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Abstract

Loss of operation or devastating damage to buildings and industrial structures, as well

as equipment housed in them, has been observed due to earthquake-induced vibrations.

A common source of operational downtime is due to the performance reduction of vi-

tal equipment, which are sensitive to the total transmitted acceleration. A well-known

method of protecting such equipment is seismic isolation of the equipment itself (or a

group of equipment), as opposed to the entire structure due to the lower cost of im-

plementation. The first objective of this dissertation is assessing a rolling isolation

system (RIS) based on existing design guidelines for telecommunications equipment.

A discrepancy is observed between the required response spectrum (RRS) and the one

and only accelerogram recommended in the guideline. Several filters are developed to

generate synthetic accelerograms that are compatible with the RRS. The generated ac-

celerograms are used for probabilistic assessment of a RIS that is acceptable per the

guideline. This assessment reveals large failure probability due to displacement de-

mands in excess of the displacement capacity of the RIS. When the displacement de-

mands on an isolation system are in excess of its capacity, impacts result in spikes in

transmitted acceleration. Therefore, the second objective of this dissertation is to de-

sign impact prevention/mitigation mechanisms. A dual-mode system is proposed where

the behavior changes when the displacement exceeds a predefined threshold. A new

piecewise optimal control approach is developed and applied to find the best possible

mechanism for the region beyond the threshold. By utilizing the designed curves ob-

tained from the proposed optimal control procedure, a Kelvin-Voigt device is tuned for

xxi



illustrative purposes.

On the other hand, the preference for protecting equipment decreases as the earth-

quake intensity increases. In extreme seismic loading, the response mitigation of the

primary structure (i.e., life safety and collapse prevention) is of greater concern than

protecting isolated equipment. Therefore, the third objective of this dissertation is to de-

velop an innovative dual-mode system that can behave as equipment isolation under low

to moderate seismic loading and passively transition to behave as a vibration absorber

for the primary structure under extreme seismic loading. To reduce the computational

cost of simulating a large linear elastic structure with nonlinear attachments (i.e., equip-

ment isolation with cubic hardening nonlinearity), a reduced order modeling method

is introduced that can capture the behavior of such nonlinear coupled systems. The

method is applied to study the feasibility of dual-mode vibration isolation/absorber. To

this end, nonlinear transmissibility curves for the roof displacement and isolated mass

total acceleration are developed from the steady-state responses of dual-mode systems

using the harmonic balanced method. The final objective of this dissertation is to extend

the reduced order modeling method developed for linear elastic structure with nonlinear

attachment to inelastic structures (without attachments). The new inelastic model con-

densation (IMC) method uses the modal properties of the full structural model (in the

elastic range) to construct a linear reduced order model in conjunction with a hysteresis

model to capture the hysteretic inter-story restoring forces. The parameters of these

hysteretic forces are easily tuned, in order to fit the inelastic behavior of the condensed

structure to that of the full model under a variety of simple loading scenarios. The fi-

delity of structural models condensed in this way is demonstrated via simulation for

different ground motion intensities on three different building structures with various

heights. The simplicity, accuracy, and efficiency of this approach could significantly

alleviate the computational burden of performance-based earthquake engineering.
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Chapter 1

Introduction and Background

Earthquake-induced vibrations can cause loss of operation or harmful damage to build-

ings and industrial structures (Astroza et al., 2012; Eberhard et al., 2010; Olsen et al.,

2012; Stone, 2008), as well as equipment housed in them (Chapin et al., 2009; Dueñas-

Osorio and Kwasinski, 2012; Miranda et al., 2012; Parajuli and Haynes, 2016). This

loss of operation or damage is due to the reduction in the performance of vital equip-

ment, such as computer servers, backup emergency generators, electric transformers

(Zhang and Makris, 2001), telecommunications equipment, air conditioning equip-

ment, medical equipment (Konstantinidis and Makris, 2009; Sato et al., 2011), etc.,

which have secondary consequences on providing services, emergency responses, and

recovery of a community after a seismic event (Alhan and Şahin, 2011; Petrone et al.,

2016). Such equipment usually suffers from inertial loads excited by the total acceler-

ation applied to them. Reduction of accelerations usually happens by shifting the natu-

ral frequency of the system from the acceleration-sensitive region to the displacement-

sensitive region in the response spectrum (Calhoun and Harvey, 2018; Tehrani and Har-

vey, 2019a), which is the fundamental concept behind seismic isolation (Kelly, 1990;

Warn and Ryan, 2012).

The behavior of isolation systems is well studied in the literature under Service

Level Earthquake (SLE*) and Design Basis Earthquake (DBE†) shaking (see Section

*SLE has 50% probability of exceedance in 30 years.
†DBE has 10% probability of exceedance in 50 years.
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1.1). Past studies showed that isolation systems perform well for low-intensity events,

while under high-intensity extreme events, an impact may occur producing spikes in

accelerations. Researchers have proposed several approaches including passive, semi-

active, and active control of isolation systems to enhance these systems’ performance

(Housner et al., 1997; Spencer and Sain, 1997). In passive systems, the input en-

ergy is dissipated by some mechanical devices (Soong and Dargush, 1997). Structures

equipped with such devices can dissipate a huge amount of input energy by converting

that energy to heat or sound. Semi-active systems use sensors to collect the structures’

responses and send them to a computer (Ramallo et al., 2002; Symans and Kelly, 1999;

Yoshioka et al., 2002). Then, based on a predefined algorithm, the computer sends

a command to the actuator to adjust the behavior of a passive device (Harvey et al.,

2014a; Yang and Agrawal, 2002). Active control systems, compared to passive and

semi-active systems, use external power to drive actuators to generate required forces

(potentially non-passive) to suppress vibration while getting feedback from the struc-

ture responses (Housner et al., 1996). However, requiring large external power in active

systems to generate large forces and computer processing in both semi-active or active

systems make passive systems more practical and of interest.

The focus of this dissertation is on developing innovative passive isolation systems

for equipment to protect the isolated equipment, to mitigate the impacts caused by ex-

ceeding the displacement capacity, and to reduce the response of the primary structure

supporting the isolated equipment. To this end, the introduction of this dissertation can

be outlined as follows. First, in Section 1.1, a short review on isolation systems with

an emphasis on equipment and floor isolation using rolling isolation systems is pre-

sented, followed by an assessment of the existing guidelines and criteria for designing

telecommunications equipment (Section 1.2). Following this assessment on the safety

of such systems against impact, in Section 1.3 an optimal mechanism to mitigate im-
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pacts while not affecting the normal operation is discussed. A short review on dynamic

vibration absorbers with an emphasis on tuned mass dampers is discussed in Section

1.4, followed by an introduction to a dual-mode vibration isolator/absorber by engi-

neering nonlinearity to protect isolated objects under low to moderate seismic events

and mitigate seismic responses of the primary structure under extreme seismic events

is introduced in Section 1.5. Then, in Section 1.6, an introduction to the reduced or-

der modeling technique is introduced, which can reduce the computational cost of large

nonlinear elastic/inelastic structures and make their assessment practical. The reduced

order modeling technique can be employed to study the feasibility of utilizing a dual-

mode vibration isolator/absorber.

1.1 Equipment and Floor Isolation

Isolation systems have shown promise by suppressing and controlling the total trans-

ferred acceleration to buildings and their contents (Baggio et al., 2015; Chadwell et al.,

2009; Fenz and Constantinou, 2008a,b,c; Harvey and Gavin, 2013, 2015; Jeon et al.,

2015; Khechfe et al., 2002; Notohardjono et al., 2004; Tsai et al., 2010; Vargas and

Bruneau, 2009; Yaghoubian, 1991; Zargar et al., 2013). This reduction of acceleration

results in the reduction of downtime and uninterrupted operation of mission-critical fa-

cilities, which indirectly improve the resilience of the serving community. To date in

general, several approaches to protecting equipment housed in buildings are sought (see

Figure 1.1):

1. Isolating an entire building to elongate the natural period of building (Naeim and

Kelly, 1999; Ryan and Dao, 2016; Warn and Ryan, 2012);

2. Isolating an object or equipment housed inside a building or industrial facility

(Harvey and Gavin, 2013; Tsai et al., 2010); and

3. Isolating a group of objects or a floor inside a building (Hamidi and El Naggar,

3



 

Sensitive equipment 

Fixed Base Building isolation Equipment isolation Group of equipment 
isolation 

Figure 1.1: Different types of protecting equipment housed in buildings.

2007; Ismail et al., 2009; Lambrou and Constantinou, 1994).

The cost of implementing base isolation systems for an entire building is larger than

the isolation of individual equipment or a group of equipment. So, due to the relatively

lower cost and easier installation of the equipment or a group of equipment comparing

to the isolation of the entire building, there is a growing interest in the second two ap-

proaches (Ismail et al., 2009). The mechanisms of these isolation systems for equipment

and floor isolation can be grouped into several categories, such as

(a) isolation bearings, e.g., roll-in-cage isolation system (Ismail et al., 2009) and lead-

rubber bearing (Naeim and Kelly, 1999);

(b) sliding isolators, e.g., multiple friction pendulum system isolator (Tsai et al.,

2005) and double friction-pendulum bearing (Fenz and Constantinou, 2008c);

and

(c) rolling isolation systems, e.g., static dynamics interchangeable-ball pendulum

system (Tsai et al., 2010) and ball-in-cone rolling isolation system (Kemeny,

1997).

Examples of these types of bearings are shown in Figure 1.2.
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(a) (b) (c) (d) 

Figure 1.2: Example equipment isolation bearings: (a) roll-in-cage bearing (Ismail et al., 2009);
(b) lead-rubber bearing (Zeynali et al., 2018); (c) friction-pendulum bearing (Fenz and Constantinou,
2008c); and (d) rolling isolation bearing (Tsai et al., 2010).

The focus of this dissertation is on rolling isolation systems (RISs), which are one of

the isolation systems that are used for isolating telecommunications equipment inside

buildings or industrial structures (Harvey and Kelly, 2016). Due to the high degree of

adaptability, low installation cost, and low finished height, RISs are of interest and are

well suited for isolating single equipment or a group of equipment (Cui, 2012; Jeon

et al., 2015; Tsai et al., 2010). As shown in Figure 1.3, these isolation systems consist

of two surfaces sliding through a rolling ball or a rod. If the profile of these surfaces

is flat, the RIS has no capability to re-center, and they need supplemental devices to

provide the system with re-centering forces (Guerreiro et al., 2007; Jangid, 2000). The

required re-centering forces can alternatively be obtained through non-flat surfaces such

as parabolic or spherical (Tsai et al., 2010; Zhou et al., 1998). These re-centering forces

are produced by changes in the potential energy of the system through the increased

in the height of the mass of the system with lateral displacement across the isolator.

These systems are inherently lightly damped, and supplemental damping can be easily

introduced by adhering visco-elastic sheets to the bowl surfaces (Harvey et al., 2014b;

Muhr and Bergamo, 2010).

The performance of equipment isolation systems is extremely good for small dis-

placement demands associated with low-intensity excitations (Alhan and Gavin, 2005;

Gavin and Zaicenco, 2007). However, their performance for higher intensities depends
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Figure 1.3: Configuration of a rolling isolation system (RIS) (Harvey and Gavin, 2013).

on the displacement demands of the floor motion. Isolation systems are shown to per-

form well in SLE and DBE events (Nagarajaiah and Sun, 2001; Sato et al., 2011). How-

ever, in practice, the isolation systems have limited displacement capacity due to the

isolation device limitation and/or the environment that they are housed in. So, isola-

tion systems may reach their displacement capacities under extreme loadings such as

Maximum Considered Earthquake (MCE‡) events and impact may occur.

There are two possible solutions to reduce the likelihood of impact. The first so-

lution is to increase the displacement capacity, which is not always feasible since the

seismic gap is usually limited and the cost of components increases exponentially by

the size of them (Jia et al., 2014), or by stacking two isolation systems on top of each

other (Calhoun et al., 2019; Harvey and Gavin, 2014a). The next solution is to reduce

the displacement demands by adhering visco-elastic sheets to the bowl surfaces (Harvey

et al., 2014b; Muhr and Bergamo, 2010).

‡MCE has 2% probability of exceedance in 50 years.
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1.2 On the Safety of RISs

Earthquake-induced vibrations can cause loss of operations or harmful damage to build-

ings, industrial structures, and the equipment housed therein (Astroza et al., 2012; Eber-

hard et al., 2010; Iwatsubo, 1998; Konstantinidis and Makris, 2010; Olsen et al., 2012;

Stone, 2008). The loss of operations or reduction in the performance of vital equip-

ment such as computer servers, backup emergency generators, electric transformers,

air conditioning equipment, telecommunications equipment, etc., has secondary con-

sequences on continued services, emergency response, and the overall recovery of a

community after a seismic event (Alhan and Şahin, 2011; Petrone et al., 2016). Such

equipment usually suffers from the total transmitted accelerations (Lopez Garcia and

Soong, 2003a,b). The sustained accelerations may be mitigated by shifting the natu-

ral frequency of the system from the acceleration-sensitive region (high frequency) to

the displacement-sensitive region (low frequency) in the response spectrum. The re-

duction of accelerations, therefore, happens at the expense of increasing displacements

(Chopra, 2012; Kelly, 1986). Usually the longer the natural period, the larger the dis-

placement and the smaller the acceleration (Chopra, 2012; Masaeli et al., 2014; Tehrani

and Khoshnoudian, 2014). This is the basic premise behind seismic isolation.

Isolation systems have shown promise as an effective seismic hazard mitigation

strategy for suppressing and controlling the transmitted total acceleration to buildings

and other structures (Alhan and Şahin, 2011; Dolce et al., 2007; Lee and Constantinou,

2018; Saha et al., 2016; Zargar et al., 2013), as well as mounted equipment inside build-

ings (Baggio et al., 2015; Chadwell et al., 2009; Harvey and Gavin, 2013, 2015; Iemura

et al., 2007; Jeon et al., 2015; Marin-Artieda and Han, 2015; Tsai et al., 2010; Vargas

and Bruneau, 2009). Methods have been developed and used to limit and control dis-

placement demands (Tehrani and Harvey, 2019b; Zargar et al., 2013, 2017). However,

in practice, isolation systems have limited displacement capacity due to the isolation
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device geometry or the environment in which they are housed. When the displacement

capacity is limited, for instance, by the existence of moat walls or retainer rims the isola-

tion system may experience harsh impacts when the displacement demand is too large.

Extremely large accelerations, caused by an impact, degrade the isolation performance

and make the system unsafe.

RISs are a viable and popular form of equipment isolation used for protecting

telecommunications equipment inside buildings or industrial structures, by decoupling

the equipment motion from the floor motion. These isolation systems utilize rolling

pendulum bearings (RPBs), which are comprised of two concave surfaces enclosing a

ball or a cylindrical rod. Horizontal displacements across the bearing result in vertical

displacements, generating a gravitational recentering force. Different surface profiles

provide different response behavior. For example, spherical rolling surfaces produce

approximately linear recentering forces (like in the friction pendulum bearing (Zayas

et al., 1990)). The most common profile for RPBs is conical with a rounded (circu-

lar) portion at the center, commonly referred to as the “ball-in-cone” (Kemeny, 1997).

This surface profile ensures a constant peak acceleration, dictated by the slope and fric-

tion. Moreover, the low profile of RISs makes them a practical and attractive device for

protecting telecommunications equipment. However, these systems suffer from limited

displacement capacity dictated by the rolling surface’s in-plan diameter.

Regarding the design criteria for isolated structures, ASCE/SEI 7-16 (2017, §17)

discusses the design of isolated structures with permission to use response history pro-

cedure for any isolated structures. ASCE/SEI 7-16 (2017) focuses on ground mo-

tions rather than building floor motions, whereas Network Equipment-Building System

(NEBS) GR-63-CORE (Telcoridia, 2012) provides environmental design guidelines for

telecommunications equipment located inside structures. In this guideline, four differ-

ent zones are defined based on the different seismic risk categories. For each zone,
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a required response spectrum (RRS) at the base of equipment is specified, and a sin-

gle synthetic accelerogram (e.g., the VERTEQII waveform for zone 4 (highest risk))

is used for design and testing purposes. Several earthquake records for various build-

ing and soil types were used for synthesizing the VERTEQII accelerogram (Telcoridia,

2012). Shaking is applied to the telecommunications equipment to “simulate conditions

that would be encountered in service when building floors apply earthquake motions to

the equipment” (Telcoridia, 2012). Therefore, the prescribed VERTEQII accelerogram

can be used for design, analysis, and assessment of RISs used for protecting telecom-

munications equipment and the safety of such systems against impact. In the following

section, the methods for impact mitigating is discussed.

1.3 Dual-Mode Impact Mitigation

Devastating economic losses can arise from damage to mission-critical facilities, struc-

tures, and systems supporting vital equipment (systems in general). One of the sources

of damage to such systems is displacements in excess of the displacement capacity. The

increase in displacement demand is more pronounced in systems located on soft soils

(Khoshnoudian et al., 2015a; Masaeli et al., 2014; Tehrani and Khoshnoudian, 2014)

or when they are exposed to long period seismic loadings or near-fault excitations with

large pulse duration (Jangid and Kelly, 2001; Khoshnoudian et al., 2015b). Exceed-

ing the displacement capacity results in the pounding between adjacent structures or

the impact in system’s components (Cole et al., 2012; Pratesi et al., 2014; Takabatake

et al., 2014). Pounding/impact produces harmful undesired transmitted acceleration to

the system (Harvey and Gavin, 2013, 2014a; Polycarpou and Komodromos, 2010; Ra-

heem, 2014), which is detrimental for acceleration sensitive components.

The most straightforward solution to mitigate impact is to increase the displacement

capacity. However, it is not always possible to increase the displacement capacity be-

cause of environmental limitations or cost prohibitions, in both new construction and
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retrofit of an existing structure (Polycarpou and Komodromos, 2010; Takabatake et al.,

2014). In the literature, different solutions for pounding mitigation have been proposed

and assessed. One method is to connect adjacent structures at some specific locations.

These connections enforce the adjacent structures to have in-phase motions with one an-

other (Abdullah et al., 2001; Jankowski and Mahmoud, 2016; Jankowski et al., 2000).

For instance, the use of hard rubber bumpers or stiff linking between the segments of

a bridge can improve the bridge behavior during severe earthquakes (Jankowski et al.,

2000) or inserting a shock-absorbing material such as rubber for pounding mitigation

in buildings (Takabatake et al., 2014). Alternatively, a pair of pressurized fluid-viscous

dissipaters was used for pounding mitigation between a church structure and its bell

tower (Pratesi et al., 2014). Applying a similar concept, a share tuned mass damper

between two adjacent tall buildings can reduce both structural responses and the prob-

ability of pounding (Abdullah et al., 2001). Others have shown that using links such

as springs, dashpots, or viscoelastic elements between two adjacent 3-story buildings

can significantly reduce the gap size and prevent pounding (Jankowski and Mahmoud,

2016).

Another solution to this problem is to reduce the displacement demand via some

energy dissipative mechanisms, which has been studied extensively. For instance, in-

creasing the damping in an isolation system reduces the isolator displacement and base

shear (Harvey et al., 2014b; Kelly, 1999; Makris and Chang, 2000). Approaches based

on semi-active control have also been developed to decrease structural displacement

(Azimi et al., 2017).

Although the above-mentioned solutions have been shown to be effective, there are

some drawbacks with these approaches, and several studies showed that devastating

damage to systems had been observed under high-amplitude seismic loadings, even

with the presence of some energy dissipative mechanisms (Jangid and Kelly, 2001;
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Makris and Chang, 2000; Pratesi et al., 2014). One of the disadvantages of connecting

adjacent structures is the impairing of the dynamics of each individual structure. In

addition, reducing the displacement demand comes at the expense of increasing the

total transferred accelerations (Harvey et al., 2014b; Jangid and Kelly, 2001; Zargar

et al., 2013). Moreover, energy dissipative devices also alter the normal operations of

the systems or the responses under low-amplitude seismic loadings, where they have

shown acceptable performance (Nagarajaiah and Sun, 2001; Sato et al., 2011).

Recently, in order to not affect the performance of systems under low-amplitude

seismic loadings and at the same time improve their performance under high-amplitude

seismic loadings, researchers developed devices with mechanisms that work at only

some regions, and let the system respond freely at other regions. These devices rely on

nonlinear force-displacement relationships that have been engineered to exhibit multi-

phased responses. For instance, Panchal and Jangid (2008) used a variable friction pen-

dulum system, in which the friction coefficient varies with displacement. The friction

coefficient increases with increasing displacement, and after a certain displacement this

trend reverses; the variable friction helps to decrease structural responses such as isola-

tor displacement and base shear under near-fault ground motions (Panchal and Jangid,

2008).

Lu et al. (2011) experimentally studied sliding isolators with variable curvature,

where instead of having spherical surfaces, the sliding surfaces have variable curvatures.

Variation in sliding surfaces provides variable stiffness as a function of displacement. In

that study, they used sliding surfaces with a sixth-order polynomial function to reduce

the isolator drift under long-period near-fault earthquakes (Lu et al., 2011).

The roll-in-cage isolation bearing decouples vertical and lateral load bearing and

is equipped with a buffer mechanism, which activates only under earthquakes larger

than the design earthquake (Ismail, 2015b,c,a). This buffer produces a hardening stiff-
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ness only when the displacement is greater than the chosen design displacement. This

isolation bearing was shown to be effective at mitigating pounding and reducing large

displacements when the gap size is limited (Ismail, 2015c,a).

By taking advantage of both a rubber damper (for the first phase) and buckling-

restrained brace (for the second phase), a hybrid passive device has also been proposed

that can produce large dissipation at all levels and large stiffness at large seismic events

to protect frame structures (Marshall and Charney, 2010).

To mitigate the pounding between the isolated structure and the perimeter moat wall,

Zargar et al. (2013, 2017) proposed an isolation system with a “phased gap damper.”

This phased gap damper is composed of a gap element and an energy dissipation de-

vice, where the gap element allows the system to have additional damping only at large

intensity shaking and no effect at low to medium intensity shaking. They assessed sev-

eral candidates for the energy dissipation device such as hysteretic, viscous, Kelvin,

two-phase viscoelastic, and two-phase viscoplastic gap dampers (Zargar et al., 2013,

2017). Using numerical assessment and optimization, they showed that viscous, two-

phase viscoelastic, and two-phase viscoplastic gap dampers are more effective for re-

ducing the base displacements, but they introduce larger acceleration spikes into the

system (Zargar et al., 2013, 2017).

It is important to note that all of the examples mentioned above assume some pre-

scribed form of the device and an associate force-displacement or force-velocity rela-

tionship. The methods mentioned above can be utilized to develop an innovative RIS

for impact mitigation. Another innovative RIS of interest is to engineer a nonlinear RIS

as a tuned mass damper to protect the isolated equipment and at the same time reduce

the responses of the primary structure. In the following section, tuned mass dampers are

briefly described, and their application in seismic mitigation of structures as vibration

absorbers are discussed in the section after that.
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1.4 Dynamic Vibration Absorbers

Tuned mass dampers (TMDs) are a kind of vibration absorber consisting of a mass that

is connected to the primary structure through a spring and/or a dashpot. They have

been implemented to reduce wind induced vibrations (Demetriou et al., 2016; Elias

et al., 2017; Liu et al., 2008; Ramezani et al., 2018; Wang et al., 2015a) and to mitigate

seismic responses of high-rise buildings (De Angelis et al., 2012; De Domenico and

Ricciardi, 2018a,b; Lazar et al., 2014; Lu et al., 2017; Matta, 2018; Pietrosanti et al.,

2017; Shi et al., 2018; Simoneschi et al., 2017). Passive TMDs have several advantages

such as (a) they do not require external power to operate; (b) they are easy to be tuned

for different types of dynamic loading; and (c) they are relatively cost-effective in terms

of production and maintenance. Despite all the advantages, in order to be effective, they

require a relatively large mass, and consequently, they require a large space for housing

and installation. The required space may be large since they tend to experience large

deformations due to tuning to the resonance of the structure. All in all, these systems

have shown to be effective in seismic mitigation of structures (De Angelis et al., 2012;

De Domenico and Ricciardi, 2018a,b; Demetriou et al., 2016; Elias et al., 2017; Lazar

et al., 2014; Liu et al., 2008; Lu et al., 2017; Matta, 2018; Pietrosanti et al., 2017;

Ramezani et al., 2018; Shi et al., 2018; Simoneschi et al., 2017; Wang et al., 2015a). The

application of a linear TMD is usually limited by its constant natural frequency. That is,

only one targeted mode can be considered for suppression. The vibration of the primary

structure dissipates due to the resonance of the TMD at the tuned frequency. On the

other hand, nonlinear TMDs with softening behavior are able to be tuned for a broader

frequency range in the vicinity of the targeted frequency (Hunt and Niessen, 1982; Rice

and McCraith, 1987; Soom and Lee, 1983). Later, nonlinear TMDs with hardening

gained attention as energy pumping devices (i.e., nonlinear energy sink) (Gendelman,

2011; Gendelman et al., 2001; Gendelman, 2001; Gourdon et al., 2007; Gourdon and

13



Lamarque, 2005; Vakakis, 2001; Vakakis and Gendelman, 2001).

This brief introduction on TMDs serves as a background for Section 1.5 on inno-

vative isolation where RISs are engineered for dual-purpose of protecting equipment

isolation and primary structures’ response reduction. On the other hand, assessing large

nonlinear structures is computationally prohibiting. So, Section 1.6 discusses the re-

duced order modeling technique that can be employed to reduce the computational cost

of assessing large nonlinear structures.

1.5 Dual-Mode Vibration Isolator/Absorber

Isolation systems, by elongating the natural period, have shown promise by suppressing

and controlling the total transferred acceleration to buildings and their content (Bag-

gio et al., 2015; Chadwell et al., 2009; Harvey and Gavin, 2013, 2015; Jeon et al.,

2015; Tsai et al., 2010; Vargas and Bruneau, 2009; Zargar et al., 2013). This reduc-

tion of acceleration results in the reduction of downtime and uninterrupted operation of

mission-critical facilities. Moreover, these systems push the behavior of the supported

structure into its linear elastic range. Consequently, structural responses such as story

drifts are considerably reduced, which improves the safety and normal operation of the

supporting structures. To date in general, the use of equipment isolation (Harvey and

Gavin, 2013; Tsai et al., 2010) and a group of isolated objects or a floor inside a building

(Hamidi and El Naggar, 2007; Ismail et al., 2009; Lambrou and Constantinou, 1994)

have gained more attention compared to base isolation of the entire buildings (Naeim

and Kelly, 1999; Warn and Ryan, 2012). This is due to the relatively lower cost of

implementation for equipment or a group of equipment (Ismail et al., 2009). In addi-

tion, requirements for large seismic gap, the heavy loads, and the large flexibility of the

superstructure, especially in high-rise buildings, limit the application of base isolations.

An alternative solution for vibration mitigation is tuned mass damper (TMD), which

has been shown effective to mitigate seismic responses of buildings (Gendelman, 2011;
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Gendelman et al., 2001; Gendelman, 2001; Gourdon et al., 2007; Gourdon and Lamar-

que, 2005; Luo et al., 2014a,b; Vakakis, 2001; Vakakis and Gendelman, 2001; Wang

et al., 2015b, 2016; Wierschem et al., 2017). In order to address some of the challenges

with TMDs (see Section 1.4), Villaverde (1998) proposed the use of floor isolation as a

vibration absorber. He isolated the roof of a building, which relatively has a large mass,

with elastomeric bearings. At the same time, Ziyaeifar and Noguchi (1998) used a 10-

story shear type building to study the changes in the dynamic characteristics when floor

isolation is introduced to that building. They performed several time-history analyses

to show the effectiveness of the proposed method. Since then, the concept of using floor

isolation as vibration absorber has gained popularity (Anajafi and Medina, 2018a,b;

Reggio and Angelis, 2015; Wang et al., 2018) and researchers have been working on

various aspects of floor isolation such as finding the optimal placements (Charmpis

et al., 2015), applying this concept to other structures (Dai et al., 2018; Hoang et al.,

2008), experimentally evaluating the effectiveness of this method (Gallanti and For-

cellini, 2016; Schellenberg et al., 2017), and extending this idea by utilizing other dis-

sipative devices (Liu et al., 2018) or considering nonlinearity in the system (Ding et al.,

2015; Ryan and Earl, 2010).

Charmpis et al. (2015) studied the selection and placement of floor isolation systems

through the elevation of a multi-story building to retrofit. They concluded that their

procedure outperforms the case of base isolation only. Anajafi and Medina (2018a)

studied 6, 12, and 20 story linear building structures equipped with linear partial mass

isolation at each floor considering them as inherent vibration suppressions. They con-

sidered input motions with different frequency content by applying a Kanai-Tajimi filter

to Gaussian white noise excitations. That study was limited to the mass ratios of 5%

and 90%. Then, in a similar study by Anajafi and Medina (2018b), they considered

different structural frequency and mass ratios. They concluded that the mass ratio of
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25% to 50% is more efficient in mitigating the seismic responses of the main structure

and controlling the responses of the isolated system.

Hoang et al. (2008) used a floor deck isolation system to reduce the seismic forces

applied to a truss bridge. They considered the optimal design of such a system through a

single-degree-of-freedom system with a TMD. They conclude that a large TMD is more

effective in reducing the seismic responses and more robust in handling the uncertainties

in system parameters. Dai et al. (2018) proposed a probabilistic framework for the

optimal design of buildings with partial mass isolation systems. They applied their

framework to design a thermal power plant building in which the coal scuttle serves as a

partial mass isolation system coupled to a linear SDOF model of the building. Liu et al.

(2018) investigated the effectiveness of utilizing a fluid-viscous damper in conjunction

with floor isolations in buildings. They placed an isolation system between the second

and third floors of a 7-story building and tuned the parameters of dampers placed inside

the isolation system. The considered objective was to minimize both the displacement

of the isolator and the total drift of the main structure.

Gallanti and Forcellini (2016) tested a 3D-printed structure with floor isolation on a

shake table to verify the effectiveness of utilizing floor isolation in comparison with base

isolation. Through experimental tests, they showed that floor isolation is beneficial in

reducing the top floor accelerations. In another study, the effectiveness of floor isolation

is experimentally tested on a shake table using a hybrid simulation where the part below

the isolation layer was modeled numerically, and the part above the isolation layer was

tested physically on the shake table (Schellenberg et al., 2017). The results concluded

the beneficial effect of utilizing floor isolation for mitigation of seismic responses.

Despite this benefit, considering nonlinearity in the floor isolation has gained little

attention. For instance, Ryan and Earl (2010) considered several configurations of non-

linear inter-story isolation systems in a multi-story building frame and concluded that
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as the isolation level increases its effectiveness decreases. Despite the least effective-

ness of roof isolation, considerable response reductions have been obtained. In another

study, Ding et al. (2015) assessed unconstrained floor slabs as non-conventional TMDs.

They studied the tuning of the TMD parameters considering the nonlinear structure and

nonlinear response history analyses. They also concluded that considering the dynamic

interaction may lead to a reduction in the acceleration responses compared to the uncou-

pled approach and increasing in mass ratio results in a reduction in response spectrum.

Neglecting the dynamic coupling between the primary structure and secondary sys-

tems (i.e., equipment isolation systems) is a common assumption in the design and as-

sessment of such systems. This coupling is negligible if the secondary system’s mass to

the primary structure’s mass is relatively small and their frequencies are detuned (Chen

and Soong, 1988; Igusa and Der Kiureghian, 1985). Moreover, these criteria are based

on the linear behavior of structures. The errors in the estimation of the frequency are

shown in Figure 1.4 for different mass and frequency ratios. Introducing nonlinearity

brings new challenges to the problem by impairing the common assumptions used for

linear systems. Therefore, the existing criteria for considering or ignoring the dynamic

coupling may no longer be valid for nonlinear systems. Furthermore, building on the

concept of using floor isolation systems as TMDs, these interactions may be engineered

to serve an alternative purpose, which is the focus of this work.

1.6 Reduced Order Modeling

While nonlinear response history analysis (NLRHA) is the most rigorous procedure to

estimate seismic demand parameters (ASCE/SEI 7-16, 2017, §16.2), it is computation-

ally expensive. This is true, especially, when there is a need to perform that analysis

for a large quantity of scenarios such as required for surrogate modeling, optimization,

or the reliability analysis and design of structures (Gholizadeh and Samavati, 2011;

Gidaris and Taflanidis, 2013; Gidaris et al., 2015; Harvey and Gavin, 2015; Herrada
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Figure 1.4: Errors in the estimation of the frequency for different mass and frequency ratios (Harvey
et al., 2018).

et al., 2017; Tesfamariam and Goda, 2017; Tesfamariam et al., 2015). Considering the

time-consuming nature of detailed time-history analyses of high-dimensional nonlinear

elastic/inelastic models, an accurate and computationally efficient method of predict-

ing responses of nonlinear structures, e.g., displacements, accelerations, and inter-story

drift ratios, would be of significant value in performance-based earthquake engineering

(PBEE) (Bozorgnia and Bertero, 2004).

As alternatives to NLRHA, methods involving pushover analyses alone or in com-

bination with inelastic response spectra are well developed (ASCE/SEI 41-13, 2014;

Manoukas et al., 2011; Reyes and Chopra, 2011; Sahraei and Behnamfar, 2014). The

dynamics of the problem are captured only by the response spectrum, which reflects

the dynamics of inelastic single degree of freedom (SDOF) systems. The mechanics

of the detailed structural model is reflected only by the pushover analysis, which does

not involve dynamics and does require the specification of distribution of lateral static

loads. Several studies have focused on the specification of lateral load distributions for

pushover analyses, such as (Goel and Chopra, 2004; Lagaros and Fragiadakis, 2011;
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Sucuoğlu and Gn̈ay, 2011; Tehrani et al., 2013b,a), among others. Unfortunately, sim-

ple pushover analyses neglect the effect of higher modes on the response. To tackle

this, a few notable studies incorporate the higher modes’ dynamics in pushover anal-

yses (Alıcı and Sucuoğlu, 2015; Chopra and Goel, 2002; Tehrani and Khoshnoudian,

2014). Nevertheless, the errors in the predictions of displacements and drift ratios are

in the order of 30% (Chopra and Goel, 2002).

Other researchers have approached this problem using reduced (condensed) struc-

tural models (Gidaris and Taflanidis, 2013; Harvey and Gavin, 2015; Weng et al., 2017).

This trend started when the static and dynamic condensations were introduced (Guyan,

1965; Paz, 1985), and it continues to be refined (Boo and Lee, 2017; Soheilifard, 2015).

Previous methods of model reduction for hysteretic structures have either been lim-

ited to reducing only the linear aspects of the system (Mousavi and Gandomi, 2016),

retaining all the nonlinear elements present in the system at some computational ex-

pense (Bamer and Bucher, 2012; Kappagantu and Feeny, 1999), or to approximating

the nonlinear system using modal superposition with time-varying modes (Geschwind-

ner, 1981; Villaverde and Hanna, 1992). Recently, researchers are developing and

evaluating model reductions for modeling the hysteretic behavior of structures (Gidaris

and Taflanidis, 2013), identifying damage detection (Mousavi and Gandomi, 2016; Yin

et al., 2017), modeling elastomers (Flodén et al., 2018), and glass structures (Fröling

et al., 2014).

For instance, in a study on the nonlinear tuned mass damper by Alexander and

Schilder (2009), the responses of the primary structure was considered to be the prod-

uct of temporal and spatial functions (i.e., reducing to the first natural mode) while the

nonlinear attachment was kept in the retained equations of motion. This imposes a linear

behavior for the primary structure. Although the first normalized natural mode shape

is used for reducing the primary structure’s model, no attempt is taken to estimate the
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responses of the primary structure using the solution obtained from the reduced model.

Similarly, a shape vector is used to reduce the response of a multiple degree of freedom

structure with an attachment to a single degree of freedom with an attachment. How-

ever, the formulation is limited to employing only one shape vector and one attachment

(Reggio and De Angelis, 2013, 2014).

In another study, Kuether et al. (2015) used mode shapes to reduce geometrically

nonlinear structures. In their method, the model is transformed into modal coordinate

and the response of the modal displacement is fitted to the response of the full finite

element model. The full finite element model is excited by static loads or deformed

based on a combination of mode shapes. To consider hysteretic behavior, Gidaris and

Taflanidis (2013) developed a reduced order model for hysteretic nonlinear structures

considering the inter-story restoring forces. They assessed three candidate solutions

for the hysteretic restoring forces, namely piece-wise linear models with ideal elasto-

plastic or peak-oriented hysteresis, and generalized Masing model. They concluded that

the peak-oriented model provides better estimates among the assessed models.

1.7 Dissertation Outline

The organization of this dissertation can be outlined as follows:

First, Chapter 2 focuses on a probabilistic assessment of rolling isolation systems

(RISs) designed for equipment protection, using the GR-63-CORE guideline (Tel-

coridia, 2012). The safety assessment of the RISs reveals the discrepancy between the

prescribed accelerogram and the recommended criteria in the GR-63-CORE guideline.

It is shown that a RIS designed using the accelerogram prescribed in the GR-63-CORE

guideline can fail dramatically (i.e., displacements exceeding the RIS’s capacity) under

a suite of generated synthetic accelerograms conforming to the required response

spectrum according to the same guidelines. Following this conclusion, in Chapter 3, a

method to reduce the displacement demand under extreme seismic loading while not
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affecting the normal operation under low to moderate seismic loading is proposed. In

this method, the system is allowed to respond freely when the displacement demand

remains under some threshold and an impact mitigation mechanism is applied for

displacements beyond that threshold. Optimal control is applied to find the best

control action trajectory for the active control region. In the active control region the

objective of the optimal control problem is to mitigate impact and to control the total

acceleration.

Under low to moderate seismic loading the objective is usually to protect equipment

(i.e., serviceability limit states); however, under extreme seismic loading, the main fo-

cus shifts from the protection of the isolated equipment toward the protection of the

primary structure (i.e., collapse prevention and life safety limit states). Therefore, the

focus of Chapter 4 is to study the feasibility of a dual-mode vibration isolation/absorber.

This dual-mode system is aimed to protect isolated equipment or a group of equipment

under low to moderate seismic loading, while it reduces the response of the primary

structure under extreme seismic loading. To study the feasibility of a dual-mode vibra-

tion isolation/absorber, a cubic nonlinearity with hardening behavior is considered for

the isolation system where its stiffness increases as the excitation increases. This pro-

vides a changing frequency from isolation behavior toward vibration absorber behavior.

In order to reduce the computation cost of studying a large (high degree of freedom)

system with nonlinear attachments, a reduced order modeling technique is introduced

in Chapter 4, and the accuracy of the approach is evaluated. Then, the resulting non-

linear reduced order models (ROMs) are used in a feasibility study assessment. The

reduced order modeling technique introduced in Chapter 4 is limited to linear elastic

structures with nonlinear attachments. Therefore, in Chapter 5, an approach for inelas-

tic condensed dynamic modeling is proposed for the condensation of inelastic building

structures. This inelastic model condensation approach is validated and compared to
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the modal pushover analysis (MPA) approach popularized by Chopra and Goel (2002).

Finally, Chapter 6 summarizes the findings of this dissertation, and future research di-

rections motivated by this work are discussed.
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Chapter 2

On the Safety of Rolling Isolation Systems

2.1 Overview

In this chapter, probabilistic analyses are performed to assess the safety of a rolling

isolation system (RIS). To supplement the singular accelerogram prescribed by GR-63-

CORE in order to investigate building floor motion variability (D’Amico et al., 2017),

several suites of synthetic accelerograms are developed with different characteristics

based on the GR-63-CORE guideline. These filters are developed by fitting both para-

metric filters and piecewise filters to the VERTEQII accelerogram and to the required

response spectrum (RRS). Then, the equation of motion for a RIS with double, conical

rolling surfaces is developed using Lagrange’s equation, and it is shown that the RIS per-

forms satisfactorily under the zone-4 VERTEQII accelerogram. After that, probabilistic

analyses are performed to assess the floor motion characteristics on the RIS’s perfor-

mance, and the results are discussed. It is shown that one accelerogram is not enough to

adequately judge the safety of the RIS and more importantly, the singular accelerogram

(VERTEQII) in GR-63-CORE may not be representative of the RRS recommended for

testing telecommunications equipment. At the end, the results of probabilistic analyses

are used to generate empirical fragility curves, which show the probability of exceeding

a given displacement versus floor-motion intensity (RRS multiplier).
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2.2 Synthetic Accelerograms

As discussed before, there is only one accelerogram for testing the performance and

safety of telecommunications equipment in GR-63-CORE (Telcordia, 2012), which is

unable to incorporate the variability that exists in seismic motions. Thus, there is a need

to employ a suite of consistent accelerograms to consider the seismic variability into the

design and testing procedure. However, such a suite of accelerograms is not available.

One common way to overcome this is to generate synthetic accelerograms (Batou and

Soize, 2014; Boore and Goulet, 2014).

The GR-63-CORE guideline (Telcordia, 2012) prescribes accelerograms for test-

ing telecommunications equipment for various zones with different risk categories.

These accelerograms have some characteristics that satisfy the requirements for test-

ing telecommunications equipment. For instance, Figure 2.1 shows the VERTEQII

accelerogram developed for zone 4, the zone with the highest risk. The 2% damped

response spectrum of this accelerogram is shown in Figure 2.2 with the RRS for zone 4,

which has 10% probability of exceeding this intensity over a 50-year return period (Tel-

cordia, 2012). These response spectra are evaluated at 6th octave frequencies ranging

from 0.5 to 50 Hz. As stated in GR-63-CORE (Telcordia, 2012), a consistent accelero-

gram should exceed the RRS between 1 and 50 Hz, while it should not exceed by more

than 30% between 1 and 7 Hz. These impermissible regions (A and B, respectively) are

shaded in Figure 2.2. Note that no requirement is enforced at frequencies less than 1 Hz

and greater than 50 Hz.

Keeping these requirements in mind, the general procedure to produce synthetic

accelerograms can be summarized as the following four steps (Clough and Penzien,

2003):

i. Generate a series, x(t), of random standard Gaussian numbers,N(0, 1), which can

be considered as a stochastic stationary Gaussian process (i.e., unit root-mean-
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Figure 2.2: Zone 4 required response spectrum (RRS) and VERTEQII response spectrum (2%
damping).

square white noise).

ii. Window the stochastic stationary Gaussian process to a nonstationary process,

y(t) = w(t) ◦ x(t), where w(t) is a windowing function and “◦” indicates element-

wise product. See the details in Section 2.2.1.

iii. Apply a filter — a transfer function in the frequency domain — to modify the fre-
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quency content of the nonstationary process, y(t), to give a filtered nonstationary

process, z(t). See the details in Section 2.2.2.

iv. Scale the filtered nonstationary process, z(t), by an appropriate scaling factor to

match the target response spectrum. See the details in Section 2.2.3.

In the following, first, a parametric windowing function is described, and the best-fit

parameters are estimated. Then, several approaches for developing a transfer function

are described. Finally, the best scaling factor for each transfer function is tabulated. The

results of the following section should be used in the previous three steps to generate

synthetic accelerograms.

2.2.1 Windowing Function

In order to generate synthetic accelerograms that mimic the characteristics of VERTE-

QII, similar time step (0.005 sec), duration (30 sec), and windowing are used. While

varying the duration may have an effect on the response (increase (Khoshnoudian et al.,

2015b,a; Raghunandan and Liel, 2013) or decrease (Pan et al., 2018)), this effect is not

considered here. These synthetic accelerograms should satisfy the response spectrum

requirements mentioned before (i.e., exceed the RRS between 1 and 50 Hz, but by no

more than 30% between 1 and 7 Hz), while retaining the desired seismic variability

required for probabilistic analysis.

A windowing function w(t) is required to convert a stochastic stationary Gaussian

process (i.e., white noise) to a nonstationary process. In this study, a piecewise window-

ing function (Jennings et al., 1968) is used, which has four parameters (t1, t2, p, and c)

to control the shape of the window, and a dummy parameter (w) that scales the window

to the desired amplitude. The equation of this windowing function is

w(t) = w ×


(t/t1)p, 0 ≤ t < t1

1, t1 ≤ t < t2

e−c(t−t2), t2 ≤ t
(2.1)

26



To obtain the best windowing parameters, the windowing function is fitted to the

absolute value of the VERTEQII accelerogram by solving the following nonlinear least

squares problem:

min
t1,t2,p,c,w

∫ (
w(t) − |a(t)|

)2dt (2.2)

where a(t) is the VERTEQII accelerogram. This optimization problem is solved us-

ing the Levenberg–Marquardt algorithm (Levenberg, 1944; Marquardt, 1963), which

is briefly described in Tehrani et al. (2018); the implementable MATLAB code can

be found in Gavin (2017). The best-fit parameters are found to be t̂1 = 2.8 sec,

t̂2 = 15.4 sec, p̂ = 2.48 and ĉ = 0.21. Note that the dummy parameter w is only

used for the fitting purpose and has no influence on the shape of the function; w is taken

to be unity hereinafter. Figure 2.1 shows the VERTEQII accelerogram and the fitted

windowing function.

2.2.2 Developing Transfer Functions

In this section, the frequency content of a nonstationary windowed process, generated

in step ii, should be modified to provide the desired response spectrum. Four different

approaches are considered in this study, which can be categorized generally into two

classes: (1) VERTEQII-based parametric filters and (2) response spectral-based filters.

These approaches are described in Sections 2.2.2(a) and 2.2.2(b), respectively.

2.2.2(a) VERTEQII-based Parametric Filters

The following VERTEQII-based filters are considered in this study: (a) Kanai-Tajimi

filter; (b) Modified Kanai-Tajimi filter; and (c) Piecewise filter. The VERTEQII ac-

celerogram is used for developing these filters, which are described here.

Kanai-Tajimi (KT) filter. Kanai (1957) and Tajimi (1960) used a single oscillator as

a transfer function, which relates the ground motion at the surface over the motion at
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Figure 2.3: Fourier transform of the VERTEQII accelerogram, the fitted Kanai-Tajimi (KT) filter, and
the fitted modified Kanai-Tajimi (MKT) filter.

the bedrock as the following function:

S KT(ω) = S KT
1 + 2ξKT(ω/ωKT)i

[1 − (ω/ωKT)2] + 2ξKT(ω/ωKT)i
(2.3)

where S KT is a constant scale factor; ωKT and ξKT are ground (here floor) motion fre-

quency and damping ratio, respectively; and i =
√
−1. These parameters are usually

estimated by the observation of the characteristics (zero crossings and other statistics)

of historical earthquakes (Alotta et al., 2014). However, in this study, the best value

of these parameters are obtained by fitting Eq. (2.3) to the single-sided Fourier trans-

form amplitude of the VERTEQII accelerogram, which is shown in Figure 2.3, using

the Levenberg–Marquardt optimization algorithm. The best-fit values of the parameters

are ω̂KT = 19.59 rad/s and ξ̂KT = 0.32, with standard errors of 0.213 and 0.009, respec-

tively. Note that the constant S KT has no influence on the shape of the filter and only

affects the amplitude; therefore, S KT is (arbitrarily) taken to be 1 g in the filtering step

(Step iii). The appropriate scale factor is obtained in Section 2.2.3.
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Another way to obtain the KT filter parameters, as used in the literature such as

by Hoang et al. (2008), is to fit to the power spectral density (PSD) of the VERTEQII

accelerogram. The PSD of the KT filter is

PKT(ω) =
∣∣∣S KT

∣∣∣2 ≡ S
2
KT

1 + 4ξ2
KT(ω/ωKT)2

[1 − (ω/ωKT)2]2 + 4ξ2
KT(ω/ωKT)2

(2.4)

The best-fit to the PSD is shown in Figure 2.4, and the best-fit values of the parame-

ters are ω̂KT = 14.93 rad/s and ξ̂KT = 0.54, with standard errors of 0.290 and 0.023,

respectively. While S KT was determined in the fitting process, it is taken to be 1 g in the

filtering step (Step iii). The appropriate scale factor is obtained in Section 2.2.3.

Modified Kanai-Tajimi (MKT) filter. The modified Kanai-Tajimi (MKT) filter is pro-

posed to remove the effect of residual velocities and displacements by greatly attenuat-

ing the low frequency accelerations (Clough and Penzien, 2003). The function of this

filter is
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S MKT(ω) = S MKT
1 + 2ξ1(ω/ω1)i

[1 − (ω/ω1)2] + 2ξ1(ω/ω1)i
(ω/ω2)2

[1 − (ω/ω2)2] + 2ξ2(ω/ω2)i
(2.5)

where S MKT is a constant scale factor, ω1 and ω2 are the ground (here floor) motion

frequencies, and ξ1 and ξ2 are the damping ratios. The best-fit MKT parameters are

obtained by fitting Eq. (2.5) to the single-sided Fourier transform amplitude of the

VERTEQII accelerogram, which is shown in Figure 2.3. The best-fit values of pa-

rameters are ω̂1 = 22.80 rad/s, ω̂2 = 8.05 rad/s, ξ̂1 = 0.31, and ξ̂2 = 0.19, with standard

errors of 0.222, 0.074, 0.009, and 0.007, respectively.

Similar to the KT filter, the MKT parameters are also obtained by fitting to the PSD

of the VERTEQII accelerogram. The PSD of the MKT filter is

PMKT(ω) =
∣∣∣S MKT

∣∣∣2 ≡ S
2
MKT

1 + 4ξ2
1(ω/ω1)2

[1 − (ω/ω1)2]2 + 4ξ2
1(ω/ω1)2

(ω/ω2)4

[1 − (ω/ω2)]2 + 4ξ2
2(ω/ω2)2

(2.6)

The best-fit MKT to the PSD is shown in Figure 2.4. The best-fit values of the param-

eters are ω̂1 = 19.29 rad/s, ω̂2 = 7.77 rad/s, ξ̂1 = 0.63, and ξ̂2 = 0.29, with standard

errors of 0.820, 0.124, 0.042, and 0.016, respectively.

Note that, while S MKT was determined when fitting to the Fourier transform and to

the PSD, it is taken to be 1 g in the filtering step (Step iii). The appropriate scale factor

is obtained in Section 2.2.3.

Piecewise (PW) filter. The third approach of fitting a filter is to develop a piecewise

filter by averaging the Fourier transform of the VERTEQII accelerogram around each

octave point frequency. The value at each octave frequency should be obtained by

averaging over a frequency band, which contains the information around that frequency.

To do so, a band can be defined between the middle points of octave frequencies. That

is, the frequency band for octave point j, can be obtained as:
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f ∈
[
e

1
2 ln ( f j−1 f j), e

1
2 ln ( f j f j+1)

]
(2.7)

where, fk is the frequency at octave point k.

To be able to apply the above band for all the octave frequencies, two dummy octave

frequencies are added: one lower than the 0.5 Hz (i.e., 0.4454 Hz) and one higher than

50.7968 Hz (i.e., 57.0175 Hz). The value of 0 is assigned to the 0 Hz frequency, and

the band [0, 0.4719] Hz is assigned to the first added octave frequency and the band

[75.5099, 100] Hz is assigned to the 100 Hz frequency. By doing so, the resulted filter

is plotted in Figure 2.5 and tabulated in Table 2.1. For the frequencies other than the

octave frequencies, linear interpolation should be used. The appropriate scale factor is

obtained in Section 2.2.3.
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2.2.2(b) Response Spectral-based Filters

In this class, the RRS in GR-63-CORE (Telcordia, 2012) (see Figure 2.2) is used di-

rectly for developing filters. This method is called response spectral matching (RSM),

which is an iterative procedure that is described here.

Response Spectral Matching (RSM). In this approach, the Fourier transform of

a nonstationary Gaussian process is modified, iteratively, in a way that its response

spectrum satisfies the desired requirements. To do so, at each iteration, the Fourier

transform of a nonstationary Gaussian process is scaled up or down based on the ratio

of the target response spectrum (TRS) to the response spectrum of the signal at a given

frequency. In this section and Section 2.2.3, the TRS is taken to be the RRS for zone

4 (Telcordia, 2012) increased by 15% (i.e., 1.15×RRS) to be halfway between the two

impermissible regions; see Figure 2.2.

The RSM-based filter is developed by averaging the spectrally matched Fourier

transforms of N accelerograms. The step by step procedure is summarized as follow:

1. Generate N series of nonstationary Gaussian processes, yn(t), n = 1, . . . ,N, as

described in Steps i and ii.

2. Apply a bandpass filter between 0.2 and 50 Hz (Telcordia, 2012) to each yn(t).

3. Perform the following iterative RSM steps for each bandpass-filtered signal, ỹn(t):

(a) Calculate the Fourier transform and the response spectrum of ỹn(t).

(b) If the response spectrum satisfies the necessary conditions (i.e., exceeds the

RRS between 1 and 50 Hz, but by no more than 30% between 1 and 7 Hz)

at all the octave frequencies, go to step 4; otherwise, continue to step 3c.

(c) Scale the response spectrum by a scaling factor determined by fitting (via

least squares regression) the response spectrum to the TRS at the octave
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frequencies (between 1 and 50 Hz).

(d) Calculate a modification factor for each octave frequency (between 1 and

50 Hz) as the ratio of the TRS to the scaled response spectrum.

(e) Design a piecewise filter using these modification factors, interpolating

at frequencies between the octave frequencies, and apply this filter to the

Fourier transform of ỹn(t).

(f) Using the inverse Fourier transform, recover the updated (filtered) ỹn(t), and

return to step 3a.

4. For each spectrally-matched signal, ỹ∗n(t), assign to each octave frequency the

average of the Fourier transform of ỹ∗n(t) in the corresponding frequency band

(Eq. (2.7)), giving the nth spectrally-matched piecewise filter.

5. Average the N spectrally-matched piecewise filters to give the RSM filter.

Following this procedure, the filter (denoted RSMI) is found by averaging N = 100

spectrally-matched piecewise filters, which is shown in Figure 2.5 and tabulated in Table

2.1.

Although the recommended frequency band in GR-63-CORE (Telcordia, 2012) is

0.2 to 50 Hz, having a closer look at the Fourier transform of VERTEQII (see Figure

2.3), it can be observed that the VERTEQII accelerogram has negligible acceleration

content lower than 0.7 Hz and higher than 20 Hz. So, another filter is developed by

applying the RSM procedure (Steps 1 to 5), but replacing the bandpass filter range in

Step 2 by 0.7 to 20 Hz. The developed filter (denoted RSMII) is shown in Figure 2.5

and is tabulated in Table 2.1.

In the RSM procedure described above, the focus is on the frequency band between

1 and 50 Hz, while frequencies shorter than 1 Hz are allowed to be greatly attenuated.

A reason for this is the performance limitations of most shake tables to generate such
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strong motions.* Near-field excitations may have large pulses, resulting in higher ac-

celerations at long periods (low frequencies) (Khoshnoudian et al., 2015b). Here, to

include the low frequency content in the filter, the above procedure is repeated by re-

placing the frequency band (1 to 50 Hz) in Steps 3b, 3c, and 3d by the frequency band

between 0.3 and 50 Hz. The resulting filter (denoted RSMIII) is shown in Figure 2.5 and

tabulated in Table 2.1.

Note that the RSM filter values reported in Table 2.1, which are applied to the win-

dowed nonstationary process (Step ii), require an additional scaling factor to match the

target response spectrum. This is because the scaling factor determined in Step 3c is not

retained in the resulting filters. The appropriate scale factors for all three RSM filters

are determined in the following section.

2.2.3 Scale Factors

In this section a constant scale factor is obtained for each of the filters developed above.

To do so, the following steps, for each filter, are followed:

1. Generate 1000 series of nonstationary Gaussian processes as described in Steps i

and ii.

2. Obtain the Fourier transforms of the nonstationary processes.

3. Apply the developed filter (Step iii).

4. Transform the filtered signals back to the time domain using the inverse Fourier

transform.

5. Find the response spectrum of each record.

*For example, the mean peak displacement and velocity of 1000 accelerograms generated with RSMIII
are 73.8 cm and 156.6 cm/s, respectively, which are near the performance capabilities (i.e., 75 cm and
180 cm/s) of the largest shake table in the United States (LHPOST at the University of California, San
Diego).
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6. Find the scale factor for each filtered signal, separately, to fit to the 15% increased

RRS at the evaluated octave frequencies using least squares regression.

Applying the above steps for each filter, the mean and standard deviation of the scale

factors are tabulated in Table 2.2.

Now, several suites of synthetic accelerograms are generated using Steps i to iv (Sec-

tion 2.2) by applying each filter separately. The response spectra of these accelerograms

are shown in Figure 2.6. Included in these figures are their mean and their dispersion

(i.e., ± one standard deviation). These suites will be used in Section 2.4 for the proba-

bilistic analysis of a rolling isolation system.

2.3 Dynamics of a Rolling Isolation System

The RIS considered in this study uses a double rolling pendulum bearing (Figure 2.7)

consisting of a concave up surface attached to the floor, a concave down surface attached

to the bottom of the isolated equipment, and a ball that rolls between these surfaces.

The profile of these surfaces contain two regions: a central circular region with radius

R (located at the apex) and a constant slope region with angle θ. This constant slope

causes the system to have a constant maximum acceleration over this region.

In the following section, the equation of motion governing the RIS are developed.

Then, this equation is used for designing the profile of the RIS and also controlling the

Table 2.2: Scale factors for a target response spectrum of 1.15×RRS.

Filter Mean (×103) Standard Deviation (×103)

KT (fit to the Fourier Transform) 8.59 0.606
KT (fit to the PSD) 10.5 0.569
MKT (fit to the Fourier Transform) 6.19 0.430
MKT (fit to the PSD) 7.53 0.388
PW 325 22.7
RSMI 345 22.3
RSMII 345 22.9
RSMIII 343 21.9
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Figure 2.6: Response spectra of 100 accelerograms with their means (µ) and standard deviations
(σ), scaled to 1.15×RRS (i.e., scale factors reported in Table 2.2).
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performance of the designed RIS under the VERTEQII accelerogram described earlier.

2.3.1 Equation of Motion

In this study, the equation of motion governing the RIS is developed through Lagrange’s

equation. The potential energy of the system due to displacement u(t) is

V = mgh(u) (2.8)

where m is the isolated mass (including the upper isolation layer and the isolated equip-

ment), g is the gravitational acceleration, and h(u) is the increase in the height of the

system as a function of the ball location (u/2). For the considered rolling pendulum

bearing (Figure 2.7),

h(u) = 2 ×

R −
√

R2 − (u/2)2, |u| ≤ uo

R −
√

R2 − (uo/2)2 + (u/2 − uo/2) tan(θ), |u| > uo
(2.9)

where uo = 2R sin(θ) is the displacement at which the ball moves from the central

spherical region to the constant slope region. Accordingly, the slope function and its

derivative are

h′(u) =


u

2
√

R2 − (u/2)2
, |u| ≤ uo

sgn(u) tan(θ), |u| > uo

, (2.10a)

h′′(u) =


R2

8
√

(R2 − (u/2)2)3
, |u| ≤ uo

0, |u| > uo

. (2.10b)

1
2h(u) 

1
2u(t)  1

2u(t)  

  R

u(t)   

Figure 2.7: Configuration of a double conical rolling pendulum bearing.
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The kinetic energy of the system is

T =
1
2

m[(u̇f + u̇)2 + ḣ2] ≡
1
2

m[(u̇f + u̇)2 + (h′(u) u̇)2] (2.11)

where u̇f(t) is the (horizontal) building floor motion.

The equation of motion can be found from Lagrange’s equation:

d
dt

∂

∂u̇
(T − V) −

∂

∂u
(T − V) = Q (2.12)

where Q is the generalized force. Taking Q to be the dissipative forces, the resulting

equation of motion is given by:

m[1 + h′2(u)]ü + mh′′(u)h′(u) u̇2 + cu̇ + µmg tanh(u̇/Vs) + mgh′(u) = −müf (2.13)

where c is the viscous damping coefficient, µ is the friction coefficient, and Vs is the

velocity scaling constant (Harvey et al., 2014b), which controls the transition from static

friction to kinetic friction. The smaller the Vs, the sharper the transition. In this study,

Vs is taken to be 0.5 cm/s. Eq. (2.13) can be approximated to

mü + cu̇ + µmg tanh(u̇/Vs) + mgh′(u) = −müf (2.14)

assuming shallow rolling surfaces (i.e., small h′(u) and large R).

2.3.2 Design of the RIS

In this study, the term related to viscous damping is ignored, due to the minuscule ef-

fect of this dissipative force compared to friction (or rolling resistance) (Harvey et al.,

2014b). The effect of all dissipative forces are modeled using the friction term in the

equation of motion. This can help to simplify Eq. (2.14) as follows, which is indepen-

dent of mass,

ü + µg tanh(u̇/Vs) + gh′(u) = −üf (2.15)
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This simplification helps when performing a parametric study without considering the

mass of the isolated object.

In this study, the same RIS configuration as described in Vargas and Bruneau (2009)

is taken as the reference design. In this configuration, the radius R at the apex is 127 mm,

the constant slope region has the slope of 1:10 (θ = 6◦). The axisymmetric rolling sur-

faces have diameters of 213 mm. Based on the configuration of the RIS, the maximum

allowable displacement is 17.8 cm, and it is assumed that the maximum tolerable accel-

eration by equipment is 0.3 g (Gidaris et al., 2016; IBM, 2010). To be in the acceptable

region, a friction coefficient µ of 0.0175 seems satisfactory by the analyses. In general,

increasing friction decreases the displacement demand at the expense of increasing ac-

celeration demand.

Using Eq. (2.15), the time history of the displacements and accelerations are plotted

in Figure 2.8 for the two cases, without and with friction. The corresponding force-

displacement hysteresis are plotted in Figure 2.9. In these figures, the unacceptable

regions are shaded in grey. As can be seen, this friction coefficient is satisfactory. Note

that this amount of friction coefficient is achievable by adhering thin rubber sheets (Har-

vey et al., 2014b) or by encasing the rolling ball with damping material (Tsai et al.,

2006).

2.4 Probabilistic Assessment of the RIS

In this section, a probabilistic analysis is performed on the safety of a RIS. The RIS

designed in Section 2.3.2 is assessed with several suites of accelerograms generated in

Section 2.2.3 using the different filters (Section 2.2.2). These suites possess different

frequency characteristics (Figure 2.6). Each suite of accelerograms consists of 100

independently generated accelerograms.

The suites of accelerograms generated in Section 2.2.3 were for a TRS of

1.15×RRS. In this section, different RRS multipliers (other than 1.15) are considered
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Figure 2.8: The relative displacement and total acceleration time-histories of the RIS, without and
with friction under the VERTEQII accelerogram.
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Figure 2.9: The force-displacement hysteresis of the RIS (unit mass, m = 1 kg), without and with
friction, under the VERTEQII accelerogram.

by scaling the previously generated suites. A range of intensities is assessed by varying

RRS multipliers between 0.05 and 1.3, with increment step of 0.05, providing insights

on the nonlinear (amplitude-dependent) behavior of the RIS.

Due to the constant slope of the RIS (i.e., 1:10) and the constant friction coefficient

(i.e., µ = 0.0175), the maximum acceleration that occurs in each case is a constant fixed

value (i.e., 0.12 g) and is not presented and discussed further in this study. Instead, the

focus is on displacement demands, which are used as a proxy for isolation performance.

That is, if the displacement response exceeds the bearing’s capacity, then an impact is

assumed to have occured (though not explicitly modeled), constituting a failure.

The results corresponding to the KT filters are not shown from this point forward

because the KT filter does not capture well the shape of the RRS and produces high

accelerations (significantly above the RRS) for low frequencies (< 0.5 Hz), causing

excessively large displacements in the system. This is illustrated in Figures 2.6a and

2.6b. The mean spectral accelerations at 0.3 Hz are 0.690 and 0.845 g for KT filters

fit to the Fourier transform and PSD, respectively. These accelerations correspond to

pseudo-displacements of 190.3 and 233.3 cm, which are unrealistically large.

The results of the probabilistic analyses are presented in Figure 2.10, which shows
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the distributions of displacements for different RRS multipliers. In these scatter plots,

the blue circles represent the displacements associated with the accelerograms that re-

main below the 1.3×RRS (between 1 and 7 Hz), and the red crosses representing the

displacements associated with accelerograms that exceed the 1.3×RRS (between 1 and

7 Hz). These blue circles in comparison with the black horizontal dashed line (i.e., dis-

placement capacity of the considered RIS) for different intensities help to distinguish

the cases when the accelerograms do not exceed the 1.3×RRS yet the displacement

demands are larger than the displacement capacity.

The results of the probabilistic analyses are presented in Figure 2.11 using the

fragility concept. The fragility curves, which are obtained empirically without any prior

assumption of distributions, illustrate the probability of exceeding a given displacement

versus the intensity measure (RRS multiplier). In this study, the considered displace-

ments are 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 cm, as well as 17.80 cm, which

is related to the displacement capacity of the considered RIS. Figures 2.10 and 2.11

collectively reveal the following observations.

For a RRS multiplier of 1.15, the failure rates (i.e., probability of exceeding 17.8 cm)

are 92, 95, 67, 99, 96, and 100% for MKT fit to the Fourier transform, MKT fit to the

PSD, PW, RSMI, RSMII, and RSMIII, respectively. For a RRS multiplier of 1, these

failure rates decrease to 77, 84, 50, 97, 90 and 100%, respectively. These failure rates for

a RRS multiplier of 0.85 further decrease to 49, 59, 22, 83, 71, and 100%, respectively.

These failure rates are remarkably high, which question the currently used criteria for

RISs designed for protecting telecommunications equipment.

The MKT filter and PW filter greatly attenuate the low frequency content of the

accelerograms and, as a result, produce smaller displacements compared to other cases.

The mean accelerations at 0.3 Hz for MKT (fit to the Fourier transform), MKT fit to the

PSD, and PW are respectively 0.057, 0.062, and 0.045 g, which correspond to pseudo-
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(a) MKT (fit to the Fourier Transform)
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(d) RSMI
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Figure 2.10: Distribution of peak displacements for varying required response spectrum (RRS)
multipliers. The red crosses are the responses associated with the records that exceed the RRS by
more than 30% (i.e., impermissible region A in Figure 2.2), and the blue circles are those that do not.
The dashed line is the displacement capacity of the considered RIS. Note the scale difference in the
subplot (f).
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(a) MKT (fit to the Fourier Transform)
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(e) RSMII
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Figure 2.11: Fragility curves — probability of exceeding a given displacement versus floor-motion
intensity (required response spectrum (RRS) multiplier) — for accelerograms generated with different
methods. The curves from light grey to dark grey correspond to displacement levels of 5 to 50 cm,
respectively, in increments of 5 cm. The blue dashed line fragility curves are associated with a
displacement of 17.8 cm (capacity of the considered RIS).
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displacements of 15.6, 17.2, and 12.4 cm.

The RSMI filter incorporates the criteria that are recommended in GR-63-CORE

(Telcordia, 2012). As shown in Figure 2.6f, the mean of the generated accelerograms

satisfies the recommended criteria (i.e., the bandpass frequency between 0.2 and 50 Hz,

and exceeding the RRS between 1 and 50 Hz, but not by more than 30% between

1 and 7 Hz). However, the failure rates are extremely high — 99, 97, and 83% for

RRS multipliers of 1.15, 1, and 0.85, respectively. This is due to the relatively high

accelerations in low frequencies — the mean acceleration at 0.3 Hz is 0.094 g, which

corresponds to pseudo-displacements of 25.9 cm.

The main difference between the prescribed accelerogram in GR-63-CORE (i.e.,

VERTEQII) and the generated accelerograms with RSMI is in their frequency contents.

As can be seen in Figure 2.3, the Fourier transform of VERTEQII has negligible acceler-

ation content lower than 0.7 Hz and higher than 20 Hz. This contradicts the recommen-

dations for testing telecommunications equipment in GR-63-CORE. In this study, the

low frequency content is important since isolation systems shift the system’s frequency

toward the low frequency region and usually high frequency motions do not contribute

significantly to the displacement responses. This is the main reason why the RSMI has

high failure rates. In comparison, RSMI case RSMII is also assessed. In this case, the

nonstationary signals are passed through a bandpass filter between 0.7 and 20 Hz (simi-

lar to what can be seen in VERTEQII). This case has lower failure rates compared to the

RSMI — 96, 90, and 71% compared to 99, 97, and 83% for RRS multipliers of 1.15, 1,

and 0.85, respectively; however, the failure rates remain quite large.

GR-63-CORE recommends that the accelerograms should exceed the RRS (Fig-

ure 2.2) between 1 and 50 Hz and it has no criteria for frequencies lower than 1 Hz.

However, the RRS has 0.2-g spectral acceleration at 0.3 Hz, which corresponds to a

pseudo-displacement of 55.2 cm. Buildings or structures that house telecommunica-
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tions equipment usually transfer (or even amplify) the low frequency vibrations and

filter (attenuate) the high frequency content. That means the low frequency vibrations

appears more than the high frequency vibrations at the location of telecommunications

equipment. Thus, these low frequency vibrations need more attention. The RRS in-

cludes the expected acceleration content at low frequencies, whereas the prescribed

accelerogram fails to capture it. These limitations are applied mostly due to the per-

formance limits of shaker tables (Biondi et al., 2015), as previously discussed. For

this reason, the case RSMIII is assessed for representing a more realistic scenario that

happens at the location of equipment. Doing so, this filter produce low frequency ac-

celerations (i.e., 0.186 g at 0.3 Hz) close to the RRS (i.e., 0.2 g at 0.3 Hz). A 0.186-g

acceleration at 0.3 Hz has a pseudo-displacement of 51.2 cm. As stated before, this case

produces shocking failure rates of 100% for all three intensity levels (RRS multipliers

of 1.15, 1, and 0.85).

Another observation that can be made from Figure 2.10 is that there are many ac-

celerograms, for each case, that are below the 1.3×RRS (blue circles) yet demand large

displacements. These observations support the insufficiency of using only one accelero-

gram for testing and designing telecommunications equipment. Consequently, a suite of

accelerograms should be introduced that can be a good representation of the variability

that exists in seismic excitations. Moreover, it can be concluded that VERTEQII is not

representative of the RRS in GR-63-CORE (Telcordia, 2012) at low frequencies and,

hence, is not conservative. Furthermore, these observations raise the question about

whether ignoring the low frequency accelerations is reasonable and realistic for iso-

lated telecommunications equipment and whether RISs designed using this guideline

are safe.
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2.5 Conclusions

This chapter aimed to answer questions regarding the safety of rolling isolation systems

(RISs) used for protecting telecommunications equipment through the GR-63-CORE

guideline (Telcordia, 2012). This was motivated by observing the discrepancy between

the prescribed accelerogram for testing (VERTEQII), the recommended criteria, and the

required response spectrum (RRS). The RRS is specified between 0.3 and 50 Hz, yet the

testing protocol requires that the RRS be met or exceeded only between 1 and 50 Hz.

The prescribed accelerogram, therefore, has little to no acceleration content below 1 Hz.

It is at these low frequencies that long displacements are likely to occur, which can lead

to impacts in the isolator. On top of that, there is only one record for testing, which is

unable to represent the variability that exists in earthquakes.

To assess the safety of a RIS, the first step was to produce several suites of ac-

celerograms; each suite represents different assumptions and approaches. Several filters

were developed, including Kanai-Tajimi (KT), modified Kanai-Tajimi (MKT), piece-

wise (PW), and response spectral matching (RSM). The procedure for generating build-

ing floor motions (accelerograms) was outlined in detail in Section 2.2. Then, it was

shown that a RIS with friction coefficient 0.0175 can pass the GR-63-CORE require-

ments. This RIS design was further used for the probabilistic analyses under different

suites of accelerograms and intensities. The accelerograms produced by the KT filter

have large acceleration in low frequencies and produced huge displacements. The re-

sults of the probabilistic analyses for the other filters (i.e., KT, MKT, PW, and RSM)

were presented as the distribution of displacements for each intensity level, as well as

through fragility curves, which show the probability of exceeding a given displacement.

In these fragility curves, the RRS multiplier is used as an intensity measure. These

fragility curves can guide the design of a RIS to achieve the required displacement

capacity; however, additional analyses are required to extend these fragility curves to
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other RIS configurations.

The MKT, PW and RSMII filters produce accelerograms that are most similar to

VERTEQII. However, large displacement demands were observed for these cases.

RSMI is the case where the recommendations in GR-63-CORE are implemented, which

produces larger displacement demands compared to MKT, PW, and RSMII. The RRS

shows the expected acceleration content at each frequency; however, MKT, PW, RSMI,

and RSMII fail to produce such expected acceleration contents, more specifically at low

frequencies. These low frequency accelerations are associated with large displacement

demands. This shortcoming (absence of low frequency content) led to the generation

of RSMIII, which has the best agreement with the RRS. The resulting probabilities

of exceeding the displacement capacity are large enough to question the prescribed

accelerogram for testing (i.e., VERTEQII) and the recommendations in GR-63-CORE

(Telcordia, 2012). These recommendations are not consistent with the RRS, especially

at low frequencies where RISs are designed to operate.

While the filters and methodology were developed in the context of assessing the

fragility of a RIS for telecommunications equipment, it is worth noting that the fil-

ters and methods may find broader application. For example, accelerograms generated

with the proposed methods can readily be used to evaluate the safety of non-isolated

telecommunications equipment, incorporating low frequency content (e.g., RSMIII) and

accelerogram variability in a probabilistic analysis. Also, the parametric filters (KT and

MKT) and piecewise filters (PW and RSM) could be used to design vibration absorbers

(i.e., tuned mass dampers) for telecommunications equipment under random excitations

(Hoang et al., 2008).

Even though the produced accelerograms are similar to VERTEQII, large displace-

ments were observed. These large displacement demands are in excess of displacement

capacity. One way to address this issue is to increase displacement capacity. The other
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way is to reduce displacement demand via some mechanism to avoid harmful impacts.

Accordingly, in the following chapter, a dual-mode system for impact mitigation is in-

troduced.
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Chapter 3

Dual-Mode Impact Mitigation

3.1 Overview

Following the observed displacement demands in excess of displacement capacity in

Chapter 2, in this chapter a method to reduce the displacement demand for mitigation of

the harmful effect of impact is proposed. As discussed in Section 1.3, other researchers

have proposed impact mitigation mechanisms that work only when a triggered displace-

ment threshold is reached. However, the mechanisms considered in previous studies to

reduce displacements and mitigate impacts had some predefined force-displacement or

force-velocity relationship. Unlike previous studies that limited their solutions to some

prescribed relationships, in this chapter, this limitation is relaxed to improve the per-

formance of these systems. A dual-mode system is considered for the suppression of

responses (i.e., displacements) under extreme seismic loading by allowing the system

to respond without any control action at small to moderate displacements as would be

experienced under design level seismic loading while controlling the system at large dis-

placements under extreme seismic loading. To do so, an innovative solution is sought

that can more effectively utilize the available displacement capacity while simultane-

ously seeking to reduce sustained total accelerations. To determine the best possible

control action trajectory, optimal control is used to achieve both performance objectives

(i.e., mitigating pounding/impact and controlling total acceleration).

Open-loop solutions are found by solving the Euler-Lagrange equations with the
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control action trajectories unconstrained only in the large displacement region. Finding

the optimal solution to this problem is not trivial, and the solution requires the knowl-

edge of the external loading in the future, so it is not immediately implementable. To

overcome these challenges, the optimal control problem is redefined to be solved in a

piecewise fashion only in the regions that the control action is active. The duration of

each excursion into an active control region is not known, constituting an unknown final

time. To solve this optimal control problem with unknown fixed final time, an iterative

procedure is proposed. This procedure is then used to find the best control action mech-

anism that can be used for dual-mode systems. After that, using the linear quadratic

regulator (LQR), a non-iterative suboptimal procedure (i.e., clipped-LQR) is used to

solve the optimal control problem with unknown fixed final time. Following that, an ex-

tensive numerical assessment is performed to understand the piecewise optimal control

behaviors, to assess the effect of various initial conditions, and to evaluate the clipped-

LQR procedure. Using this numerical assessment, several design curves are developed

that can guide the design of passive control devices for linear time-invariant dual-mode

systems. Finally, using the developed design curves, a dual-mode system equipped with

a Kelvin-Voigt device is designed for the purpose of illustration, and is evaluated under

an accelerogram scaled to the maximum considered earthquake.

3.2 Bench-marking Framework

Consider a linear time-invariant (LTI) system with a displacement capacity of dmax.

When the system undergoes large-amplitude events, displacement demand may exceed

dmax, which causes impact and spikes in the transmitted acceleration. Incorporating en-

ergy dissipative mechanisms affects the system’s performance at low-amplitude events

if the damping is applied everywhere. So, in order to improve the performance of sys-

tems under large-amplitude events such as maximum considered earthquake (MCE)

while not affecting the system’s performance at low-amplitude seismic events such as
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design basis earthquake (DBE), a dual-mode system is utilized, which applies some dis-

sipative mechanism in the region beyond the DBE demand. In the region that the control

action is active, the performance is defined as to control the maximum displacements to

be within the allowable limits while at the same time not producing large accelerations.

Following this general idea, the system should be designed in such a way that the

system should be allowed to respond with its own dynamics under a DBE-level event

(i.e., when the absolute value of the displacement is smaller than or equal to a predefined

threshold), and when the system undergoes events larger than the DBE level event such

as MCE level event (i.e., when the absolute value of the displacement is larger than

the predefined threshold), the system should be equipped with some energy dissipative

devices in the regions beyond the predefined threshold. The threshold can be chosen to

be a fraction (or factor) φ of the displacement capacity dmax (Zargar et al., 2017).

As described in the introduction, researchers studied different passive devices to

mitigate the pounding of structures and experimentally evaluated some of those devices.

However, those studies are based on some predefined passive devices, which can pos-

sibly be improved. In order to identify the best possible mechanism and consequently

the most appropriate dissipative devices, an optimal control approach is sought in this

chapter. The optimal control results in the best possible impact avoidance mechanism,

which then can be used as a benchmark to identify the most appropriate devices.

3.3 Optimal Control Formulation

3.3.1 System’s Dynamics

The governing dynamic equation of motion for a LTI single-degree-of-freedom system

is given by

ẍ(t) +
c
m

ẋ(t) +
k
m

x(t) + u(t) = −ẍg(t) (3.1)

where k, c, and m are the stiffness, damping and mass of the system, respectively;
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x(t), u(t), and ẍg(t) are the displacement relative to the ground, the control action, and

the external ground acceleration, respectively; and overdot denotes the derivative with

respect to time t. The state space representation of the equation of motion (Eq. (3.1)) is

given by

ẋ(t) = f (x(t), u(t), t) ≡ Ax(t) + Bu(t) + W ẍg(t) (3.2)

where x(t) = [x(t), ẋ(t)]T ; the state matrix A, the input matrix B, and the exogenous

input matrix W are

A =

[
0 1
−ω2 −2ξω

]
and B = W =

[
0
−1

]
(3.3)

where ω =
√

k/m and ξ = c/
√

4km. The optimal control problem is formulated in the

following section.

3.3.2 Optimal Control – Known Fixed Final Time

The objective of this optimal control problem is to control displacements while keep-

ing accelerations within the allowable limits. So, the cost functional is defined as the

minimization over a finite-horizon (t ∈ [0, tf]) in a quadratic form as follows:

J =

∫ tf

0
L(x(t), u(t), t) dt ≡

∫ tf

0

(
qd x2(t) + qa(ẍ(t) + ẍg(t))2 + quu2(t)

)
dt (3.4)

where qd, qa, and qu are the weighting factors for displacement, total acceleration, and

control action, respectively. The cost functional can be written in the standard quadratic

form as follows:

J =
1
2

∫ tf

0

(
xT(t)Qx(t) + 2xT(t)Nu(t) + u(t)T Ru(t)

)
dt (3.5)

where the weighting matrices are:

Q =

[
2qd + 2ω4qa 4ξω3qa

4ξω3qa 8ξ2ω2qa

]
, N =

[
2ω2qa

4ξωqa

]
, and R = 2qa + 2qu. (3.6)
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This optimization problem is subjected to the dynamic constraint (Eq. (3.2)). La-

grange multipliers p(t) (or co-states) are used to augment the dynamic constraint to the

cost functional where the Hamiltonian is defined as

H = L + pT f . (3.7)

Pontryagin’s minimization principle yields the following necessary conditions for opti-

mality (Euler-Lagrange equations):

0 =
∂H
∂u

=
∂L
∂u

+
∂ f T

∂u
p ≡ Ru(t) + NT x(t) + BT p(t), (3.8a)

− ṗ(t) =
∂H
∂x

=
∂L
∂x

+
∂ f T

∂x
p ≡ QT x(t) + Nu(t) + AT p(t), (3.8b)

ẋ(t) =
∂H
∂p

= f ≡ Ax(t) + Bu(t) + W ẍg(t). (3.8c)

The solution to this system of equations leads to the optimal states, co-states, and control

action. The control action is obtained from the first Euler-Lagrange equation as follows:

u(t) = −R−1
(
NT x(t) + BT p(t)

)
. (3.9)

The second and third Euler-Lagrange equations represent the co-state and state dynam-

ics, respectively, which must be solve simultaneously. This two-point boundary value

problem (TPBVP) has the initial boundary condition on the states x(0) = [x0, ẋ0]T , and

the terminal boundary condition on the co-states p(tf) = [0, 0]T .

3.3.2(a) Nondimensional Formulation

It will be convenient to recast the optimal control problem in nondimensional form. The

following nondimensional scheme is introduced:

x(t) = φdmaxX(τ), ẋ(t) = ωφdmaxẊ(τ), ẍ(t) = ω2φdmaxẌ(τ),
t = τ/ω, u(t) = ω2φdmaxU(τ), ẍg(t) = ω2φdmaxẌg(τ) (3.10)

where X, τ, U, and Ẍg are the nondimensional displacement, time, control action, and

ground acceleration, respectively. It is understood that an overdot on the nondimen-
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sional variables denotes differentiation with respect to the scaled time τ. Inserting these

transformations into Eq. (3.2), the dynamics of the LTI system can be written in the

nondimensionalized form as follows:

Ẋ(τ) =AX(τ) +BU(τ) +WẌg(τ) (3.11)

where X(τ) = [X(τ), Ẋ(τ)]T ; the input matrix B ≡ B, the exogenous input matrix

W ≡W, and the state matrixA is given by

A =

[
0 1
−1 −2ξ

]
. (3.12)

Likewise, the cost functional (Eq. (3.4)) can be re-expressed as follows:

J =

∫ τf

0
L(X(τ),U(τ), τ) dτ ≡

∫ τf

0

(
QdX2(τ) + Qa(Ẍ(τ) + Ẍg(τ))2 + QuU2(τ)

)
dτ

(3.13)

where Qd = d2
maxqd/ω, Qa = d2

maxω
3qa, and Qu = d2

maxω
3qu. Alternatively, the cost

functional can be written in the standard quadratic form:

J =
1
2

∫ τf

0

(
XT(τ)QX(τ) + 2XT(τ)NU(τ) + UT(τ)RU(τ)

)
dτ (3.14)

where the nondimensional weighting matrices are

Q =

[
2Qd + 2Qa 4ξQa

4ξQa 8ξ2Qa

]
, N =

[
2Qa

4ξQa

]
, and R = 2Qa + 2Qu. (3.15)

The first Euler-Lagrange equation in the nondimensionalized form gives the nondi-

mensional control action

U(τ) = −R−1(
N

T X(τ) +BT P(τ)
)
, (3.16)

and the second Euler-Lagrange equation gives the nondimensional co-state dynamics:

− Ṗ(τ) = Q
T X(τ) +NU(τ) +AT P(τ). (3.17)
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This equation along with the nondimensionalized dynamic constraint (Eq. (3.11)) have

the initial boundary condition on the states X(0) = [X0, Ẋ0]T , and the terminal bound-

ary condition on the co-states P(τf) = [0, 0]T . In this TPBVP, the co-states should be

solved backward in time and the states should be solved forward in time. For a linear

system with quadratic Lagrangian, this TPBVP is straightforward to solve. However, in

the presence of constraints on the control action, additional consideration is required.

Of interest to this study is a problem in which the control action is active in only some

regions (denoted X) of the state space and is inactive in other regions (denoted X′),

where X and X′ are complemented subspaces of R2. In the active region X(τ) ∈ X, the

variation of the control action, δU(τ), is arbitrary, so the derivative ∂H/∂U is necessar-

ily zero and U(τ) is given by Eq. (3.16). In the inactive region X(τ) ∈ X′, U(τ) = 0,

so the permissible variation δU(τ) is necessarily equal to zero. This means that in the

inactive region the values of the co-states are not used for identifying the control ac-

tion; however, the co-states are still required to be determined in the TPBVP since the

determination of states depend on the co-states.

As a check to ensure that no external energy is added to the system, the following

condition should be satisfied:∫ τ

0
U(s)Ẋ(s) ds > 0,∀τ ∈ [0, τf]. (3.18)

This inequality constitutes a passivity condition on the control action. A passive device

is able to absorb and release energy, but it cannot generate energy. Otherwise, it would

be an active device, whereas the focus here is on passive control measures. However,

as will be discussed later, the optimal control formulation by itself does not ensure a

passive device and a negative stiffness device is suggested.
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3.3.3 Piecewise Optimal Control – Unknown Fixed Final Time

As previously discussed, due to the presence of additional constraint on the control

action, finding the optimal solution on the full time horizon (0 6 τ 6 τf) is not trivial.

In this study, a piecewise open-loop optimal control approach is proposed. The full

time horizon is broken up into multiple shorter segments based on when the system is

in the inactive and active regions, and unconstrained TPBVPs are solved independently

over each active interval. Starting at τ = 0, the state dynamics are initialized to X(0) =

[X0, Ẋ0]T , and the following steps are followed:

I. While the system is in the inactive region (X(τ) ∈ X′), the uncontrolled state

dynamics (Eq. (3.11) with U(τ) = 0) are solved forward in time, until either the

final time τf is reached or the system transitions to the active region (X(τ) ∈ X).

If the former, break; if the latter, take τ1 to be the time at which the system enters

the active region, and proceed to Step II.

II. The unconstrained TPBVP (Eqs. (3.11), (3.16), and (3.17)) is solved on the active

interval τ ∈ [τ1, τ2], where τ2 is the time at which the system first transitions from

the active region (X(τ) ∈ X) to the inactive region (X(τ) ∈ X′). The states are

initialized to X(τ1) found in step I, and terminal co-states P(τ2) = [0, 0]T . Return

to Step I.

In Step II, the control action U(τ) is unconstrained and optimal on τ ∈ [τ1, τ2].

However, τ2 is unknown a priori. To determine τ2, the following procedure is proposed

that iteratively converges to the true final time τ2:

1. Assume a lower bound τlow and an upper bound τupp for the final time, and provide

an initial guess for the final time, τ(1)
2 .

2. Solve the unconstrained TPBVP (Eqs. (3.11), (3.16), and (3.17)) with initial con-

ditions on the states X(τ1) and terminal conditions on the co-states P(τ(i)
2 ) =
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[0, 0]T .

3. If the state of the system at τ(i)
2 is in the active control region (i.e., X(τ(i)

2 ) ∈ X′),

update the lower bound: τlow ← τ(i)
2 . Otherwise, update the upper bound: τupp ←

τ(i)
2 .

4. Update the final time using, for example, a simple bisection: τ(i+1)
2 ← (τlow +

τupp)/2.

5. Increment the iteration index (i← i+1), and repeat Steps 2 to 4 until the stopping

criterion (e.g., τupp − τlow < ε) is met.

In Step 1, reasonable initial values for τlow, τupp, and τ(1)
2 would be the initial time (τ1),

one period of the uncontrolled system later (τ1 + 2π), and the time the uncontrolled

system would first transition from the active region to the inactive region, respectively.

In the above procedures, each TPBVP (Steps II and 3) is easier to solve since the

constraint on the control action does not need to be imposed. This is because the con-

straint is handled outside of the TPBVP by breaking up the full time horizon into inac-

tive and active intervals. Note that the resulting (piecewise) control action is not neces-

sarily optimal on the full time horizon, but it is optimal on each sub-interval [τ1, τ2].

At the exiting point, the values of the co-states are necessarily zero (i.e., P(τ2) = 0).

Substituting the terminal co-states condition into Eq. (3.16) gives the following control

action:

U(τ2) = −
1

2Qa + Qu
(2QaX(τ2) + 4ξQaẊ(τ2)). (3.19)

Plugging this control action into the system’s dynamics (Eq. (3.11)) results in the fol-

lowing acceleration:

Ẍ(τ2) = −
Qu

Qa + Qu
X(τ2) −

2ξQu

Qa + Qu
Ẋ(τ2) − Ẍg(τ2). (3.20)
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These expressions for the conditions at exit of the active region will be discussed further

in the following section.

It is worth noting that the optimal control formulation developed in this section for

an LTI system can easily be extended to linear time-varying systems by substituting the

LTI state matrixA byA(t).

3.4 Numerical Exploration of Free Responses

To assess the performance of the proposed piecewise optimal control approach, a nondi-

mensionalized LTI system under free response is considered here. This system has a

nondimensional displacement capacity of 1/φ. The active control region is given by

X = {X(τ) : |X| > 1}. The damping coefficient ξ is taken to be 0.5% (i.e., lightly

damped) (Calhoun and Harvey, 2018). In the following, the optimal response of the

nondimensional system is evaluated for only one excursion into the active control re-

gion, which results in an optimal solution for the considered excursion (i.e., τ ∈ [τ1 τ2],

given τ1 = 0, and τ2 is unknown a priori). The effect of various initial conditions are

assessed, and a comparison to clipped-LQR is made.

3.4.1 Piecewise Optimal Solution

The system is given an initial velocity of Ẋ(0) = 1 at the boundary of the active region.

So, the initial nondimensional condition is X(0) = [1, 1]T . Considering unit nondi-

mensional acceleration and zero control action weights (i.e., Qa = 1, and Qu = 0),

displacement-to-acceleration weight ratios of Qd/Qa = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1,

2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, and 5000 are considered. The optimal dis-

placement trajectories for several weight ratios are depicted in Figure 3.1(a) along with

the displacement time history of the uncontrolled (UC) system, and the corresponding

accelerations versus displacements are depicted in Figure 3.1(b). As expected, by ap-

plying relatively more weight to the displacements, the peak displacements decrease

60



(a)
0 /2 3 /2 2 5 /2 3

1

1.2

1.4

1.6

1.8

2

2.2

(b)
1 1.2 1.4 1.6 1.8 2 2.2

-20

-15

-10

-5

0

Figure 3.1: Piecewise optimal trajectories—(a) displacement time histories and (b) accelerations
versus displacements—for varying displacement-to-acceleration weight ratios Qa/Qd; X(0) = [1, 1]T .

and consequently the peak accelerations increase. An interesting observation is that the

peak displacements for the cases with relatively small weight ratios (Qd/Qa < 1) are

larger than the peak displacement of the uncontrolled system and consequently their

peak accelerations are smaller than the uncontrolled system. For these cases, acceler-

ation reduction is more important than the displacement reduction; in order to reduce

acceleration, the control action should inject energy into the system to reduce the ac-

celerations, which causes an increase in displacements. It is also worth noting that

all of the control trajectories exit the control region with similar velocity and zero ac-

celeration despite having different displacement-to-acceleration weight ratios. This is

apparent from Eq. (3.20): given Qu = 0 and X(τ2) = 1 results in Ẍ(τ2) = −Ẍg(τ2) = 0.

The requirement for an active device can be deduced from the time histories of
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Figure 3.2: The trajectory of the passivity condition for varying displacement-to-acceleration weight
ratios; X(0) = [1, 1]T .

the passivity condition in Figure 3.2. As can be observed in this figure, the control

actions in the piecewise optimal trajectories associated with smaller displacement-to-

acceleration weight ratios (Qd/Qa < 1) require energy to be injected into the system

(i.e., passivity condition less than zero). These cases are not the focus of this study for

two reasons: (1) the focus of this study is to develop a benchmark solution for the design

of a passive device; (2) these piecewise optimal trajectories require more displacement

capacity, which does not align with the scope of this study (i.e., to decrease the required

displacement capacity). Nevertheless, these cases will be discussed further in Section

3.4.3.

The optimal control action versus displacement is shown in Figure 3.3(a), and the

optimal control action versus velocity is shown in Figure 3.3(b). Figure 3.3 does not

include the results associated with the displacement-to-acceleration weight ratios of

0.01 and 0.1, which require an active device to generate such control actions. As can

be seen in Figure 3.3, larger control actions are needed for smaller displacement-to-

acceleration weight ratios. Moreover, as the system enters into the active control re-

gion, a large control action is initially required, and the control action then decreases

till it converges to a specific value (i.e., U(τ2) ≈ −1) regardless of having different

displacement-to-acceleration weight ratios. Given Qu = 0 and X(τ2) = 1, Eq. (3.19) re-
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Figure 3.3: Optimal control action U versus (a) displacement X and (b) velocity Ẋ for varying
displacement-to-acceleration weight ratios; X(0) = [1, 1]T .

duces to U(τ2) = −(1 + 2ξẊ(τ2)). In the case of a lightly damped system with relatively

small exiting velocity (Ẋ(τ2) ≈ −0.3, see Figure 3.3(b)), the second term in parentheses

has negligible contribution, and hence U(t2) ≈ −1. Moreover, Figure 3.3(b) indicates

that as the weight ratio increases, the nonlinearity of the control action increases. These

control action behaviors can be used as a benchmark to guide the design of passive

control devices to improve the performance of systems in high-intensity motions.

3.4.2 Effect of Initial Condition

In order to have a better understanding of the optimal control action behavior, the same

problem is solved for different initial nondimensional velocities of Ẋ(0) = 1 to 10 (with

increment step of 1) for the same initial displacement of X(0) = 1. The results for only

initial velocities of Ẋ(0) = 1, 2, 3, and 4 are presented, and the other cases are discussed
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Figure 3.4: Piecewise optimal trajectories—(a) displacement time history and (b) acceleration ver-
sus displacement—for displacement-to-acceleration weight ratio Qa/Qd = 1 and varying initial veloc-
ities: Ẋ(0) = 1, 2, 3, and 4.

later.

The optimal displacement trajectories for a unit displacement-to-acceleration weight

ratio (i.e., Qd/Qa = 1), as well as the displacement time history of the uncontrolled sys-

tems, are plotted in Figure 3.4(a) and the corresponding accelerations versus displace-

ments are depicted in Figure 3.4(b). As can be seen, an increase in the initial veloc-

ity results in an increase in peak displacements, peak accelerations, and active control

times. Although similar trends can be observed among various initial conditions (with

the same weight ratio), these changes are not linearly dependent to the initial velocity.

The effect of initial velocity on peak displacements and peak accelerations are larger

than the effect on the active control times.

Figure 3.5 shows the optimal control action versus (a) displacement and (b) velocity
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Figure 3.5: Optimal control action U versus (a) displacement X and (b) velocity Ẋ for displacement-
to-acceleration weight ratio Qa/Qd = 1 and varying initial velocity: Ẋ(0) = 1, 2, 3, and 4.

for the same weight ratio (i.e., Qd/Qa = 1) with varying initial velocity. As can be

observed, the control actions appear to require small stiffness and linear viscous damp-

ing for this weight ratio. However, this is not the case for different weight ratios as

discussed in the previous section.

The peak displacements, peak accelerations, and active control times for all the

weighting ratios are tabulated in Table A.1 through Table A.10 for the initial velocities

of 1 to 10 with increment step of 1, respectively. In addition, the root mean square

(RMS) values of displacements and accelerations, as well as the values of the cost func-

tional J, are reported in these tables to facilitate the comparison between different sce-

narios. In these tables, the results associated with scenarios that require an active device

are distinguished using (†) next to the weight ratios. Similar trends are observed for
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all the considered initial velocities (i.e., Ẋ(0) = 1:1:10). That is, peak and root mean

square (RMS) displacements decrease with increasing weight ratio, whereas the peak

and RMS accelerations increase with increasing weight ratio. This means that better

performance on controlling displacements and worse performance on controlling accel-

erations is achieved by increasing the weight ratio. The peak and RMS values of both

displacements and accelerations increase by increasing the initial velocity.

3.4.3 Design of Passive Control Devices

The obtained optimal behavior of the control action U(τ) can now be used to guide the

optimal design of a passive control device for dual-mode systems. There is a broad

range of passive devices including linear and nonlinear springs and dashpots and their

combinations that can be used to achieve the desired piecewise optimal trajectories. One

method to come up with a good combination of devices and their properties is to set up

an optimization problem by defining a wide range of devices and their combinations and

let the optimization select the device. Another method is to compare several devices that

can possibly generate such control actions (Zargar et al., 2013, 2017). The present study

does not employ such methods, but instead focuses on developing a benchmark to guide

the design of passive systems. Note that there are methods that can be used to design

a passive device equivalent to an active device, which will be pursued here (Cimellaro

et al., 2009; Cimellaro and Lopez-Garcia, 2011).

The obtained piecewise optimal results in the previous sections are now used to

develop several figures that can support the design of dual-mode LTI systems. Peak

displacements versus weight ratios are shown in Figure 3.6(a) and peak accelerations

versus weight ratios are shown in Figure 3.6(b) for various initial velocities. In addition,

Figure 3.7 shows the (a) peak displacements and (b) peak accelerations versus initial

velocities for different weight ratios. These figures are useful to obtain the required

weight ratio and the maximum initial velocity that can satisfy both displacement limit
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Figure 3.6: (a) Peak displacements and (b) peak accelerations versus displacement-to-
acceleration weight ratio Qa/Qd for varying initial velocities Ẋ(0).

dmax and acceleration limit for the desired factor φ.

Figures 3.6 and 3.7 can be combined in the compact form of peak accelerations ver-

sus peak displacements as shown in Figure 3.8 with contours of initial velocity (solid)

and displacement-to-acceleration weight ratio (dashed). By knowing the required factor

φ, the permissible region on the horizontal access can be obtained as the peak displace-

ments smaller than 1/φ. For a given initial velocity Ẋ(0) (the color coded curves), the

satisfaction of the acceleration limit can be assessed. If the acceleration limit cannot be

satisfied, a smaller factor φ should be considered.

In this study, a nondimensionalized Kelvin-Voigt system (i.e., linear spring-dashpot

in parallel) is designed for the purpose of illustration. The form of the model is given

by the following:
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Figure 3.7: (a) Peak displacements and (b) peak accelerations versus initial velocities Ẋ(0) for
varying displacement-to-acceleration weight ratios Qa/Qd ( ).
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Figure 3.8: Piecewise optimal peak accelerations versus peak displacements for varying initial
velocities ( ) and varying displacement-to-acceleration weight ratios ( ).
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U(τ) = K∗(|X(τ)| − 1) sgn(X(τ)) + C∗Ẋ(τ). (3.21)

Ordinary least squares method is used to fit the nondimensional stiffness K∗ and damp-

ing C∗ to the control action time histories. The fit of nondimensional stiffness K∗ for

different initial velocities and displacement-to-acceleration weight ratios are presented

in Figure 3.9(a) and the corresponding nondimensional damping values are presented

in Figure 3.9(b). After obtaining the required threshold (i.e., φdmax), initial velocity,

and weight ratio from Figure 3.8, the best fit of K∗ and C∗ can be taken from Figure

3.9. As can be seen in Figure 3.9(a), some cases require negative stiffness; these cases

correspond to non-passive devices. This can be achieved by a passive negative stiff-

ness device (Javanbakht et al., 2018; Pasala et al., 2012; Sun et al., 2017), or in case

of the rolling isolation system by a variable shape profile (Lu et al., 2013; Shahbazi

and Taghikhany, 2017), or stiffness (Lu et al., 2011; Panchal and Jangid, 2008). As the

displacement-to-acceleration weight ratio increases, the required stiffness and damping

increase. The tuning procedure is demonstrated in Section 3.5.

3.4.4 Comparison to Clipped-LQR

As an alternative to the previous piecewise open-loop optimal control procedure, a simi-

lar approach instead with the infinite-horizon continuous-time linear quadratic regulator

(LQR) is considered. The feedback control law is ULQR(τ) = −R−1(NT + BT
S)X(τ),

where S is the solution of the well-known algebraic Riccati equation:

A
T
S + SA −NR−1BT

S − SBR−1
N

T
− SBR−1BT

S −NR−1
N

T +Q = 0. (3.22)

In order to implement ULQR(τ) in the state dynamics (Eq. (3.11)), the feedback controls

are clipped (set to zero) when the system is in the inactive region (i.e., X(τ) ∈ X′).

In this part, the clipped-LQR solution of the problem with unknown fix final time is
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Figure 3.9: Fitted Kelvin-Voigt device parameters—(a) stiffness K∗ and (b) damping C∗—versus
initial velocities Ẋ(0) for varying displacement-to-acceleration weight ratios ( ).

evaluated using the same weightings, weight ratios, and initial velocities. The clipped-

LQR displacement trajectories are shown in Figure 3.10(a), and the corresponding ac-

celerations versus displacements are shown in Figure 3.10(b) for the system exposed

to an initial velocity of Ẋ(0) = 1. As can be seen, the clipped-LQR solutions for dis-

placements have similar pattern with piecewise optimal solutions. The differences grow

as the weight ratio increase; with adjustment in weight ratios, closer solutions to piece-

wise optimal solutions are expected. The same conclusion can be drawn from the plot of

accelerations versus displacements. However, the clipped-LQR solutions exhibit non-

zero exiting accelerations. This is due to considering only the steady state response, as

opposed to the finite horizon in the optimal trajectory.

Figure 3.11 shows the piecewise optimal and clipped-LQR trajectories of the pas-
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Figure 3.10: Piecewise optimal ( ) and clipped-LQR ( ) trajectories—(a) displacement time
histories and (b) accelerations versus displacements—for varying displacement-to-acceleration
weight ratio Qa/Qd; X(0) = [1, 1]T ; .
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Figure 3.11: Piecewise optimal ( ) and clipped-LQR ( ) trajectories of the passivity condition
for different displacement-to-acceleration weight ratios Qa/Qd; X(0) = [1, 1]T .

sivity condition. As can be seen, the two lowest weight ratios (i.e., Qd/Qa = 0.01 and

0.1) require an active device to generate such control actions.
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Figure 3.12: Piecewise optimal ( ) and clipped-LQR ( ) control actions U versus displacement
X (a) and velocity Ẋ (b) for varying displacement-to-acceleration weight ratio Qa/Qd.

Figure 3.12 shows the required piecewise optimal and clipped-LQR control actions

versus displacements (a) and velocities (b). Figure 3.12 does not include the results

associated with weight ratios of Qd/Qa = 0.01, and 0.1, which require an active device

to generate such control actions. As can be seen, the clipped-LQR procedure requires

larger control actions than the optimal procedure (similar to producing larger accelera-

tions). The exiting points in clipped-LQR solutions have larger velocities and acceler-

ations compared to the piecewise optimal solutions; this increased kinetic energy may

negatively influence the response of the system on the subsequent inactive control re-

gion, resulting in larger displacements. As noted before, by adjusting (increasing) the

weight ratios for clipped-LQR procedure, closer responses to piecewise optimal solu-

tions may be realized.
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Peak displacements, peak accelerations, and total active control action times for the

clipped-LQR solutions are tabulated in Tables A.11–A.20 (Appendix A) for the system

with initial nondimensional velocities of 1 through 10 with increment of 1. The tables

also present RMS values for displacements and accelerations, as well as values of the

cost functional J. For all the considered initial velocities (i.e., Ẋ(0) = 1:1:10), similar

patterns to the piecewise optimal results are observed. That is, peak and RMS values

for displacements and accelerations, respectively, decrease and increase by increasing

the weight ratio. In addition, the peak and RMS values for both displacements and

accelerations increase with increasing initial velocity.

Table 3.1 compares the peak displacements, peak accelerations, total active con-

trol action times, and the values of cost functional between the piecewise optimal and

clipped-LQR procedures where the system is excited with initial velocity of Ẋ(0) = 1.

As can be observed, the calculated values of the cost functional for the clipped-LQR

procedure are smaller than the piecewise optimal procedure. The reason is the required

adjustment in the weight ratios and the differences in the total active control action

times. The clipped-LQR procedure requires shorter time compared to piecewise opti-

mal. Nevertheless, the piecewise optimal solution has smaller cost functional normal-

ized by the total active control action time (i.e., J/τ∗f ).

3.5 Numerical Example

In this section, the design of a dual-mode isolation system is illustrated using the design

curves developed in Section 3.4.3. The example isolation system considered in this

study utilizes rolling pendulum (RP) bearings, which consists of a rolling ball between

a concave-up rolling surface and a concave-down rolling surface. The shape of these

surfaces is taken to be circular, which results in a linearized stiffness of k = mg/2r,

where m is the mass of the system including the isolated object, g is the gravitational

acceleration, and r is the radius of the rolling surfaces (Calhoun and Harvey, 2018).
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Figure 3.13: VERTEQII accelerogram (adapted from Tehrani and Harvey (2019a)).

This is a pendulum type system with mass-independent natural frequency ω =
√

g/2r.

Taking the radius equal to 50 cm results in a period of around 2 sec. The damping

coefficient ξ is taken to be 0.5% (i.e., lightly damped) (Calhoun and Harvey, 2018).

Figure 3.13 shows the VERTEQII accelerogram that is introduced in the Network

Equipment-Building System (NEBS) GR-63-CORE for telecommunications equipment

(Telcoridia, 2012). This accelerogram was developed for the highest risk category (zone

4), and it corresponds to a 10% probability of exceedance in 50 years. So, it can be used

to estimate the displacement of the isolation system under the DBE-level event. In the

absence of any control action, the considered isolation system experiences a 16.137-

cm peak displacement under the DBE-level event (VERTEQII). Under the MCE-level

event (i.e., 1.5×VERTEQII), the peak displacement is 24.205 cm. The DBE- and MCE-

level peak displacements, denoted dDBE and dMCE, are used to design the RP bearing’s

displacement capacity dmax and the control boundary φdmax, as described below.

First, consider an isolation system with a 20.320-cm (8-in.) (Vargas and Bruneau,

2009) displacement capacity dmax and a 16.256-cm threshold (i.e., φ = 80%). The peak

displacement of the uncontrolled system under the DBE-level event (i.e., 16.137 cm)

is smaller than the threshold φdmax. However, the peak displacement under the MCE-

level event (i.e., 24.205 cm) is larger than the displacement capacity dmax. So, impact is

highly likely under high-amplitude motions such as MCE-level events. Impacts would

result in spikes in the total transmitted accelerations, negatively affecting the isolation
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Figure 3.14: Phase space trajectory of the isolation system under the MCE-level event
(1.5×VERTEQII): (a) system with a threshold of φdmax = 0.8 × 20.32 = 16.256 cm; and (b) system
with a threshold of φdmax = 0.75 × 22.86 = 17.145 cm.

performance. Figure 3.14(a) shows the phase space trajectory of the system under the

MCE-level event (i.e., 1.5×VERTEQII) in dimensional form, as well as nondimension-

alized form with φdmax = 0.8 × 20.32 = 16.256 cm. The peak nondimensional velocity

of entering the control region is 3.22. Considering an 80% factor results in an allowable

nondimensional peak displacement of 1/φ = 1.25. For these values of initial velocity
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(3.22) and peak displacement (1.25), the design curves (Figure 3.8) result in a max-

imum optimal nondimensional peak acceleration of 26.82 and weight ratio of around

2×102. The equivalent peak acceleration is 4275.6 cm/s2, which is larger than the max-

imum tolerable acceleration limit for most telecommunications equipment (i.e., 3 g)

(IBM, 2010). So, a factor of φ = 80% is insufficient to have a safe dual-mode system.

Therefore, a different design needs to be considered.

Consider a different RP-bearing configuration with displacement capacity dmax =

22.860 cm (9 in.) and a threshold of φdmax = 17.145 cm (i.e., φ = 75%). The new initial

nondimensional velocity is 2.97 as shown in Figure 3.14(b) and the maximum allowable

nondimensional peak displacement is 1.33. For these values, the design curves (Figure

3.8) result in a maximum optimal nondimensional peak acceleration of 16.79 and weight

ratio of around 5.5 × 101. The equivalent peak acceleration is 2823.2 cm/s2, which is

smaller than 3 g. So, using Figure 3.9, the best fit K∗ and C∗ of the nondimensional

Kelvin-Voigt element for the weight ratio 5.5 × 101 are 18.00 and 4.39, respectively.

It is worth noting that in the design procedure above, the entering velocity to the

active control region is taken as the peak entering velocity of the uncontrolled system

when the system crosses the predefined threshold φdmax; however, there may be other

instances such as points (1,1.39) and (1,0.92) in Figures 3.14(a) and 3.14(b), respec-

tively, when the system crosses the predefined threshold that affects the responses of the

system and consequently the peak entering vel(a)ocity. This effect has not been taken

into account in the current study.

To evaluate the designed dual-mode RP bearing, Eq. (3.11) is solved under the

MCE-level event (i.e., 1.5×VERTEQII) by taking the control action in the form of Eq.

(3.21) in the control region. The displacements and total accelerations time histories

of the uncontrolled and the controlled system with Kelvin-Voigt device are shown in

Figure 3.15. As can be seen, excessive displacements (i.e., X > 1.33), and accordingly
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Figure 3.15: Displacement and total acceleration time histories of the uncontrolled and controlled
(fitted Kelvin-Voigt (KV) device) systems under the MCE-level event (1.5×VERTEQII).

impacts, are avoided at the expense of increasing accelerations, yet the accelerations are

still within the acceptable 3 g limit.

The same system is evaluated under the MCE-level motion via piecewise optimal

(Section 3.3.3) and clipped-LQR (Section 3.4.4) with weight ratios of Qd/Qa = 1.5×101

and 9 × 10−1, respectively. The displacements and total accelerations time histories of

the uncontrolled system and the controlled systems with the piecewise optimal solu-

tion is shown in Figure 3.16 and with clipped-LQR is shown in Figure 3.17. In both

cases, the displacement limit is satisfied, and the peak accelerations are lower than those

observed for the fitted KT device (Figure 3.15(b)). It should be noted that the weight

ratio obtained from the designed procedure (i.e., Qd/Qa = 5.5 × 101) resulted in high-

frequency oscillations between large positive and negative displacements in both the
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Figure 3.16: Displacement and total acceleration time histories of the uncontrolled and controlled
(Piecewise Optimal (PO) solution) systems under the MCE-level event (1.5×VERTEQII).

piecewise optimal and clipped-LQR procedures; such “bouncing” behavior is common

in these sorts of impacting systems (Harvey et al., 2018; Komodromos et al., 2007).

The main source of the observed differences in the required weight ratios arise from

the fact that the design curves (Figure 3.8) were developed based upon the unforced

system excited by only initial conditions. The imposed initial conditions do not equiv-

alently simulate various effects of forced response characteristics such as frequency

contents and large amplitude pulses. Moreover, as discussed in Section 3.4.4, an adjust-

ment is needed for the required weight ratio of the clipped-LQR procedure compared

to the piecewise optimal procedure. Although, the prospective designed controller with

piecewise optimal and clipped-LQR produces can generate smaller peak accelerations,

the weight ratio cannot be obtained by the design procedure outlined in this study due to
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Figure 3.17: Displacements and total accelerations time histories of the uncontrolled and controlled
(clipped-LQR (LQR) solution) systems under the MCE-level event (1.5×VERTEQII).

the reasons discussed previously. Consequently, it highlights a need to consider forced

systems with various forcing characteristics in order to develop a robust design proce-

dure for dual-mode systems in future studies.

3.6 Conclusions

In this chapter, a dual-mode system is used to improve the performance of systems un-

der extreme events, while not affecting the normal operation. The dual-mode system

contains two phases. The first phase is designed to perform well for normal operation

under the DBE-level events or lower (when the displacements are below a threshold),

and the second phase is designed to avoid impact while controlling the total transmitted

acceleration to be within acceptable limits under the MCE-level events (when the dis-

placements are beyond a threshold). In the first phase, the system is allowed to respond
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freely, and in the second phase, the system is controlled with a passive mechanism to

avoid impact and the resulting large accelerations. So, the performance of the second

phase is defined as to effectively utilizing the reserved displacement capacity while not

increasing acceleration beyond the tolerable limits.

With the aim of not having a prior assumption of any device (i.e., a predefined

force-displacement or force-velocity relationship), an optimal control problem is set up

to determine the best possible control force trajectories to achieve both performance

objectives. The cost function is defined as the sum of the weighted quadratics of both

displacements and total transmitted accelerations. Open-loop solutions are found by

solving the Euler-Lagrange equations considering a constraint on control force. Finding

the solution to this optimal control problem is nontrivial especially with the constraint

on control force, and it requires the knowledge of the future external loading. Therefore,

this solution cannot immediately be implemented. To overcome these challenges, the

optimal control problem is redefined only for the second phase regions where the control

actions are active, giving a piecewise optimal solution. In each excursion into the active

control region, the final time is unknown; so, an iterative procedure is proposed to find

the solution of this optimal control problem with unknown fixed final time on each

excursion. All the formulations are presented in a nondimensionalized form, which

makes it easily transformable to any linear time-invariant systems.

This procedure is then used in an extensive numerical assessment to understand the

piecewise optimal control behavior under various initial conditions and to develop de-

sign curves under the free response condition with different initial velocities. For the

purpose of illustration, these solutions are used to develop design curves to obtain the

best-fitted stiffness and damping associated with a Kelvin-Voigt device. Then, in a nu-

merical example, a nondimensional dual-mode system is designed based on the criteria

outlined in this study. After that, the designed dual-mode system is evaluated under an
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MCE-level event, and its performance is compared with the piecewise optimal solution

and the suboptimal solution using the linear quadratic regulator (i.e., clipped-LQR).

Through the evaluation, it is shown that impact can be avoided and at the same time

maintained the total transferred acceleration within the acceptable region. This evalua-

tion also shows that the piecewise optimal and the clipped-LQR procedures can generate

smaller peak accelerations; however, the weight ratio obtained from the designed curves

cannot be used directly. This study showed the feasibility of applying optimal control

for designing dual-mode systems. In the future direction of this study, forced systems

with various forcing characteristic need to be considered. Moreover, this study should

be extended to inelastic SDOF or MDOF systems, where inelastic reduced order models

can be utilized (Tehrani et al., 2018).

The focus of the dual-mode system described in this chapter is on the component

level. From a more system-level viewpoint, the design objective would be to protect

both the isolated equipment and the primary structure. The protection of the isolated

equipment would be of importance under DBE-level event while the protection of the

primary structure would be of importance MCE-level event. The next chapter deals

with such dual-mode systems while incorporating reduced order modeling to reduce

computational cost.
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Chapter 4

Dual-Mode Vibration Isolator/Absorber

4.1 Overview

In this chapter, a new reduced order modeling method for elastic structures with non-

linear attachments is proposed where the elastic structure is reduced and analyzed in

its modal coordinates and the nonlinear attachments are kept untouched in the formula-

tion. First, the equation of motion for the uncoupled full model is described. Next, the

equations of motion for the nonlinear attachments are coupled with the full uncoupled

model. The nonlinear attachments considered have a cubic (hardening) term. The hard-

ening nonlinearity helps to reduce the displacement demand (as discussed in Chapter

3) and allows the dual-mode system to smoothly transition from the isolation behavior

toward vibration absorber behavior. After that, the linear elastic part of the coupled

equation of motion is reduced using the modal properties of the full uncoupled model.

This reduced model can be used to estimate the response quantities of interest in the

modal coordinates as well as displacements and accelerations of the attachments. Then,

the estimated responses are transformed back to the original coordinates using the same

modal properties used for model reduction.

After the development of the formulation for the nonlinear reduced order model

(NLROM), a 3-story structure is considered and is reduced using the proposed model

reduction method in two ways using the modal properties of the full uncoupled model

and the modal properties of the full primary structure where the attachment mass is
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taken out from the structure. These NLROMs are evaluated under the El Centro ground

motion to validate their accuracy. Following that, NLROMs are utilized to assess the

feasibility of using partial floor isolation to achieve both objectives of protecting the iso-

lated objects under low amplitude excitation and protecting the primary structure under

high amplitude excitation. This assessment is done by developing nonlinear transmis-

sibility curves for roof displacement as the representative of the primary structure and

isolated mass total acceleration as the most sensitive response for protecting the isolated

objects or equipment.

4.2 Nonlinear Reduced Order Modeling Method

4.2.1 Full Uncoupled Model

Consider a planar frame (structure) with n degrees of freedoms (DOFs), which may

include lateral displacements, vertical displacements, and rotations. The set of linear

equations that define the n-DOF structural system is given by

Mq̈(t) + Cq̇(t) + Kq(t) = −Mıüg(t) (4.1)

where q is the n-dimensional vector of all DOFs; M, C, and K are the n × n mass,

damping, and (linear-elastic) stiffness matrices, respectively; and ı is the n-dimensional

influence vector that applies the ground motion acceleration, üg, to the lateral nodal

displacements. Eq. (4.1) represents the full uncoupled model of the primary system

alone.

4.2.2 Full Coupled Model

In general, the dynamics of floor or equipment isolation systems (i.e., secondary sys-

tems) are coupled with the primary structure and they interact with each other. This

interaction can be neglected when the equipment masses are considerably smaller than

the mass of the primary structure and/or if their frequencies are different enough com-
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pared to the natural frequency of the primary structure (Reggio and De Angelis, 2014).

Consider partially isolating the mass of ` selected floors, as shown in Figure 4.1. The

positions are identified by the n × ` Boolean position matrix P where the jth column

shows the location of the jth isolation system at the full primary system model (i.e.,

the value of the corresponding location is one, with zeros everywhere else). The ith

partial isolated mass located at the jth floor is given by mi = µiM j, where µi is the

proportion of mass M j that is isolated. The ratio of the isolated masses to the floor

masses can be concatenated into a diagonal mass ratio matrix, µ = diag(µ1, . . . , µ`).

Defining Mp to be the modified remaining mass of the primary structure (i.e., excluding

all the isolated masses from the mass matrix M), the dynamics of the coupled primary-

secondary system is given by the following n + ` coupled equations:

Mpq̈(t) + Cq̇(t) + Kq(t) = −Mpıüg(t) + PF (d(t), ḋ(t)) (4.2a)

Msd̈(t) + F (d(t), ḋ(t)) = −MsPT(q̈(t) + ıüg(t)) (4.2b)

where F = [ f1, . . . , f`]T is the `-dimensional vector of restoring forces of the floor

isolation systems, Ms = diag(m1, . . . ,m`) is the diagonal matrix of the masses of the

isolation systems, and d is the vector of lateral displacement of isolation systems relative

to the floor they are mounted on.

The force fi, associated with the ith element of the vectorF , represents the restoring

and damping forces of the isolation system located in the ith floor. Here the restoring

forces are taken to be cubic with linear stiffness kL
i and cubic stiffness* kN

i , and damping

is assumed to be linear viscous with damping coefficient ci:

fi(di, ḋi; t) = kL
i di(t) + kN

i [di(t)]3 + ciḋi(t) . (4.3)

The set of all the restoring forces given by Eq. (4.3) can be written in the matrix form

as follows:
*Note that kN

i has units of force per cubic length, so it is not technically a stiffness.
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Figure 4.1: Coupled structural model.

F (d(t), ḋ(t)) = KL
s d(t) + KN

s d(t)◦3 + Csḋ(t) (4.4)

where KL
s = diag(kL

1 , . . . , k
L
` ), KN

s = diag(kN
1 , . . . , k

N
` ), and Cs = diag(c1, . . . , c`), and

“(·)◦3” indicates element-wise cube.

Substituting F (·) from Eq. (4.2b) into Eq. (4.2a) and from Eq. (4.4) into Eq. (4.2b)

result in

Mpq̈(t) + Cq̇(t) + Kq(t) + PMs(PTq̈(t) + d̈(t) + PTıüg(t)) = −Mpıüg(t) (4.5a)

Ms(PTq̈(t) + d̈(t)) + KL
s d(t) + KN

s d(t)◦3 + Csḋ(t) = −MsPTıüg(t) (4.5b)

These equations represent the full coupled model of the primary-secondary system, in-

cluding all nonlinear interactions.
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4.2.3 Reduced Coupled Model

To ease the computational burden of analyzing the full coupled model (Eq. (4.5)), the

primary structure portion of the coupled model can be transformed into the modal coor-

dinates while keeping the secondary system of equations in the nonlinear reduced order

model (NLROM). Transformation to the modal coordinates can be done using r selected

frequencies (ω1, . . . , ωr) of the full uncoupled model (Eq. (4.1)). The r associated mode

shapes (φ1, . . . ,φr) with the highest contribution to the lateral responses can be selected

based on the modal participation factors Γi ≡ φT
i Mı where φi is the ith mode shape

found from the full uncoupled model, i.e., (K−ω2
i M)φi = 0. The selected mode shapes

are assembled into the n × r modal matrix Φr = [φ1, . . . ,φr].

Considering the selected frequencies, the responses of the primary full model is then

approximated by these r modes:

q(t) ≈ Φrη(t) (4.6)

where η = [η1, . . . , ηr]T are the modal coordinates. Alternatively, the model reduction

can be achieved by keeping one horizontal degree of freedom at each floor using the

modal properties of the full model as described in Tehrani et al. (2018). Using the

approximate solution obtained from the modal coordinate (Eq. (4.6)), Eq. (4.5) can be

written as follows:

ΦT
r MpΦrη̈(t)+ΦT

r CΦrη̇(t) + ΦT
r KΦrη(t)

+ ΦT
r PMs(PTΦrη̈(t) + d̈(t) + PTıüg(t)) = −ΦT

r Mpıüg(t)
(4.7a)

Ms(PTΦrη̈(t) + d̈(t)) + KL
s d(t) + KN

s d(t)◦3 + Csḋ(t) = −MsPTıüg(t) (4.7b)

Define the vector of all the coordinates of the reduced system to be z = [ηT,dT]T.

Doing so, Eq. (4.7) can be reformulated in matrix form as follows:

Mz̈(t) + Cż(t) +KLz(t) +KNz(t)◦3 = −Rüg(t) (4.8)
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Figure 4.2: The 3-story primary structural model (adopted from Ohtori et al. (2004)).

whereM, C,KL,KN , and R are given by

M =

[
ΦT

r MpΦr + ΦT
r PMsPTΦr ΦT

r PMs

MsPTΦr Ms

]
, C =

[
ΦT

r CΦr 0
0 Cs

]
,

KL =

[
ΦT

r KΦr 0
0 KL

s

]
, KN =

[
0 0
0 KN

s

]
, R =

[
ΦT

r Mpı + ΦT
r PMsPTı

MsPTı

]
.

(4.9)

This equation (or equivalently Eq. (4.7)) represents the reduced coupled model, for

which the primary structure has been reduced to modal coordinates and the (nonlinear)

coupling to the secondary system has been retained.

4.3 Structural Model Considered

The primary structural model considered in this chapter is a 3-story 2D frame structure.

This structure is designed as a benchmark control problem for the SAC project located

in Los Angeles, California region (Ohtori et al., 2004). The full 3D structure has 3

stories with total elevation of 39 ft, and is 120 ft by 180 ft in plan. The building’s

lateral load resisting system is steel perimeter moment-resisting frame, and Figure 4.2

shows the N-S frame. The beam and column sections are shown in the same figure.

The applied seismic masses to this frame are 2.729 kips sec2/in. for the first and second

floors and 2.958 kips sec2/in. for the roof. The first three natural frequency of the
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primary structure are 0.984, 3.035, and 5.796 Hz. This structure is modeled in OpenSees

using elastic Euler-Bernoulli beam elements with lumped masses at the nodes. The

mass matrix M and linear elastic stiffness matrix K are extracted for further analyses in

MATLAB.

A single secondary system (i.e., nonlinear dual-mode vibration isolator/absorber)

is placed on the second floor of the primary structure. This system has mass ms =

µPTMP where µ is the the nondimensionalized relative floor mass ratio, linear stiffness

kL
s , and cubic nonlinear stiffness kN

s = κkL
s where κ is the nonlinearity parameter which

characterizes the degree of nonlinearity in the secondary system.† This results in a

(uncoupled) natural frequency of ωs =
√

kL
s /ms. Therefore, the nondimensionalized

frequency ratio Ω = ω1/ωs can be defined, where ω1 = 6.18 rad/sec for the 3-story

structure considered here. Note that M = Mp + diag(Pms), or for the case of multiple

attachments, M = Mp + diag(Pms) where ms is the column vector of all the attachment

masses.

Figure 4.3 depicts the normalized force-displacement relationship for different val-

ues of κ. Note that κ = 0 corresponds to the linear case. Also, note that only positive

values of κ are considered here, which corresponds to a hardening nonlinearity. The

hardening in the secondary system is consistent with the findings in Chapter 3 in which

displacements control (limitation) is desired to prevent excessive displacements.

4.4 Effect of Coupling

Of interest to this study is the responses of both the primary structure and the secondary

isolation system. The former’s response is characterized by the roof displacement, and

the latter’s by the total acceleration of the isolated mass. So, in this section, the effect of

coupling on the responses (i.e., the roof displacement and the isolated mass total accel-

†Note that kN
s has units of force per cubic length, so it is not technically a stiffness. The units of κ are

reciprocal of length squared.
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Figure 4.3: Normalized force-displacement relationship of the secondary system for varying non-
linearity parameter κ [in.−2].
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Figure 4.4: El Centro ground motion record.

eration) is assessed by considering the structure described in Section 4.3 excited with El

Centro ground motion acceleration, depicted in Figure 4.4, under varying scale factors.

Three types of structures are assessed. The first model is the full uncoupled structure

(Section 4.2.1). The second model is the full primary structure without the attachment
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Figure 4.5: Response history of the roof displacement using the full coupled model, full uncoupled
model, and full primary model (Ω =

√
2, κ = 0.010 in.−2, and µ = 0.3) under (a) 1, (b) 2, and (c) 3 ×

El Centro.

mass, but excluding the isolated floor mass (i.e., structure with Mp as described in Sec-

tion 4.2.2). The last model is the full coupled model where the isolated mass is mounted

on the primary structure (Section 4.2.2). The first and second models are the bases of

the NLROMs with different mode shapes, called Method 1 and Method 2, respectively,

in the following section on the verification of the NLROM.

The estimation of the time history of the roof displacement using the three models

under El Centro ground motion acceleration with ground motion (GM) multipliers of

1, 2, and 3 are shown in Figure 4.5. In the coupled model, the secondary system’s

properties are Ω =
√

2, κ = 0.010 in.−2, and µ = 0.3 that are expected to produce the
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Figure 4.6: Response history of the isolated mass total acceleration using the full coupled model,
full uncoupled model, and full primary model (Ω =

√
2, κ = 0.010 in.−2, and µ = 0.3) under (a) 1, (b)

2, and (c) 3 × El Centro.

highest level of coupling. As can be seen from this figure, the effect of coupling is

clear in the responses even for the GM multiplier of 1. The coupling effect is more

pronounced when looking at the isolated mass total acceleration as shown in Figure

4.6. Note that in this figure, the acceleration time history of the isolated mass for the

uncoupled and primary models are the responses of the second floor. The changes in

the frequency content of the isolated mass total acceleration in the coupled model is the

effect of isolation, which filters high frequency content.

Peak roof displacement and peak isolated mass total acceleration versus various GM

multipliers using the full uncoupled model, full primary model, and full coupled models
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with Ω =
√

2, 2, and 4 are shown in Figures 4.7, 4.8, and 4.9, respectively. As can be

seen from these figures, as expected the uncoupled, primary, and full coupled model

with κ = 0 in.−2 behave linearly. As κ increases deviation from the linear response

can be observed. As the GM multiplier increases, a marginal increase in the isolated

mass total acceleration and reduction in the roof displacement is observed; as desired,

this corresponds to a trade-off between isolation performance and primary structure re-

sponse, representing a dual-mode behavior. As the frequency ratio increases, this trend

changes and the roof displacement converges to the linear behavior since the interaction

between the structure and the secondary system decreases. Moreover, reduction of the

roof displacement in the full coupled model usually happens when large peak acceler-

ation is observed in the isolated mass total acceleration. These observations indicate

that the coupling effect is not negligible and should be considered on the estimation of

the responses, especially when the frequencies of the secondary and primary systems

are closer.

4.5 Validation of Reduced Order Modeling Method

In this section, two nonlinear reduced order models (NLROMs) are considered by ap-

plying the proposed method to the structure described in Section 4.3, and their accuracy

are validated by exciting them with El Centro ground motion acceleration (Figure 4.4).

The first model, referred to as Method 1, is the one described in Section 4.2.3, in which

the mode shapes based on total structure mass (M) is used in the model reduction. The

second model, referred to as Method 2, is the modification to the method described in

Section 4.2.3 by substituting the mode shapes obtained from the full uncoupled model

with the mode shapes obtained from the primary uncoupled model (Mp, i.e., the struc-

ture without the secondary mass, ms). The effect of several parameters on the accuracy

of the NLROMs is assessed such as GM multipliers of 1, 2, and 3 × El Centro corre-

sponding to peak ground accelerations of 0.319, 0.638, and 0.956 g, various frequency
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Figure 4.7: Peak roof displacement (left) and peak isolated mass total acceleration (right) versus
ground motion multiplier using the full uncoupled model, full primary model, and full coupled model
with Ω =

√
2, varying κ [in.−2], and µ = (a) 0.1, (b) 0.2, and (c) 0.3.
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Figure 4.8: Peak roof displacement (left) and peak isolated mass total acceleration (right) versus
ground motion multiplier using the full uncoupled model, full primary model, and full coupled model
with Ω = 2, varying κ [in.−2], and µ = (a) 0.1, (b) 0.2, and (c) 0.3.
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Figure 4.9: Peak roof displacement (left) and peak isolated mass total acceleration (right) versus
ground motion multiplier using the full uncoupled model, full primary model, and full coupled model
with Ω = 4, varying κ [in.−2], and µ = (a) 0.1, (b) 0.2, and (c) 0.3.
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ratios (Ω) of
√

2, 2, and 4, and various nonlinearity parameters (κ) of 0, 0.001, 0.005,

and 0.010 in.−2. Moreover, the effect of including different number of modes in the NL-

ROM is assessed by considering 1, 2, and 3 modes in the approximation (Eq. (4.6)). The

mass ratio (µ) is kept constant at 0.3 for all the assessed scenarios, which is assumed to

produce the highest level of coupling. The numerical integration has been done using

the ode45 solver in MATLAB, which uses the fourth order Runge-Kutta method with

variable time steps.

4.5.1 Time History Responses

The simultaneous effects of the GM multiplier and the number of modes used in the

NLROMs on the time history of responses using Method 1 are depicted in Figures

4.10–4.12. Similar conclusions as Method 1 can be drawn for Method 2, therefore the

results for Method 2 are not presented. A more detailed comparison of Methods 1 and

2 is presented using several accuracy metrics later on.

Figure 4.10 shows the time history of the roof displacement using the full coupled

model as well as NLROMs with 1, 2, and 3 modes using Method 1 with GM multipliers

of 1, 2, and 3 × El Centro. As can be seen in this figure, the NLROM shows good

agreement with the full coupled model. As the GM multiplier increases, deviations in

agreement between the response predictions increase. Response histories are shifted in

phase as the GM multiplier increases, which would be a source of large (instantaneous)

errors; however, peak responses are of primary interest in this chapter. As expected,

increasing the number of modes in the NLROM increases the accuracy of the responses

(more pronounced for higher GM multiplier). In addition, relative reduction in the roof

displacement can be observed when the GM multiplier increases. Peak roof displace-

ments of 5.4, 9.9, and 10.7 in. are observed for GM multipliers of 1, 2, and 3 × El

Centro.

Figure 4.11 shows similar information as Figure 4.10 for the displacement of the
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Figure 4.10: Response history of the roof displacement using the full coupled model and reduced
coupled model using Method 1 with 1, 2, and 3 modes under (a) 1, (b) 2, and (c) 3 × El Centro:
Ω = 2, κ = 0.010 in.−2, and µ = 0.3.

isolated mass. As can be seen in this figure, as the GM multiplier increases, the primary-

secondary system’s interaction increases, resulted in higher frequency responses; this is

especially apparent between 4 and 8 sec, where displacements are stunted at about 26

in. due to the sharply hardening effect. Moreover, phase shifts in the response histories

are more pronounced.

The time history of the isolated mass total acceleration using the full coupled model

as well as NLROMs with 1, 2, and 3 modes using Method 1 with GM multipliers of 1,

2, and 3 × El Centro is shown in Figure 4.12. As can be seen in this figure, similar but

opposite patterns to the estimation of displacements is observed in the estimation of total

accelerations. Accelerations grow with GM multiplier, wherein the cubic (hardening)
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Figure 4.11: Response history of the isolated mass displacement using the full coupled model and
reduced coupled model using Method 1 with 1, 2, and 3 modes under (a) 1, (b) 2, and (c) 3 × El
Centro: Ω = 2, κ = 0.010 in.−2, and µ = 0.3.

nonlinearity is more influential. This is especially apparent between 4–8 sec where, as

previously noted, displacements are stunted and large accelerations result (∼ 5 g).

4.5.2 Accuracy Metrics

In order to quantitatively assess the effects of varying parameters (i.e., GM multipliers,

number of modes, frequency ratio Ω, and nonlinearity parameter κ) on the accuracy of

the NLROMs, four validation metrics are considered. The engineering demand param-

eters (EDPs) considered for the validation correspond to roof displacement and isolated

mass total acceleration. The first metric is the relative maximum absolute error between

the full coupled model and NLROM responses:
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Figure 4.12: Response history of the isolated mass total acceleration using the full coupled model
and reduced coupled model using Method 1 with 1, 2, and 3 modes under (a) 1, (b) 2, and (c) 3 × El
Centro: Ω = 2, κ = 0.010 in.−2, and µ = 0.3.

MAE =

max
i=1,...,N

|r̂i − ri|

max
i=1,...,N

|ri|
(relative maximum absolute error) (4.10)

where ri and r̂i are the responses (roof displacement or isolaor total acceleration) at dis-

crete time i for the full coupled model (i.e., the “true” model) and NLROM, respectively,

and N is the total number of observation in the response history. The second metric is

the relative root mean squared error (RMSE):

RMSE =

√√
1
N

∑N
i=1 (r̂i − ri)2

1
N

∑N
i=1 r2

i

(relative root mean squared error). (4.11)

The third metric identifies the error between the true and estimated peak responses:
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PPE =

max
i=1,...,N

|r̂i| − max
i=1,...,N

|ri|

max
i=1,...,N

|ri|
(relative peak prediction error). (4.12)

The fourth metric is the relative difference in the root-mean-squared (RMS) responses:

RMSPE =

√
1
N

∑N
i=1 r̂2

i −

√
1
N

∑N
i=1 r2

i√
1
N

∑N
i=1 r2

i

(relative RMS prediction error). (4.13)

The first and second metrics quantify the errors between the full coupled model and

the NLROM at each instance in time, whereas the third and fourth metrics quantify the

errors between peak and RMS predictions for the two models. The accuracy of the NL-

ROMs is assessed below using the described metrics for both EDPs (roof displacement

and isolated mass total acceleration).

4.5.2(a) Roof Displacement

The MAE for the estimation of roof displacement is shown in Figures 4.13, 4.14, and

4.15 for the models with a mass ratio of µ = 0.3 for different GM multipliers, frequency

ratio Ω, and nonlinearity parameter κ, using 1, 2, and 3 modes, respectively. As the GM

multiplier increases, the MAE increases from around 14% to around 94% for GM mul-

tiplier of 1 to 3 when only one mode is considered. Additionally, when the nonlinearity

increases, the MAE increases. No general trend can be distinguished for the frequency

ratio Ω. Similar conclusions can be drawn for using 2 or 3 modes in the NLROMs.

As discussed before, phase shifted responses is the main source of instantaneous errors,

resulting in the observed large MAEs. Comparing these figures, it can be understood

that increasing the number of modes provide a model with higher accuracy as observed

in the time history responses shown in Figures 4.10–4.12. Including more modes in

the NLROMs decreases the MAE, from around 94% when using 1 mode to around

40% for Method 1 and 20% for Method 2 when using 3 modes. In general, Method 1
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Figure 4.13: Relative maximum absolute error (MAE) of roof displacement for the nonlinear re-
duced order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2, and
(c) 3 × El Centro.
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Figure 4.14: Relative maximum absolute error (MAE) of roof displacement for the nonlinear re-
duced order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2,
and (c) 3 × El Centro.

1 2 3 4
0

20

40

60

80

100

Er
ro

r (
%

)

1 2 3 4
0

20

40

60

80

100

1 2 3 4
0

20

40

60

80

100

(a) (b) (c)

Figure 4.15: Relative maximum absolute error (MAE) of roof displacement for the nonlinear re-
duced order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2,
and (c) 3 × El Centro.
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outperforms Method 2 in most cases as the number of modes increases.

The MAE evaluates only the maximum errors, whereas RMSE evaluates the mean

(squared) errors over the whole time history. The RMSE for the estimation of roof

displacement is shown in Figures 4.16, 4.17, and 4.18 for the NLROMs using 1, 2, and

3 modes, respectively. Similar conclusions to the MAE in general can be observed. As

the GM multiplier increases, the RMSE increases. Including more modes reduces the

RMSE, and the higher the nonlinearity the larger the RMSE. The RMSE increases from

around 17% to around 80% for the model using 1 mode with GM multiplier of 1 to 3,

respectively. The RMSE for the highest GM multiplier decreases from around 80% for

1 mode to around 21% for 3 modes.

In addition to MAE and RMSE, PPE and RMSPE are assessed in Figures 4.19, 4.20,

and 4.21 and Figures 4.22, 4.23, and 4.24, respectively. Unlike MAE and RMSE, which

measure instantaneous errors (i.e., simultaneously in time), PPE and RMSPE measure

the error in estimation of absolute peak responses and error in RMS responses, respec-

tively. The PPE, in general, decreases as the number of modes increases and increases

as the GM multiplier increases. There is an exception in the general trend described

above; namely, for the highest GM multiplier, the PPE increases as the number of mode

increases when Ω = 2. Similar conclusion as of PPE can be observed for RMSPE (i.e.,

increase in RMSPE with increase in GM multiplier and reduction in RMSPE with in-

creasing the number of modes). Overall, PPE and RMSPE show much lower relative

errors (< 10% in all cases), which is because these metrics compare peak responses that

may not occur simultaneously in predictions for the full coupled model and NLROMs.

PPE is arguably the best metrics for earthquake engineering, where peak responses ul-

timately control.
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Figure 4.16: Relative root mean squared error (RMSE) of roof displacement for the nonlinear
reduced order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2,
and (c) 3 × El Centro.
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Figure 4.17: Relative root mean squared error (RMSE) of roof displacement for the nonlinear
reduced order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2,
and (c) 3 × El Centro.
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Figure 4.18: Relative root mean squared error (RMSE) of roof displacement for the nonlinear
reduced order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2,
and (c) 3 × El Centro.
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Figure 4.19: Relative peak prediction error (PPE) of roof displacement for the nonlinear reduced
order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2, and (c) 3 ×
El Centro.
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Figure 4.20: Relative peak prediction error (PPE) of roof displacement for the nonlinear reduced
order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2, and (c) 3
× El Centro.
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Figure 4.21: Relative peak prediction error (PPE) of roof displacement for the nonlinear reduced
order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2, and (c) 3
× El Centro.
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Figure 4.22: Relative RMS prediction error (RMSPE) of roof displacement for the nonlinear reduced
order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2, and (c) 3 ×
El Centro.
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Figure 4.23: Relative RMS prediction error (RMSPE) of roof displacement for the nonlinear reduced
order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2, and (c) 3
× El Centro.
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Figure 4.24: Relative RMS prediction error (RMSPE) of roof displacement for the nonlinear reduced
order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b) 2, and (c) 3
× El Centro.
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4.5.2(b) Isolated Mass Total Acceleration

At this point, the described metrics are applied to evaluate the NLROMs for the esti-

mation of the isolated mass total acceleration. Figures 4.25, 4.26, and 4.27 show the

MAE of the isolated mass total acceleration versus the frequency ratio Ω for different

values of nonlinearity parameter κ, GM multipliers, and the number of modes used in

the NLROMs. As the GM multiplier increases, the MAE increases from around 30% to

around 120% for the GM multiplier of 1 to 3, respectively. The MAE decreases as more

modes are included in the NLROMs, from around 120% to around 60% for the high-

est GM multiplier with 1 and 3 modes, respectively. As expected, higher nonlinearity

corresponds to larger MAE.

The RMSE pattern for the isolated mass total acceleration, shown in Figures 4.28,

4.29, and 4.30, is similar to the MAE. The RMSE fluctuates between about 30%, 110%,

and 85% for GM multipliers of 11, and 3, respectively, when only 1 mode is considered

(Figure 4.28). The RMSE for the highest intensity decreases from around 85% to less

than 40% for the models with 1 and 3 modes, respectively.

PPE and RMSPE for the isolated mass total acceleration is shown in Figures 4.31–

4.33 and 4.34–4.36, respectively. Including more modes in the NLROMs decreases the

PPE (Figures 4.31–4.33); however, no general trend in the PPE can be observed with

respect to GM multiplier. Similar trends are observed for RMSPE (4.34–4.36). With

more modes included in the NLROMs, the RMSPE decreases, while no pattern can be

understood regarding GM multipliers.
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Figure 4.25: Relative maximum absolute error (MAE) of isolated mass total acceleration for the
nonlinear reduced order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.26: Relative maximum absolute error (MAE) of isolated mass total acceleration for the
nonlinear reduced order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.27: Relative maximum absolute error (MAE) of isolated mass total acceleration for the
nonlinear reduced order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.28: Relative root mean squared error (RMSE) of isolated mass total acceleration for the
nonlinear reduced order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.29: Relative root mean squared error (RMSE) of isolated mass total acceleration for the
nonlinear reduced order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.30: Relative root mean squared error (RMSE) of isolated mass total acceleration for the
nonlinear reduced order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.31: Relative peak prediction error (PPE) of isolated mass total acceleration for the nonlin-
ear reduced order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b)
2, and (c) 3 × El Centro.
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Figure 4.32: Relative peak prediction error (PPE) of isolated mass total acceleration for the nonlin-
ear reduced order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b)
2, and (c) 3 × El Centro.
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Figure 4.33: Relative peak prediction error (PPE) of isolated mass total acceleration for the nonlin-
ear reduced order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a) 1, (b)
2, and (c) 3 × El Centro.
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Figure 4.34: Relative RMS prediction error (RMSPE) of isolated mass total acceleration for the
nonlinear reduced order model using 1 mode and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.35: Relative RMS prediction error (RMSPE) of isolated mass total acceleration for the
nonlinear reduced order model using 2 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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Figure 4.36: Relative RMS prediction error (RMSPE) of isolated mass total acceleration for the
nonlinear reduced order model using 3 modes and Method 1 ( ) or 2 ( ), with µ = 0.3 under (a)
1, (b) 2, and (c) 3 × El Centro.
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4.6 Steady-State Response under Frequency-Dependent

Harmonic Excitation

In this section, a frequency-dependent harmonic excitation is considered. The harmonic

balance method is applied to find the steady-state response of the reduced coupled sys-

tem.

4.6.1 Harmonic Balance Method

Consider a harmonic base excitation of the form

üg(t) = ac(ω) cosωt + as(ω) sinωt (4.14)

where ω is the ground-motion frequency, and ac(ω) and as(ω) are the frequency-

dependent acceleration amplitudes of the cosine and sine components, respectively.

Substitution into Eq. (4.8) gives

Mz̈(t) + Cż(t) +KLz(t) +KNz(t)◦3 = −R(ac(ω) cosωt + as(ω) sinωt). (4.15)

Consider the solution of the following form as the basis for the steady-state responses:

z(t) = Ac cosωt + As sinωt (4.16)

where Ac and As are the vectors of displacement amplitudes. Upon substitution of the

assumed solution into the equation of motion (Eq. (4.15)), a system of equations in the

unknown coefficients Ac and As is recovered, abstractly given by

f (Ac,As, ac, as, ω) = 0. (4.17)

The system equation (Eq. (4.17)) is satisfied in a weak sense if

0 = 〈ψ, f 〉 ≡
ω

2π

∫ 2π/ω

0
ψ(t) f dt (4.18)

for every real basis function ψ(t) = cosωt and sinωt. This is equivalent to applying the
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harmonic balance method to Eq. (4.15), assuming the steady-state responses of the form

presented in Eq. (4.16) and neglecting the higher order harmonic terms (i.e., cos 3ωt and

sin 3ωt). Therefore, applying Eq. (4.18) gives

−MAcω
2 + CAsω +KLAc +

3
4
KN(A◦3c + Ac ◦ A◦2s ) = −Rac(ω) (4.19a)

−MAsω
2 − CAcω +KLAs +

3
4
KN(A◦2c ◦ As + A◦3s ) = −Ras(ω). (4.19b)

where “◦” indicates the element-wise product and (·)◦n indicates the element-wise nth

power. This nonlinear system of equations should be solved for Ac and As for a partic-

ular ground-motion frequency ω.

Once the coefficients Ac and As have been solved for, response quantities of interest

are found. Of interest here are the lateral displacements (or drifts) in each floor of

the primary structure and the total accelerations sustained by the isolated equipment.

Substituting the coefficients Ac and As into Eq. (4.16), the modal coordinates η(t) and

relative displacements d(t) of the isolated system are recovered, which must then be

transformed to find the response quantities of interest. The responses of all DOFs in the

primary structure are recovered using the reduced modal matrix Φr as follows:

q(t) = [Φr 0] (Ac cosωt + As sinωt). (4.20)

The desired drifts are found by selecting the appropriate DOFs from q(t):

∆(t) = S [Φr 0] (Ac cosωt + As sinωt) (4.21)

where the matrix S serves to select the desired DOFs. The total acceleration responses

of the isolated masses are given by

atotal(t) = −ω2[PTΦr I] (Ac cosωt + As sinωt)

+ PTı (ac(ω) cosωt + as(ω) sinωt). (4.22)

Eqs. (4.21) and (4.22) represent the steady-state time-varying responses, but peak
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responses are of interest here. Displacement and acceleration amplitudes are found by

taking the (element-wise) square root of the sum of the squared coefficients of cosωt

and sinωt from Eqs. (4.21) and (4.22), respectively.

4.6.2 Specific Forms for ac(ω) and as(ω)

In the preceding development, no specific form was assumed for the ground motion

coefficients ac(ω) and as(ω). The most simple form would be white noise, which is

frequency independent: ac(ω) = ac and as(ω) = as for all frequencies ω. The most

general form would allow the coefficients to independently vary with ω. Alternatively,

the coefficients can vary with ω, but in a consistent fashion:

ac(ω) = H(ω)ac and as(ω) = H(ω)as

where H(ω) represents the ground motion spectrum. Note that white noise is the de-

generate case for which H(ω) = 1. A more informative spectrum commonly used in

earthquake engineering is the Kanai-Tajimi (KT) acceleration spectrum (Kanai, 1957;

Tajimi, 1960):

HKT (ω) = G0
1 + 2ξg(ω/ωg)i

[1 − (ω/ωg)2] + 2ξg(ω/ωg)i
(4.23)

where ωg and ξg are the natural frequency and the critical damping ratio of the soil layer,

G0 is a scale factor (taken to be unity in this study), and i =
√
−1.

In the numerical analysis to follow, the KT spectrum will be used. The peak ground

acceleration (PGA) and peak ground displacement (PGD) are given by

PGA = HKT (ω)
√

a2
c + a2

s (4.24a)

PGD = HKT (ω)
√

a2
c + a2

s /ω
2 (4.24b)

which will be used to normalize responses. Without loss of generality, the cosine and

sine coefficients will be taken to be identical (i.e., ac = as) in all cases. Therefore, it
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will be convenient to define a single variable to represent the excitation amplitude:

a ≡
√

a2
c + a2

s (excitation amplitude coefficient). (4.25)

4.6.3 Exploration of Steady-State Responses

In this section, the steady-state responses of the reduced coupled system, presented in

Section 4.3, using Method 1 (as described in Section 4.2.3) are assessed. In order to

obtain the steady-state responses, the nonlinear system of Eqs. (4.19) should be solved.

These responses are path dependent and there may exists several solutions at each exci-

tation frequency ω, for instance when the system is excited by sweeping up or down in

frequency. Moreover, the nonlinear system of Eqs. (4.19) may have unstable solutions,

which are not physically realizable. These unstable responses are shown with dashed

lines in this chapter; stable solutions are shown with solid lines.

To solve those nonlinear system of equations, fsolve in MATLAB is employed,

which uses the trust-region dogleg algorithm. This algorithm can handle when the Ja-

cobian matrix is singular or the starting solution is far from the true solution. Because

fsolve uses an iterative procedure to solve the nonlinear system of equations (Eq.

(4.19)), an initial guess is needed to start the process. For the first run, the sweep-up

case, the system of equations are solved for a low frequency (i.e., 0.01 rad/sec). Then,

the obtained solution is used as the initial guess for the next larger frequency. Continu-

ing this process with increasing frequency, up to a highest frequency (i.e., 20 rad/sec),

results in the sweep-up branch of the solutions. When there is not a neighboring solu-

tion for the next higher frequency, fsolve fails to converge, and the frequency sweep

is terminated. The same process is performed for the sweep-down case, where a high

frequency (i.e., 20 rad/sec) is used as the initial frequency and the process is continued

from the obtained solution for the next lower frequency until fsolve fails to converge

or the lowest frequency is reached, resulted in the sweep-down branch. When the sys-
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tem is linear, the sweep-up and sweep-down branches are the same. However, when the

system is nonlinear, these two (stable) branches may be different due to the existence

of unstable branches (connecting the stable branches). Solving that system of equations

for unstable branches is nontrivial, requiring an initial guess that leads the algorithm

to a solution on an unstable branch. To do this, a combination (average) of end point

solutions, which are obtained from the stable branches, are used as the initial guess for

the middle frequency between the two stable branches. Once the first solution on the

unstable branch is obtained, a process similar to sweep-up and sweep-down cases can

be applied to populate the entire unstable branch.

In this chapter various frequency ratios (Ω =
√

2, 2, and 4), mass ratios (µ = 0.05,

0.10, 0.15, 0.20, 0.25, and 0.30), and nonlinearity parameter (κ = 0, 0.001, 0.005 and

0.01 in.−2) under white noise and Kanai-Tajimi excitations with various excitation ampli-

tude coefficients a are considered. The results are presented in the form of transmissibil-

ity curves (input-to-output relationships) for varying excitation frequency (ω ∈ [1, 12]

rad/s). The peak total acceleration of the isolated mass, denoted max |atotal|, is normal-

ized by the peak ground acceleration:

TRatotal =
max |atotal|

HKT (ω) a
(equipment acceleration transmissibility). (4.26)

The peak roof displacement, denoted max |∆roof|, is normalized by the peak ground dis-

placement:

TR∆roof =
max |∆roof|

HKT (ω) a/ω2 (roof displacement transmissibility). (4.27)

The roof displacement transmissibility for the uncoupled case is also presented to em-

phasize the coupling effect.

In the following subsections, the effect of varying frequency ratio Ω (Section

4.6.3(a)), mass ratio µ (Section 4.6.3(b)), nonlinearity parameter κ (Section 4.6.3(c)),
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and excitation amplitude coefficient a (Section 4.6.3(d)) on the two responses of

interest (i.e., the displacement of the roof and the total acceleration of the isolated

mass) is analyzed. An exhaustive compilation of results, considering all parametric

combinations, is presented in Appendix B, and selected representative results are

presented in the following subsections for the purpose of demonstrating the key

observations and findings. The white noise and Kanai-Tajimi excitations produce

similar responses while Kanai-Tajimi excitation produces higher amplitude near the

peak of Kanai-Tajimi spectrum. Therefore, in this section, only the steady-state

responses under Kanai-Tajimi excitation are presented and similar conclusions can be

drawn under white noise excitation.

4.6.3(a) Effect of Varying Frequency Ratio Ω

The effect of varying frequency ratio Ω =
√

2, 2, and 4, for constant mass ratio µ,

nonlinearity parameter κ, and excitation amplitude coeffficient a, is assessed through

nonlinear transmissibility curves (presented in full in Appendix B.1). Representative

cases (κ = 0 and 0.005 in.−2, µ = 0.3, a = 1.414 g) are presented in Figure 4.37 for the

roof displacement and in Figure 4.38 for the isolated mass total acceleration.

Figures 4.37(a) and (b) present the normalized transfer function of the roof displace-

ment for κ = 0 (i.e., linear) and 0.005 in.−2, respectively. As can be seen, considering

the coupling effect results in shifting of the primary structure resonant frequency to a

slightly larger frequency. The displacement amplitude associated with the resonant fre-

quency decreases as the frequency ratio decreases. As the frequency ratio gets closer

to one (i.e., from isolation behavior toward vibration absorber behavior), the shifting

of the primary structure resonant frequency toward higher frequencies increases and

the amplitude at the secondary system resonant frequency, which happens in different

frequencies, increases. As the frequency ratio Ω increases (i.e., more rigid connection

of the secondary mass), the transfer function converges to the transfer function of the
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Figure 4.37: Effect of frequency ratio Ω on nonlinear transmissibility TR∆roof of the roof displace-
ment, for κ = (a) 0 and (b) 0.005 in.−2, µ = 0.3, a = 1.414 g.

uncoupled structure. It is observed that the nonlinearity has almost no effect on the

primary structure resonant frequency and the associated amplitude. However, the sec-

ondary system resonant frequency skews toward higher frequencies as the nonlinearity

increases. In addition, the secondary system resonant amplitude increases with increas-

ing nonlinearity.

The effect of varying frequency ratio Ω on the isolated mass total acceleration is

assessed and the case of κ = 0.005 in.−2 is presented in Figure 4.38. As the frequency

ratio decreases, the resonant frequency shifts toward higher frequency (i.e., closer to
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Figure 4.38: Effect of frequency ratio Ω on nonlinear transmissibility TRatotal of the isolated mass
total acceleration, for κ = (a) 0 and (b) 0.005 in.−2, µ = 0.3, a = 1.414 g.

the primary structure’s natural frequency). The effect of varying frequency ratio on

the resonant frequency amplitude of the isolated mass total acceleration changes for

different level of nonlinearity. For the linear case, as the frequency ratio increases, the

amplitude at the resonant frequency increases and then decreases. However, when the

nonlinearity presents in the model, the amplitude at the resonant frequency increases as

the frequency ratio increases.
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4.6.3(b) Effect of Varying Mass Ratio µ

The effect of varying mass ratio µ = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3, for constant

frequency ratio Ω, nonlinearity parameter κ, and excitation amplitude coefficient a, is

assessed through nonlinear transmissibility curves (presented in full in Appendix B.2).

Representative cases (κ = 0 and 0.005 in.−2, Ω = 2, a = 1.414 g) are presented in Figure

4.39 for the roof displacement and in Figure 4.40 for the isolated mass total acceleration.

As can be seen from Figure 4.39 for the roof displacement, increasing the mass ra-

tio µ shifts the primary structure resonant frequency to higher frequency (i.e., due to

relatively less primary structure mass). Moreover, the amplitude at the primary struc-

ture resonant frequency decreases as the mass ratio increases. The amount of shift in

the frequency decreases by increasing the frequency ratio (toward more isolation). The

secondary system resonant frequency decreases by increasing mass ratio, while the am-

plitude at the secondary system resonant frequency increases as the mass ratio increases.

The effect of varying mass ratio µ on the transfer function of the isolated mass

total acceleration is assessed in Figure 4.40 for the representative cases (κ = 0 and

0.005 in.−2, Ω = 2, a = 1.414 g). As can be seen from Figure 4.40, as the mass

ratio increases both the resonant frequency and its corresponding amplitude decrease.

This effect reduces as the frequency ratio increases. As the nonlinearity increases the

peak total acceleration skews toward higher frequencies, as expected with a hardening

nonlinearity. The amplitude of the transmissibility at the resonant frequency increases

and then decreases as the nonlinearity increases for low mass ratio and high frequency

ratio. However, as the mass ratio increases and the frequency ratio decreases, this trend

changes. For high mass ratio and low frequency ratio, the amplitude of transmissibility

at the resonant frequency decreases as the nonlinearity increases.
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Figure 4.39: Effect of mass ratio µ on nonlinear transmissibility TR∆roof of the roof displacement, for
Ω = 2, κ = (a) 0 and (b) 0.005 in.−2, a = 1.414 g.

4.6.3(c) Effect of Varying Nonlinearity Parameter κ

The effect of varying the nonlinearity parameter κ = 0, 0.001, 0.005, and 0.01 in.−2,

for constant frequency ratio Ω, mass ratio µ, and excitation amplitude coefficient a, is

assessed through nonlinear transmissibility curves (presented in full in Appendix B.3).

Representative cases (Ω = 2, µ = 0.3, a = 1.414 g) are presented in Figure 4.41 for the

roof displacement and in Figure 4.42 for the isolated mass total acceleration.

As shown in Figure 4.41 and discusses previously, considering the coupling effect

shifts the primary structure resonant frequency toward higher frequency and at the same
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Figure 4.40: Effect of mass ratio µ on nonlinear transmissibility TRatotal of the isolated mass total
acceleration, for Ω = 2, κ = (a) 0 and (b) 0.005 in.−2, a = 1.414 g.

time decreases the amplitude at the primary structure resonant frequency. The primary

structure resonant frequency and its amplitude do not change with increasing nonlin-

earity. The secondary system resonant frequency shifts toward higher frequency by

increasing nonlinearity and its associated amplitude increases.

The effect of varying κ on the isolated mass total acceleration is demonstrated in

Figure 4.42. As can be seen from this figure, as the nonlinearity increases the reso-

nant frequency increases and its corresponding amplitude first increases (for κ = 0 →

0.001 → 0.005 in.−2) and then decrease (for κ = 0.005 → 0.01 in.−2). Similar trend is
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Figure 4.41: Effect of nonlinearity parameter κ [in.−2] on nonlinear transmissibility TR∆roof of the roof
displacement, for Ω = 2, µ = 0.3, a = 1.414 g.
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Figure 4.42: Effect of nonlinearity parameter κ [in.−2] on nonlinear transmissibility TRatotal of the
isolated mass total acceleration, for Ω = 2, µ = 0.3, a = 1.414 g.

observed for Ω = 4; however, for the case of Ω =
√

2, as the nonlinearity increases the

resonant frequency increases while its corresponding amplitude decreases.

4.6.3(d) Effect of Varying Excitation Amplitude Coefficient a

The effect of varying excitation amplitude coefficient a = 0.1414, 0.2828, 0.4243,

0.5657, 0.7071, 0.8485, 0.9999, 1.1314, 1.2728, 1.4142, 2.8284, 5.6569, 8.4853,

11.3137, and 14.1421 g, for constant frequency ratio Ω, mass ratio µ, and nonlinearity
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Figure 4.43: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TR∆roof of
the roof displacement, for Ω = 2, µ = 0.3, κ = 0.005 in.−2.

parameter κ, is assessed through nonlinear transmissibility curves (presented in full in

Appendix B.4). Representative cases (Ω = 2, µ = 0.3, κ = 0.005 in.−2) are presented

in Figure 4.43 for the roof displacement and in Figure 4.44 for the isolated mass total

acceleration. The linear case (κ = 0 in.−2) is not shown because its normalized response

is independent of a.

As shown in Figure 4.43 for the roof displacement, increasing the excitation am-

plitude a shifts the secondary system resonant frequency toward higher frequency and

amplify its associated amplitude. This is due to the cubic hardening nonlinearity in the

system, as the amplitude increases the stiffness increases in a cubic order.

The effect of varying excitation amplitude coefficient a on the isolated mass to-

tal acceleration is demonstrated in Figure 4.44. As can be seen from this figure, as

the excitation amplitude coefficient increases the resonant frequency increases and the

corresponding amplitude at the resonant frequency increases and then decreases. This

trend changes when the frequency ratio decreases. For the case of low frequency ratio,

as the excitation amplitude coefficient increases the resonant frequency increases and

its corresponding amplitude decreases.
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Figure 4.44: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TRatotal of
the isolated mass total acceleration, for Ω = 2, µ = 0.3, κ = 0.005 in.−2.

4.7 Conclusions

This chapter presents a new reduced order modeling method and its application on the

assessment of the feasibility of a dual-mode vibration isolator/absorber. The methodol-

ogy is described first by coupling the nonlinear equation of motion for the attachment

(i.e., isolated mass), with cubic hardening nonlinearity, with the linear equation of mo-

tion of the primary structure. The isolated mass is actually a partial mass of the full

model, which is isolated from the main full model by a secondary isolation system with

cubic hardening nonlinearity. The part related to the linear primary full coupled model

is reduced using the modal properties of either the full uncoupled model for the full

primary structure (full uncoupled model minus the isolated mass). These two nonlin-

ear reduced order models (NLROMs) are applied to a 3-story structure from the SAC

project and their accuracy are evaluated by imposing the El Centro ground motion with

different amplitudes. The NLROM using the modal properties of the full uncoupled

model (Method 1) exhibits better robustness and performance according to the assessed

metrics.

The NLROM is then used to assess the feasibility of achieving a dual-mode vibra-
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tion isolator/absorber. The objective of this dual-mode system is to protect the sec-

ondary system (i.e., equipment) under low amplitude seismic motion and protect the

primary structure under high amplitude seismic motion. This assessment is performed

by developing the steady-state responses for various excitation frequency to obtain the

nonlinear transmissibility curves for the roof displacement which represents the pri-

mary structure response and the isolated mass total acceleration. These transmissibility

curves are obtained by solving the nonlinear projections of the responses to the har-

monic bases (i.e., equivalent to the harmonic balanced method). Then, these nonlinear

equations are solved in MATLAB to get these transmissibility curves. White noise and

Kanai-Tajimi excitations are used as the input motion to excite the system. These two

excitations provide similar responses, while Kanai-Tajimi provides higher amplitude

responses at the spectrum peak. The effect of varying several parameters are assessed,

namely frequency ratio, mass ratio, excitation amplitude coefficient, and nonlinearity

parameter.

The assessment reveals that reducing both the primary and secondary structural re-

sponses cannot be achieved with the considered parameters and the reduction of one

usually comes at the expense of increasing the other one. However, the results obtained

from El Centro excitation for frequency ratios closer to unity (i.e., closer design to vi-

bration absorber) indicates the possibility of reducing the primary structural responses

by increasing the excitation amplitude compared with the uncoupled case.

The reduced order modeling method introduced in this chapter is limited to a special

case of a linear elastic structure with nonlinear elastic attachments. In order to extend

the concept to a more general class of nonlinear inelastic structures, the technique needs

to be extended for structures with hysteresis behavior. This is the focus of the following

chapter on inelastic model condensation.
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Chapter 5

Inelastic Model Condensation

5.1 Overview

In this chapter, a new condensation method in conjunction with a framework for appli-

cation is proposed for condensation of inelastic dynamic structural models, by using the

modal properties and replacing the elastic restoring forces with the hysteretic forces.

In the following, the inelastic model condensation (IMC) procedure to construct the

linear condensed model is first described. Next, the procedure to extend the linear con-

densed model with hysteretic (Bouc–Wen) elements is presented and the optimal values

of the hysteretic parameters are obtained using the Levenberg–Marquardt algorithm for

several types of loading regimes. Next, the resulting inelastic condensed models with

parameters fit with those different regimes are evaluated by imposing a real earthquake

to both the nonlinear finite element model (NFEM) and the condensed model. Finally,

the chapter concludes with a discussion of the results and highlights the performance of

the proposed IMC approach.

5.2 Inelastic Condensed Dynamic Modeling Procedure

In the reduced-order modeling method presented here, the reduced linear model is de-

rived to match the natural frequencies and mode-shapes of the full model at selected

modes. The coordinates of the condensed model correspond to the selected coordinates

of the full model. Then, the elastic restoring forces of the linear condensed model are
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simply replaced by hysteretic forces. The hysteretic forces are evolutionary (Park et al.,

1986) and are calibrated to match the inelastic behavior of the detailed inelastic frame

(NFEM) model. Importantly, the number of hysteretic variables need not be larger than

the number of condensed coordinates and time-varying (or ‘nonlinear’) modes are not

involved.

5.2.1 Full Model

Consider a planar frame (structure) subject to horizontal ground motion üg(t). The set

of linear equations that define the n-DOF structural system is given by:

Mq̈ + Cq̇ + Kq = −Mıüg (5.1)

where q is the n-dimensional vector of DOFs, which may include lateral displacements,

vertical displacements, and rotations; M, C, and K are the n × n mass, damping, and

(linear-elastic) stiffness matrices, respectively; and ı is the n-dimensional influence vec-

tor that applies üg to the lateral nodal displacements.

5.2.2 Condensed Model

First, the full model (Eq. (5.1)) is reduced to a condensed model with fewer DOFs, say

r DOFs, using the mass orthonormal mode shapes found from the full model, Φ =

[φ1, . . . ,φn]. The mode shapes φi should be sorted by the absolute value of the modal

participation factors Γi ≡ φ
T
i Mı (or equivalently the modal participating mass ratio), as

opposed to sorting based on the frequency (lowest to highest), to emphasize the highest

contributing modes to the seismic response.

Let S ∈ Rr×n be the selection matrix that specifies the DOFs to be retained, denoted

u ⊂ q; i.e., u = Sq. Generally, the retained coordinates u can be taken to be any set of r

DOFs. However, in order to introduce the nonlinear behavior in the present application,

only horizontal floor displacements should be selected, at most one per floor. In this

chapter, all the stories are included, though this need not be the case in general.
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The mode shapes in the retained DOFs are defined as ψi = Sφi (i = 1, . . . , r). Now,

the reduced model is reconstructed directly from the reduced selected mode shapes.

That is:

ΨT
MΨ = Ir×r, ΨT

CΨ = diag(2ζ1ω1, . . . , 2ζrωr), ΨT
KΨ = diag(ω2

1, . . . , ω
2
r ) (5.2)

whereM, C, and K are the reduced mass, damping, and stiffness matrices; the square

matrix Ψ = [ψ1, . . . ,ψr]; and ωi and ζi are the natural frequency and damping ratio in

the ith mode of the full model. Then, the reduced model may be written as:

Mü + Cu̇ +Ku = −Rüg (5.3)

where ΨTR = [Γ1, . . . ,Γr].

Unlike some reduced models that only match the dominant mode of the full model

(Gidaris and Taflanidis, 2013), this condensed model (Eq. (5.3)) exactly matches the

modal dynamics of the full model at the selected frequencies (ω1, . . . , ωr). The con-

densed model can be thought of as a stick model with communication between all the

stories, i.e.,M, C, andK are fully populated, in general.

5.2.3 Treatment of Hysteresis

Inelastic restoring forces are then incorporated into the condensed model (Eq. (5.3))

by replacing the inter-story forces with inelastic restoring forces. The lateral deflec-

tions u relative to the ground are related to the inter-story deflections, denoted by

∆ = [∆1, . . . ,∆r]T, through the linear transformation:

u = L∆ ⇒ ∆ = L−1u (5.4)

where L is a r-dimensional lower-triangular matrix of unity. The (elastic) inter-story

forces are therefore given by LTKL∆. Now, instead of elastic restoring forces, the

inter-story shear forces are taken to be:
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LT
KL∆→ κLT

KL∆ + (I − κ)LT
KLz (5.5)

in which κ is a diagonal matrix where each element κi is the ratio of the post-yield

stiffness to pre-yield (elastic) stiffness at the ith story. The auxiliary variables z =

[z1, . . . , zr]T are the hysteretic displacements, which are given by the Bouc–Wen model

(Bouc, 1967; Wen, 1976):

żi = ∆̇i − βi |∆̇i| |zi|
ηi−1 zi − γi∆̇i|zi|

ηi . (5.6)

The uniaxial hysteretic behavior at the ith story is governed by the hysteretic pa-

rameters ηi, βi, and γi, independent of the other stories. The parameter ηi governs the

smoothness of the transition from the linear to the nonlinear range (Wong et al., 1994),

effectively adjusting the ‘knee’ of the hysteretic loop. The parameters βi and γi govern

the isotropic yield displacement zi,yield in the ith story as follows:

zi,yield =
(
βi + γi

)− 1
ηi . (5.7)

Inversely, if the yield displacement zi,yield is prescribed, then the hysteretic parameters

are:

βi =
ρi

zηi
i,yield

and γi =
1 − ρi

zηi
i,yield

(5.8)

where 0 ≤ ρi ≤ 1. By varying ρi, the hysteretic loop shape changes, as illustrated in Fig.

5.1. (Note that other simplified hysteretic models could alternatively be used, such as

discussed by Gidaris and Taflanidis (2013).)

The hysteretic restoring forces (Eq. (5.5)) are incorporated into the condensed model

(Eq. (5.3)) through the coordinate transformation (Eq. (5.4)), giving

Mü + Cu̇ + κ̃Ku + (I − κ̃)KLz = −Rüg (5.9)
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Figure 5.1: Representative hysteresis loops for κ = 0.1 and η = 2.

where κ̃ = L−TκLT; note that these are the inelastic equations of motion for the lateral

displacements relative to the ground.

The mass, damping, and (elastic) stiffness properties of the condensed model are

fully specified by the full model, the list of condensed coordinates, and the specified

values for modal damping ratios. The inelastic aspects of the condensed model are pa-

rameterized by inter-story yield ratios, post-yield stiffness ratios, yielding knee sharp-

ness, and the shape of the hysteretic loops. The inelastic condensed model must be fit

to inelastic responses computed from the NFEM by adjusting the inelastic parameters

only, to match the dynamic simulations of the NFEM.

5.3 Models for the Structural System Considered

Figure 5.2 shows one of the 2D structural system (frame) considered in this chapter,

which is designed as a benchmark for the SAC project for the Los Angeles, California

region (Ohtori et al., 2004).

The 9-story (9 above and one below the ground) steel perimeter moment resisting

frame has a total height of 134 ft and is expanded in 5 bays of width 30 ft each. The

typical story height is 13 ft except for the basement and the first floor, which are 12
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Figure 5.2: Nine-story steel frame (adapted from Ohtori et al. (2004)).

and 18 ft, respectively. The steel member (beam/column) sections and the nodes are

labeled in Figure 5.2. The columns are pinned to the based and the structure is later-

ally restrained at the ground floor elevation. Beam to column connections are moment

resisting except for the connections of the beams to the rightest column, which the ro-

tations are released. Column splices located at 6 ft above the centerline of the beams at

the first, third, fifth and seventh levels.
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The third column from the left, highlighted in blue, is retained in the condensed

model. The horizontal responses of nodes 31, 32, 33, 34, 35, 36, 37, 38 and 39 (see

Figure 5.2) were selected as the basis of comparison of the models investigated herein.

Note that nodes 3 and 30 have zero displacements relative to the ground and are not

considered in the condensed model.

5.3.1 Nonlinear Finite Element Model (NFEM)

The NFEM of the 9-story building described here was developed in OpenSees (Mazzoni

et al., 2009). The material properties assigned to each element were Young’s modulus

E = 29000 ksi, yield stress σy,c = 50 ksi for columns, yield stress σy,b = 36 ksi for

beams, and 0.002 strain-hardening ratio. Isotropic and kinematic hardening were not

included (i.e., Hiso = 0 and Hkin = 0).

The beam-column elements that were chosen for this model have a flexibility-based

formulation in which the distribution of internal forces satisfy equilibrium exactly,

strains and curvatures are computed from the internal forces through the fiber-element

discretization of the cross section, and these strains and curvatures are integrated to the

nodal displacements of the element using numerical integration. The integration points

are based upon the Gauss–Lobatto quadrature rule which states that two integration

points are present at the element ends (Mazzoni et al., 2009). Beam-column elements

were discretized into fiber elements, which discretize the cross section into sub regions

of simpler, regular shapes (e.g., quadrilateral, circular and triangular regions) called

“patches”. A patch object was constructed with “quad patches” — four vertices define

the geometry of the patch. The fiber elements are associated with models for uniaxial

material behavior. Deformations of the fibers enforce the Bernoulli beam assumptions

(Mazzoni et al., 2009). For stresses that exceed σy, the previously-defined strain hard-

ening material was used.

Pushover responses were compared to models with varying numbers of fiber ele-
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ments and integration points used for each element. The computed nodal displacements

were found to be insensitive to the number of fiber elements used. The displacements

were observed to be sensitive to the number of integration points per element when 2 to

6 integration points per element were used, but not for elements with 7 to 10 integration

points per element; therefore, 10 integration points per element were selected in order

to maintain high accuracy throughout the procedure.

Total floor masses, including the structural elements, are 66.0 kips-s2/ft for the

ground floor, 69.0 kips-s2/ft for the first floor, 67.7 kips-s2/ft for second through eighth

floors, and for the roof (ninth floor) is 73.2 kips-s2/ft. The total mass of each floor is

lumped at the nodes of that floor. Before performing any transient analyses, the grav-

ity loads are applied first. Damping is added to the NFEM using Rayleigh damping,

assuming 2% damping for the first and third modes.

5.3.2 Linear Condensed Frame Model

A linear-elastic frame model given by Eq. (5.1) was constructed by extracting the struc-

tural mass (M) and stiffness (K) matrices from the NFEM in OpenSees. The Rayleigh

damping matrix (C) was constructed, using the extracted M and K matrices, assuming

2% damping for the first and third modes to be consistent with the OpenSees model.

The full model was then condensed using the procedure outlined in Section 5.2.2.

The retained coordinates were taken to be the horizontal displacements at nodes 31, 32,

33, 34, 35, 36, 37, 38 and 39; i.e.,

u = Sq = [u31, u32, u33, u34, u35, u36, u37, u38, u39]T (5.10)

The full model has 266 DOFs (82 unconstrained nodes × 3 DOFs per node, 2 one-

constrained nodes × 2 DOFs per node, 6 two-constrained nodes × 1 DOFs per node,

and 10 additional DOFs) which is reduced to 9 DOFs in the condensed model, corre-

sponding to a 97% reduction in DOFs.

134



Table 5.1 gives the natural frequencies ( fi = ωi/2π) for the OpenSees, full, and

condensed models, which shows excellent agreement. At this stage of the modeling, the

condensed model does not incorporate any hysteresis. The selection of the hysteresis

parameters is discussed in the next section.

5.4 Fitting of Inelastic Parameters

In order to estimate the hysteretic parameters for the condensed model, the response of

the condensed model with variable hysteretic parameters was fit to the response data

predicted with the OpenSees NFEM — which is treated as “measured” data. The sum-

of-squares error between the OpenSees inter-story drift ratio time-histories in all stories

and the condensed model’s predictions is minimized over the hysteretic parameters p =

[κ, η, z1,yield, z2,yield, . . . , z9,yield]T; ρ was fixed at 0.5, and κ and η were kept constant for

the entire model.

The OpenSees model “measures” the inter-story drift ratio ∆i(t j) ÷ hi (i = 1, . . . , 9)

at times t j ( j = 1, 2, . . . ,m); the corresponding predictions by the condensed model, for

a given set of parameters p, are denoted ∆̂i(t j; p) ÷ hi ∀i, j. The minimization problem

is posed as follows:

min
p

χ2(p) =

r∑
i=1

m∑
j=1

 1
wi j

∆i(t j) − ∆̂i(t j; p)
hi

2

≡

r∑
i=1

(
∆i − ∆̂i(p)

)TWi
(
∆i − ∆̂i(p)

)
(5.11)

where weighting matrices Wi = diag(h−2
i w−2

i j ). The weights wi j were taken to be:

Table 5.1: Natural frequencies fi [Hz] for the NFEM in OpenSees, full, and condensed models of
the 9-story structure.

OpenSees full condensed

f1 0.444 0.444 0.444
f2 1.179 1.179 1.179
f3 2.049 2.050 2.050
f4 3.103 3.103 3.103
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wi j =

√
m − np + 1∑r

i=1 ∆T
i ∆i

where np is the number of fit parameters.

Any optimization algorithms can be used for this minimization problem. In en-

gineering applications, mathematical or metaheuristic procedures are frequently used

(Alberdi and Khandelwal, 2015; Medina and Taflanidis, 2015). In this chapter, the

Levenberg–Marquardt algorithm was used to minimize the errors and fit the parame-

ters; the algorithm is briefly described here.

The Levenberg–Marquardt Algorithm (LMA) (Levenberg, 1944; Marquardt, 1963)

seeks to minimize χ2 (Eq. (5.11)) with respect to the parameters p, which is carried out

iteratively. The goal of each iteration is to find a perturbation δp to the parameters p

that reduces χ2. LMA involves a combination of the Gradient Descent Method (GDM)

and the Gauss-Newton Algorithm (GNA) (Gavin, 2017). GDM updates the parameter

values in the direction opposite to the gradient of the objective function. GNA assumes

that the objective function is approximately quadratic in the parameters near the solu-

tion and, in general, converges faster than GDM in the vicinity of a minimum. LMA

uses a mixture of these methods depending upon the difference between the parame-

ters from their optimal value. If the difference between the parameters and the optimal

value is large then the GDM is used; as the difference between the parameters and the

optimal value reduces, GNA is used. This algorithm was used in finding the values of

the hysteretic parameters used in the model reduction technique for nonlinear inelastic

analysis.

5.4.1 Loading Regimes Used to Fit Hysteretic Parameters

To be certain of which type of analysis would be appropriate for identifying the hys-

teretic parameters, a trial and error method was utilized. Model calibration data sets can
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be generated under a variety of simple loading regimes. Three loading regimes were

considered: (A) quasi-static pushover, (B) push and release, and (C) high amplitude

pulse response. While simple loading regimes are the focus of this work, more complex

loading, such as modulated sinusoidal loading (Gidaris and Taflanidis, 2013) or white

noise (Lin et al., 2001), may produce a better fit than the simple regimes considered, in

general.

Regime (A) — Quasi-Static Pushover The curve fitting was initially done using a cal-

ibration data set generated from a quasi-static pushover analysis of the OpenSees

NFEM with the inelastic condensed model. This involved a slowly increasing

ground-motion acceleration given by:

üg(t) = ügo
t
tf

(5.12)

where the amplitude of the ground motion, ügo, at the final time tf = 60 sec was

taken to be 0.275 g. Table 5.2 gives the fitted values for the hysteretic param-

eters. Figure 5.3 shows the inter-story drift ratio time-histories of the 1st, 5th,

Table 5.2: Fitted hysteretic parameters of the 9-story structure for loading regimes (A) quasi-static
pushover, (B) push and release, (C) high amplitude pulse response, and 1.5×El Centro.

Hysteretic Loading Regime
parameter (A) (B) (C) 1.5× El Centro

κ 0.0470 0.0326 0.2424 0.2166
η 2.5152 2.0904 3.5139 3.3978

z1,yield [in.] 3.0808 3.2251 3.3671 2.8728
z2,yield [in.] 1.8864 2.0070 1.4200 1.4196
z3,yield [in.] 1.7757 1.8685 1.5093 1.4664
z4,yield [in.] 1.7341 1.7887 1.5450 1.4664
z5,yield [in.] 1.6173 1.6415 1.6450 1.8096
z6,yield [in.] 1.5207 1.5039 1.7395 1.9968
z7,yield [in.] 1.9488 1.6213 1.9708 1.7316
z8,yield [in.] 2.5015 1.7479 2.0207 1.9812
z9,yield [in.] 2.9632 1.7250 1.7253 1.7160
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Figure 5.3: Quasi-static pushover analysis — inter-story drift ratio time-histories of the 1st, 5th, and
9th stories of the 9-story structure as calculated by the OpenSees NFEM and by the fitted inelastic
condensed model (condensed).

and 9th stories as determined by the OpenSees NFEM and by the fitted inelastic

condensed model.

Regime (B) — Push and Release The next regime that used for the curve fitting was

a push and release analyses of both the OpenSees NFEM and the inelastic con-

densed model. This calibration data set is generated by monotonically increasing

the ground acceleration from zero to 0.275 g over 60 sec, in accordance with Eq.

(5.12), and abruptly dropping the ground acceleration to zero at 60 sec. The push

time and the release time are selected to be equal (60 sec) in order to have the

same weighting in the fitting process. Unlike the quasi-static pushover analysis

(A), this calibration data set captures oscillator behavior of the hysteretic model,

as well as its residual displacements. The inter-story drift ratio time-histories of

the 1st, 5th, and 9th stories as determined by the OpenSees NFEM and by the

fitted inelastic condensed model is depicted in Figure 5.4. The fitted values for
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Figure 5.4: Push and release analysis — inter-story drift ratio time-histories of the 1st, 5th, and
9th stories of the 9-story structure as calculated by the OpenSees NFEM and by the fitted inelastic
condensed model (condensed).

the hysteretic parameters are given in Table 5.2.

Regime (C) — High Amplitude Pulse Response Finally, the NFEM and the con-

densed model were subjected to a high amplitude pulse. This high amplitude

pulse is a half-cycle sinusoidal pulse with period equal to half of the natural

fundamental period of the structure given by:

üg(t) =

ügo sin(4π fn1t), 0 6 t 6 1/(2 fn1)
0, 1/(2 fn1) < t 6 tf

(5.13)

where amplitude of the pulse ügo = 0.275 g and the final time tf = 60 sec. The

inter-story drift plots for the OpenSees NFEM and the inelastic condensed model

were computed and shown in Figure 5.5 and the corresponding hysteretic param-

eters are tabulated in Table 5.2.

More refined condensed models may be fit to the NFEM responses by allowing
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Figure 5.5: Pulse analysis — inter-story drift ratio time-histories of the 1st, 5th, and 9th stories of
the 9-story structure as calculated by the OpenSees NFEM and by the fitted inelastic condensed
model (condensed).

the fit to find different values of η, κ, and ρ for each story level. Doing so results in

a condensed model that has the slightly better predictive capability in terms of inter-

story drift ratios, but at the expense of slightly worse predictive capabilities in terms of

floor displacements (Mirza, 2014). Mirza (2014) also suggested that the list of r + 2 fit

parameters (r = number of stories) provides a good trade-off between the complexity of

the model and the overall predictive capability.

The fitted hysteretic parameters for the three simple loading regimes are given in

Table 5.2. In addition, the parameters were fit directly for the ground motion to be

used for evaluation (1.5×El Centro) as the best possible fit. Table 5.2 shows that the

parameters fit to each of the loading regimes are generally within ±20 percent of each

other. The asymptotic standard errors of the fit parameters are around 0.29% for the

zi,yield parameters, less than 0.04% for κ, and 1.05% for η. The fitting process can be

carried out in a few minutes on a standard office computer.

140



5.5 Comparative Evaluation of Analysis Procedures

5.5.1 Evaluation of IMC for the 9-story Structure

In this section, in order to identify the most robust loading regime for estimating the

peak responses of structures, a comparative analysis between the responses of the con-

densed models — obtained by those loading regimes — and the exact response of the

NLRHA of the NFEM is performed under a real earthquake scenario. Before perform-

ing any analyses, three sets of the parameter values are obtained by the three regimes

described earlier (see Table 5.2).

The histories of the displacements to structure height ratios (displacement ratios)

as well as the story drift ratios of the 9-story NFEM and the three different condensed

models — each obtained by fitting to one loading regime — under 1.5 × El Centro

ground motion excitation are plotted for the first story in Figure 5.6 and for the roof

in Figure 5.7. As depicted in Figure 5.6 for the first story, the peak responses of each

model are highlighted in the time histories; the peak displacement ratio and the peak

inter-story drift ratio for NLRHA are 0.234 and 1.587, respectively. The best estimates

of these two responses are 0.239 and 1.621 (2.1% errors), respectively, by the condensed

model fit to quasi-static pushover data (A). At the roof level, as shown in Figure 5.7, the

peak displacement ratio and the peak inter-story drift ratio for NLRHA are 1.181 and

1.467, respectively. The best estimate for the displacement ratio is 1.184 (0.25% error)

by the condensed model fit to pulse response data (C), and the best estimate of the drift

ratio is 1.457 (0.7% error) by the condensed model fit to push and release data (B), in

case of the peak values. However, the condensed model fit to the pulse response data

(C) is the only one that has captured the correct peak in time.

The peak responses — displacement to structure height ratios and story drift ratios

— for all stories under 1.5 × El Centro are presented in Fi. 5.8 for each of the assessed

models. Included in this figure is the condensed model fit to the El Centro time-history
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Figure 5.6: Time histories of the first floor of the 9-story structure under 1.5 × El Centro — NLRHA
and the condensed models each obtained by different loading regimes: (a) displacement to structure
height ratios; and (b) inter-story drift ratios.

data, which may be considered as the best fit in case of minimizing the sum-of-squares

error of drift ratios. The errors of these estimations are presented in Figure 5.9, which

makes the comparison easier. As shown in these two figures, the condensed model using

the pulse regime (C) consistently provides the best estimates of these two responses,

except in the first story.

In order to assess the distribution of plasticity in the structure, the procedure —

based on the maximum drifts — that is described in Reyes and Chopra (2011) and

Tehrani and Khoshnoudian (2014) is used. They have shown that the distribution of
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Figure 5.7: Time histories of the roof of the 9-story structure under 1.5 × El Centro — NLRHA and
the condensed models each obtained by different loading regimes: (a) displacement to structure
height ratios; and (b) inter-story drift ratios.

plasticity is highly correlated with maximum drifts. In this procedure, the maximum

drifts obtained from the analysis are converted to a set of cumulative displacements

(i.e. converted inter-story drifts to floor displacements and cumulatively added floor

displacements as going from the base level to roof) and are imposed to the lateral DOFs

in the NFEM as a displacement control pushover analysis. The status of the structure

at the end of the pushover analysis would be an estimation of the maximum plasticity

distribution.

The maximum drifts obtained from the condensed model fit to the high amplitude
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Figure 5.8: Height-wise distribution of peak responses of the 9-story structure under 1.5 × El
Centro for the inelastic ty model and different condensed models: (a) displacement to structure
height ratios; and (b) inter-story drift ratios.
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Figure 5.9: Height-wise distribution of peak responses’ errors of the 9-story structure under 1.5
× El Centro for different condensed models: (a) displacement to structure height ratios; and (b)
inter-story drift ratios.

pulse data (C) are used to estimate plasticity distribution. The simulation can output

curvatures at any location along the members. For example, the beams’ peak curvatures

on the right hand side of the 3rd column from the left are shown in Figure 5.10 and then

they are converted to the peak plasticity ratios — ratio of peak curvature to the yield-
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(a) Beam Curvature (b) Beam Plasticity Ratio 
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Figure 5.10: The height-wise plasticity distribution of the beams on the right hand side of the
3rd column (highlighted in blue in Figure 5.2) of the 9-story structure under 1.5 × El Centro; (a)
Curvatures obtained from the NFEM and the condensed model fit to pulse data and the value of the
yielding curvatures; (b) The corresponding plasticity ratios (ratio smaller than 1 is in elastic range
and the ratio over 1 is in plastic range).

ing curvature — to better represent if they are in elastic or plastic range. A plasticity

ratio smaller than one means the section is in elastic range while a ratio greater than

one means the section is in plastic range. This judgment is done using the red dotted

line in Figure 5.10(a). Each point on this line represents the yielding curvature for the

corresponding section. As shown in Figure 5.11, the moment-curvature of each section

is obtained and then the curvature value corresponding to the 5% deviation of the ide-

alized bilinear post-yield curve and the moment-curvature data is used as the yielding

curvature to judge if the curvature is in elastic or plastic range. The selection of the

yielding curvature value requires engineering judgment and is chosen to best represent

the plasticity distribution of the 9-story model presented in Chopra and Goel (2002).

However, the comparison with the NFEM is of importance.

Applying the same procedure for all the beams for the 9-story structure reveals the

overall beams’ plasticity distribution obtained from the condensed model fit to pulse

data (C) that is shown in Figure 5.12 and is compared with the beams’ plasticity ratios
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Figure 5.11: The considered value of the yielding curvature from the moment-curvature data pro-
vided by the OpenSees NFEM.
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Figure 5.12: Beams’ plasticity distribution of the 9-story structure under 1.5 × El Centro: (a)
OpenSees NFEM; and (b) Condensed model fit to pulse data (white circles represent rotations in
elastic range and colorful circles represent rotations in plastic range).

obtained from the NLRHA of the NFEM.

The distribution of plasticity ratio in each column can be obtained by the same

procedure considering the axial loads when calculating the yielding curvatures. For

instance, Figure 5.13 shows the height-wise distribution of the curvatures, obtained

from the condensed model fit to pulse data (C), of the 3rd column (highlighted in blue

in Figure 5.2) under 1.5 × El Centro, which are compared with the curvatures obtained
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Figure 5.13: The height-wise plasticity distribution of the 3rd column (highlighted in blue in Figure
5.2) of the 9-story structure under 1.5 × El Centro; (a) Curvatures obtained from the NFEM and the
condensed model fit to pulse data and the value of the yielding curvature; and (b) The corresponding
plasticity ratios (ratio smaller than 1 is in elastic range and the ratio over 1 is in plastic range).

from the NLRHA of the NFEM, and the value of the yielding curvatures at each point

in height. The corresponding plasticity ratios are plotted on the same figure.

Excellent agreement in both the distribution and the magnitude of plasticity is ob-

served in Figures 5.10, 5.12, and 5.13, which indicates that responses from the IMC

method can be used to accurately predict the distribution of peak plasticity ratios as

long as the estimation of maximum drifts are accurate.

Next, the IMC is evaluated for the 9-story structure under 3 × El Centro as a rep-

resentation of an intense ground motion excitation. The height-wise distribution of the

peak responses — displacement to structure height ratios and story drift ratios — under

this excitation for each of the assessed models, including the condensed model fit to

El Centro time history data, are presented in Figure 5.14 and their corresponding er-

rors are shown in Figure 5.15. As in the other cases analyzed, the inelastic condensed

model fit to the high amplitude pulse data (C) consistently provides the best estimates of

these two responses. As previously established, having accurate estimates of maximum

drifts will result in a good estimates of plasticity distribution (Reyes and Chopra, 2011;

147



(a) Floor Displacements (b) Story Drift Ratios 

Ground

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

0.0 0.5 1.0 1.5 2.0

Fl
oo

r

Displacement/Height (%)

NFEM
quasi-static
push and release
pulse
El Centro

Ground

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Fl
oo

r

Story Drift Ratio (%)

NFEM
quasi-static
push and release
pulse
El Centro

Figure 5.14: Height-wise distribution of peak responses of the 9-story structure under 3 × El Centro
for the inelastic NFEM and different condensed models: (a) displacement to structure height ratios;
and (b) inter-story drift ratios.
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Figure 5.15: Height-wise distribution of peak responses’ errors of the 9-story structure under 3 × El
Centro for different condensed models: (a) displacement to structure height ratios; and (b) inter-story
drift ratios.

Tehrani and Khoshnoudian, 2014).

In order to identify which regime provides the best estimate of hysteretic parameters

in a wide range of ground motion intensity, the responses of the NFEM in OpenSees

are compared with the responses of the equivalent inelastic condensed models under El
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Centro ground motion excitation with different scaling factors: 0.25, 0.5, 0.75, 0.85, 1,

1.5, 2, and 3. The selection of the structure and the scaling factors make this evaluation

possible to be compared with the estimates of the Uncoupled Modal Response History

Analysis (UMRHA) and the Modal Pushover Analysis (MPA) (Chopra and Goel, 2002).

The NFEM and the inelastic condensed model were subject to the El Centro ground

motion with various scaling factors. Maximum errors in estimating the peak displace-

ment to structure height ratios and the peak inter-story drift ratios at all stories are used

as a metric to compare different parameter fitting. Also, the linear condensed model

(without any hysteretic parameters) is assessed to present the accuracy of the linear

condensation method proposed in this chapter for linear elastic structures.

Figure 5.16 summarizes the errors for the linear condensed model (Eq. (5.1)) and

the inelastic condensed models fit to calibration data from the three described loading

regimes and the El Centro data (for each ground motion multiplier) as well as UMRHA

and MPA errors from Chopra and Goel (2002). The linear condensed model estimates

the displacement ratios with about 1% error and the drift ratios with about 4% error in

the linear range (scale factors 0.25 and 0.5) since the full and the condensed model have

the same modal properties (in the selected r = 9 modes). The estimation errors increase

dramatically as the structure moves to the inelastic range (scale factors 0.75 and higher).

Among the three regimes considered in this chapter, inelastic condensed models fit

to quasi-static pushover data (A) provide better estimates of displacement ratios and

inelastic condensed models fit to high amplitude pulse data (C) provide better estimates

of drift ratios. Among these three assessed regimes, inelastic condensed models fit to

high amplitude pulse data (C) provide the most consistent results for both displacement

ratios and drift ratios. The errors in the estimation of responses increase by increasing

the ground motion intensities and reach a plateau at around 20% errors. Both UMRHA

and MPA estimation errors of displacement ratios fluctuate with a maximum error of
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Figure 5.16: Errors in UMRHA, MPA, linear condensed model, and IMC with fitted parameters by
quasi-static, push and release, high amplitude pulse regimes, and El Centro as a function of ground
motion intensity for the 9-story structure: (a) displacement ratios; and (b) inter-story drift ratios.
UMRHA and MPA values are taken from Chopra and Goel (2002).

more than 30%. The UMRHA estimation errors of drift ratios are small in the linear

range and increase as the structure moves to the nonlinear range with a maximum error

of about 50%. The MPA estimation of drift ratios have around 20% error up to the

1.5 ground motion multiplier and these errors increase to about 33% for larger ground

motion multipliers.

A comparison — based on the results presented in this chapter — among MPA,

UMRHA, and the condensed model fit to the high amplitude pulse regime (C) reveals

the capability of the proposed IMC approach to estimate the structure responses, such

as displacements, story drift ratios, and plasticity distribution. This new IMC approach

can reduce the errors in estimates of displacements from 30% by MPA and UMRHA

to 20% and in estimates of drift ratios from 33% by MPA and 50% by UMRHA to

20%. These errors in the estimation of peak floor displacements and peak inter-story

drift are about half of the dispersion in the ground-motion prediction equations used in

Performance-Based Earthquake Engineering (PBEE) (Chiou and Youngs, 2008).
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5.5.2 Evaluation of IMC for Different Structures

In the previous section, the IMC is evaluated for the 9-story structure in detail. In this

section, different structures are evaluated with IMC to cover a wider range of structure

heights. The 3-story and the 20-story structure from the SAC project for the Los An-

geles, California region are selected (Ohtori et al., 2004). The 3-story structure has the

total height of 39 ft and is expanded in 4 bays of width 30 ft each with typical story

height of 13 ft. Beam to column connections are moment resisting except the connec-

tion of the rightest beams to the surrounding columns. The columns are fixed to the

base. The 20-story structure has the total height of 289 ft and is expanded in 5 bays of

width 20 ft each with typical story height of 13 ft except the first floor with 18 ft and

the two basements with 12 ft each. Beam to column connections are moment resisting

except the connection of the beams at the first basement level. The columns are pinned

to the base and the structure is laterally restrained at the ground level. More details can

be found in Ohtori et al. (2004). In both structures, the third column from the left are

retained in the condensed models. In the 3-story structure, the horizontal responses of

nodes 8, 13, and 18 (see Fig. 1 in Ohtori et al. (2004)), and in the 20-story structure

nodes 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, and

135 (see Fig. 3 in Ohtori et al. (2004)) were selected as the basis of comparison of the

models investigated herein.

The NFEM of the 3-story and the 20-story buildings were developed in OpenSees

(Mazzoni et al., 2009). The material properties and modeling assumptions are the same

as the 9-story building described in Section 5.3.1. The linear condensed model for both

structures are developed as described in Section 5.3.2, and the hysteretic parameters are

obtained by the fitting procedure as described in Section 5.4 using the three different

loading regimes. For the 3-story building, the selected loading amplitudes are 0.475 g

for loading regimes (A) and (B), and 0.550 g for loading regime (C). These amplitudes
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Figure 5.17: Height-wise distribution of peak responses of the 3-story structure under 1.5 × El
Centro for the NFEM and different condensed models: (a) displacement to structure height ratios;
and (b) inter-story drift ratios.
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Figure 5.18: Height-wise distribution of peak responses of the 20-story structure under 1.5 × El
Centro for the NFEM and different condensed models: (a) displacement to structure height ratios;
and (b) inter-story drift ratios.

for the 20-story building are 0.125 g for loading regimes (A) and (B), and 0.175 g for

loading regime (C).

The peak responses — displacement to structure height ratios and story drift ratios

— for all stories under 1.5 × El Centro are presented in Figure 5.17 for the 3-story
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Figure 5.19: Height-wise distribution of peak responses’ errors of the 3-story structure under 1.5
× El Centro for different condensed models: (a) displacement to structure height ratios; and (b)
inter-story drift ratios.
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Figure 5.20: Height-wise distribution of peak responses’ errors of the 20-story structure under
1.5 × El Centro for different condensed models: (a) displacement to structure height ratios; and (b)
inter-story drift ratios.

structure and in Figure 5.18 for the 20-story structure. The errors of these estimations

are presented in Figure 5.19 for the 3-story structure and in Figure 5.20 for the 20-

story structure. As shown in Figure 5.17, the loading regimes (A) and (B) have better

estimation of peak story displacement ratios and story drift ratios than loading regime
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(C). The errors of displacement ratios, as shown in Figure 5.19, are less than 10% for

loading regimes (A) and (B) and around 12% for loading regime (C). The errors of

drift ratios are less than 12% for loading regimes (A) and (B) and less than 20% for

loading regime (C). As shown in Figure 5.18, the loading regimes (A) and (C) have

better estimations than loading regime (B), which failed to estimate the maximum drift

ratio of the 17th story. The errors of displacement ratios, as shown in Figure 5.20, are

less than 10% for loading regimes (A) and (C) and less than 20% for loading regime

(B). The errors of story drift ratios for loading regimes (A) and (C) are less than 20%,

and the loading regime (B) failed to estimate the drift ratio of the 17th floor.

Similar to the 9-story building, the 3-story and 20-story buildings are evaluated

for various ground motion excitations’ magnitude ranging from 0.25 to 3 × El Centro.

These evaluations are depicted in Figure 5.21 for the 3-story building and in Figure

5.22 for the 20-story building. As shown in Figure 5.21, the IMC fit to quasi-static data

(A) or push and release data (B) can estimate the displacement ratios with maximum

errors less than 30% and these estimations for the IMC fit to pulse data (C) is less than

20%. The errors in estimation of the story drift ratios of the IMC fit to quasi-static data

(A) or push and release data (B) reach to 42% and 35%, respectively. This error for

IMC fit to pulse data (C) is less than 20%. As shown in Figure 5.22 for the 20-story

building, the IMC fit to pulse data (C) has maximum error around 10% for estimating

displacement ratios and around 34% for story drift ratios. These errors for the IMC fit

to quasi-static data (A) go to 21% and 43%, respectively. As can be seen, the IMC fit to

push and release data (B) is not able to estimate displacement and drift ratios for ground

motion multiplier larger than 2 and the errors of story drifts increase dramatically as the

structure moves to nonlinear range. The evaluation of IMC on different ground motion

multipliers and different structures reveals that IMC fit to pulse data (C) is more robust

than other two loading regimes. Moreover, as shown by the IMC fit to El Centro data,
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Figure 5.21: Errors of IMC with fitted parameters by quasi-static, push and release, high amplitude
pulse regimes, and El Centro as a function of ground motion intensity for the 3-story structure: (a)
displacement ratios; and (b) inter-story drift ratios.
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Figure 5.22: Errors of IMC with fitted parameters by quasi-static, push and release, high amplitude
pulse regimes, and El Centro as a function of ground motion intensity for the 20-story structure: (a)
displacement ratios; and (b) inter-story drift ratios.

there is a room for improving the IMC accuracy, by investigating other loading regimes

for creating calibration data.
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5.6 Summary and Conclusions

This section presents an inelastic model condensation (IMC) method that retains the

accuracy and inelastic behavior of NFEMs. This method involves condensing a linear

elastic structural model via its modal properties. The modes of the full model with

the highest participation are retained at a set of desired DOFs in the elastic condensed

model. Then, these modified mode shapes are used to construct the elastic stiffness,

mass, and damping matrices of the condensed model. In this case, the condensed DOFs

are one displacement coordinate per story level. Then, the displacement coordinates

are transformed to the inter-story drift coordinates and the elastic inter-story forces are

replaced with hysteretic forces and finally, the inelastic model is transformed back to

the displacement coordinates.

Building this model requires the fitting of a few hysteretic model parameters to a

short time history of inelastic responses computed by a NFEM. These responses can

be generated from a quasi-static pushover loading, push and release loading, or a high

amplitude pulse loading. Inelastic condensed models were fit to each of these three load-

ing scenarios and resulted in a set of inelastic parameters for each calibration loading

regime. The condensed model fit with the high amplitude pulse response data predicts

earthquake responses better than models fit with quasi-static pushover data or push and

release data. Also evaluated is the condensed model fit to the El Centro data for each

ground motion multiplier. It can be a representation of the best possible inelastic con-

densed model. However, in this chapter, the sum-of-squares error of drift ratios is used

for finding the hysteretic parameters while the peak maximum responses are used for

evaluation.

In the elastic range, predicted responses from such a condensed model are extremely

close to responses computed from the NFEM since these two models have almost the

same modal properties. The verification study, therefore, focused on high-amplitude
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inelastic responses. The condensed model, obtained by the high amplitude pulse load-

ing regime, is recommended in this chapter since it provides the most consistent and

accurate estimates especially for inter-story drift ratios. An advantage of the proposed

condensed model in estimating accurate drift ratios is that drift ratio is frequently used

as a metric to limit the level of damage such as allowable story drifts recommended

in ASCE/SEI 7-16 (2017). The decision to demolish a building after an earthquake is

informed significantly from the observed residual displacements; the assessment of the

IMC method in the context of fidelity in capturing residual inter-story drifts is a topic

of continuing work.

Another advantage of the IMC is the significant reduction in computation time.

The elapsed time for the 9-story NFEM under 1.5 × El Centro in OpenSees is around

297 sec, while this time for the equivalent IMC model, including the construction of

the condensed model, is around 6 sec in MATLAB, using a variable time step solver

(ode45). This shows around 98% reduction in computation time, which can be im-

proved by using low-level programming language codes, such as C.

Fitting different yield displacement parameters at each story, a single post-yield stiff-

ness parameter, and a single hysteretic knee-sharpness parameter resulted in a model

that had good predictive capabilities in terms of peak floor displacement ratios and

inter-story drift ratios. The relative errors in predicted displacement ratios and inter-

story drift ratios were less than 20% even for the high-intensity ground motions. The

prediction capability of this inelastic condensed dynamic model compares favorably to

the predictions afforded by models developed from existing nonlinear pushover analysis

methods. It is worth noting that the inelastic condensed model proposed in this chap-

ter can be easily extended for structures under biaxial excitations by substituting the

uniaxial hysteretic model, used in this chapter, with a biaxial hysteretic model (Harvey

and Gavin, 2014b). This chapter provided a proof of concept for IMC. In the future,
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the IMC should be evaluated under an ensemble of ground motions (with varying fre-

quency characteristics) where the mean responses would be the focus rather than the

detail time history responses. In addition, various loading regimes should be assessed

to find the most robust loading regimes such as modulated sinusoidal loading (Gidaris

and Taflanidis, 2013) or white noise (Lin et al., 2001); in Lin et al. (2001), it is shown

that white noise is more efficient than real ground motions for fitting hysteretic param-

eters. Moreover, IMC should be extended to consider various structural systems with

irregularities, which may require to increase the number of hysteretic parameters.
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Chapter 6

Summary, Conclusions, and Future Work

6.1 Summary and Conclusions

Loss of operation or harmful damage to buildings and industrial structures, as well as

equipment housed in them, have been observed during past extreme seismic events. One

of the main reasons for such damages is the performance degradation of both structures

and sensitive equipment. Equipment usually suffers from excessive transmitted total

acceleration. A common method to reduce equipment acceleration is vibration isolation.

Isolation elongates the natural period of the isolated equipment, resulting in a reduction

of acceleration at the expense of increasing the displacement demand. Isolation systems

have shown acceptable performance under low- to moderate-intensity excitation, while

impact is possible under extreme-intensity excitation.

This dissertation was focused on the assessment and design of innovative dual-mode

isolation systems—with an emphasis on rolling type isolation systems (RISs)—in order

to protect both equipment and the primary structure. First, in Chapter 2, an assessment

study was performed on the safety criteria for isolated telecommunication equipment

according to the GR-63-CORE guideline (Telcoridia, 2012). In this guideline, only one

accelerogram is introduced for the design and testing, which does not agree with the

required response spectrum (RRS) prescribed in the same guideline. In order to proba-

bilistically assess the safety of a system designed using the GR-63-CORE guideline, a

suite of synthetic accelerograms is needed. To generate such a suite compatible with the

159



RRS, several filters (i.e., a transfer function in the frequency domain) were developed to

convert a nonstationary Gaussian process to a compatible accelerogram. Then, the equa-

tion of motion for a RIS with circular profile was developed, and through a numerical

study it was shown that the designed isolation system for protecting the telecommuni-

cation equipment has a large failure probability under the synthetic accelerograms.

Following this observation, a dual-mode isolation system was proposed for impact

mitigation/prevention in Chapter 3. This dual-mode system was designed in a way that

not only not mitigates impact under extreme events (i.e., MCE-level), but also does not

alter the normal operation of the system under low- to moderate-intensity events (i.e.,

SLE- or DBE-level). To achieve this, a displacement threshold was defined based on

the displacement response under DBE-level. When the displacement demand is below

the threshold, the system is allowed to respond without any control action, while when

the displacement demand exceeds the threshold, a control mechanism modifies the sys-

tem’s dynamics in order to try to prevent impact. Optimal control was used to find the

best control mechanism for the active control region. The objective of this optimal con-

trol problem is to effectively utilize the available displacement (beyond the threshold

but prior to impact) while seeking to simultaneously reduce the sustained total acceler-

ation. The Euler-Lagrange equations are solved to find the open-loop solutions with a

constraint on the control action (to be zero) only when the displacement is smaller than

the threshold. The existence of this constraint makes the problem discontinuous and

difficult to solve. Besides, solving this open-loop problem requires knowledge of future

states (and costates), as well as the external loading history. Therefore, the problem was

redefined by solving independent optimal control problems over each excursion into

the active control region, in which the final time is not known a priori. An iterative

procedure was proposed to solve each optimal control problem with unknown fixed fi-

nal time. Then, based on the new formulation, a numerical exploration was performed,
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resulting in several design curves that can be used to obtain the appropriate weights in

the optimal control problem. For the purpose of illustration, a system equipped with

a Kelvin-Voigt device was designed and evaluated, which returned promising results

according to the objective of this formulation.

Moving from low to moderate seismic events to extreme seismic events, the design

objective moves away from equipment protection toward primary structure protection.

Consequently, the feasibility of a dual-mode vibration isolator/absorber was assessed in

Chapter 4. The idea is to have an isolation system to protect a single piece of equip-

ment or a group of equipment under low to moderate seismic events and use the isolated

mass as a vibration absorber under extreme seismic events. An isolation system with

nonlinear (cubic hardening) restoring force is considered. The hardening nonlinearity

makes it possible to transition from isolation behavior to the vibration absorber behav-

ior where the energy can be pumped out of the structure. To assess the feasibility of

such a system, the coupled equations of motion for a building system with nonlinear

attachments is developed. A reduced order modeling technique is introduced for linear

elastic structure with nonlinear attachments to decrease the computational cost of solv-

ing the full coupled nonlinear equations of motion. Then, the accuracy of the nonlinear

reduced order models (NLROMs) is evaluated by comparing response predictions un-

der a ground motion acceleration with varying amplitude to those of the full coupled

model. Then, the steady-state responses of the NLROMs are obtained using the har-

monic balanced method. These solutions are obtained in the form of transmissibilities

(roof displacement and isolated equipment total acceleration) by varying the frequency

and mass ratios (secondary to primary system), the excitation intensity, and the nonlin-

earity of the attached isolation system.

The reduced order modeling method in Chapter 4 is limited to the linear elastic

structure with nonlinear elastic attachment. Therefore, in order to make the assessment
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of nonlinear inelastic structures practically possible, a new inelastic model condensa-

tion (IMC) method for building structure is proposed in Chapter 5. In this approach, one

horizontal degree of freedom per story is kept in the condensed model. The condensa-

tion is performed using the selected modal properties obtained from the equivalent full

linear elastic structure, matching the modal properties of the full model at the selected

frequencies. After linear condensation, the inter-story restoring forces are replaced with

nonlinear hysteretic restoring forces. In this study, the Bouc-Wen model is used to sim-

ulate the hysteretic behavior; however, other hysteretic models can be used. The hys-

teresis model has several parameters that needed to be tuned. Optimization is used to fit

the responses of the inelastic condensed model with the response of the full high-fidelity

inelastic model under several loading regimes by varying hysteresis model parameters.

Then, the performance of inelastic condensation models obtained with different load-

ing regimes are validated using 3, 9, and 20 story structures under El Centro ground

motion acceleration with varying amplitude. This IMC method has shown acceptable

performance.

6.2 Future Work

This research is the first step toward assessing and designing innovative dual-mode

isolation systems. As a continuation of this research, the following are several areas

that have the potential for further investigation:

• The fragility curves developed in Chapter 2 should be extended to consider differ-

ent RIS configurations, such as rolling isolation bearings with other rolling pro-

files (e.g., spherical (Calhoun and Harvey, 2018)), double RISs (Calhoun et al.,

2019; Harvey and Gavin, 2014a), or a dual-mode RIS based on Chapter 3.

• The dual-mode system assessed in Chapter 3 is limited to the unforced system.

Forced systems with various forcing characteristics (e.g., harmonic loading, sine
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sweep, white noise, and real ground/floor motion) need to be considered. More-

over, the dual-mode system described in Chapter 3 is limited to a linear elastic

SDOF system. The concept of dual-mode systems needs to be extended for non-

linear elastic/inelastic single or multi-degree-of-freedom systems where the re-

duced order modeling approaches described in Chapters 4 and 5 can be utilized.

• The reduced order modeling method described in Chapter 4 was evaluated under

only one earthquake record (i.e., El Centro). Therefore, the method should be

evaluated under an ensemble of real or synthesized ground motion accelerations,

in order to capture ground motion variability (e.g., see Chapter 2).

• In Chapter 4, the dual-mode vibration isolator/absorber system was assessed un-

der only one earthquake record (i.e., El Centro) for only one type of nonlinearity

(i.e., cubic hardening). In the future, assessment should be done using an ensem-

ble of recorded ground motions, which includes the dominant frequency content

existing in the real ground motions. Also, other forms of nonlinearity such as hys-

teretic, higher-order, or piecewise (i.e., discrete transitioning between two modes

of operation) should be assessed.

• The inelastic model condensation method proposed in Chapter 5 should be ex-

tended to structures under biaxial excitation. This can be done by substituting

the uniaxial hysteretic model, used in Chapter 5, with a biaxial hysteretic model

(Harvey and Gavin, 2014b). Furthermore, the method should be extended to con-

sider various structural systems with irregularities, which may require to increase

the number of hysteretic parameters.

• The inelastic model condensation method proposed in Chapter 5 should be eval-

uated under an ensemble of ground motions (with varying frequency character-

istics) where the mean responses would be the focus rather than the detail time
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history responses. Also, various loading regimes should be assessed to find the

most robust loading regimes such as modulated sinusoidal loading (Gidaris and

Taflanidis, 2013) or white noise (Lin et al., 2001).
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M. Fröling, K. Persson, P.-E. Austrell, A reduced model for the design of glass struc-
tures subjected to dynamic impulse load, Engineering Structures 80 (2014) 53–60,
doi:10.1016/j.engstruct.2014.08.043.

L. Gallanti, D. Forcellini, Numeric Validation of 3D Printer Technology Applied to
Story Isolation on Tall Buildings, Journal of Statistical Science and Application 4 (05-
06) (2016) 132–143, doi:10.17265/2328-224X/2016.0506.002.

H. P. Gavin, The Levenberg-Marquardt method for nonlinear least squares curve-fitting
problems, online, URL http://people.duke.edu/∼hpgavin/lm.pdf, 2017.

H. P. Gavin, A. Zaicenco, Performance and reliability of semi-active equipment isola-
tion, Journal of Sound and Vibration 306 (2007) 74–90, doi:10.1016/j.jsv.2007.05.039.

O. Gendelman, Targeted energy transfer in systems with external and self-excitation,
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science 225 (9) (2011) 2007–2043, doi:10.1177/0954406211413976.

O. Gendelman, L. I. Manevitch, A. F. Vakakis, R. M’Closkey, Energy pumping in
nonlinear mechanical oscillator: Part I—Dynamics of the underlying Hamiltonian sys-
tems, Journal of Applied Mechanics 68 (2001) 34–41, doi:10.1115/1.1345524.

O. V. Gendelman, Transition of energy to a nonlinear localized mode in a highly asym-
metric system of two oscillators, Nonlinear Dynamics 25 (1-3) (2001) 237–253, doi:
10.1007/978-94-017-2452-4 13.

L. F. Geschwindner, Non-linear dynamic analysis of modal superposition, Journal of
Structural Division-ASCE 107 (1981) 2325–2336.

S. Gholizadeh, O. A. Samavati, Structural optimization by wavelet transforms and
neural networks, Applied Mathematical Modelling 35 (2) (2011) 915–929, doi:10.
1016/j.apm.2010.07.046.

169

http://dx.doi.org/10.1193/1.2982531
http://dx.doi.org/10.1193/1.2982531
http://dx.doi.org/10.1002/eqe.750
http://dx.doi.org/10.1002/eqe.751
http://dx.doi.org/10.1016/j.engstruct.2017.11.001
http://dx.doi.org/10.1016/j.engstruct.2017.11.001
http://dx.doi.org/10.1016/j.engstruct.2014.08.043
http://dx.doi.org/10.17265/2328-224X/2016.0506.002
http://people.duke.edu/~hpgavin/lm.pdf
http://dx.doi.org/10.1016/j.jsv.2007.05.039
http://dx.doi.org/10.1177/0954406211413976
http://dx.doi.org/10.1115/1.1345524
http://dx.doi.org/10.1007/978-94-017-2452-4_13
http://dx.doi.org/10.1007/978-94-017-2452-4_13
http://dx.doi.org/10.1016/j.apm.2010.07.046
http://dx.doi.org/10.1016/j.apm.2010.07.046


I. Gidaris, A. A. Taflanidis, Parsimonious modeling of hysteretic structural response
in earthquake engineering: Calibration/validation and implementation in probabilis-
tic risk assessment, Engineering Structures 49 (2013) 1017–1033, doi:10.1016/j.
engstruct.2012.12.030.

I. Gidaris, A. A. Taflanidis, D. Lopez-Garcia, G. P. Mavroeidis, Multi-objective risk-
informed design of floor isolation systems, Earthquake Engineering & Structural Dy-
namics 45 (8) (2016) 1293–1313, doi:10.1002/eqe.2708.

I. Gidaris, A. A. Taflanidis, G. P. Mavroeidis, Kriging metamodeling in seismic risk
assessment based on stochastic ground motion models, Earthquake Engineering &
Structural Dynamics 44 (14) (2015) 2377–2399, doi:10.1002/eqe.2586.

R. K. Goel, A. K. Chopra, Evaluation of modal and FEMA pushover analyses: SAC
buildings, Earthquake Spectra 20 (1) (2004) 225–254, doi:10.1193/1.1646390.

E. Gourdon, N. A. Alexander, C. A. Taylor, C.-H. Lamarque, S. Pernot, Nonlinear
energy pumping under transient forcing with strongly nonlinear coupling: Theoretical
and experimental results, Journal of Sound and Vibration 300 (3-5) (2007) 522–551,
doi:10.1016/j.jsv.2006.06.074.

E. Gourdon, C.-H. Lamarque, Energy pumping with various nonlinear structures:
numerical evidences, Nonlinear Dynamics 40 (3) (2005) 281–307, doi:10.1007/

s11071-005-6610-6.

L. Guerreiro, J. Azevedo, A. H. Muhr, Seismic tests and numerical modeling of a
rolling-ball isolation system, Journal of Earthquake Engineering 11(1) (2007) 49–66,
doi:10.1080/13632460601123172.

R. J. Guyan, Reduction of stiffness and mass matrices, AIAA Journal 3 (1965) 380,
doi:10.2514/3.2874.

M. Hamidi, M. H. El Naggar, On the performance of SCF in seismic isolation of the
interior equipment of buildings, Earthquake Engineering & Structural Dynamics 36
(2007) 1581–1604, doi:10.1002/eqe.708.

P. S. Harvey, Jr., G. Elisha, C. D. Casey, Experimental investigation of an impact-
based, dual-mode vibration isolator/absorber system, International Journal of Non-
Linear Mechanics 104 (2018) 59–66, doi:10.1016/j.ijnonlinmec.2018.02.013.

P. S. Harvey, Jr., H. P. Gavin, The nonholonomic and chaotic nature of a rolling
isolation system, Journal of Sound and Vibration 332 (14) (2013) 3535–3551, doi:
10.1016/j.jsv.2013.01.036.

P. S. Harvey, Jr., H. P. Gavin, Double rolling isolation systems: A mathematical
model and experimental validation, International Journal of Non-Linear Mechanics
61 (2014a) 80–92, doi:10.1016/j.ijnonlinmec.2014.01.011.

170

http://dx.doi.org/10.1016/j.engstruct.2012.12.030
http://dx.doi.org/10.1016/j.engstruct.2012.12.030
http://dx.doi.org/10.1002/eqe.2708
http://dx.doi.org/10.1002/eqe.2586
http://dx.doi.org/10.1193/1.1646390
http://dx.doi.org/10.1016/j.jsv.2006.06.074
http://dx.doi.org/10.1007/s11071-005-6610-6
http://dx.doi.org/10.1007/s11071-005-6610-6
http://dx.doi.org/10.1080/13632460601123172
http://dx.doi.org/10.2514/3.2874
http://dx.doi.org/10.1002/eqe.708
http://dx.doi.org/10.1016/j.ijnonlinmec.2018.02.013
http://dx.doi.org/10.1016/j.jsv.2013.01.036
http://dx.doi.org/10.1016/j.jsv.2013.01.036
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.011


P. S. Harvey, Jr., H. P. Gavin, Truly isotropic biaxial hysteresis with arbitrary knee
sharpness, Earthquake Engineering & Structural Dynamics 43 (2014b) 2051–2057,
doi:10.1002/eqe.2436.

P. S. Harvey, Jr., H. P. Gavin, Assessment of a rolling isolation system using reduced
order structural models, Engineering Structures 99 (2015) 708–725, doi:10.1016/j.
engstruct.2015.05.022.

P. S. Harvey, Jr., H. P. Gavin, J. T. Scruggs, J. M. Rinker, Determining the physical
limits on semi-active control performance: A tutorial, Structural Control and Health
Monitoring 21 (2014a) 803–816, doi:10.1002/stc.1602.

P. S. Harvey, Jr., K. C. Kelly, A review of rolling-type seismic isolation: Historical
development and future directions, Engineering Structures 125 (2016) 521–531, doi:
10.1016/j.engstruct.2016.07.031.
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Appendix A

Tabulated Summary of Optimal and

Clipped-LQR Results

A.1 Tabulated Summary of Optimal Results

The following tables summarize the piecewise optimal results for the system with an

initial condition of X(0) = [1, 1]T (Table A.1), [1, 2]T (Table A.2), [1, 3]T (Table A.3),

[1, 4]T (Table A.4), [1, 5]T (Table A.5), [1, 6]T (Table A.6), [1, 7]T (Table A.7), [1, 8]T

(Table A.8), [1, 9]T (Table A.9), and [1, 10]T (Table A.10).
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A.2 Tabulated Summary of Clipped-LQR Results

The following tables summarize the clipped-LQR results for the system with an initial

condition of X(0) = [1, 1]T (Table A.11), [1, 2]T (Table A.12), [1, 3]T (Table A.13),

[1, 4]T (Table A.14), [1, 5]T (Table A.15), [1, 6]T (Table A.16), [1, 7]T (Table A.17),

[1, 8]T (Table A.18), [1, 9]T (Table A.19), and [1, 10]T (Table A.20).
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Ẍ

R
M

S
Ẍ
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Appendix B

Nonlinear Transmissibility Curves

The following sections present the nonlinear transmissibility curves for all cases con-

sidered, highlighting the effects of frequency ratio Ω (Section B.1), mass ratio µ (Sec-

tion B.2), nonlinearity parameter κ (Section B.3), and excitation amplitude coefficient a

(Section B.4).
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B.1 Effect of Varying Frequency Ratio Ω

B.1.1 Roof Displacement
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Figure B.1: Effect of frequency ratio Ω on nonlinear transmissibility TR∆r of the roof displacement,
for µ = 0.3, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.
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B.1.2 Isolated Mass Total Acceleration
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Figure B.2: Effect of frequency ratio Ω on nonlinear transmissibility TRatotal of the isolated mass
total acceleration, for µ = 0.3, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.
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B.2 Effect of Varying Mass Ratio µ

B.2.1 Roof Displacement
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(c) (d)

Figure B.3: Effect of mass ratio µ on nonlinear transmissibility TR∆r of the roof displacement, for
Ω =

√
2, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.

209



1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

D
is

pl
ac

em
en

t T
ra

ns
m

is
si

bi
lit

y

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

D
is

pl
ac

em
en

t T
ra

ns
m

is
si

bi
lit

y

(a) (b)

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

D
is

pl
ac

em
en

t T
ra

ns
m

is
si

bi
lit

y

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

D
is

pl
ac

em
en

t T
ra

ns
m

is
si

bi
lit

y

(c) (d)

Figure B.4: Effect of mass ratio µ on nonlinear transmissibility TR∆r of the roof displacement, for
Ω = 2, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.
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(c) (d)

Figure B.5: Effect of mass ratio µ on nonlinear transmissibility TR∆r of the roof displacement, for
Ω = 4, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.
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B.2.2 Isolated Mass Total Acceleration
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Figure B.6: Effect of mass ratio µ on nonlinear transmissibility TRatotal of the isolated mass total
acceleration, for Ω =

√
2, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.
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Figure B.7: Effect of mass ratio µ on nonlinear transmissibility TRatotal of the isolated mass total
acceleration, for Ω = 2, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.
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Figure B.8: Effect of mass ratio µ on nonlinear transmissibility TRatotal of the isolated mass total
acceleration, for Ω = 4, κ = (a) 0, (b) 0.001, (c) 0.005, and (d) 0.01 in.−2, a = 1.414 g.
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B.3 Effect of Varying Nonlinearity Parameter κ

B.3.1 Roof Displacement
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Figure B.9: Effect of nonlinearity parameter κ [in.−2] on nonlinear transmissibility TR∆r of the roof
displacement, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, a = 1.414 g.

215



B.3.2 Isolated Mass Total Acceleration
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Figure B.10: Effect of nonlinearity parameter κ [in.−2] on nonlinear transmissibility TRatotal of the
isolated mass total acceleration, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, a = 1.414 g.
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B.4 Effect of Varying Excitation Amplitude Coefficient a

B.4.1 Roof Displacement

(a)

(b)

(c)

Figure B.11: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TR∆r of the
roof displacement, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, κ = 0.001 in.−2.
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(a)

(b)

(c)

Figure B.12: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TR∆r of the
roof displacement, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, κ = 0.005 in.−2.

218



(a)

(b)
1 2 3 4 5 6 7 8 9 10 11 12

0

5

10

15

D
is

pl
ac

em
en

t T
ra

ns
m

is
si

bi
lit

y

(c)

Figure B.13: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TR∆r of the
roof displacement, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, κ = 0.01 in.−2.
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B.4.2 Isolated Mass Total Acceleration

(a)

(b)

(c)

Figure B.14: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TRatotal of
the isolated mass total acceleration, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, κ = 0.001 in.−2.
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(a)

(b)

(c)

Figure B.15: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TRatotal of
the isolated mass total acceleration, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, κ = 0.005 in.−2.
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(c)

Figure B.16: Effect of excitation amplitude coefficient a [g] on nonlinear transmissibility TRatotal of
the isolated mass total acceleration, for Ω = (a)

√
2, (b) 2, and (c) 4, µ = 0.3, κ = 0.01 in.−2.
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