dαuj → v in L1

loc(R). We want to show v = ±Dαu

almost everywhere. For any ϕ ∈ C∞
0 (R)∣∣∣∣∫

R

(u− uj)(x)∓Dαϕ(x) dx
∣∣∣∣ ≤ ∫

R

|(u − uj)(x)|
∣∣∓Dαϕ(x)

∣∣dx
≤ ‖u− uj‖L1(R)

∥∥∓Dαϕ
∥∥

L∞(R)
→ 0
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for j → ∞ and for K := supp(ϕ)∣∣∣∣∫
R

(
v − ±Dαuj

)
(x)ϕ(x) dx

∣∣∣∣ ≤ ∫
R

∣∣(v − ±Dαuj

)
(x)
∣∣|ϕ(x)|dx

=
∫

K

∣∣(v − ±Dαuj

)
(x)
∣∣|ϕ(x)|dx

≤ ∥∥v − ±Dαuj

∥∥
L1(K)

‖ϕ‖L∞(R) → 0

for j → ∞. From these inequalities and the definition of weak derivatives we get

(−1)[α]

∫
R

u(x)∓Dαϕ(x)dx = lim
j→∞

(−1)[α]

∫
R

uj(x)∓Dαϕ(x)dx

= lim
j→∞

∫
R

±Dαuj(x)ϕ(x)dx =
∫

R

v(x)ϕ(x)dx.

By the uniqueness of the weak derivative, we deduce v = ±Dαu almost everywhere.

Step 2: Suppose that u ∈ L1(R) and v := ±Dαu ∈ L1
loc(R). We want to show that

there exists {uj}∞j=1 ⊂ C∞
0 (R) such that uj → u in L1(R) and ±Dαuj → v in

L1
loc(R). To the end, let ψ ∈ C∞(R) satisfy ψ(t) = 1 if t ≤ 0 and ψ(t) = 0 if

t ≥ 1. For j = 1, 2, 3, . . . let ψj ∈ C∞
0 (R) be defined by ψj(x) := ψ(|x| − j). Let

uj := η 1
j
∗ (ψju). Then uj ∈ C∞

0 (R) and uj → u in L1(R) as j → ∞. We also
claim that ±Dαuj → v in L1

loc(R) as j → ∞ and prove this conclusion below in the
subsequent corollary.

Corollary 3.10. Suppose u ∈ Lp(R) for 1 ≤ p < ∞. Then v := ±Dαu ∈ Lq
loc(R)

for 1 ≤ q < ∞ if and only if there exists {uj}∞j=1 ⊂ C∞
0 (R) such that uj → u in

Lp(R) and ±Dαuj → v in Lq
loc(R).

Proof. Step 1: Same as Step 1 of the proof of Theorem 3.9.

Step 2: Suppose that u ∈ Lp(R) for 1 ≤ p < ∞ and v := ±Dαu ∈ Lq
loc(R). Let

{uj}∞j=1 be the same as in the proof of Theorem 3.9 and ε > 0. We now want to
show that ±Dαuj → v in Lq

loc(R) as j → ∞.

By the assumption, we have v = ±Dαu ∈ Lq
loc(R). For any fixed compact subset

K ⊂ R, choose a, b ∈ R such that K ⊂ (a, b) finite. By the construction of uj , we
have ±Dαuj = η 1

j
∗ ±Dα(ψju). Let Kj := supp(ψj) and for every ϕ ∈ C∞

0 (R) with
supp(ϕ) ⊂ Kj we have∫

Kj

±Dα(ψju)(x)ϕ(x) dx =
∫

R

±Dα(ψju)(x)ϕ(x)dx

=
∫

R

(ψju)(x)∓Dαϕ(x)dx =
∫

Kj

(ψju)(x)∓Dαϕ(x)dx.

Hence, ±Dα(ψju) can be regarded as the weak fractional derivative of ψju over the
domain Kj . It is due to this fact that we could use the product rule with remainder
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for fractional weak derivatives (to be proved in Theorem 3.13) to get

±Dα(ψju)(x)

= ψj(x)±Dαu(x) +
m∑

k=1

Ck
±Ik−αu(x)Dkψj(x) + ±Rα

m(u, ψj)(x).

Therefore,∥∥±Dαu− ±Dαuj

∥∥
Lq(K)

=
∥∥±Dαu− η 1

j
∗ ±Dα(ψj , u)

∥∥
Lq(K)

=

∥∥∥∥∥±Dαu− η 1
j
∗
(
ψj

±Dαu+
m∑

k=1

Ck
±IαuDkψj + ±Rα

m(u, ψj)

)∥∥∥∥∥
Lq(K)

≤ ∥∥±Dαu− η 1
j
∗ ψj

±Dαu
∥∥

Lq(K)
+

∥∥∥∥∥η 1
j
∗

m∑
k=1

Ck
±IαuDkψj

∥∥∥∥∥
Lq(K)

+
∥∥±Rα

m(u, ψj)
∥∥

Lq(K)

≤ ∥∥±Dαu− η 1
j
∗ ψj

±Dαu
∥∥

Lq(K)
+

m∑
k=1

∥∥η 1
j
∗ Ck

±IαuDkψj

∥∥
Lq(K)

+
∥∥±Rα

m(u, ψj)
∥∥

Lq(K)
.

Then it suffices to show that each of the above three terms vanishes as j → ∞.
Since ±Dαu ∈ Lq(K), by the same arguments used to show that uj → u in

Lp(R), we have that η 1
j
∗ ψj

±Dαu → ±Dαu in Lq(K). Hence, there exists J1 ∈ N

such that for every j ≥ J1, we have that∥∥±Dαu− η 1
j
∗ ψj

±Dαu
∥∥

Lq(K)
<
ε

2
.

Next, by construction, for set K, there exists J2 := J2(K) ∈ N so that for every
j ≥ J2, Dkψj(x) = 0 for every x ∈ (a, b). Therefore, for every j ≥ J2,∥∥η 1

j
∗ Ck

±Ik−αuDkψj

∥∥
Lq(K)

≤ ∥∥Ck
±Ik−αuDkψj

∥∥
Lq((a,b))

= 0.

Here we have used the fact that for each k and j ≥ J2, ±Ik−αu is finite on (a, b).
This of course is true since u ∈ Lp(R). In fact, we need only that ±Ik−αu is finite
on (a, b) for j = J2 since for all j ≥ J2, Dkψj ≡ 0 in (a, b).

Finally, it can be shown that the remainder term vanishes as j → ∞. However,
since the argument is rather lengthy, we omit it to save space and refer the reader
to [7, Corollary 4.2] for a complete argument.

Remark 3.4. The conclusion of the above corollary still holds if Lq
loc(R) is replaced

by Lq(R) in the statement.
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3.4. Basic properties of weak fractional derivatives

Similar to the classical calculus theory, we expect weak derivatives to satisfy certain
properties and rules of calculus. As in the classical fractional calculus, many of the
rules in the weak fractional calculus theory differ from their integer counterparts,
which is expected. Below we list a few elementary properties for weak fractional
derivatives.

Proposition 3.11. Let α, β > 0, λ, μ ∈ R, and u, v be weakly differentiable to the
appropriate order. Then the following properties hold :

(i) Linearity: ±Dα(λu + μv) = λ±Dαu+ μ±Dαv.
(ii) Inclusivity: Let 0 < α < β < 1, suppose that u is β order weakly differentiable.

Then u is α order weakly differentiable.
(iii) Semigroup: Suppose 0 < α, β, α + β < 1 and ±Dαu,±Dβu,±Dα+βu ∈ L1(Ω),

then ±Dα±Dβu = ±Dα+βu. Moreover, if α > 1, then ±Dαu = ±D[α]+σu =
D[α](±Dσu) with σ := α− [α].

(iv) Consistency: if u is first-order weakly differentiable, then the α (< 1) order
weak derivative coincides with the first-order weak derivative in the limit as
α → 1.

Proof. (i) It follows straightforwardly from a direction computation.
(ii) We shall postpone this proof until after the FTwFC (cf. Theorem 3.10) is

established.
(iii) If 0 < α, β, α+ β < 1, by the definition we have∫

Ω

±Dα+βuϕdx =
∫

Ω

u∓Dα+βϕdx ∀ϕ ∈ C∞
0 (Ω), (3.3)∫

Ω

±Dβ±Dαuϕdx =
∫

Ω

±Dαu∓Dβϕdx ∀ϕ ∈ C∞
0 (Ω). (3.4)

Let {uj}∞j=1 ⊂ C∞(Ω) such that uj → u in L1(Ω) and ±Dαuj → ±Dαu in L1(Ω),
then using the integration by parts formula for Riemann–Liouville fractional order
derivatives, we obtain∫

Ω

±Dαu∓Dβϕdx = lim
j→∞

∫
Ω

±Dαuj
∓Dβϕdx

= lim
j→∞

∫
Ω

uj
∓Dα∓Dβϕdx

= lim
j→∞

∫
Ω

uj
∓Dα+βϕdx =

∫
Ω

u∓Dα+βϕdx. (3.5)

Combining (3.3)–(3.5) we get∫
Ω

±Dα+βuϕdx =
∫

Ω

±Dβ±Dαuϕdx ∀ϕ ∈ C∞
0 (Ω).

Thus, ±Dα+βu = ±Dβ±Dαu almost everywhere in Ω.
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If α > 1, setm = [α] and σ = α−m. By the definition we get for any ϕ ∈ C∞
0 (Ω),∫

Ω

D[α](±Dσu)ϕdx = (−1)[α]

∫
Ω

±DσuD[α]ϕdx = (−1)[α]

∫
Ω

u∓DσD[α]ϕdx

= (−1)[α]

∫
Ω

u∓Dσ+[α]ϕdx = (−1)[α]

∫
Ω

u∓Dαϕdx.

Thus, ±Dαu = D[α](±Dσu) almost everywhere in Ω and the assertion (iii) is proved.
(iv) It follows by the consistency of the classical fractional derivatives that for

every ϕ ∈ C∞(Ω),

lim
α→1

∫
Ω

±Dαuϕdx := lim
α→1

(−1)[α]

∫
Ω

u∓Dαϕ̃ dx

= −
∫

Ω

uDϕ̃ dx =:
∫

Ω

Duϕdx.

Remark 3.5. We note that for α > 1, generally, ±Dαu 
= ±DσD[α]u, consequently,
±DσD[α]u 
= D[α]±Dσu, in general.

We conclude this section by stating a general integration by parts formula in
the case Ω = R.

Proposition 3.12. Let α > 0, 1 ≤ pk ≤ ∞ and qk = pk

pk−1 for k = 1, 2. Suppose
that u ∈ Lp1(R), v ∈ Lp2(R), ±Dαu ∈ Lq2(R), and ∓Dαv ∈ Lq1(R). Then there
holds ∫

R

±Dαu v dx = (−1)[α]

∫
R

u∓Dαv dx. (3.6)

Proof. By Corollary 3.10 we know that there exists a sequence {vj}∞j=1 ⊂ C∞
0 (R)

such that vj → v in Lp2(R) and ∓Dαvj → ∓Dαv in Lq1(R) as j → ∞. By the
definition of ±Dαu we have∫

R

±Dαu vj dx = (−1)[α]

∫
R

u∓Dαvj dx.

Setting j → ∞ immediately infers (3.6). The proof is complete.

We note that in order to extend the above integration by parts formula to the
finite domain case, it requires the notion of function traces, both function traces
and the extended formula will be presented in [8] for functions in fractional Sobolev
spaces.

3.5. Product and chain rules for weak fractional derivatives

In this subsection, we present some product and chain rules for weak fractional
derivatives, which are similar to those for classical fractional derivatives given in
[7, Sec. 2.5].
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Theorem 3.13. Let (a, b) ⊂ R and 0 < α < 1. Suppose that ψ ∈ Cm+1([a, b]) for
m ≥ 1 and ±Dαu ∈ L1

loc((a, b)) exists. Then ±Dα(uψ) exists and is given by

±Dα(uψ)(x) = ±Dαu(x) · ψ(x) +
m∑

k=1

Γ(1 + α)
Γ(1 + k)Γ(1 − k + α)

±Ik−αu(x)Dkψ(x)

+ ±Rα
m(u, ψ)(x) a.e. in (a, b),

where

+Rα
m(u, ψ)(x) =

(−1)m+1

m!Γ(−α)

∫ b

x

u(y)
(y − x)1+α

dy

∫ y

x

ψ(m+1)(z)(z − x)m dz,

−Rα
m(u, ψ)(x) =

(−1)m+1

m!Γ(−α)

∫ x

a

u(y)
(x− y)1+α

dy

∫ x

y

ψ(m+1)(z)(x− z)m dz.

Proof. Let {uj}∞j=1 ⊂ C∞((a, b)) so that uj → u in L1((a, b)) and ±Dαuj → ±Dαu

in L1
loc((a, b)). Consider the product ujψ, which belongs to C((a, b)), and ϕ ∈

C∞
0 ((a, b)) with supp(ϕ) := (c, d) ⊂ (a, b). Since uj → u in L1(a, b)), ±Iσuj → ±Iσu

in L1((a, b)). Using this fact and [7, Theorem 2.3], we obtain∫
Ω

uψ∓Dαϕdx = lim
j→∞

∫
Ω

ujψ
∓Dαϕdx

= lim
j→∞

∫
Ω

±Dα(ujψ) · ϕdx = lim
j→∞

∫
Ω′

±Dα(ujψ) · ϕdx

= lim
j→∞

∫
Ω′

(
±Dαuj · ψ +

m∑
k=1

Ck
±Ik−αujD

kψ + ±Rα
m(uj , ψ)

)
ϕdx

=
∫

Ω

(
±Dαu · ψ +

m∑
k=1

Ck
±Ik−αuDkψ + ±Rα

m(u, ψ)

)
ϕdx,

which implies that

±Dα(uψ) = ±Dαu · ψ +
m∑

k=1

Γ(1 + α)
Γ(k + 1)Γ(1 − k + α)

±Ik−αuDkψ + ±Rα
m(u, ψ)

almost everywhere in (a, b) with

+Rα
m(u, ψ)(x) =

(−1)m

m!Γ(−α)

∫ b

x

u(y)
(y − x)1+α

dy

∫ y

x

ψ(m+1)(z)(z − x)m dz,

−Rα
m(u, ψ)(x) =

(−1)m+1

m!Γ(−α)

∫ x

a

u(y)
(x− y)1+α

dy

∫ x

y

ψ(m+1)(z)(x− z)m dz.

The proof is complete.

Remark 3.6. We also can prove another version of the product rules that do not
include remainder terms. That version of the product rules will instead be written
as infinite sums and require both functions are analytic. Because we do not wish
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to make such an assumption in our applications of the weak fractional derivative
product rule, we omit that version of the product rules. One may wish for a simpler
product rule that looks similar to the well-known integer derivative product rule.
However, it has been proved in [25] that such a simple product rule only holds for
the first order derivative. A similar characterization has also been established for
the chain rule in [26].

Based on the above product rules with m = 0, we can easily obtain this following
chain rules for weak fractional derivatives. We omit the proof because it is similar
to the proof of [7, Theorem 2.4].

Theorem 3.14. Let (a, b) ⊂ R. Suppose that ϕ ∈ C1(R) such that ϕ(0) = 0 and
f ∈ C((a, b)). Then there hold

±Dαϕ(f)(x) =
ϕ(f)(x)
f(x)

±Dαf(x) + ±Rα
0

(
f,
ϕ(f)
f

)
(x) a.e. in (a, b), (3.7)

where ±Rα
0 (f, g) are defined by

−Rα
0 (f, g)(x) =

−1
Γ(−α)

∫ x

a

f(y)[g(x) − g(y)]
(x − y)1+α

dy, (3.8)

+Rα
0 (f, g)(x) =

−1
Γ(−α)

∫ b

x

f(y)[g(x) − g(y)]
(y − x)1+α

dy. (3.9)

3.6. Fundamental theorem of weak fractional calculus (FTwFC)

In this subsection, we aim to extend the FTcFC (see Theorem 2.13) to weakly
fractionally differentiable functions. Similar to the FTcFC for classical fractional
(Riemann–Liouville) derivatives, the finite and infinite domain cases are signifi-
cantly different, hence must be treated separately.

3.6.1. The finite interval case

To establish the FTwFC on a finite domain, we first need to show the following
crucial lift lemma.

Lemma 3.15. Let Ω ⊂ R and 0 < α < 1. Suppose that u ∈ Lp(Ω) and ±Dαu ∈
Lp(Ω) for some 1 ≤ p <∞. Then ±I1−αu ∈ W 1,1(Ω).

Proof. Choose {uj}∞j=1 ⊂ C∞(Ω) so that uj → u in Lp(Ω) and ±Dαuj → ±Dαu in
Lp(Ω). Since ±Dαuj ∈ L1(Ω), then ±I1−αuj ∈ W 1,1(Ω). By the stability property
of ±I1−α we have

‖±I1−αum − ±I1−αun‖W 1,1(Ω) = ‖±I1−αum − ±I1−αun‖L1(Ω)

+ ‖±Dαum − ±Dαun‖L1(Ω)

≤ C‖um − un‖L1(Ω) + ‖±Dαum − ±Dαun‖L1(Ω)

→ 0 as n,m→ ∞.
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Hence, {±I1−αuj}∞j=1 is a Cauchy sequence in W 1,1(Ω). Since W 1,1(Ω) is a Banach
space, there exists v ∈W 1,1(Ω) so that ±I1−αuj → v in W 1,1(Ω) .

It remains to show that v = ±I1−αu. On noting that

‖v − ±I1−αu‖L1(Ω) ≤ ‖v − ±I1−αuj‖L1(Ω) + ‖±I1−αuj − ±I1−αu‖L1(Ω)

≤ ‖v − ±I1−αuj‖L1(Ω) + C‖uj − u‖L1(Ω) → 0 as j → ∞.

Hence, v = ±I1−αu almost everywhere in Ω. The proof is complete.

Remark 3.7. Since AC(Ω) is isomorphic to W 1,1(Ω) in the 1D case, the above
lemma also implies that ±I1−αu ∈ AC(Ω). The above lemma shows that if
u ∈ ±Wα,1(Ω) (see the space definition in [8]), then the operator ±I1−α lifts u
from ±Wα,1(Ω) into W 1,1(Ω). This result reinforces the characterization of weakly
fractional differentiable functions as stated in Sec. 3.2. In particular, one can roughly
think about weakly fractional differentiable functions as those whose classical frac-
tional derivatives exist almost everywhere. This is (almost) exactly the same charac-
terization for first-order weakly differentiable functions (in 1D). Precisely, absolute
continuity characterizes weakly differentiable functions and the absolute continuity
of ±I1−αu characterizes weakly fractional differentiable functions.

Theorem 3.16. Let Ω ⊂ R and 0 < α < 1. Suppose that u ∈ Lp(Ω) and ±Dαu ∈
Lp(Ω) for some 1 ≤ p <∞. Then there holds

u = c1−α
± κα

± + ±Iα±Dαu a.e. in Ω. (3.10)

Proof. Let {uj}∞j=1 ⊂ C∞(Ω) so that uj → u in Lp(Ω) and ±Dαuj → ±Dαu

in Lp(Ω); in particular, uj and its derivative converge in L1(Ω). By Lemma 3.15,
±I1−αuj → ±I1−αu in W 1,1(Ω) ∼= AC(Ω). Moreover, by the FTcFC we get

uj(x) = c1−α
j,± κα

±(x) + ±Iα±Dαuj(x).

Thus,

‖u− c1−α
± κα

± − ±Iα±Dαu‖L1(Ω)

≤ ‖u− uj‖L1(Ω) + |c1−α
± − c1−α

j,± | ‖κα
±‖L1(Ω) + ‖±Iα(±Dαu− ±Dαuj)‖L1(Ω)

≤ ‖u− uj‖L1(Ω) + |c1−α
± − c1−α

j,± | ‖κα
±‖L1(Ω) + C‖±Dαu− ±Dαuj‖L1(Ω)

→ 0 as j → ∞.

Therefore,

u− c1−α
± κα

± − ±Iα±Dαu = 0 a.e. in Ω.

The proof is complete.

Remark 3.8. (a) We refer to Theorem 3.16 as the FTwFC in this paper.
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(b) The above FTwFC is an essential tool for studying weakly fractional differen-
tiable functions, in particular, it will play a crucial role in proving compact and
Sobolev embeddings and a fractional Poincaré inequality in [8].

To conclude this subsection, we would like to circle back to an unproven inclusion
result for weak fractional derivatives which was alluded to in Proposition 3.11(ii).
This then presents the first application of the FTwFC.

Proposition 3.17. Let Ω ⊂ R and 0 < α < β < 1. Suppose that ±Dβu exists in
L1(Ω). Then ±Dαu exists in L1(Ω).

Proof. It follows by Theorem 3.16 that

u = c1−β
± κβ

± + ±Iβ±Dβu a.e. in Ω.

Then there holds∫
Ω

u∓Dαϕdx =
∫

Ω

(
c1−β
± κβ

± + ±Iβ±Dβu
)∓Dαϕdx

=
∫

Ω

±Dα
(
c1−β
± κβ

± + ±Iβ±Dβu
)
ϕdx

=
∫

Ω

(
c1−β
± κβ−α

± + ±Iβ−α±Dβu
)
ϕdx.

Since a direct calculation shows that v := c1−β
± κβ−α

± + ±Iβ−α±Dβu ∈ L1(Ω), then
the above identity implies that ±Dαu exists and ±Dαu = v almost everywhere in
Ω. The proof is complete.

3.6.2. The infinite interval case

Unlike the finite domain, the absence of any boundary in the infinite interval case
Ω = R allows for a cleaner statement of the FTwFC and a simpler proof.

Theorem 3.18. Let 0 < α < 1. Suppose that u, v ∈ L1(R). If

u = ±Iαv a.e. in R, (3.11)

then ±Dαu = v almost everywhere. The converse is true under the additional
assumption u(x) → 0 almost everywhere as |x| → ∞.

Proof. The assertion and the accompanying Eq. (3.11) follow from an application
of the characterization theorem (cf. Theorem 3.9) for weak fractional derivatives
and Theorem 2.17.

As was illustrated in the finite domain case and the infinite domain case for clas-
sical fractional derivatives, we can use the relation (3.11) to show a basic inclusion
result for weak fractional derivatives.

Proposition 3.19. Let 0 < α < β < 1. Suppose that u,±Dβu ∈ L1(R). Then
±Dαu exists in L1(R).
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Proof. Apply the characterization theorem for weakly fractional differentiable
functions on R (cf. Theorem 3.9) and the FTwFC (cf. Theorem 3.18), then pass
limits.

4. Weak Fractional Derivatives of Distributions

The aim of this section is to introduce some weak fractional derivative notions for
distributions. Like in the integer order case, such a notion is necessary in order
to define fractional order weak derivatives for “all functions” including very rough
ones and will also provide a useful tool for studying fractional order differential
equations (cf. [9, 11, 19]).

The main difficulty for doing so is caused by the pollution effect of fractional
order derivatives (and integrals), as a result, the standard test space D(Ω) :=
C∞

0 (Ω) is not invariant under the mappings ±Dα, instead, ±Dα(D(Ω)) ⊂ ±D(Ω) :=
∓C∞

0 (Ω) (see the definitions below). Hence, ±Dαϕ become invalid test functions
(or inputs) for a distribution u ∈ D ′(Ω) although ϕ ∈ D(Ω) is. To circumvent this
difficulty, there are two approaches used in the literature. The first one, which is
most popular [24], is to use different test spaces which are larger than the standard
test space D(Ω) so that the chosen test space is invariant under the mappings ±Dα,
and then to consider generalized functions (still called distributions) as continuous
linear functionals on the chosen test space. The second approach is to extend the
domain of a distribution u ∈ D ′(Ω) without changing the standard test space D(Ω)
so that the extended distribution ũ can take the inputs ±Dαϕ. In this section, we
use both approaches although we give more effort to the second one because it
covers general distributions in D ′(Ω), not just a subclass of D ′(Ω).

4.1. Test spaces, distributions and one-sided distributions

We first recall some of the necessary function spaces and notions of convergence
that are inherent to constructing a fractional derivative for distributions. We also
introduce two new spaces of one-side compactly supported functions and establish
some properties of the weak fractional derivative operators ±Dα on the new spaces.
Unless stated otherwise, in this section Ω denotes either a finite interval (a, b) or
the real line R.

Definition 4.1. Let D(Ω) := C∞
0 (Ω) which is equipped with the following topol-

ogy (sequential convergence): given a sequence {ϕk}∞k=1 ⊂ D(Ω) is said to converge
to ϕ ∈ D(Ω) if

(a) there exists a compact subset K ⊂ Ω such that supp(ϕk) ⊂ K for every k,
(b) Dmϕk → Dmϕ uniformly in K for each m ≥ 0.

Let D ′(Ω) denote the space of continuous linear functionals on D(Ω), namely the
dual space. Every functional in D ′(Ω) is called a distribution.
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Definition 4.2. Define the following two spaces of one-side compactly supported
functions:

−D(Ω) := {ϕ ∈ C∞(Ω) : ∃x0 ∈ Ω, ϕ(x) ≡ 0 ∀x ≤ x0},
+D(Ω) := {ϕ ∈ C∞(Ω) : ∃x0 ∈ Ω, ϕ(x) ≡ 0 ∀x ≥ x0},

which are equipped with the following topology: given a sequence {ϕk}∞k=1 ⊂
±D(Ω), it is said to converge to ϕ ∈ ±D(Ω) if

(a) there exists an x0 ∈ Ω such that ϕk(x) ≡ 0 for all x ≤ x0 (or x ≥ x0 in the
case of the right space) for k ≥ 1,

(b) Dmϕk → Dmϕ uniformly in Ω for every m ≥ 0.

Let ±D ′(Ω) denote respectively the spaces of continuous linear functionals on
±D(Ω), namely the dual spaces of ±D(Ω). Every functional in ±D ′(Ω) is called
a one-sided distribution.

Lemma 4.3. D(Ω) and ±D(Ω) are complete topological vector spaces and D(Ω) ⊂
±D(Ω).

Recall that it was proved in Sec. 2.2 that ±Dα(D(Ω)) ⊂ ±D(Ω), Below we show
that this inclusion is continuous.

Proposition 4.4. ±Dα : D(Ω) → ±D(Ω) are continuous.

Proof. We only give a proof for the left derivative −Dα = −Dα because the other
case follows similarly.

Let ϕk → ϕ in D(Ω), we want to show that −Dαϕk → −Dαϕ in −D(Ω). To the
end, let K ⊂⊂ Ω be a compact subset so that supp(ϕk) ⊂ K for every k ≥ 0 with
ϕ0 ≡ ϕ, without loss of the generality, assume K = [x0, x1] ⊂⊂ Ω. Then we have
−Dαϕk ≡ 0 for every x ≤ x0 and k ≥ 0, and for any integer m ≥ 0 and x > x0∣∣Dm(−Dαϕk)(x) −Dm(−Dαϕ)(x)

∣∣ =
∣∣∣∣ dm

dxm

[
Cα

d

dx

∫ x

x0

ϕk(y)
(x− y)α

dy

]

− dm

dxm

[
Cα

d

dx

∫ x

x0

ϕ(y)
(x− y)α

dy

]∣∣∣∣
=
∣∣∣∣Cα

dm+1

dxm+1

∫ x

x0

ϕk(y) − ϕ(y)
(x− y)α

dy

∣∣∣∣
=

∣∣∣∣∣Cα

∫ x

x0

ϕ
(m+1)
k (y) − ϕ(m+1)(y)

(x− y)α
dy

∣∣∣∣∣
≤ Cα

∫ x1

x0

∣∣ϕ(m+1)
k (y) − ϕ(m+1)(y)

∣∣
|x− y|α dy

≤ |K|1−αCα

1 − α
sup
x∈K

∣∣ϕ(m+1)
k (x) − ϕ(m+1)(x)

∣∣.
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Note that we have used the equivalence of the Riemann–Liouville and Caputo
derivatives on the space D(Ω). It follows by the uniform convergence of {ϕk}∞k=1

that Dm−Dαϕk → Dm−Dαϕ uniformly in Ω for every m. The proof is
complete.

The above proof also infers that the spaces ±D(Ω) are invariant under the
mapping ±Dα, respectively.

Proposition 4.5. ±Dα(±D(Ω)) ⊂ ±D(Ω), respectively. Moreover, the inclusion is
continuous.

Remark 4.1. Without any added integrability condition (i.e. decay at x = ±∞),
the inclusions of Proposition 4.5 may not be true when Ω = R. The smoothed
(in an ε-neighborhood of x = 0) Heaviside functions Hε(x) and Hε(−x) are two
counterexamples. In fact, ±Dαϕ may even not exist for some ϕ ∈ ±D(R).

Let S denote the space of Schwartz rapidly decaying functions defined in R (see
[23] for the precise definition). Then we have the following.

Lemma 4.6. The space S is invariant under the Fourier fractional order derivative
operator, namely, FDα(S) ⊂ S. Moreover, the inclusion is continuous.

Proof. Let ϕ ∈ S, it is well known [1, 23] that ϕ̂ := F [ϕ] ∈ S. Then (iξ)αϕ̂ ∈ S,
so is FDα(ϕ) := F−1[(iξ)αϕ̂]. The continuity of the inclusion can be proved in the
same way as that in Proposition 4.4.

Remark 4.2. It is easy to check that the Schwartz space S is not invariant under
the mappings ±Dα, nor is it under ±Dα. Consequently, the Fourier fractional deriva-
tives and the Riemann–Liouville fractional derivatives may not coincide for func-
tions in S in general. On the other hand, they do coincide for functions in D (see
([7, Proposition 2.2])). This fact is a main reason for and also validates the choice
of test functions in the definition of weak fractional derivatives in Sec. 3.1.

4.2. Weak fractional derivatives for compactly supported

distributions

The goal of this subsection is to extend the notion of the weak fractional derivatives
to distributions in D ′ with compact supports. First, we recall the definition of
supports for distributions.

Definition 4.7. Let u ∈ D ′(Ω), u is said to vanish on an open subset O ⊂ Ω if
u(ϕ) = 0 for all ϕ ∈ C∞(Ω) with supp(ϕ) ⊂ O. Let Omax be a maximal open
subset of Ω on which the distribution u vanishes. The support of u is defined as the
complement of Omax in Ω, that is, supp(u) := Ω\Omax. Moreover, u is said to be
compactly supported if supp(u) is a compact set.
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The best known compactly supported distribution is the Dirac delta function δ0
which is defined by δ0(ϕ) = ϕ(0) for any ϕ ∈ D(R). δ0 has the one point support
{x = 0} and zero order.

Given a compact subset K ⊂⊂ Ω, we also define the space

D ′
K(Ω) :=

{
u ∈ D ′(Ω) : supp(u) ⊆ K

}
.

Lemma 4.8. Let 0 < α < 1 and ψ, ϕ ∈ D(Ω). Then ψ±Dαϕ ∈ D(Ω). Moreover,
if ϕk → ϕ in D(Ω), then ψ±Dαϕk → ψ±Dαϕ in D(Ω).

Proof. Let ψ, ϕ ∈ D(Ω). Recall that ±Dαϕ ∈ C∞(Ω). Then, ψ±Dαϕ ∈ D(Ω). It
remains to show the desired convergence result. Again, we only give a proof for the
left space because the other case follows similarly.

Suppose that ϕk → ϕ in D(Ω), then there exists a compact subset K ⊂ Ω so
that supp(ϕk) ⊂ K for all k ≥ 1. Without loss of the generality, assume K = [x0, x1]
and K ∩ supp(ψ) ⊂ [x0, x2] for some x2 > x0. Then, −Dαϕk ≡ 0 for x ≤ x0 and all
k ≥ 1 and ψ ≡ 0 for all x > x2. Thus, for any integer m ≥ 1 and x0 < x < x2∣∣Dm(ψ−Dαϕk(x)) −Dm(ψ−Dαϕ(x))

∣∣
=

∣∣∣∣∣∣
m∑

j=0

(
m

j

)
ψ(m−j)Dj−Dαϕk(x) −

m∑
j=0

(
m

j

)
ψ(m−j)Dj−Dαϕ(x)

∣∣∣∣∣∣
≤

m∑
j=0

(
m

j

)∣∣ψ(m−j)(x)Dj−Dα(ϕk − ϕ)(x)
∣∣

=
m∑

j=0

(
m

j

)∣∣ψ(m−j)(x)−I1−α(ϕ(j+1)
k − ϕ(j+1))(x)

∣∣
≤ CmCα

1 − α
sup

x0≤x≤x2
1≤j≤m

(∣∣ψ(m−j)(x)
∣∣ · ∣∣ϕ(j+1)

k (x) − ϕ(j+1)(x)
∣∣).

By the uniform convergence of ϕk to ϕ in D(Ω), we obtain the desired result.

The above lemma guarantees that ψ±Dαϕ belongs to the standard test space
D(Ω) which removes most pollution contribution in ±Dαϕ by using a compactly
supported smooth (cutoff) function ψ.

For compactly supported distributions, there holds the following result, its proof
can be found in [23, Theorem 6.24].

Theorem 4.9. Let u ∈ D ′
K(Ω). Then u has a finite (integer) order N(≥ 0) and can

be uniquely extended to a continuous linear functional on C∞(Ω) which is given by

ũ(ϕ) := u(ψϕ) ∀ϕ ∈ C∞(Ω),

where ψ ∈ C∞
0 (Ω) satisfying ψ ≡ 1 in K is a partition of unity.
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We note that the extension ũ as a functional does not depend on the choice of
the cut-off function ψ (see [23] for a proof).

We now are ready to define weak fractional derivatives for compactly supported
distributions in D ′(Ω).

Definition 4.10. Let α > 0 and u ∈ D ′
K(Ω). Define ±Dαu : D(Ω) → R respec-

tively by

±Dαu(ϕ) := (−1)[α]ũ(∓Dαϕ) = (−1)[α]u(ψ∓Dαϕ) ∀ϕ ∈ D(Ω),

where ũ and ψ are the same as in Theorem 4.9.

The next theorem shows that a compactly supported distribution u ∈ D ′
K(Ω)

has any order weak fractional derivative ±Dαu which belongs to D ′(Ω).

Theorem 4.11. Let α > 0 and suppose u ∈ D ′
K(Ω). Then

(i) ±Dαu ∈ D ′(Ω). Moreover, if K ⊆ [c, d] ⊂⊂ Ω, then supp(−Dαu) ⊆ (−∞, d]∩Ω
and supp(+Dαu) ⊆ [c,∞) ∩ Ω.

(ii) Suppose that {uj}∞j=1 ⊂ D ′
K(Ω) such that uj → u in D ′

K(Ω), then ±Dαuj →
±Dαu in D ′(Ω).

Proof. (i) The linearity of ±Dαu is trivial. To show the continuity, it suffices to
show that ±Dαu is sequentially continuous at zero. To the end, let {ϕk}∞k=1 ⊂ D(Ω)
so that ϕk → 0 in D(Ω). It follows by Lemma 4.8 that

±Dαu(ϕk) = (−1)[α]u(ψ∓Dαϕk) → u(ψ∓Dα(0)) = 0 as k → ∞.

Since for any ϕ ∈ D(Ω), ±Dαϕ ∈ ±C∞
0 (Ω), then the supports of ±Dαu pollute

that of u to the right/left accordingly.
(ii) Suppose that uj → u in D ′(Ω), we have for any ϕ ∈ D(Ω)

±Dαuj(ϕ) := (−1)[α]uj(ψ∓Dαϕ) −→
j→∞

(−1)[α]u(ψ∓Dαϕ) = ±Dαu(ϕ).

Thus, ±Dαuj → ±Dαu in D ′(Ω) as j → ∞. The proof is complete.

Proposition 4.12. Let α > 0 and suppose u ∈ D ′
K(Ω). Then ±Dαu → Du in

D ′(Ω) as α → 1− and ±Dαu→ Du in D ′(Ω) as α→ 1+.

Proof. For any ϕ ∈ C∞
0 (Ω), we have

±Dαu(ϕ) = (−1)[α]u(ψ∓Dαϕ) −→
α→1−

−u(ψDϕ) = −u(Dϕ) = Du(ϕ),

±Dαu(ϕ) = (−1)[α]u(ψ∓Dαϕ) −→
α→1+

−u(ψDϕ) = −u(Dϕ) = Du(ϕ).

Hence, the assertions hold.
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Proposition 4.13. Let Ω = (a, b) and 0 < α < 1. Suppose that u ∈ D ′
K(Ω) and

η ∈ C∞(Ω), then there holds the following product rule:

±Dα(ηu) = η±Dαu−
m∑

k=1

Dkη ±Ik−αu− Cm,α(η(m+1) ∗ μ±) (κ−α
± ∗ ψu), (4.1)

where

Ck,α :=
Γ(1 + α)

Γ(k + 1)Γ(1 − k + α)
, (4.2)

±Ik−αu(ϕ) := Ck,αu
(
ψ∓Ik−αϕ

) ∀ϕ ∈ D(Ω). (4.3)

Proof. By the fractional order product rule, we have

±Dα(ηu)(ϕ) := ηu(ψ∓Dαϕ) = u(ηψ∓Dαϕ) = (u, ψη∓Dαϕ)

= u
(
ψ∓Dα(ϕη)

) − u

(
ψ

m∑
k=1

Ck,α
∓Ik−αϕDkη

)
− u
(
ψ∓Rα(ϕ, η)

)
=: I − II − III,

where

+Rα
m(ϕ, η) :=

(−1)m+1

m!Γ(−α)

∫ b

x

ϕ(y)
(y − x)1+α

dy

∫ y

x

η(m+1)(z)(z − x)m dz

with a similar formula for −Rα
m(ϕ, η).

For terms I and II we have

I := u
(
ψ∓Dα(ϕη)

)
= ±Dαu(ηϕ) = η±Dαu(ϕ),

II := u

(
ψ

m∑
k=1

Ck,α
∓Ik−αϕDkη

)
=

m∑
k=1

Ck,αu
(
ψ∓Ik−αϕDkη

)
=

m∑
k=1

Ck,αD
kη u

(
ψ∓Ik−αϕ

)
=

m∑
k=1

Dkη ±Ik−αu(ϕ).

Finally, to simplify term III, we rewrite the remainder formula as follows:

+Rα
m(ϕ, η) :=

(−1)m+1

m!Γ(−α)

∫ b

x

∫ y

x

ϕ(y)
(y − x)1+α

η(m+1)(z)(z − x)m dzdy

=
(−1)m+1

m!Γ(−α)

∫ b

x

ϕ(y)
(y − x)1+α

(η(m+1) ∗ μ+)(y) dy

= Cm,α

(
ϕ(η(m+1) ∗ μ+) ∗ κ−α

+

)
(x).
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Then we have

III := u
(
ψ+Rα(ϕ, η)

)
= u

(
Cm,αψ(ϕ(η(m+1) ∗ μ+) ∗ κ−α

+ )
)

= Cm,αu
(
ψ(ϕ(η(m+1) ∗ μ+) ∗ κ−α

+ )
)

= Cm,α(κ−α
+ ∗ ψu)

(
ϕ(η(m+1) ∗ μ+)

)
= Cm,α(η(m+1) ∗ μ+) (κ−α

+ ∗ ψu)(ϕ).

= Cm,α(η(m+1) ∗ μ+) · (κ−α
+ ∗ (ψu))(ϕ).

The desired formula (4.1) follows from combining the above three identities. The
proof is complete.

4.3. Weak fractional derivatives for distributions

on finite intervals

In the previous subsection we introduce a fractional order derivative notion for com-
pactly supported distributions in D ′

K(Ω). The aim of this subsection is to introduce
a fractional derivative notion for general distributions in D ′(Ω) when Ω = (a, b) is
finite. We shall address the case Ω = R in the next subsection.

First, we consider the class of one sided generalized functions in ±D ′(Ω) :=
(±D(Ω))′, which are proper subspaces of D ′(Ω). By Proposition 4.5 we know that
±D(Ω) are respectively invariant under the mappings ±Dα. This fact then makes
defining ±Dαu for u ∈ ±D ′(Ω) a trivial task.

Definition 4.14. Let α > 0 and u ∈ ±D ′(Ω). Define ±Dαu : ±D(Ω) → R respec-
tively by

±Dαu(ϕ) := (−1)[α]u(∓Dαϕ) ∀ϕ ∈ ±D(Ω). (4.4)

Clearly, ±Dαu is well defined and ±Dαu ∈ ±D ′(Ω), respectively. It also can be
shown that many other properties hold for the fractional order derivative operators
±Dα on the one sided generalized function spaces ±D ′(Ω). We leave the verification
to the interested reader.

To define fractional order derivatives for distributions in D ′(Ω)\−D ′(Ω) ∪
+D ′(Ω), we need to construct“good” extensions for any distribution u ∈ D ′(Ω)
to −D ′(Ω) and +D ′(Ω). This will be done below by using the partition of unity
theorem to define u(ϕ) :=

∑∞
j=1 u(ψjϕ) for any ϕ ∈ ±D(Ω).

Let {Iβ} be a family of open subintervals of (a, b) which forms a covering of Ω. By
the partition of unity theorem (cf. [23]), there exists a subsequence {Ij}∞j=1 ⊂ {Iβ}
and a partition of the unity {ψj}∞j=1 subordinated to {Ij}∞j=1, namely, ψj ∈ C∞

0 (Ij)
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for j ≥ 1 and
∑
ψj(x) ≡ 1 on every compact subset K of Ω and the sum is a finite

sum for every x ∈ K.

Definition 4.15. Let α > 0 and u ∈ D ′(Ω). Define ±Dαu : D(Ω) → R respec-
tively by

±Dαu(ϕ) := (−1)[α]
∞∑

j=1

u(ψj
∓Dαϕ) ∀ϕ ∈ D(Ω). (4.5)

We claim that ±Dαu is well defined and ±Dαu ∈ D ′(Ω), respectively. We leave
the verification to the interested reader.

4.4. Weak fractional derivatives for distributions on R

To define Riemann–Liouville fractional order derivatives for distributions in D ′(R)
is more complicated than in ±D ′(Ω); the complication is due to the fact that the
kernel functions κα± 
∈ L1(R) and the pollutions of ±Dαϕ(x) for ϕ ∈ D(R) do not
decay fast enough when x→ ±∞.

We first consider the simpler case of Fourier fractional order derivatives for
tempered distributions in S′(R). By Proposition 4.6 we know that the Schwartz
space S(R) is invariant under the Fourier derivative operator FDα. This allows us
easily to define Fourier fractional derivatives for tempered distributions as follows.

Definition 4.16. Let α > 0 and u ∈ S′(R). Define FDαu : S(R) → R by

FDαu(ϕ) := (−1)[α]u
(FDαϕ

) ∀ϕ ∈ S(R). (4.6)

It is easy to verify that FDαu is well defined and FDαu ∈ S′(R). It also can be
shown that many other properties hold for the fractional order derivative operator
FDα on the space of tempered distributions S′(R). We leave the verification to the
interested reader.

To define fractional order derivatives for distributions in D ′(R)\S′(R), we need
to extend the domain of u ∈ D ′(R) from D(R) to S(R) (or ±D(R)). Again, this
will be done by using the partition of the unity theorem as seen above to define
u(ϕ) :=

∑∞
j=1 u(ψjϕ) for any ϕ ∈ ±D(R).

Let {Iβ} be a family of open finite subintervals of R which forms a covering of
R. By the partition of unity theorem (cf. [23]), there exists a subsequence {Ij}∞j=1 ⊂
{Iβ} and a partition of the unity {ψj}∞j=1 subordinated to {Ij}∞j=1, namely, ψj ∈
C∞

0 (Ij) for j ≥ 1 and
∑
ψj(x) ≡ 1 on every compact subset K of R and the sum

is a finite sum for every x ∈ K.

Definition 4.17. Let α > 0 and u ∈ D ′(R). Define ±Dαu : D(R) → R respec-
tively by

±Dαu(ϕ) := (−1)[α]
∞∑

j=1

u(ψj
∓Dαϕ) ∀ϕ ∈ D(R). (4.7)
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We claim that ±Dαu is well defined and ±Dαu ∈ D ′(R), respectively. Again, we
leave the verification to the interested reader.

5. Conclusion

In this paper, we first recalled various definitions of classical fractional derivatives
and gave a new interpretation of the classical theory from a different perspective,
and especially emphasized the importance of the FTcFC and its ramifications in
the classical theory. We then presented a self-contained new theory of weak frac-
tional differential calculus. The crux of this new theory is the introduction of a weak
fractional derivative notion which is a natural generalization of integer order weak
derivatives; it also helps to unify multiple existing fractional derivative definitions
and has the potential to be easily extended to higher dimensions. Various calculus
rules including an FTwFC, product and chain rules, and integration by parts formu-
las were established for weak fractional derivatives and relationships with existing
classical fractional derivatives were also obtained. This weak fractional differential
calculus theory lays down the ground work for developing a new fractional order
Sobolev space theory in a companion paper [8]. Furthermore, the notion of weak
fractional derivatives was systematically extended to general distributions instead
of only to some special distributions as done in the literature. It is expected (and
our hope, too) that these newly developed theories of weak fractional differential
calculus and fractional order Sobolev spaces will lay down a solid theoretical founda-
tion for systematically and rigorously developing a fractional calculus of variations
theory and a fractional PDE theory as well as their numerical solutions. Moreover,
we hope this work will stimulate more research on and applications of fractional
calculus and fractional differential equations in the near future.
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