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Abstract
This paper is concerned with an inverse random source problem for the
one-dimensional stochastic Helmholtz equation with attenuation. The source
is assumed to be a microlocally isotropic Gaussian random field with its
covariance operator being a classical pseudo-differential operator. The random
sources under consideration are equivalent to the generalized fractional Gaus-
sian random fields which include rough fields and can be even rougher than
the white noise, and hence should be interpreted as distributions. The well-
posedness of the direct source problem is established in the distribution sense.
The micro-correlation strength of the random source, which appears to be the
strength in the principal symbol of the covariance operator, is proved to be
uniquely determined by the wave field in an open measurement set. Numer-
ical experiments are presented for the white noise model to demonstrate the
validity and effectiveness of the proposed method.

Keywords: the Helmholtz equation, inverse source problem, microlocally
isotropic Gaussian random field, white noise, uniqueness

(Some figures may appear in colour only in the online journal)

1. Introduction

Inverse source problems for wave propagation aim to determine the unknown sources by using
supplementary information of the wave field. They arise naturally and have significant applica-
tions in diverse fields of science, which include particularly the area of medical and biomedical
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imaging such as magnetoencephalography [2, 12], optical molecular imaging [3], and fluores-
cence tomography [10]. Motivated by these applications, inverse source problems for wave
equations have been extensively investigated, and many mathematical and numerical results
are available [7, 8, 15, 16].

Recently, to characterize more precisely the uncertainties in unpredictable systems with
incomplete knowledge, random sources are taken into consideration in mathematical modeling
[4, 5, 11]. As is well known, classical inverse problems are already rather difficult to solve due
to the nonlinearity and ill-posedness. Inverse problems with random sources would be more
challenging since the ill-posedness is severer compared to their deterministic counterparts:
(1) the random source, in some cases, is too rough to exist pointwisely and should be inter-
preted as distributions instead; (2) the wave field generated by the random source is also a
random field. Random fields are determined by their statistics such as the mean and covari-
ance functions. As a result, only statistics of the random source may be reconstructed based on
the statistics of the wave field. It is worth pointing out that the statistics of the random source
which can be determined and the statistics of the wave field which can be used as proper mea-
surement data depend heavily on the form of the random source, which makes it hard to solve
inverse random source problems.

In this paper, we consider the one-dimensional stochastic Helmholtz equation with attenu-
ation

u′′(x) + (k2 + ikσ)u(x) = f (x), x ∈ R, (1)

where k > 0 is the wave number, the attenuation coefficient σ > 0 describes the electrical con-
ductivity of the medium, u denotes the radiated field, and f represents the electric current den-
sity and is assumed to be a random field supported in D = (0, 1). In the one-dimensional case,
the outgoing wave radiation condition imposed on u is equivalent to the following boundary
conditions:

u′(0) + iκu(0) = 0, u′(1) + iκu(1) = 0,

which accounts for the left-going wave at x = 0 and the right-going wave at x = 1, respectively.
Here κ satisfies κ2 = k2 + iσk.

There has been much work on the study of inverse random source problems. When the
source takes the form f = g + hẆ, where Ẇ is the spatial white noise, g and h are smooth and
compactly supported functions, the random source has independent increments. As a result,
the Itô isometry can be used to derive reconstruction formulas which connect the statistics of
the random source to those of the wave field, and the functions g and h can be determined
based on the measurement data at multiple frequencies. We refer to [4, 6, 22] for the study on
the stochastic Helmholtz equation without attenuation and to [5] for the study on the stochastic
elastic wave equation.

More generally, another important class of random sources, known as the microlocally
isotropic Gaussian random fields, is considered in [17–19, 21, 23, 24]. The covariance oper-
ators of the random fields are assumed to be pseudo-differential operators with the principal
symbol μ(x)|ξ|−m, where the nonnegative function μ ∈ C∞

0 (D) is called the micro-correlation
strength of the random source and is the statistics to be determined. It is shown in [23] that
the microlocally isotropic Gaussian random field is equivalent to the generalized fractional
Gaussian random field in the form

f =
√
μ(−Δ)−

m
4 Ẇ,
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which is a distribution in W
m−d

2 −ε,p(Rd) for m ∈ (−∞, d] (cf lemma 2.1) and apparently degen-
erates to the white noise if m = 0. In this case, the increments of the random source are not inde-
pendent if m �= 0, and thus the Itô isometry is not applicable any more. Instead, the microlocal
analysis for large frequencies is applied to reconstruct the micro-correlation strengthμ involved
in the principal symbol of the covariance operator of f . In [23], the d-dimensional Helmholtz
equation with attenuation is studied with d = 2, 3, p ∈ ( d

2 , 2] and m ∈ (d( 2
p + 1) − 2, d]. We

refer to [18, 19] for the study on the Helmholtz equation without attenuation and the elastic
wave equation, to [20, 21, 26] for the study on the Schrödinger equation, and to [24] for the
study on Maxwell’s equations. In all of the existing results, the random source under consider-
ation is smoother than the white noise, i.e., m > 0, due to the singularity of Green’s functions
of the considered models.

In this work, we consider the one-dimensional stochastic Helmholtz equation with attenua-
tion, where f is assumed to be a microlocally isotropic Gaussian random field with m ∈ (− 2

q , 1]
and q ∈ (1,∞). We point out that such a random source model includes the white noise case
with m = 0 and is even allowed to be rougher than the white noise for m ∈ (− 2

q , 0). The direct
source problem is shown to be well-posed in the distribution sense and has a unique solution
u ∈ Wγ,q

loc (R) with γ ∈ ( 1−m
2 , 1

2 + 1
q ). For the inverse source problem, we prove that the strength

μ of the random source is uniquely determined by the high frequency limit of the energy of the
wave field u on an bounded measurement interval U ⊂ R\D. In particular, for the white noise
case, the measurement data at a single frequency is enough to uniquely determine the strength
μ by utilizing the Itô isometry. Numerical experiments are presented for the white noise model
to demonstrate the validity and effectiveness of the proposed method.

The paper is organized as follows. In section 2, the microlocally isotropic random source
is introduced. The well-posedness of the direct source problem in the distribution sense is
given based on the regularity of the fundamental solution. section 3 concerns the inverse source
problem. The uniqueness is addressed for the reconstruction of the strength of the random
source. As a special case of the microlocally isotropic random source, the white noise model
is studied in section 4. Numerical experiments are presented in section 5 to demonstrate the
effectiveness of the proposed method. The paper is concluded with some general remarks in
section 6.

2. Direct source problem

In this section, we introduce the model of the random source and present the well-posedness
and stability of the solution for the direct source problem.

2.1. Random sources

The source f is assumed to be a microlocally isotropic Gaussian random field which satisfies
the following conditions with dimension d = 1.

Assumption 1. Let f be a real-valued centered microlocally isotropic Gaussian random
field of order−m compactly supported in D ⊂ R

d, i.e., the covariance operator of f is a pseudo-
differential operator whose principal symbol has the form μ(x)|ξ|−m with the micro-correlation
strength μ ∈ C∞

0 (D) and μ � 0.

In assumption 1, we mention that the source f is assumed to be a centered random field, i.e.,
the mean of the source satisfies E[ f ] = 0. For the case E[ f ] �= 0, we may take the expectation
on both sides of the model (1), and the recovery of the mean function E[ f ] turns to be a
deterministic inverse source problem, which has been well-studied in the literature. Hence, in

3
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the following, we only focus on the case of a centered random field for the source as assumed
in assumption 1.

It is shown in [23, proposition 2.5] that the generalized Gaussian random field

f (x) =
√
μ(x)(−Δ)−

m
4 Ẇ

satisfies assumption 1 with order −m, where Ẇ is the white noise and (−Δ)−
m
4 is a frac-

tional Laplacian. Consequently, the regularity of random fields satisfying assumption 1 can be
obtained by investigating the regularity of the generalized Gaussian random fields, which is
stated in the following lemma (cf [23]).

Lemma 2.1. Let f be a microlocally isotropic Gaussian random field of order−m compactly
supported in D ⊂ R

d.

(a) If m ∈ (d, d + 2), then f ∈ C0,α(D) almost surely for all α ∈ (0, m−d
2 ).

(b) If m ∈ (−∞, d], then f ∈ W
m−d

2 −ε,p(D) almost surely for all ε > 0 and p ∈ (1,∞).

Let D be the space C∞
0 (Rd) equipped with a locally convex topology, and D′ be its dual

space. Based on lemma 2.1, if m � d, the random source f should be interpreted as a distri-
bution in D′. Its mean value function, denoted by E f , and covariance operator, denoted by Q f ,
are defined as follows:

〈E f ,ϕ〉: = E〈 f ,ϕ〉 ∀ ϕ ∈ D,

〈ϕ, Q f ψ〉: = E[〈 f ,ϕ〉〈 f ,ψ〉] ∀ ϕ,ψ ∈ D,

where 〈·, ·〉 denotes the dual product. According to the Schwartz kernel theorem
(cf [13, theorem 5.2.1]), there exists a unique kernel K f for Q f such that

〈ϕ, Q f ψ〉 =
∫
Rd

∫
Rd

K f (x, y)ϕ(x)ψ(y)dx dy. (2)

If f satisfies assumption 1, then its covariance operator Q f is a pseudo-differential operator
with the principal symbol given by μ(x)|ξ|−m, and hence (cf [14])

(Q f ψ)(x) =
1

(2π)d

∫
Rd

eix·ξc(x, ξ)ψ̂(ξ)dξ,

where c(x, ξ) is the symbol of Q f with the leading term μ(x)|ξ|−m and

ψ̂(ξ) = F [ψ](ξ) =
∫
Rd

e−ix·ξψ(x)dx

is the Fourier transform of ψ. It then holds

〈ϕ, Q f ψ〉 =
∫
Rd
ϕ(x)

[
1

(2π)d

∫
Rd

eix·ξc(x, ξ)ψ̂(ξ)dξ

]
dx

=
1

(2π)d

∫
Rd
ϕ(x)

∫
Rd

eix·ξc(x, ξ)

[∫
Rd

e−iy·ξψ(y)dy

]
dξ dx

=

∫
Rd

∫
Rd

[
1

(2π)d

∫
Rd

ei(x−y)·ξc(x, ξ)dξ

]
ϕ(x)ψ(y)dx dy.

4
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Comparing the above equation with (2), we get that the kernel K f is an oscillatory integral of
the form

Kf (x, y) =
1

(2π)d

∫
Rd

ei(x−y)·ξc(x, ξ)dξ, (3)

which is determined by the symbol c(x, ξ).

2.2. The fundamental solution

Define the complex wave number κ such that κ2 = k2 + ikσ, whose real and imaginary parts
κr and κi satisfy

κr =

(√
k4 + k2σ2 + k2

2

) 1
2

, κi =

(√
k4 + k2σ2 − k2

2

) 1
2

.

It is easy to verify that

lim
k→∞

κr

k
= 1, lim

k→∞
κi =

σ

2
. (4)

Before showing the well-posedness of the solution for the stochastic Helmholtz equation (1),
we recall that the equation

(∂xx + κ2)Φκ(x, y) = −δ(x − y), x, y ∈ R

admits a unique solution

Φκ(x, y) =
i

2κ
eiκ|x−y|,

which is the fundamental solution for the one-dimensional Helmholtz equation.
For any n ∈ N, denote by Wn,p(O) the Sobolev space equipped with the norm

‖v‖Wn,p(O) :=

⎛⎝ ∑
0�α�n

‖∂αv‖p
Lp(O)

⎞⎠ 1
p

.

Let Wn,p
0 (O) be the closure of C∞

0 (O) in Wn,p(O) and W−n,q(O) = (Wn,p
0 (O))′ be the dual space

of Wn,p
0 (O) with 1

p +
1
q = 1. We refer to [1] for more details on these Sobolev spaces.

The fundamental solution Φκ has the following regularity property.

Lemma 2.2. For any given x ∈ R and p ∈ (1,∞), it holds Φκ(x, ·) ∈ W1,p
loc (R).

Proof. Let O ⊂ R be any bounded interval with a finite Lebesgue measure which is denoted
by CO. It suffices to show that Φκ(x, ·), ∂Φκ(x, ·) ∈ Lp(O). A simple calculation gives

‖Φκ(x, ·)‖p
Lp(O) =

∫
O

∣∣∣∣ i
2κ

eiκ|x−y|
∣∣∣∣p

dy =

∫
O

(
1

2|κ|

)p

e−pκi|x−y|dy

� (2|κ|)−pCO.

Since the classical partial derivative of Φκ(x, y) with respect to y exists, we have

∂yΦκ(x, y) =
x − y

2|x − y|e
iκ|x−y|, y �= x.

5
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It is clear to note

‖∂Φκ(x, ·)‖p
Lp(O) =

1
2p

∫
O

e−pκi|x−y|dy � 2−pCO ,

which completes the proof. �

2.3. Well-posedness and regularity

Based on the fundamental solution Φκ, the volume potential

(Hκv)(x) := −
∫
R

Φκ(x, y)v(y)dy (5)

defines a mollifier Hκ.

Lemma 2.3. Let O,V ⊂ R be any two bounded intervals. The operator Hκ : H−β(O)
→ Hβ(V) is bounded for β ∈ (0, 1].

Proof. It follows from [9, theorem 8.1] that Hκ is bounded from C(O) to C2(V) with respect
to the norms

‖v‖C(O) := sup
x∈R

|v(x)| ∀ v ∈ C(O)

and

‖v‖C2(V) :=
2∑

m=0

sup
x∈R

|v(m)(x)| ∀ v ∈ C2(V).

Define the scalar products in spaces C(O) and C2(V) by

(g1, g2)C(O) := (g̃1, g̃2)Hβ−2(R) ∀ g1, g2 ∈ C(O)

and
(h1, h2)C2(V) := (h̃1, h̃2)Hβ (R) ∀ h1, h2 ∈ C2(V),

respectively, where g̃i and h̃i are the zero extensions of gi and hi in R\O and R\V, respectively.
It is easy to verify that the products defined above satisfy

(g1, g2)C(O) = (Jβ−2g̃1, Jβ−2g̃2)L2(R) =

∫
R

(1 + ξ2)β−2ˆ̃g1(ξ)̂̃g2(ξ)dξ

� ‖g̃1‖L2(R)‖g̃2‖L2(R) � ‖g1‖C(O)‖g2‖C(O)

and

(h1, h2)C2(V) = (Jβ h̃1, Jβ h̃2)L2(R) =

∫
R

(1 + ξ2)β ˆ̃h1(ξ)̂̃h2(ξ)dξ

� ‖h̃1‖Hβ (R)‖h̃2‖Hβ (R) � ‖h1‖C2(V)‖h2‖C2(V).

Here, Jβ denotes the Bessel potential operator defined by

Jβh(x) = F−1
[
(1 + ξ2)

β
2 ĥ(ξ)

]
(x)

with F−1 being the inverse Fourier transform.

6
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We claim that there exists a bounded operator V : C2(V) → C(O) defined by

V := (I − ∂xx)Hκ(I − ∂xx),

where

(Hκv)(x) := −
∫
R

Φκ(x, y)v(y)dy

and Hκv = Hκv for any real valued function v, such that

(Hκg, h)C2(V) = (g, Vh)C(O) ∀ g ∈ C(O), h ∈ C2(V).

In fact, for any h ∈ C2(V),

‖Vh‖C(O) = ‖(I − ∂xx)Hκ(I − ∂xx)h‖C(O) � ‖Hκ(I − ∂xx)h‖C2(O)

� ‖(I − ∂xx)h‖C(V) � ‖h‖C2(V).

Furthermore,

(Hκg, h)C2(V) = (JβHκg̃, Jβ h̃)L2(R) = (Hκg̃, J2βh̃)L2(R)

= (Ĥκg̃, Ĵβ h̃)L2(R) =

∫
R

Φ̂κ(ξ)ˆ̃g(ξ)(1 + ξ2)β̂̃h(ξ)dξ

=

∫
R

ˆ̃g(ξ)(1 + ξ2)β−2

[
(1 + ξ2)Φ̂κ(ξ)(1 + ξ2)̂̃h(ξ)

]
dξ

=

∫
R

ˆ̃g(ξ)(1 + ξ2)β−2V̂h̃(ξ)dξ = (Jβ−2g̃, Jβ−2Vh̃)L2(R)

= (g, Vh)C(O),

where Φ̂κ is the Fourier transform of Φκ(x, y) with respect to x − y and satisfies −ξ2Φ̂κ(ξ)
+ κ2Φ̂κ(ξ) = −1. The claim is proved.

It follows from the claim and [9, theorem 3.5] that Hκ : C(O) → C2(V) is bounded with
respect to the norms induced by the scalar products on C(O) and C2(V). More precisely, we
have

‖Hκg‖C2(V) = ‖Hκg‖Hβ(V) � ‖g‖C(O) = ‖g‖Hβ−2(O) � ‖g‖H−β(O) (6)

for any g ∈ C(O) and β � 1. It then suffices to show that (6) also holds for any g ∈
H−β(O). Noting that the subspace C∞

0 (O) ⊂ C(O) is dense in L2(O) (cf [1, section 2.30]) and

H−1(O) = L2(O)‖·‖H−1(O) (cf [1, section 3.13]), we get that (6) holds for any g ∈ H−1(O), and
hence for any g ∈ H−β(O) since H−β(O) ⊂ H−1(O). �

Now we are able to show the well-posedness of (1) in the distribution sense.

Theorem 2.4. Let q ∈ (1,∞) and assumption 1 hold with m ∈ (− 2
q , 1]. The stochastic

Helmholtz equation (1) has a unique solution

u(x) = −
∫

D
Φκ(x, y) f (y)dy

in the distribution sense, and u ∈ Wγ,q
loc (R) almost surely with γ ∈

(
1−m

2 , 1
2 + 1

q

)
.

7
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Proof. We first show that the volume potential

u(x) = −
∫

D
Φκ(x, y) f (y)dy = (Hκ f )(x)

is well-defined in Wγ,q
loc (R), i.e., u ∈ Wγ,q(K) for any compact subset K ⊂ R. It follows from

the Kondrachov embedding theorem that the following embeddings

W−γ,p(D) ↪→ H−β(D), Hβ(K) ↪→ Wγ,q(K)

with β = 1 and 1
p +

1
q = 1 are compact. Hence, Hκ : W−γ,p(D) → Wγ,q(K) is bounded based

on lemma 2.3. By lemma 2.1, it is clear to note that f ∈ W
m−1

2 −ε,p(D) ⊂ W−γ,p(D). As a result,
u = Hκ f ∈ Wγ,q(K).

Next, we prove that u = Hκ f is a solution to (1) in the distribution sense. For any test
function v ∈ Wγ,q(R), it holds

〈u′′ + κ2u, v〉 = −〈u′, v′〉+ κ2〈u, v〉

=

∫
R

∂x

[∫
D
Φκ(x, y) f (y)dy

]
v′(x)dx − κ2

∫
R

[∫
D
Φκ(x, y) f (y)dy

]
v(x)dx

= −
∫

D

∫
R

∂xxΦκ(x, y)v(x) f (y)dx dy − κ2
∫
R

[∫
D
Φκ(x, y) f (y)dy

]
v(x)dx

=

∫
D

∫
R

(
κ2Φκ(x, y) + δ(x − y)

)
v(x) f (y)dx dy − κ2

∫
R

[∫
D
Φκ(x, y) f (y)dy

]
v(x)dx

= 〈 f , v〉.

The uniqueness of the solution of (1) can be proved by showing that (1) has only the zero
solution if f ≡ 0. Let u0 be any solution of (1) with f ≡ 0 in the distribution sense. Then u0

satisfies

(u0)′′ + κ2u0 = 0

in the distribution sense. Denote Br = (−r, r). It is shown in lemma 2.2 that Φκ(x, ·) ∈
W1,p′(Br) ↪→ Wγ,q(Br) for some p′ > 1 satisfying 1

p′ − (1 − γ) < 1
q . It then indicates that

1BrΦκ(x, ·) ∈ Wγ,q(R), where 1Br denotes the characteristic function. Hence, we get∫
R

Φκ(x, z)
[
(u0)′′(z) + κ2u0(z)

]
dz = 0. (7)

Define the operator P by

(Pψ)(x) :=
∫

Br

Φκ(x, z)[ψ′′(z) + κ2ψ(z)]dz ∀ ψ ∈ D.

Following the similar arguments as those in the proof of [18, lemma 4.3] and using the
integration by parts, we obtain

(Pψ)(x) = −ψ(x) +
[
Φκ(x, z)ψ′(z) − ∂zΦκ(x, z)ψ(z)

]∣∣r
z=−r

.

Then (7) leads to

−u0(x) + lim
r→∞

[
Φκ(x, z)(u0)′(z) − ∂zΦκ(x, z)u0(z)

]∣∣r
z=−r

= 0.

8



Inverse Problems 37 (2021) 015009 P Li and X Wang

Applying the radiation condition, we get u0 ≡ 0, which completes the proof. �

3. Inverse source problem

By theorem 2.4, the solution of (1) has the form

u(x) =
1

2iκ

∫
D

eiκ|x−y| f (y)dy. (8)

We show that the micro-correlation strength μ is uniquely determined by the variance of the
solution u.

Theorem 3.1. Let f be a random source satisfying assumption 1 and U ⊂ R\D be a
bounded open interval. Then for any x ∈ U,

lim
k→∞

4km+2
E|u(x)|2 =

∫
D

e−σ|x−y| μ(y)dy=: T(x).

Proof. Since U and D are disjoint, we first consider the case x > y for any x ∈ U and y ∈ D.
Using (8) and the fact that f is compactly supported in D, we have for any x ∈ U that

E|u(x)|2 = 1
4|κ|2

∫
D

∫
D

eiκ|x−y|−iκ̄|x−z|
E[ f (y) f (z)]dy dz

=
1

4|κ|2
∫

D

∫
D

eiκ(x−y)−iκ̄(x−z)Kf (y, z)θ(x)dy dz

=
1

4|κ|2
∫
R

∫
R

eκi(y+z−2x)−iκr(y−z) C1(y, z, x)dy dz,

where θ ∈ C∞
0 (R) such that θ|U ≡ 1 and supp(θ) ⊂ R\D,

C1(y, z, x) :=Kf (y, z)θ(x) =
1

2π

∫
R

ei(y−z)ξc1(y, x, ξ)dξ.

Here c1(y, x, ξ) := c(y, ξ)θ(x) and c(y, ξ) is the symbol of the covariance operator of f . Then
according to assumption 1, the principal symbol of c1 has the form

cp
1(y, x, ξ) = μ(y)θ(x)|ξ|−m.

First we define an invertible transformation τ : R3 → R
3 by τ (y, z, x) = (g, h, x), where

g = y − z, h = y + z.

It follows from a straightforward calculation that

E|u(x)|2 = 1
4|κ|2

∫
R

∫
R

eκih−2κix−iκrgC2(g, h, x)dg dh,

where

C2(g, h, x) = C1(τ−1(g, h, x))| det
(
(τ−1)′(g, h, x)

)
|

=
1
2

C1

(
g + h

2
,

h − g
2

, x

)
9
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=
1

4π

∫
R

eigξc1

(
g + h

2
, x, ξ

)
dξ

=
1

4π

∫
R

eigξc2 (h, x, ξ) dξ.

Here in the last step, we have used the following asymptotic expansion of symbols
(cf [14, lemma 18.2.1]):

c2(h, x, ξ) = e−i〈Dg,Dξ〉 c1

(
g + h

2
, x, ξ

)∣∣∣∣
g=0

=

∞∑
j=0

〈−iDg, Dξ〉 j

j!
c1

(
g + h

2
, x, ξ

)∣∣∣∣
g=0

.

Therefore, the principal symbol of c2 has the form

cp
2(h, x, ξ) = cp

1

(
g + h

2
, x, ξ

)∣∣∣∣
g=0

= μ

(
h
2

)
|ξ|−mθ(x),

and the residual r2 = c2 − cp
2 ∈ S−m−1.

Combining the above equations leads to

E|u(x)|2 = 1
4|κ|2

∫
R

∫
R

eκih−2κix−iκrg C2(g, h, x)dg dh

=
1

4|κ|2
∫
R

∫
R

eκih−2κix−iκrg

[
1

4π

∫
R

eigξ c2 (h, x, ξ) dξ

]
dg dh

=
1

8|κ|2
∫
R

∫
R

eκih−2κix

[
1

2π

∫
R

eig(ξ−κr)dg

]
c2(h, x, ξ)dξ dh

=
1

8|κ|2
∫
R

eκih−2κix c2(h, x,κr)dh

=
1

8|κ|2
∫
R

eκih−2κix

[
μ

(
h
2

)
κ−m

r θ(x) + r2(h, x,κr)

]
dh

=
θ(x)

4|κ|2κm
r

∫
R

e2κi(ζ−x)μ(ζ)dζ + O(κ−m−1
r |κ|−2).

Finally, for any x ∈ U, we have from (4) that

lim
k→∞

4km+2
E|u(x)|2 = lim

k→∞

(
km+2

|κ|2κm
r

)∫
D

e2κi(ζ−x)μ(ζ)dζ = T(x).

On the other hand, if x < y for any x ∈ U and y ∈ D, we may repeat the same procedure as
above and show that

lim
k→∞

4km+2
E|u(x)|2 = lim

k→∞

(
km+2

|κ|2κm
r

)∫
D

e2κi(x−ζ)μ(ζ)dζ = T(x),

which completes the proof. �

10
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Now we are in the position to show that the strengthμ of the covariance operator the random
source is uniquely determined by the integral given in theorem 3.1.

Theorem 3.2. Let σ > 0. The strength μ is uniquely determined by

T(x) =
∫

D
e−σ|x−y| μ(y)dy, x ∈ U,

where U ⊂ R\D is a bounded interval containing points from both sides of the interval D.

Proof. Let g(x) := e−σ|x|. Then

T(x) = (g ∗ μ)(x), x ∈ U, (9)

and T = g ∗ μ is a real analytic function. Hence, the value of T can be obtained everywhere
according to the analytic continuation. Taking the Fourier transform of (9) yields

F [μ](ξ) =
F [T](ξ)
F [g](ξ)

=
σ2 + ξ2

2σ
F [T](ξ),

which implies that μ can be uniquely determined by T . �
By the proof of theorem 3.2, the uniqueness result indicates that the attenuation term with

σ > 0 is essential to uniquely determine the strength μ in the one-dimensional case. For the
one-dimensional Helmholtz equation without attenuation (i.e., σ = 0), the micro-correlation
strength μ can hardly be recovered uniquely by the measurement, which is different from
the higher dimensional problems discussed in [18]. The result is also verified by numerical
experiments in section 5.

4. White noise

In this section, we study the inverse random source problem where the source is driven by a
white noise. Specifically, we consider a centered random source given in the form

f =
√
μẆ,

where Ẇ is the real-valued spatial white noise. The diffusion function
√
μ is assumed to be

a smooth function compactly supported in the interval D := (0, 1). By lemma 2.1, it holds
f ∈ W− 1

2−ε,p(D) for any ε > 0 and p ∈ (1,∞), which has the same regularity as the microlo-
cally isotropic Gaussian random field with m = 0. Moreover, the covariance operator Q f of f
satisfies

〈ϕ, Q f ψ〉 = E[〈√μẆ,ϕ〉〈√μẆ,ψ〉]

=

∫ 1

0
μ(y)ϕ(y)ψ(y)dy,

which implies that

Kf (x, y) = μ(y)δ(x − y) =
1

2π

∫
R

ei(x−y)ξμ(x)dξ, x, y ∈ R,

and hence the symbol of Q f is c(x, ξ) = μ(x) according to (3). As a result, f =
√
μẆ satisfies

assumption 1 with m = 0.

11
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In this case, the solution u of (1) is expressed by

u(x) = (Hκ f )(x) =
1

2iκ

∫ 1

0
eiκ|x−y|√μ(y)dW(y), x ∈ R. (10)

By Itô’s formula, we get

E|u(x)|2 = 1
4|κ|2

∫ 1

0
e−2κi|x−y|μ(y)dy, x ∈ R,

which implies the uniqueness of determining the strength μ by following the same procedure
as that in the proof of theorem 3.2.

Corollary 4.1. Let D := (0, 1). If the random source f has the form f =
√
μẆ with strength

μ ∈ C∞
0 (D) and μ � 0, then the strength μ can be uniquely determined by the following data

at any fixed wave number k:

4|κ|2E|u(x)|2 =
∫ 1

0
e−2κi|x−y|μ(y)dy, x ∈ U, (11)

where U ⊂ R\D is a bounded interval containing points from both sides of the interval D.

5. Numerical experiments

In this section, we present the algorithmic implementation for the direct and inverse source
problems where the source is driven by the white noise, and show some numerical examples
to demonstrate the validity and effectiveness of the proposed method.

5.1. The synthetic data

The measurement interval is chosen as U = [−1.2,−0.2]∪ [1.2, 2.2] which satisfies
U ⊂ R\D with D = (0, 1). The data u(x) for all x ∈ U is obtained by using the integral
equation (10). Numerically, we generate the synthetic data at discrete points {xm}M+1

m=0 ⊂ U
defined by

x0 = −1.2, xm+1 = xm +Δx, m = 0, . . . ,
M
2

− 1

and

x M
2 +1 = 1.2, xm+1 = xm +Δx, m =

M
2

+ 1, . . . , M

with M = 200 and Δx = 2/M, and approximate u(xm) by

u(xm) ≈ 1
2iκ

N−1∑
n=0

eiκ|xm−yn|
√
μ(yn)δnW,

where

y0 = 0, yn+1 = yn +Δy, δnW = W(yn+1) − W(yn)

for n = 0, . . . , N − 1 with N = 200 andΔy = 1/N. The increments δnW with n = 0, . . . , N − 1
defined above are independent and identically distributed, and hence can be simulated by√
Δyξn, where ξn ∈ N(0, 1) are independent and identically distributed random variables

obeying the standard normal distribution.

12
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5.2. Reconstruction formula

According to corollary 4.1, the micro-correlation strength μ can be uniquely recovered by the
energyE|u(x)|2 for x ∈ U at a fixed wave number k. However, the kernel e−2κi|x−y| in the integral
in (11) decays exponentially, which makes it difficult to recover the high frequency modes of
the strength μ numerically. To overcome this difficulty, we use the following modified data
instead in the numerical experiments. Moreover, the multi-frequency data is used to enhance
the stability and resolution of the numerical solution.

Rewrite (10) as

2iκu(x) =
∫ 1

0
eiκ|x−y|√μ(y)dW(y),

which can be split into the real and imaginary parts

R[2iκu(x)] =
∫ 1

0
e−κi|x−y| cos(κr|x − y|)

√
μ(y)dW(y),

I[2iκu(x)] =
∫ 1

0
e−κi|x−y| sin(κr|x − y|)

√
μ(y)dW(y).

Define the modified data

M(x, k) :=E(R[2iκu(x)])2 − E(I[2iκu(x)])2. (12)

It can be verified that

M(x, k) =
∫ 1

0
e−2κi|x−y| cos2(κr|x − y|)μ(y)dy

−
∫ 1

0
e−2κi|x−y| sin2(κr|x − y|)μ(y)dy

=

∫ 1

0
e−2κi|x−y| cos(2κr|x − y|)μ(y)dy,

whose evaluation at discrete points {xm}M+1
m=0 and wave number k can be approximated by

M(xm, k) ≈ Δy
N−1∑
n=0

e−2κi|xm−yn| cos(κr|xm − yn|)μ(yn). (13)

The value of the strength μ at discrete points {yn}N−1
n=0 can be numerically recovered by (13)

based on the truncated singular value decomposition (SVD) with tolerance τ = 10−3. Through-
out the numerical experiments, we use the average of 105 sample paths as an approximation of
the expectation when calculating the data M in (12).

5.3. Numerical examples

We present three numerical examples to illustrate the performance of the method. The first
example contains only one Fourier mode and the second example contains two Fourier modes.

13
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Figure 1. Reconstruction of the strength in example 1. Solid blue line: exact strength;
circled red line: reconstructed strength. For both σ = 0.3 (left column) and σ = 2 (right
column), reconstructions based on data at two frequencies k = 2, 3 are better than the
ones based on data at a single frequency k = 2.

The third example contains more high Fourier modes and the micro-correlation strength is
more difficult to be recovered.

Example 1. Reconstruct the strength given by

μ(x) = 0.5(1 − cos(2πx))

inside the interval (0, 1). Figure 1 plots the reconstructed strength and the exact one based on
the modified data M(xm, k) with different attenuation coefficients σ = 0.3, 2 at one frequency
k = 2 and two frequencies k = 2, 3. As expected, the better reconstruction can be obtained
when data at more frequencies is used. The strength μ can be properly recovered by data at
two frequencies k = 2, 3 since μ considered in this example contains one low frequency Fourier
mode.

Example 2. Reconstruct the strength given by

μ(x) = 0.6 − 0.3 cos(2πx) − 0.3 cos(4πx)

inside the interval (0, 1). This example contains two Fourier modes and is a little harder than
example 1. Figure 2 shows the reconstructed strength and the exact one based on the modi-
fied data M(xm, k) with different attenuation coefficients σ = 0, 0.3, 2 at one frequency k = 3,
two frequencies k = 2, 3 and four frequencies k = 1, 2, 3, 4. Note that if σ = 0, then κi = 0

14
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Figure 2. Reconstruction of the strength in example 2. Solid blue line: exact strength;
circled red line: reconstructed strength. For σ = 0 (left column), σ = 0.3 (middle col-
umn) and σ = 2 (right column), reconstructions get better when data at more frequencies
are used (top: k = 3; middle: k = 2, 3; bottom: k = 1 : 4).

and the exponential kernel in (11) vanishes. Hence, only the average of the strength μ can be
recovered, and the strength itself can not be uniquely determined based on the data at a single
frequency in this case. To reconstruct the strength μ for the case σ = 0, the multi-frequency
data is required. We refer to [6, 22] for the details of inverse random source problem of the
one-dimensional Helmholtz equation without attenuation. For σ = 0.3, 2, the strength μ can
be properly recovered by using the data at a few frequencies.

Example 3. Reconstruct the strength given by

μ(x) = 0.5e − 0.3 ecos(4πx) − 0.2 ecos(6πx)

inside the interval (0, 1). The strength μ in this example contains more higher Fourier modes
than the two previous examples. Hence, it is expected that the data at more frequencies is
required to reconstruct the strength. Figure 3 shows the reconstructed strength and the exact
one based on data with σ = 0, 0.3, 2 at one frequency k = 3 or more frequencies k = 1, . . . , 8
and k = 1, . . . , 16, respectively. For σ = 0, data at a single frequency can hardly recover the
strength. For σ = 0.3, 2, data at a single frequency could roughly recover the strength, and the
reconstructions get better when data at more frequencies is used.

15
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Figure 3. Reconstruction of the strength in example 3. Solid blue line: exact strength;
circled red line: reconstructed strength. For σ = 0 (left column), σ = 0.3 (middle col-
umn) and σ = 2 (right column), reconstructions get better when data at more frequencies
are used (top: k = 3; middle: k = 1, . . . , 8; bottom: k = 1, . . . , 16), and more frequencies
are required to properly reconstruct the strength which contains more higher frequency
modes.

6. Conclusion

We have studied an inverse random source problem for the one-dimensional Helmholtz
equation with attenuation, which is to reconstruct the micro-correlation strength of the ran-
dom source. Compared with the higher dimensional problems studied in [23], the fundamental
solution in the one-dimensional case is smooth, which makes it possible to deal with rougher
random sources including the white noise. The strength is shown to be uniquely determined
by the variance of the wave field in an open measurement set. The attenuation is essential in
the model to get the strength reconstructed point-wisely.

It is open for the recovery of microlocally isotropic random sources for the one-dimensional
Helmholtz equation without attenuation as well as the recovery of microlocally isotropic ran-
dom media for the Helmholtz equation. For the one-dimensional Helmholtz equation without
attenuation, only the average of the strength of the microlocally isotropic Gaussian random
source over its support could be obtained from on the method presented in this work. For
the higher dimensional Helmholtz equation in microlocally isotropic random media, the well-
posedness of the direct scattering problem has been studied in [25]; for the inverse scattering
problem, however, it is difficult to get the convergence of the Born series generated by the
Lippmann–Schwinger equation, which makes it difficult to get an explicit expression of the

16
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strength of the random media. Some other mathematical tools need to be explored to deal with
these open problems. We will report the progress on these problems elsewhere in the future.
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