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INVERSE RANDOM SOURCE SCATTERING FOR THE
HELMHOLTZ EQUATION WITH ATTENUATION*

PEIJUN LIt AND XU WANGT

Abstract. In this paper, a new model is proposed for the inverse random source scattering prob-
lem of the Helmholtz equation with attenuation. The source is assumed to be driven by a fractional
Gaussian field whose covariance is represented by a classical pseudodifferential operator. The work
contains three contributions. First, the connection is established between fractional Gaussian fields
and rough sources characterized by their principal symbols. Second, the direct source scattering
problem is shown to be well-posed in the distribution sense. Third, we demonstrate that the micro-
correlation strength of the random source can be uniquely determined by the passive measurements
of the wave field in a set which is disjoint with the support of the strength function. The analysis
relies on careful studies on the Green function and Fourier integrals for the Helmholtz equation.
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1. Introduction. The inverse source scattering in waves is an important and
active research subject in inverse scattering theory. It is an important mathematical
tool for the solution of many medical imaging modalities [3, 13]. The inverse source
scattering problems are to determine the unknown sources that generate prescribed
wave patterns. These problems have attracted much research. The mathematical and
numerical results can be found in [7, 8, 17] and the references cited therein.

Stochastic modeling is widely introduced to mathematical systems due to un-
predictability of the environments, incomplete knowledge of the systems and mea-
surements, and fine-scale fluctuations in simulation. In many situations, the source,
hence the wave field, may not be deterministic but are rather modeled by random
processes [12]. Due to the extra challenge of randomness and uncertainties, little is
known for the inverse random source scattering problems.

In this paper, we consider the Helmholtz equation with a random source

(1.1) Au+ (K2 +iko)u=f, = e€R?

where d = 2 or 3, k > 0 is the wavenumber, the attenuation coefficient ¢ > 0 describes
the electrical conductivity of the medium, u denotes the wave field, and f representing
the electric current density is a random function compactly supported in a bounded
domain O.

In [4], the white noise model was studied for the inverse random source problem
of the stochastic Helmholtz equation without attenuation

Au+k2u=g+hW, e RY,

where g and h are deterministic and compactly supported functions, and W is the
spatial white noise. It was shown that g and h can be determined by statistics of the
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wave fields at multiple frequencies. The white noise model can also be found in [6]
and [5] for the one-dimensional problem and the stochastic elastic wave equation,
respectively. Recently, the model of a generalized Gaussian field was developed to
handle random processes [9, 14]. The random function is said to be microlocally
isotropic of order 2s if the covariance operator is a pseudodifferential operator with
principal symbol given by p(x)|£| 2%, where p > 0 is a smooth and compactly support
function and is called the microcorrelation strength of the random function. It was
shown that ;1 can be uniquely determined by the wave field averaged over the frequency
band at a single realization of the random function. This model was also investigated
in [20, 21] for the inverse random source problems of the elastic wave equation and the
Helmholtz equation without attenuation. In these works, the parameter s € [27 5+1)
and the random functions are smoother than the white noise (cf. Lemma 2.6): They
can be interpreted as distributions in W~<?(O) for any small € > () and p € (1,00) if
s = &; they are functions in C%*(R?) for any a € (0,s—%) if s € (4, 2+1). To the best
of our knowledge, it is still open on the problem of the stochastlc Helmholtz equation
driven by rougher random sources with s < &, where the distributional solution should
be studied since it is less regular than the one considered in the previous work.

In this paper, we propose a new model for the stochastic Helmholtz equation (1.1),
where the random source f is driven by a fractional Gaussian field (FGF) (—A)~2W
with s € [0, % + 1) (cf. Definition 2.2). The FGF's include various processes such as
Brownian motion (d = 1,s = 1), fractional Brownian motion (d = 1,% < s < %),
white noise (s = 0), Gaussian free field (s = 1), bi-Laplacian Gaussian field (s = 2),
the log-correlated Gaussian field (s = £), Lévy’s Brownian motion (s = £ + 1), and
multidimensional fractional Brownian motion (g < s < % + 1). A survey can be
found in [25] on some basic results of FGFs. These fields have significant applications
in finance, statistical physics, quantum field theory, early-universe cosmology, image
processing, and many other disciplines. In particular, the model problem considered
in this paper has an important application in medical imaging of lossy media such as
the human body.

The work contains three contributions in addition to the new model. First, we
demonstrate that the FGFs include the classical fractional Brownian fields. Moreover,
we establish the connection between the FGFs and rough sources characterized by
their principal symbols (cf. Proposition 2.5). Second, we examine the regularity of
the random source and show that the direct scattering problem is well-posed in the
distribution sense (cf. Theorem 3.2). Third, for the inverse problem, we prove that
the strength p of the random source can be uniquely determined by the high frequency
limit of the second moment of the wave field, which is stated as follows (cf. Theorems
4.2, 4.4, and 4.5).

THEOREM 1.1. Let d = 2,3. Assume that pu is compactly supported in O and
U C R? is a bounded open set such that distU,O) =: 1y > 0. For any x € U, it holds

e—olz—yl
Jim. k23R (2 k)| Cd/ | = —————p(y)dy = T (z),
r—y

where Cy = W Moreover, the strength p can be uniquely determined by the
integral TP (z).

In particular, if ¢ = 0, the strength p can also be determined uniquely by the
amplitude of the wave field averaged over the frequency band at a single realization
of the random source. It is worthy to be pointed out that (1) if s € [0, 4], the random
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function is a distribution in f € W 2-%P(0) for any € > 0 and p € (1,00) (cf.
Lemma 2.6), which is rougher than those considered in [9, 14, 20, 21]; (2) if o = 0 and
s € [4,4 + 1), the results obtained in this paper coincide with the ones given in [20].

The paper is organized as follows. In section 2, the random source model is intro-
duced. The relationship is established between the FGF and the classical fractional
Brownian motion; the regularity is studied for the random source. Section 3 addresses
the well-posedness and regularity of the solution for the direct problem. The inverse
problem is discussed in section 4, where the two- and three-dimensional problems
are considered separately. The paper is concluded with some general remarks and
directions for future work in section 5.

2. Random source. In this section, we give a general description of the random
source on R?. Let f be a real-valued centered random field defined on a completed
probability space (£2, F,P). Introduce the following Sobolev spaces. The details can
be found in [2].

o WP .= WP(R?) for s € R and p € (1,00). In particular, if p = 2, denote
H® .= W*2,

e Denote by WP the space of functions which are locally in W*?. More
precisely, for any precompact subset D C R, u|p € W*P(D).

e Denote by W;P(D) the closure of C§°(D) in W*P?(D) with D C R In
particular, if D = RY WP = WP,

Let f : Q@ — D’ be measurable such that the mapping w — (f(w), ¢) defines a
Gaussian random variable for any ¢ € D. Here, D’ is the space of distributions on
R?, which is the dual space of the test function space D. The covariance operator
Qs : D — D' is given by

(@, Qrv) = E[f, 0)(f,¥)] Yo, €D,

where (-, -} denotes the dual product. The derivative of a distribution g € D’ is defined
by

(0,9, 0) = —(9,02;0) Ve €D.
Denote by K¢(x,y) the Schwartz kernel of Qf, which satisfies

0.Qr0) = [ [ Kitwp)otayity)dody.
Rd JRd
Hence we have the following formal expression of the Schwartz kernel:

Ky(z,y) =E[f(2)f(y)]-

Assumption 2.1. The covariance operator )y of the source f is a classical pseu-
dodifferential operator with the principal symbol u(z)|£] 2%, where s € [0, % + 1) and
0<pueCgO).

The positive function p stands for the microcorrelation strength of the random
field f. The assumption implies that the covariance operator Qs satisfies

1 iz- n
(Qu)(@) = g [ € ela.)iEae W€D,
where the symbol ¢(z, ¢) has the leading term p(x)|¢|~2¢ and

(E) = Flul(e) = / e ()

Rd
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is the Fourier transform of ¢ [15, 16]. By the expression of @ si, we can deduce the
relationship between the kernel Ky and the symbol ¢(z,§). In fact, noting that

(st = [ ot0) | i [ el ierae] ao

- [t [, et { /. eiyfwy)dy} déda
/]Rd /Rd|: /d e ela, f)dﬁ] ()9 (y)dady,

we get that the kernel K is an oscillatory integral of the form

(2.) Ky(a) = gz [ 7 el )

2.1. FGFs. We introduce the FGFs, which can be used to generate random
fields satisfying Assumption 2.1.

DEFINITION 2.2. The FGF h® on R? with parameter s € R is given by

B = (=A)"3W,

s

where (—A)™2 is the fractional Laplacian on R? defined by
(2.2) (—A)u=F L [|EPFu()], aeR,

and W € D' is the white noise on R% determined by the covariance operator @y, :
L? — L2 as follows:

(0, Quy ) = E[(W, o) (W,¥)] = (p,9)r2 Ve, € L2

We denote by G4(R?) the space of FGFs with parameter s. Let h® ~ G,(R?) if
h* is a FGF on R? with parameter s. If d = 1 and s = 1, h! turns to be the classical
one-dimensional Brownian motion. If s = 0, h% = W is the white noise on R?. If
s < 0, h* is even rougher than the white noise. We refer to [25] and references therein
for more details about the FGFs and the fractional Laplacian.

To make sense of the expression h® = (—A)~3 W, we define

S {pe8: [parp(x)dz=0 V]a| <7} if r >0,
N if r <0,

where S denotes the Schwartz space. Denote by T the closure of SS_% in H=%. Then
the expression h® = (—A)~2W in Definition 2.2 is interpreted by

s

() i= (. (-8)F9) = [ () Fpl@)aW(@) Ve e,

The kernel Kp,s for the covariance operator @Qps of h® satisfies

(@, Q) = /Rd » Kps (z,y)p(x)¢(y)dedy Vo, € DN T,

Moreover, the kernel has the following expression. The proof can be found in [25].
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LEMMA 2.3. Let h® ~ G4(R?) with parameter s € [0,00). Denote H := s — 4.
(i) If s € (0,00) and H is not a nonnegative integer, then

Khs (l',y) = Cl(s7d)|x - y|2Ha

where C1(s,d) = 2_257r_%I‘(% —5)/I'(s) with I'(-) being the Gamma function.
(ii) If s € (0,00) and H is a nonnegative integer, then
Khs (.’E, y) = 02(87 d)“r - y|2H In |$ - y|a
where Cy(s,d) = (—1)E+12725F 1= /(HIT(s)).
(iii) If s =0, then
I{hS (‘T,y) - 5(‘7; - y)a
where §(-) is the Dirac delta function centered at 0.

2.2. Relationship with classical fractional Brownian fields. For any h® ~
Gs(R9), we define its generalized Hurst parameter H = s — 4. If s € (£, 2 4 1), h* co-
incides with the classical fractional Brownian fields B¥ determined by the covariance
operator Qg :

23)  (eQuev) = [ [ SR+ P o=y plo)is(o)dody

where the Hurst parameter H € (0,1).

LEMMA 2.4. Let s € (4,2 4+ 1) and h® ~ G4(RY). Then the stochastic process
defined by .
he(z) = (h®, 64 — do)

has the same distribution as the fractional Brownian field BH with H = s — g € (0,1)
up to a multiplicative constant, where 6,(-) € H™* is the Dirac measure centered at
x € RY.

Proof. By Lemma 2.3, the kernel of the covariance operator reads
E[h*(2)h* (y)] = E[(h*, 8, — 6o)(h*, 8, — 60)]
= 01(8, d)/ / ‘7’1 - T’Q‘ZH((SQC - 50)(T1)(5y - 50)(T2)d?”1d7"2
Rd JRd

= C1(s,d) (lx — y*" = =" = [y")

which is a scalar multiple of the kernel of the covariance operator Q g defined in (2.3).
The result then follows from the fact that the distribution of a centered Gaussian
random field is unique determined by its covariance operator. 0

Note that (h®,d, — do) is actually a translation of h®. It indicates that we can
identify h* ~ G4(R?) as the fractional Brownian field BY with H = s — % € (0,1) by
fixing its value to be zero at the origin. Define a random function

(2.4) f(x,w) = a(z)h®(r,w), xR we,

where s € (4,4 +1) and a € C§° with supp(a) C O. We claim that such an f defined
above satisfies Assumption 2.1. More precisely, the covariance operator Q¢ of f has
the principal symbol a?(z)|£|~2% up to a multiplicative constant.
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PROPOSITION 2.5. The random field f defined in (2.4) with s € [0, %—I—l) satisfies
Assumption 2.1 with u = a?.

Proof. According to Definition 2.2, the covariance operator @)y of f satisfies

(0, Qr¢) = E[<ahs,<p><ahs,¢>]=EUR (—A)"F(ap)dW [ (=A)"%(ay)dW

d RA

:/ (—A)"2 (ap)(—A) "2 (at))dz

Rd,
= ﬁ / FIEA) E @] OF [(-) 7 @v)] (©)de,

where the Plancherel theorem is used in the last step. It follows from the definition
of the fractional Laplacian given in (2.2) that we get

1 —2s/ TN
(. Q) = o [l @O @) €

= G L1 Md“(x)@(x)ewdx] [/R aly)p(y)e " dy| de

ﬁ/ﬂ{d /Rd /Rd @(x)w(y)ei(z—y){aQ(x)|€|—2sd§dxdy

_ﬁ /R /R /R (@) (y)e' " Ca(w) (a(z) — aly)) ¢~ dedady
=11 + I>.

Noting a(x) — a(y) = Va(0z + (1 — 0)y) - (x — y) for some 6 € (0,1) and
/ T a(br + (1 - 0)y) - (v — y)[¢|7>d¢
Rd

=1 ] Valr+1-0w)- (@-y)lw-y) @ -yl @@=y | d T

= —2is/ @ ETa(z + (1 - 0)y) - (x — y)
Rd
[(2—y) (@ =) (@ —y) eI dg,

we conclude that the term I5 contains only higher order terms of the symbol and the
term I; contains the principal symbol a?(x)|¢|~2%, which completes the proof. O

2.3. Regularity of random sources. By Proposition 2.5, for any function f
satisfying Assumption 2.1 with parameter s € [0, g + 1), its principal symbol has the
same order as the principal symbol of the random field ah®. Without loss of generality,
we only need to investigate the regularity of random fields given by f = ah®, where
a € C§° and supp(a) C O. Moreover, we assume that f is a centered random field to
avoid using the modification (h®,d, — dp).

LEMMA 2.6. Let s € [0, 2+1) and h* ~ G4(R?). Define the random field f := ah®
with a € C§° and supp(a) C O.
(i) If s € (%, +1), then f € C*® almost surely for all o € (0,s — 4).
(ii) If s € [0, 4], then f € We=5=P(O) almost surely for any ¢ > 0 and p €
(1,00).
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Proof. (i) If s € (4,4 + 1), it follows from Lemma 2.4 that f has the same
distribution as aB¥, where B¥ is a classical fractional Brownian field on R? with the
Hurst parameter H = s — 4 € (0,1). Note that B¥ is (H — €)-Holder continuous for
any € € (0, H). Hence, f € C%* with a € (0, H) = (0,s — %).

(ii) We first consider the case s = 0. Note that f = ah® = aW has the same
regularity as the white noise. Hence, f € W‘g_e’p((’)) for any € > 0 and p € (1,00)
(cf. [26]). .

If s € (0, ], as a smoothing of the white noise, it holds f = ah® = a(—A)"2W €
Ws=2=5P(0) for any € > 0 and p € (1, 00). |

The readers are also referred to [9, Proposition 2.4] for an alternative proof of the
regularity of random fields satisfying Assumption 2.1.

3. Direct scattering problem. This section is to investigate the well-posedness
and study the regularity of the solution for the direct scattering problem.

3.1. Fundamental solution. Let x? = k? + iko with R[k] > 0. A simple
calculation yields that

7 PP 2\ 3 7 22 _ 12\ 3
éR[K,]:K',r:< k+k20 +k>7 %[K}]:K}i:( k+k20 k>’

and

Ky . o
1 lim — =1 1 = —.
(3.1) Jm o Jm k=g

Then the Helmholtz equation (1.1) can be written as
(3.2) Au+k*u=f inRY

The Helmholtz equation (3.2) with a complex-valued wavenumber has the fundamen-
tal solution W

LEO (ke —yl), =2
q)f@ 5 = 4 Oin z—y ' ’
(.73 y) { 1 el | d—= 3’

ar Jz—yl
where Hél) is the Hankel function of the first kind with order 0.

3.2. Well-posedness and regularity. Using the fundamental solution ®,, we
define a volume potential

(Vaf) (&) = — / B, (2,9)  (y)dy.

Rd
The mollifier V,; has the following property, which will be used to show the well-
posedness of the direct scattering problem.

LEMMA 3.1. Let D and U be two bounded domains in R%. The operator V,, :
Hy?(D) — HP(U) is bounded for 8 € (0,1].

The proof of the above lemma can be found in [24] and is omitted here. Now we
are at the position to show the well-posedness of (1.1) in the distribution sense.

THEOREM 3.2. Let [ satisfy Assumption 2.1 with s € (% -1, g} and p € (%, ].

Denote H = s — 4 € ((% —1)d —1,0]. Then the scattering problem (1.1) admits a
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unique solution u € VVl;CH“’q almost surely in the distribution sense with q satisfying

% + % = 1. Moreover, the solution is given by

uaik) == [ B 1)y

Proof. We only need to show the existence of the solution since the uniqueness
follows directly from the deterministic case. Since f satisfies Assumption 2.1, accord-
ing to Proposition 2.5, f has the same regularity as the random field defined in (2.4).
Hence, it follows from Lemma 2.6 that f € W7 =¢P(0O) for any ¢ > 0. For any z € R?,
define the volume potential

waik) == [ Sy == [ @uwnrwi.

First we show that u. is a solution of (1.1) in the distribution sense. In fact, we
have for any v € D that

(Auy 4 K2y, v) = —(V,, V) + K2 (1, v)
L Vel [ o nswa)vo@ar— [ [ [ oo rado@

- [ [ A @i = [ [ [ o nsmi]ues

Rd

d JRd
— [ [ (P utan) + 8l = ) vie) fo)dody — o [
Rd JRd
v

]Rd
).

It then suffices to show that u, € WI;CH +949 which is equivalent to show that

du, € WHT4 for any ¢ € C§° compactly supported in i C R? with a C''-boundary.
Define a weighted potential

[/qu’n(%y)f(y)dy}v(z)dx

(V) = o) [ @uw) )y, = eu.

By Lemma 3.1, the operator Vj, : HO_/B((’)) — HP(U) is bounded for any 8 € (0, 1].
For parameters p, ¢, and H satisfying assumptions in the theorem, by choosing 5 = 1
such that % > % — w, we get from the Kondrachov embedding theorem that
the embeddings

Wo'=“P(0) — Hy P(0), HPU) — W H+ea(y)

are continuous. Consequently, Ve : WIP(©) - WH+eq(f) is bounded, which
shows that ¢u, = V. f € W—H+%% and completes the proof. 0

Remark 3.3. It follows from Lemma 2.6 that the random source is a continuous
function for s € (£, 4 +1). The well-posedness of the scattering problem (1.1) is well
known since the source f is compactly supported and regular enough [10].

4. Inverse scattering problem. This section addresses the inverse scattering
problem. The goal is to determine the strength p of the random source f. We discuss
the two- and three-dimensional cases separately.
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4.1. Two-dimensional case. First we consider d = 2 in which s € [0, % +1)=
[0,2). Recall that the Hankel function has the following asymptotic expansion [1]:

o0
(4.1) Hél)(z) ~ Zajz_(j"’%)eiz, z€C, |z| = oo,
j=0

N

where ag = \/%e_

and a; = \/g(é)J( {:1(21 —1)2/jDe~*F,j > 1. Denoting

N .
1 —(i+1) iz 1 1
B (2) =Y a2 006z ol (a,y) = ZH&J)\,(/{@*@/D,
=0
we have

O, (z,y) = N (z,y) + O(|xlz —y||" D)), NeN,

as |k|lz — y|| — oo due to k; > 0. Based on the truncated fundamental solution
®2(x,y) by choosing N = 2, we first consider the approximate solution

ia —1 iklz—
i) == [ @iy =12 [ (e =yl e )y
R2 R2
ia —3 iklz— ia -5 ik|lz—
(4.2) - (Rl =y = ydy - =7 (sl =)z vl f (y)dy.

Let U C R? be a bounded domain satisfying dist(U,O) = ry > 0. First we show
that the strength p of the source f given in Assumption 2.1 can be reconstructed
uniquely by the variance of the solution u on U.

ProposSITION 4.1. Let d = 2, k > 1 and the assumptions in Theorem 3.2 hold.
Then the following estimate holds:

Elu®(z; k)[> = T (2)|s| 'k 2 + O (572°72), z €U,

r

where

T 1 672ni|z7y| J
() = ﬁ/ﬂp Wﬂ(y) Y

—25—2
T

25—2

and the residual term O(k ) s an infinitesimal function equivalent to k; as

Ky — 00.

Proof. For any = € U, we have from the expression of u? given in (4.2) that
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2 m|a: |—iRk|z—z|
B pP = oL [ S i) (s

16]s] @ — yl3fz— 23

aoa1 eirlz—y|—ikle—z|
{SW ] /]R? /Rz o — g3z — 2|3 —— 3 E[f(y) f(2)ldyd=z
|a1|2 m|x y|—ik|z—z|
16|’{‘3 /]RZ /Rz |z — y| — Z| —=—= E[f(y) f(2)ldyd=
apaz eirlz—y|—ik|z—z|
E dyd
R Ertl W R e e OV CIT

a1a2 eirlz—y|—iR|e—z|
T dyd
{SW” :|[R /R = —ylie—2|F [f(y) f(2)]dyd=

a22 m|r y|—ik|z—2z|
(4.3 el [ B @

BRGEE o — yl¥lz — 23

To estimate all the above terms, it suffices to consider the following integral with
ll, Iy € {O, 1, 2}

m|a: y|—ik|z—z]
I, 0, (2 k) / / K(y, 2)0(x)dydz
1,02 w2 Jre |:E—y\’+l1|x—z\’+l2 f(y ) ( ) Y

elrlz—y|—ikle—z| .
4.4 P
- /1R2 /]RZ |z —y ‘§+l1|x,Z‘§+12 1(y, 2, @)dydz

where C1 (y, z,7) := K¢(y,2)0(x) and § € C§° such that |y, = 1 and supp(#) C R*\O.
According to (2.1), the kernel C; in (4.4) is also an oscillatory integral

Crly, =) = /f S0 Se (. 2, €)de

(@2m)? Jre

and is compactly supported in OY := O x O x supp(f), where ¢ (y, z,€) := c(y, £)0(z)
and c(y, §) is the symbol of the covariance operator Q¢ of the random field f. Since
f satisfies Assumption 2.1, we get ¢; € S~2¢ with the principal symbol

Ay, z,€) = u(y)o(z)le) =,

where S™ denotes the space of symbols of order m. Moreover, C; is a conormal
distribution in R of the Hérmander type having conormal singularity on the surface
S :={(y,z,z) € R®:y—2 =0} and is invariant under the change of coordinates [16].

To calculate the integral in (4.4), it is necessary to consider different coordinate
systems. Define an invertible transformation 7 : R® — RS by

T(y,Z,l’) = (g,h,$),

where g = (g1, 92) and h = (hq, ho) with

1 . (Y1 — @1 . (71— @1
> ||z — ylarcsin ( ) — |x — 2] arcsin ( ) ,

2 [z =yl |z — 2|

1
g1=5 17—yl — o = ), o=

1 1 — —
h==(z —y|+ |z — 2]), he=% |x—y|arcsin(y1 xl) +|9L°—z|au1rcsin(z1 xl) )
2 2 |z —y]

|z — 2|
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Under the new coordinates system, (4.4) can be written as

: C
111712(3;;@:/ / eirr (jo—yl—le—z))—ri(Je—y|+lz—z]) ;S/vz’“) ——dydz
R? JR2 |z —yl2 Tz — 2|27

(45) :/ / elzeler a2l Oy (g, b, w)dgdh,
R? JR2
where e; = (1,0) and

|det((77")" (g, h,2))|
(g+h) e))2 " ((h—g)-e)* ™"
(4.6) =:C1 (17 g, h,2)) L7 (g, h, ).

Co(g,h,x) = Ci(t7 (g, h, 2))

To get a detailed expression of Cy as well as its principal symbol, we define another
invertible transformation 7 : R® — RS by

n(y, 2 z) = (v,w,z),

-1

where v =y — z and w = y + z. Consider the pull-back C5 := Cy on™" satisfying

Cs(v,w,z) = Cy(n (v, w,z)) = C’1<U+w w_v,x>

2 2
:ﬁ/ua e 1( ) T 5) d§ = ﬁ/ﬂ{z eViey (w, x, €) dE,

where we have used the properties of symbols (cf. [16, Lemma 18.2.1]) and that c3
has the following asymptotic expansion:

63(w7 z, g) = eii<Dv)D§>Cl (HJ? z, g)

> 1DU,D v+ w
NZ 5 1( 9 71’,5)
=0

<.

Moreover, the principal symbol of c3 is
B w o qw _os
cg(w,x,f)—cﬁ)(—Q,x,f) —,u(—z)é?(a:)m .

Finally, we define a diffeomorphism v := no 77! : (g9,h,2) = (v,w,z), which
preserves the plane {(g,h,z) € R® : g = 0}; i.e., if g = 0, then v = 0. By Theorem
18.2.9 in [16], the pull-back Cy := C3 o can be calculated by

04(97 h7$) = C3( (gvh ‘T)) (2711_) / g.£C4 (h7l‘,§) dg,

where
C4(hv '7;75) =3 (72(0’ h7 33), (711(07 hv x))ng) |det (711(07 hv $))|_1 + T3(h7 €T, 5)
= C§(72(07 h’ .CE), (711(07 hv x))ng) |det (711(0’ h7 I))|71 + T’4(h, &€, g)

Here the residuals r3,r4 € S™2571 v = (v1,72) with v1(g, h,2) = v and Y(g, h,z) =
(w, ), and ~1, is determined by the Jacobian matrix

! |: 711 712 ]
Y= ’ 7 .
Y21 V22
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Hence, ¢4 € S72¢ is still C*°-smooth and compactly supported in the variables (h, z)
with the principal symbol

w(0,h, x)

(47) Ci(h7ma€) :M( 9

)0() | (9120, )~ TE| " det(97, (0, b))

Noting that Cy = C30y = C1on "t onor™! = C; o771 and combining with
(4.6), we obtain

02(9, h7$) = 04(97 ha x)LT(g7 ha :E)

(48) = (2717_)2 /]Rz eig-§C4 (ha ‘T7€) LT(g7 h7 I)d§ = (2711_)2 AQ 6ig.£C5(h7 €L, §)d§,

where we have used Lemma 18.2.1 in [16] again and the fact that the function
L™ (g,h,x) is smooth in the domain 7(0?). Similar to the asymptotic expansion
of c3, we have

. (—=iD,, D¢)? .
csth.§) ~ 3 TP (e ) 1) |

= ! =
Using (4.7) and the expression of L™ defined in (4.6), we obtain the principal symbol
E(h,x,&) =l (hyz,&) L7(0, h,x)

B “(M)%ﬂ |(712(0, )7 T€

= | det((7~1)(0, h,2))|

4.
(4.9) ety (0, 2))] (7 - o) TFHTE”

and residual r5 := 5 — ¢k € ST 7L
Let a = Z—f Simple calculations show that

ov % %
Vil(oa h,l’) = ﬁ(oahvz) = ai; 8752 (O,h,,l’)
9 991 Og2

. sino —acosa  coso
cosa+asina —sino

is invertible since det(v1,(0, h,2)) = —4 and ¥2(0, h, z) = (w(0, h, ), x) with

(4.10) w(0,h, ) = (2hy sin (@) + 221, 2Ry cos (@) +223).
h1 h1
Moreover, a straightforward calculation gives
—1\/ 8(y7 2 CL’)
(7’ ) (0,h,z) = 76(9,]1,3&)
g=0
sina — acos a cosa sina—acosa cosa 1 O
cosa + asin« —sina cosa+ asina —sina 0 1
—sina 4+ acosa —cosa sina—acosa  cosa 1 0
| —cosa—asina  sina  cosa+asina —sina 0 1
0 0 0 0 1 0
0 0 0 0 0 1

and det((771)/(0, h,z)) = 4.
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Combining (4.5) and (4.8)—(4.9), we obtain

Izl,zz(x;k):/ / ei2rr(e1-g)=2xi(e1-h)

R2 JR2

/ el9's (Ci(hax,E)LT(O,h,I) + Ts(hwf))dé} dgdh
RZ

1
) [(W
= [ [ e e [, 9170 ba) o, )]0 2mren + €
RrR2 JR2

:/ e~ 2ri(erh) [c%,j (h,x,fQIfrel)LT(O,h,:c)+r5(h,x772nrel)]dh
IR2

- oo ’w07h,$ _ —2s
_ / o—2kile1 h)M(%)e(x) ‘(711(0, h,x)) T(—2:‘<ﬂrel)|
L JR?
1 —2s—1
X eyt O(k; )]
r e—2ri(e1-h) w(0, h, ) —2s —2s—1
a _/]R2 (61.h)1+11+lz“( 2 >9($)dh] ol )
(4.11) = Ml’?,lQ (fE)/{r—2S + O(Kr_%_l),

where we have used the fact that §(§) = ﬁ Jza e ¢dzx in the second step and

e 6—2Ki(€1~h)
M}, (x) = /R2 (1 - h)1+11+l2“

To simplify the expression of M} |, (x), we consider the following coordinate transfor-

mation from A to (:
. (h h
(= (h1 sin (hi) , hq cos (ﬁ)) + z,

which has the Jacobian

o (b h h h
det (34) | sin (ﬁ) — pocos | 32 cos (h—f)

) = =-—1.
hy ha ha - hy
cos ( ) + hy sin m sin hl)

(w(O,h,x)

5 )H(m)dh.

>

oh
Ry

Noting also that |z — (| = e1 - h and w(0, h, x) = 2¢ according to (4.10), we obtain for
x € U that

. e 2alerh) - rw(0,h, x)
M}, () = /Rz (1 - h)1+h+lz’“( 2 )Q(x)dh
e—2nilz—C| ac\ !
= /Rz Wﬂ(()ﬂx) det <8h>
ef2ni|qu
- | s gqmmmn @
By the definition of I, ;, defined in (4.4) and its estimate given in (4.11), the
energy E|u?(x;k)|? given in (4.3) turns to be

g
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~ aol?
16| |

agaq
8|k

a1ag . \a2|
e oo + R [ nate]| + i

+" La(as k)

Elu®(z; k

——Ioo(x; k) +R

IO 1( k‘)

apaz2 2

| 8]k

(a0l () e 0 o o —2ee
= Tojn] [Mo(@)As™ + O™ )

+x

I a(x; k)

_(l()C_ll K —2s —2s5—1
+§R _8|I’€‘K§ (MO,l(x)ﬁr +O(Hr )):|

|a‘1|2 K —2s —2s—1
+16|/‘€|3 [Ml,l(x)ﬁr +O(I€r )]

[ aplz K —2s —25—
FR |0 (M5l + O]

R | 892 (e ()2 + 0(@28-1))}

| 8]K[°K

2
a2 K —2s —2s—
1|6| ||5 [MZ,Z(‘T)Hr 2 + O(Kr 2 1)]

2
a
= 1900 g )l O ),

+

which completes the proof. ]

THEOREM 4.2. Let d = 2 and assumptions in Theorem 3.2 hold. For any x € U,
it holds

2s+1 1 e cleyl (2)
hm KRB u(z; k)|? = e / Wu(y)dy =T (z).

Proof. Note that
K2 Elu(z; k)2 = k2 Eu?(z; k)2 + 22T ER [um; k) (u(a; k) — u?(z; k))}

+EPTE |u(as k) — o (2 k)|2
=:Vi(k) + Va(k) + V().

Next we calculate the limits of V1, V5, and V3, respectively.
Using the asymptotic expansions of the Hankel function in (4.1), we get

[HD (5]z = yl) = HO (klz = y])| = O(lsle =yl =N 9), &k — oc.
Noting Hél)/(z) = —Hl(l)(z), we have
(N1 —(N+3
0, H (sl — ) — 0y, HS X (sl — y)] = O(Isl" N+ Dl | V+D), k5 o0,

Hence

2

Efu(z; k) — u?(z: )2 = E /O (B, ) — B2 (2,9)) F)dy

S 1@x(z, ) — ‘I’i(% ')H%/Vlvq(o)]E”fH%V*l’P(O)
S 1@, ) = 2, )iyra o) BN f Iy a—cnio) S 16175,
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where f € L*(Q,WH=9P(0)) C L*(Q,W~"P(0)) for H € (2 —2,0] and p € (1,2]
and % + % = 1 according to Theorem 3.2 with d = 2. It then indicates that

‘/3(](5) 5 k28+1|,€‘—5 _ k2$+1(k‘4 + k,202>—% 0

as k — oo since s < 2 for d = 2.
For V(k), we have

1

= 2Vy (k)2 Vs (k)?,

=

Va(k) < 2 (K2 F1Eu(z; k)[?)? (K2 Elu(z; k) — u? (2 k) )

which converges to 0 if the limit of V; (k) exists.
For Vi (k), by Proposition 4.1,

Vi(k) = T, () k2 k|~ k28 + O+ 5 72572),

We have from (3.1) that

. . |a0|2 e—clz—yl

which completes the proof. 0

Remark 4.3. Tt can be seen from the above proof that only two terms are needed
in the truncation of (4.1) if the source is extremely rough with s € [0,4). More
precisely, it suffices to consider the approximate solution

wak)i= = [ @) )y

instead of u?, where V3(k) < k?*71|k[~2 — 0 as k — oo since s < 4 = 1.

Next, we show that the strength p is uniquely determined by the measurement
T (z) in the bounded open set U given in Theorem 4.2. To have the three-dimensional
case included, the following uniqueness result is given for the d-dimensional case with
d=2,3.

THEOREM 4.4. The strength p is uniquely determined by

—olz—y|
7(2) = C | Wy, el R,

R4 ‘.’ﬂ—

where Cyq = W and d = 2,3.

Proof. Denote g(x) := e~71%l /|z|9~! such that T® (z) = Cy4(g * p)(2). We claim
that g € LL_(RY), and hence TV = Cy(gxp) € C®(R?) for p € Cg°(R?). In fact, for

any compact set K C R?, there exists a positive constant R such that K c B(0, R),
where B(0, R) denotes the open ball centered at 0 with radius R, and

R —or
[ lowlars [~ ar < b,
K 0

which completes the proof of the claim.
To ensure that the Fourier transform can be applied to T(9, we next show that
T4 is real analytic in the open set I and hence can be uniquely extended to R
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As an alternative characterization of real analytic functions, we only need to show
equivalently that 7@ € C*°(1{) and for any compact set K C U, there exist constants
(7 and C5 such that

||AmT(d) ||L2(K) < Cl (sz)Qm

for any m € N (cf. [18]). Note that

—o|z| +2 s 2
A(e )_{ I @27 T ol e

|z} a2 T et ald

and that |z —y| > 1o = dist(4,O) > 0 for any x € K C U and y € O. Without loss
of generality, we assume that ro < 1. If rg > 1, we can always find a positive constant
7o < 1 such that |z —y| > 7 for any x € K C U and y € O. For simplicity, we denote
l:=d—1, and derive for any x € K that

12 (20 — 1o o?
— Am—l —olz—y| d
Lt s )

:Am—Z/Rd{ﬂ< (+2? | @0+2-No o )

|z — y[it2+2 |z — y|i+2+ |z — y|+2

(+12  QU+D-1o o
+(21 — 1)a(|$_y|l+1+2 |x_y|l+1+1 |m—y|l+1

12 (2l —1)o o? —olo—
+(’2<|sc—y|l+2 gt x—yv)]e ) dy
_ 2 2 e U +2(m - 1))
_/Rd [z (L4 2)% (1 +2(m — 2)) < T

2(1+2(m—-1))— 1o o?
+ |w — y[lt2m—1 + |z — y|i+2m =2 e

12 (20 —1)o o?
2(m—1) —ola=yl | () d
o <|x i e T —yv)]e (w) dy
(I+2(m— 1))2
1+2m
To

2(1+2(m—-1))— 1o o?
T I+2m—1 T Tems ) T
To To

12 (2l -1)o o2
(4.12) +02<m—1>< + +— / u(y)dy.
Té+2 T’é+1 7"6 O

Note also that

AT (1)
Ca

< {12(l+2)2~~~(l+2(m2))2(

J+2 J+1

and

(2j — 1o <j*+0* VjeN

Hence, (4.12) leads to
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AT D] L2 )

2... 2 —2))2 2m — 2 2 2(m—1) 2
B (0 +2(m - 2)) <l+ m —|—a> P l (l—i—a)

~ ré+2m72 o ,,40 0
2... —92))2.... g2(m-1) _ 2
< gm max{! I+ Q(ﬁzm%)z) N } (l +2m —2 N U)
) To
" l+2m—2\?
< ) 2 (14 2(m = 2))? (1v 020m D) <+m) + 02]
To

St w0 S| e

AN
P N

)m ((2m —2)11)2 (1 v ™)

AN
Q
g

]

Finally, we conclude that the Fourier transform of p can be uniquely determined
by
FITD)()

Flgl(€) ~

provided that F[g] is a well-defined nonzero function. It is clear from the Fourier
transform of g that F|g] is positive for any & € R?. Next is to show that Flg] is well
defined. In fact, for any constant R > 0, we may verify from simple calculations that

Flgl(©) = | (Fle~o1e1] « Fllz1=@1]) (©)|
1
< -7 a
N/Rd 02—|—|7'|2‘g 7| dr
_ 1 » 1
< —2|§—T\ dr + e dr
{le—rI<R} O (e—rI>R >R} |7
1
+ / L
(¢-rI>R|rl<r} O°R

R 0o
S/ r_lrd_ldr—i—/ r_zrd_ldr—i—/ ldt < o0,
0 R B(0,R)

which completes the proof. O

(&) =

4.2. Three-dimensional case. Now we consider d = 3. By Theorem 3.2, the
solution of the direct problem is

ik|z—y|
(.13) uaik) =~ [ T rw.

Following the same procedure as that for the two-dimensional case, we first show that
the strength p is uniquely determined by the variance of the solution w.

THEOREM 4.5. Let d = 3 and assumptions in Theorem 3.2 hold. For any x € U,
it holds

1 e—olz—yl
1 2s : 2 = = (3)
Jim EZElu(z; k)|® = o /RS |m_y‘2u(y)dy 1T ().

Moreover, the strength p is uniquely determined by T4 in U.
Proof. Using the formula given in (4.13), we have for any x € U that
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m|x y|—ik|z—z|
Blueib)® = oz || [ e B )y

lﬁlw y\ lﬁl;E zl
N o Ky, 2)0(x)dyd
167"2 /Rs /]Rs |z —yl|lz — | 1y, 2)0(z)dydz

(4.14) _ / / i (ja—yl—la—z) -z —yl+lz—a) _C1H2T) 4 0
167T2 R3 JR3 |$—y|‘$—z| ’

where 0 € C§° such that 6],y = 1 and supp(d) C R3\O,

1 .
(2r)3 /R3 eV ey (y, m, £)dE.

Here ¢1(y, x, &) := c(y,£)0(x) with the symbol c¢(y, &) satisfying (2.1). Then the prin-
cipal symbol of ¢; has the form

Ci(y,z,x) = K¢(y,2)0(x) =

Ky, x,8) = ply)b(x)|¢| .

We first define an invertible transformation 7 : R — RY by 7(y, z, ) = (g, h, ),
where g = (g1, 92, 93) and h = (h1, ha, h3) with

1 1
p=5le—yl=le—z), h=g(z—yl+lz--2l),
1 [ — X3 23 — I3
g2 =— ||z — y|arccos( ) —z| arccos( ) )
2| Yl 5= 2]
1 x3
he = 3 | — y|arccos ( ) + |z — z| arccos ( p )
1 [ — T2
g3 = =|lz —y| arctan( ) |z — z| arctan( )
2 L 1 — X1 1 — X1
1 _
hs = = {|x - y|arctan( ) + |z — z|arctan( 2 zg)}
2 Z1— T

Under the transformation defined above, (4.14) turns to be

419) Bl = g [ [ 0y g gl
where e; = (1,0,0) and
|det ((771)'(g, h,2)) |

((g+h)-e)((h=g)-er)
(4.16) =:C1(t g, h,2)) L7 (g, h, ).

02(97 hvx) = 01(7_1(97 h, 'T))

Next is to get an explicit expression of Cy with respect to (g, h,z). We define
another invertible transformation n : RY — R® by n(y, z,2) = (v, w,z) with v =y — 2
and w = y + z, and define the diffeomorphism ~ := no 77! : (g,h,z) — (v,w,z).
Following the same procedure as that used in Proposition 4.1, by defining C3 :=
C1 on~!, we obtain
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_ v+w w-—v
Cs(v,w,z) = C1(n 1(v,w,x)):Cl( 5 ,x)
1

= G e ()i = o [ e 9 ac

where ¢3 has the principal symbol ¢ (w, z, &) = ] (“52,2,€) lv=o = p(%)|¢]~2°6(z).
By Theorem 18.2.9 in [16],

1 .
(417) C’4(g,h,z) = C(3 07(93 h,l’) = / 619'504(h,$,§)d§,
(2m)? Jgs
where ¢4 has the principal symbol
-T -1
ci(h,x,f) = Cg (72(0,h,x)7(7{1(0,h,x)) 5) |det (Wil(oa h,x))| ’

and v2(0, h, z) = (w(0, h,z),z),v;,(0,h,z) = %(O,h,x). Noting that Cy = C30vy =
(Cron Yo (nor )= Cp o077, we are able to give the expression of Cy defined in

(4.16) based on the expression of Cy in (4.17):

CQ(gvhax) = Cl OT?l(ga h,l’)LT(g, h,l’)

@18 =g [ el O g by = s [ e g

where the principal symbol of c5, according to the asymptotic expansion of ¢y, is
E(h,x,&) =ci(h,z,§)L7(0, h, )

(4.19) ZN<W)0(@‘(§Z(O7}L,$)>_T§

and the residual 75 := c5 — cf € S72~ 1
It then suffices to calculate ¢f. Noting that

o ‘det (%(0, b)) )_11:7(0, h, )

hi+g1=|r—yl, hi—g=|z—2,

ha+g2 (ys—ﬂﬂg) ha —ga (23—203)
= arccos , = arccos ,
hi+ g1 |z —yl hi— g1 |z — 2]
hs +gs (y2*$2) hs —gs (227:&)
= arctan , = arctan ,
h1+ g1 Y1 — T1 hi— g1 z21 — 1
we get
. h2+92> (h3+g3>
=x1+ (h1 + sin S
h 1+ (bt gy (hl + 9 hi+ g1
. [ ha+ g2 hs + g3
=x9+ (h1 + sin
v2 2+ (it g1) (hl + g1 hi 4+ g1
h2+92)
ys=x3+ (h1+g¢ cos< ,
3 3+ (h 1) I + 01
. h2—92> (h3—93>
z1=x1 + (h1 — sin cos
! ! ( ! 91) (h1—91 hi— g1
. (ha—go hs — g3
= h —
zo =z + (M1 g1)sm(hlg1 sl g )
h2—92)
z3 =x3+ (h1 — cos
3 3 (1 91) <h1—91

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/13/21 to 128.210.107.130. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

504 PEIJUN LI AND XU WANG

A simple calculation yields that

v sinacos S —acosacos B+ fsinasin3 cosacosfS —sinasin 3
a—(O,h,x)zZ sinasin § —acosasinf — Bsinacos S cosasinf  sinacosf |,
g cosa + asina —sina 0
where o := Z—f,ﬁ = h—‘:’, and
1 0v 1 0v
29 2094 1
—1y/ — 1 0v 10v
YOha)= | 10 jov g
0 I

Here I is the 3 x 3 identity matrix. It can be verified that

det ((771)(0,h 2
det (atj(ovhax)) = SSina, LT(O,h,x) _ | € ((T ) ( s ,I))| _ 8511’1 o

dg (h-e1)? (h-e1)?’
and
P T sina cos 3 cosacos 3+ asinacos —% + Bsina cos B
v ; . .
(89(07 h,$)> =3 sinasin 8 cosasin 8 + asinasin 8 % + Bsinasin 8
cos « —<osB _ Bginasin B B cos «
sSin

By (4.18)—(4.19) and the above estimates on g—;(O,h,x) and L7(0, h,x), the energy
E|u(x;k)|? in (4.15) can be written as

(4.20)
Elu(z; k)|?
1 ; (er-
1 irs (e1-g)—2ms(e1-h) L / ig-
— 1Ky (€ KRi(e 1 h d d dh
1672 /RS /Rae (2m)3 Rge cs(h, z,§)d<dg
1
=16 2/ eiQHi(el'h)%(h,m,—2/<:r61)dh
T R3
— 1 —2ki(e1-h) W(O,h,x) _92s |Sin a| B
= 162 /R:Se M(*Q )G(m)nr e +r5(h, x, —2Kce1) | dh,
where o
M = (hysinacos 3, hy sinasin f, hy cos ) + x.

Define another coordinate transform p : R? — R3 by

p(h) = ¢ := (hysinacos B, hy sinasin B, hy cosa) + x.

By noting that [ — x| = hy = h-e; and det((p~ 1)) = ﬁ(p/) with
sinacos 8 — acosacos S+ Bsinasinf cosacosf —sinasinfg
p = | sinasinf —acosasinf — Bsinacos cosasinf  sinacosf ,
cosa + asina —sina 0

we obtain from (4.20) that

1 —2ki[¢—z|
Elu<x’ k)‘g - |:247r2 /]1{3 e‘C _ x|2 M(C)Q(I)dc :‘ﬁr_zs + O(H;2s_1).
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Finally, for any x € U, we have from (3.1) that

e—2m\(—az|

lim k*Elu(z; k)2 = lim / u@ﬂ<<k>%=7ﬁxﬂ~
’ rs ¢ — x|

k—o0 k—oo 2472 Ry

Moreover, the strength g is uniquely determined by 7'(3) (z) for x € U according to
Theorem 4.4, which completes the proof. 0

4.3. The case 0 = 0 and ergodicity. If ¢ = 0, the model (1.1) reduces to
the one considered in [20]. In this case, the ergodicity of the solution can be obtained
by following the same way which was investigated in [19, 20]. This result makes it
possible to uniquely recover the strength p by a single realization of the measurements.

PROPOSITION 4.6. Assume that f € L?(Q, WH=P(O)) with H,¢, and p satisfy-
ing the conditions given in Theorem 3.2. Let s = H + %. Then

(i) ifd =2,

1 K
lim 71/ k25 (s k) 2dk = T (z)  almost surely,
1

1 K
lim 71/ k25 u(z; k)|2dk = T () almost surely,
1

where T®) and T®) are defined in Theorems 4.2 and 4.5, respectively.

Proof. If o = 0, following the same procedure as that of Lemma 3.4 in [20] or
Proposition 4.1, we may obtain for any ki, ks > 1 that

B [w? (e kiR < 00+ k)7,
[ [ (@5 ky)u’ (s k)] < O+ ks = ko),

which, together with the fact that

K
lim —— X(t)dt =0, almost surely,

K—oo K —1 1

if [ EX(t1)X (t2)| < C(1 4+ [t1 — t2])~¢ for a centered real-valued stochastic process X
with continuous paths and some € > 0 (cf. [11, 19, 20]), one can get the desired results
by following the proof in Theorem 3.10 in [20]. The details are omitted for brevity. O

5. Conclusion. We have studied the inverse random source scattering problem
for the Helmholtz equations with attenuation. The source is assumed to be a frac-
tional Gaussian random field. The relationship is established between the FGFs and
the generalized Gaussian random fields. The well-posedness of the direct problem is
examined. For the inverse problem, we show that the microcorrelation strength of the
random source can be uniquely determined by the passive measurement of the wave
fields.

There are some future works which can be considered. For instance, if the medium
is inhomogeneous, the solution cannot be expressed explicitly through the fundamen-
tal solution. The present method is not applicable, a new approach is needed. Another
interesting problem is to consider that both the medium and the source are random
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functions. Similar problems for the Schrodinger equation were investigated in [22, 23].
The Helmholtz equation is more difficult because of the coupling of the medium with
the wavenumber. It is an open problem for the Maxwell equations with a random
source. The singularity of Green’s tensor may limit the roughness of the source. We
hope to be able to report the progress on these problems elsewhere in the future.

24]

M

Q0 e 0 @R

-

M

5 > » = U
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