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We derive the exact insulator ground states of the projected Hamiltonian of magic-angle twisted
bilayer graphene (TBG) flat bands with Coulomb interactions in various limits, and study the
perturbations away from these limits. We define the (first) chiral limit where the AA stacking
hopping is zero, and a flat limit with exactly flat bands. In the chiral-flat limit, the TBG Hamiltonian
has a U(4)xU(4) symmetry, and we find that the exact ground states at integer filling —4 < v <4
relative to charge neutrality are Chern insulators of Chern numbers ve =4 — |v|,2—|v|,--- , || —4,
all of which are degenerate. This confirms recent experiments where Chern insulators are found to
be competitive low-energy states of TBG. When the chiral-flat limit is reduced to the nonchiral-flat
limit which has a U(4) symmetry, we find v = 0,£2 has exact ground states of Chern number
0, while v = #£1,43 has perturbative ground states of Chern number vc = £1, which are U(4)
ferromagnetic. In the chiral-nonflat limit with a different U(4) symmetry, different Chern number
states are degenerate up to second order perturbations. In the realistic nonchiral-nonflat case, we
find that the perturbative insulator states with Chern number vo = 0 (0 < |vc| < 4—|v|) at integer
fillings v are fully (partially) intervalley coherent, while the insulator states with Chern number
|vc| = 4—|v| are valley polarized. However, for 0 < |v¢| < 4—|v|, the fully intervalley coherent states
are highly competitive (0.005meV /electron higher). At nonzero magnetic field |B| > 0, a first-order
phase transition for v = £1, £2 from Chern number vo = sgn(vB)(2 — |v|) to v = sgn(vB)(4— |v|)

is expected, which agrees with recent experimental observations. Lastly, the TBG Hamiltonian
reduces into an extended Hubbard model in the stabilizer code limit.

I. INTRODUCTION

Recently, remarkable interacting phases have been ob-
served in twisted bilayer graphene (TBG) near the magic
angle 0 ~ 1.1°, including correlated insulators, Chern
insulators and superconductors [1-111]. At integer fill-
ings of electrons per moiré unit cell (quarter fillings of
the ”active flat bands” around charge neutrality due to
spin-valley degeneracy), a slew of interacting insulating
phases has been observed. Since the system hosts 8 flat
electron bands, strong many-body interactions are ex-
pected to be responsible for these unconventional phases,
as suggested by experiments [14, 18, 19]. Scanning tun-
neling spectroscopy experiments reveal a Coulomb repul-
sion strengh (~ 25meV) [14, 18] much larger than the
electron bandwidths, and show that TBG (without hBN
substrate alignment) develops strong correlation gaps in
magnetic fields B at integer fillings v with respect to
charge neutrality, which are topological with Chern num-
bers (4 — |v|) [20, 21]. Chern insulators in magnetic
fields have also been observed by transport experiments
in TBG with [6, 11] and without [22-25] hBN substrate
alignment. In this paper we explain these experimental
findings (which have so far only been explained by phe-
nomenological theories) by deriving exact ground states
of the projected interacting TBG Hamiltonian within the
flat bands.

Among the theoretical studies on TBG interacting
phases [51-104], Kang and Vafek [71] first proposed
an approximate U(4) symmetric interacting positive
semidefinite Hamiltonian (PSDH) in a non-maximally-
symmetric Wannier basis [42], which allowed them to ob-
tain an exact insulator ground states at filling v = +2
electrons per unit cell. Bultinck et al. [72] further dis-
cussed the TBG ground state at even fillings by iden-
tifying a U(4)xU(4) symmetry of TBG in the chiral
limit (named the first chiral limit in Refs. [108, 109]
in contrast to the second chiral limit defined therein),
and showed that an intervalley-coherent state (denoted
as K-IVC state in Ref. [72]) is favored at charge neu-
trality (v = 0), and could also be favored at v = +2.
However, the analytical calculation of other integer fill-
ing (per moiré unit cell) ground states in the strong in-
teraction limit has not yet been done. In paper [109]
we have showed that all projected Coulomb Hamiltoni-
ans in any number of bands have the Kang-Vafek PSDH
form - with U(4) x U(4) symmetry in two chiral lim-
its, while U(4) subgroups of this symmetry group remain
valid upon moving away from either of the two chiral
limits, or upon introducing kinetic terms. In paper [107]
we showed that a large number of the TBG matrix ele-
ments of the Coulomb interaction can be neglected. In
paper [108, 109] we have also defined and gauge-fixed a
Chern basis in the lowest 8 bands in both the chiral and
nonchiral limits, which is also discussed by Refs. [72, 74].



In this paper, employing the momentum-space pro-
jected TBG Hamiltonian derived in Ref. [109] which is of
the PSDH Kang-Vafek type [71], we demonstrate that ex-
act TBG insulator ground states (which are Fock states)
and their perturbations can be derived in and away from
various limits at integer fillings per moiré unit cell. We
define the first chiral limit (hereafter denoted as the “chi-
ral limit” when no ambiguity) [37, 108, 109] as the limit
where the AA and AB/BA stacking centers have hop-
pings wy = 0 and w; > 0 respectively, and the flat limit
as the limit of exactly flat kinetic bands. We then study
different combinations of these two limits. (We note that
a second chiral limit is also defined in Refs. [108, 109]
where wy > 0 and w; = 0, which is however far away
from realistic TBG parameters. Throughout this paper,
when we talk about the “chiral limit”, we refer to the
first chiral limit.)

A. Summary of results

Our results can be conveniently presented in the Chern
(band) basis we defined in Ref. [109] (see also [40, 72]),
which are defined by linearly recombining 2 flat bands
of each spin-valley into 2 Chern bands of Chern num-
ber +1, respectively (thus in total 4 Chern number +1
bands and 4 Chern number —1 bands given by 2 valleys
and 2 spins, see Eq. (8)). In the (first) chiral-flat limit,
the Hamiltonian has a valley-spin U(4)xU(4) symmetry
[72, 109], and we find that provided a weak condition
(7) called the flat metric condition is not largely vio-
lated, the exact ground states at each integer filling v
(lv] < 4) relative to the charge neutral point (CNP) are
given by the fully occupying any v + 4 Chern bands (of
either Chern number +1), leading to exactly degenerate
Chern insulator ground states with total Chern number
ve =4 —1v|,2—|v|, -+ ,|v] — 4. This degeneracy be-
tween different Chern number states is lifted when going
away from the chiral-flat limit. When reduced to the
nonchiral-flat limit, the Hamiltonian still has a valley-
spin U(4) rotational symmetry [72, 109], and we find
that the lowest possible Chern number is favored: all
the even fillings v = 0,£2 have Chern number 0 insu-
lator ground states which are exactly solvable, while all
the odd fillings v = £1, £3 have Chern number £1 in-
sulator ground states by perturbation analysis. All of
these ground states in the nonchiral-flat limit are U(4)
ferromagnetic (FM). If the kinetic energy (nonflatness)
is further turned on, the symmetry of the system will be
broken into U(2)xU(2) [72, 109]. In this case, we find
the U(4) FM insulator states with Chern number vc = 0
at even fillings v (e.g., the v = 0, £2 ground states which
have v = 0) are fully intervalley coherent (with a maxi-
mal in-plane polarization in the valley Bloch sphere, Fig.
1(e)), the states with Chern number 0 < |v¢| < 4 — |v|
at integer fillings v (e.g., the v = &1 ground states with
veo = £1) are partially intervalley coherent, while the in-
sulator states with Chern number |vo| = 4—|v| (e.g., the

v = £3 ground states with vo = +1) are valley polar-
ized (with maximal z direction polarization in the valley
Bloch sphere). At even fillings v = 0,42, our results
agree with the energy argument and the K-IVC states
proposed at v = 0,42 in Refs. [72]. The ground state val-
ley coherence/polarization we found at all integer fillings
also agrees with that found by the Hartree-Fock calcula-
tion in Ref. [89]. However, the ground state Chern num-
bers are not discussed in Ref. [89]. At v = +1,+3, the
energy difference between the Chern number +1 ground
states (valley polarized at v = +3, partially intervalley
coherent at v = 1) and the corresponding Chern num-
ber +1 fully intervalley coherent states is very small (of
order 0.005meV per electron), making the latter still a
competitive state.

The other perturbation away from the (first) chiral-
flat limit is the (first) chiral-nonflat limit with a nonzero
kinetic energy, which also has a valley-spin U(4) rota-
tional symmetry (different from the nonchiral-flat U(4))
[72, 109]. In this case, we find all the different Chern
number states at a fixed integer filling v are degener-
ate up to second order perturbations. Without symme-
try protections, their degeneracy will be lifted by higher
order perturbations, and we show numerically in a dif-
ferent paper [111] that the lowest Chern number (abso-
lute value) is favored. Besides, we find the ground state
in the chiral-nonflat limit favors filling only one of the
two Chern bands in each valley and spin, in agreement
with the analysis in Ref. [72]. As a result, the occu-
pied Chern +1 basis and the occupied Chern —1 basis
tend to have distinct spin-valley polarizations, thus are
antiferrmomagnetic (AFM) between each other from the
perspective of the chiral-nonflat U(4) group. When the
nonchiral perturbation is further turned on and the sym-
metry is reduced to U(2)xU(2), we find the same val-
ley coherence/polarization as that from perturbing the
nonchiral-flat insulating states, namely, fully interval-
ley coherent states are favored when the Chern number
ve = 0, partially intervalley coherent states are favored
when 0 < |v¢| < 4 — |v|, and valley polarized states are
favored when |vo| =4 — |v|.

In particular, in the nonchiral-nonflat case, the per-
turbative ground states we obtained by adding nonchiral
perturbation to the chiral-nonflat limit are the same as
those we obtained by adding nonflat perturbation to the
nonchiral-flat limit, which indicate the uniqueness of the
ground state when both nonchiral interaction and kinetic
energy are small. Note that the spin-valley U(4) polar-
izations (magnetizations) of all the insulating states we
found in this paper have an orbital magnetism origin, due
to the absence of spin-orbital coupling in TBG.

Crucially, all of our statements about the ground states
at nonzero integer fillings are checked by exact diag-
onalization techniques in Ref. [111] (fully verified for
v = —3, and showing agreement within limited Hilbert
spaces/parameters for v = —2 and —1).

Furthermore, by a free energy estimation, we pre-
dict that for v = =41,42, an interaction-driven first-



order phase transition from the lowest Chern number
ve = sgn(vB)(2 — |v|) intervalley coherent state to the
highest Chern number vo = sgn(vB)(4 — |v|) valley po-
larized state happens at a finite out-of-plane magnetic
field |B| = B} (with B of order 0.5T, see Fig. 3),
where sgn(x) is the sign function. At filling v = +3, the
only possible Chern number is ve = sgn(vB)(4 — |v|) =
sgn(vB) (valley polarized). At filling v = 0, such a
transition is absent. Remarkably, this is supported by
the experimental findings by scanning tunneling spec-
troscopy [20, 21] as well as observed in transport exper-
iments [22-24], where correlated gaps of Chern number
ve = sgn(vB)(4 — |v|) emerge above a certain magnetic
field for all integer fillings v # 0. Besides, hysteresis
loop has been observed by transport experiment in mag-
netic field B > 0 near v = +1 [4, 23], after which the
system enters a Chern number +3 phase. Moreover,
Pomeranchuk effect in magnetic fields is also observed
near v = %1 in transport experiments [26, 27]. These
evidences strongly support our prediction of the in-field
first-order phase transitions at v = £1, +2.

Lastly, we study the stabilizer code limit we identified
in Ref. [109], where the TBG Hamiltonian becomes the
sum of mutually commuting terms. We solve exactly the
entire spectrum in this limit by showing it is equivalent
to an extended Hubbard model. This limit, although
not satisfied by realistic parameters, gives a heuristic un-
derstanding of the TBG spectra as Hubbard subbands,
as revealed by the cascade spectral features observed by
scanning tunneling spectroscopy [14, 18, 20, 21].

B. Paper organization

The paper is organized as follows. In Sec. II, we briefly
review the projected TBG Hamiltonian in the lowest 8
flat bands derived in Ref. [109]. We first study the ex-
act insulating ground states at integer fillings v in the
(first) chiral-flat limit in Sec. ITI. We then derive either
the exact or perturbative insulating ground states/low
energy states away from the (first) chiral-flat limit (in the
nonchiral-flat limit, chiral-nonflat limit and nonchiral-
nonflat case) in Secs. IV-VI. Sec. VII is then devoted to
examine the Chern insulator phase transitions in mag-
netic fields near the integer fillings. In Sec. VIII, we ex-
actly solve all the eigenstates in the stabilizer code limit
of TBG. The discussion and conclusion are then given in
Sec. IX.

I1II. THE POSITIVE SEMI-DEFINITE
PROJECTED TBG HAMILTONIAN

In Ref. [109], we derived the projected Hamiltonian in
the 8 (2 per spin-valley) moiré flat bands of the magic an-
gle TBG under Coulomb interactions. In this paper, we
study the ground states of such a projected TBG Hamil-
tonian, which can be written into kinetic and interaction

parts as H = Hy + H;. The kinetic term is (App. A1)

HO = Z Z67%7](1{)61—(,7177]7561(1"77]73 ’ (1)

n==x1 kns

where 7 = + denote graphene valleys K and K’ s =1,

denote the electron spin, and n = +1 denote the conduc-
tion/valence flat bands in each spin-valley flavor. cfkm,n, s
is the electron creation operator of energy band n, and
the origin of k is chosen at I' point of the moiré Brillouin
zone (MBZ). The single-particle energy ¢, , (k) depends
on the twist angle 6 and two interlayer hopping parame-

ters [1, 37, 107, 108] (definition given in Eq. A4):

AA hopping, 5
AB/BA hopping, 2)
The lowest 8 moiré bands (2 per spin-valley) become ex-
tremely flat near the magic angle manifold wy < wy =~
vrke/v/3 [1, 37, 107], where v is the monolayer graphene
Fermi velocity, and kg = 8msin(6/2)/3a¢p with ay =
0.246nm being the graphene lattice constant. The realis-
tic TBG generically have wg < wy due to lattice corruga-
tions and relaxations [112-115], while the isotropic case
wg = wj correspond to TBG without relaxation or corru-
gation [1]. In this paper, we shall assume w; = 110meV
is fixed, and wy is tunable.

The projected Coulomb interaction term H; within the
lowest 8 moiré bands then takes the form (see Ref. [109]
for details, see App. A2 for a brief review)

1

H =
! QQtot

Z O—q,—GOq,G 5 (3)

qeEMBZ GeQq

where Qi is the total area of TBG, G belongs to the
triangular moiré reciprocal lattice Qg of TBG, and

kns m,n==+1

1
x (pﬁ,q,m,n,s - 26%05”%”) .

Here we have defined the Coulomb potential V(q) =
2me? tanh(£|q|/2)/e|q| for an effective dielectric constant
€ (~ 6), and screening length ¢ (~ 10nm) from the top
and bottom gates. The coefficients M,(Z])n k,q+G) =
Za,QeQi ua_G@mn(k + qQ)uq,any(k) are called the
form factors (overlaps), where uq, any, (k) is the wavefunc-

(4)

tion of band n at valley 1. pyl ., . = Chetqum,,sCkmo,s
is the density operator. In particular, since O_q,_g =
O;G, the interaction Hy in Eq. (3) is a Kang-Vafek type
[71] positive semidefinite Hamiltonian (PSDH).

The TBG Hamiltonian has a rotational symmetry Cs,
and a time-reversal symmetry 7', and a U(2)xU(2) sym-
metry given by spin-charge rotations of each valley. Be-
sides, there is a particle-hole (PH) symmetry P satisfy-
ing {Hy, P} = [H;,P] = 0. The combined symmetry



Cy, P ensures €, (k) = —e_,, _,(k). The full Hamilto-
nian H also has a many-body charge conjugation symme-
try P., which ensures that all phenomena are PH sym-
metric about the CNP (see definition in App. A2 and
proof in Ref. [109]).

Furthermore, in the first chiral limit with AA stacking
hopping wg = 0, there is an additional chiral symmetry
C satistying {Ho,C} = [H;,C] = 0 (see definition in
App. A 2, and proof in Ref. [108, 109] where C' is denoted
as the first chiral symmetry, in contrast to a second chiral
symmetry defined by wy = 0 therein). Since throughout
this paper we will only be considering the first chiral
limit, hereafter we will simply denote it as the “chiral
limit” unless there is an ambiguity.

Hereafter we will use (%, 7%, s® to denote the iden-
tity matrix (¢ = 0) and Pauli matrices (¢ = z,y,2)
in the flat band n = =1, graphene valley n = =+
and spin s =7, spaces, respectively. Throughout this
paper, we adopt the gauge fixing of the band basis
that cgch(nnsc;; = Tcf,, Tt = and

€ kn,—n,s’
(Co P )ck _— J(CoP)7t = —nncL_m_n - This fixes the

form factors (overlaps) M (k,q + G) into
3
M(U) kq+G :Z mnn7)aj(kq+G) (5)
7=0

where a;(k,q + G) are real scalar functions, and we have
defined My = ¢°7°, M, = (*r%, My = i¢¥7%, and
M3 = (*7%. In particular, for q = 0, one can prove that
ao(k, G) = ap(—k, G), and a;(k,G) = —a;(—k, G) for
j = 1,2,3 (see proof in Ref. [109] and brief review in
App. A 2). Besides, we assume the energy band basis is
further fixed by the continuous condition Eq. (A21) (see
also [109]).

To study the ground states of TBG, it is useful to note
that Hy in Eq. (3) can be rewritten as (App. C1)

Hr =

1
ON A — N2 A_gA
ZQMXG:{ mMA-cOo,c mA-gAc+

> (0-q-6 — NuA-6840)(Oac — NaAalqo)|
q

(6)

where Nj; is the total number of moiré unit cells, and
Ag can be any G dependent coefficient. Since O_q g =

OL’G, the last term on the right-hand-side of Eq. (6) is
always nonnegative. In particular, if for ¢ = 0 one has
the [107]

Flat Metric Condition: M (k,G) = &(G)dmn (7)
being independent of k, where £(G) is some function of
G, one would have Og ¢ = /V(G)¢(G)v Ny, where
—4 < v < 4 is the number of electrons per moiré unit
cell relative to the CNP. Therefore, for a fixed filling v,
if either the flat metric condition (7) holds or if Ag =0,
the first two terms in Eq. (6) will be constant, and thus
a state annihilated by Oq.c — Ny Agdq,o for all q and

G will necessarily be the ground state of H;. Based on
this idea, we will identify the ground states of strongly
interacting TBG at integer fillings v.

We note that as shown in Ref. [107], the flat met-
ric condition in Eq. (7) is always satisfied for G = 0,
and is approximately satisfied by the TBG single-particle
Hamiltonian for |G| > v/3ke due to the fast exponential
decay of the form factors with respect to |G|. Therefore,
to a good approximation, the only G which violate the
flat metric condition Eq. (7) are the six smallest nonzero
moiré reciprocal lattice sites with |G| = v/3kg.

III. CHERN INSULATORS IN THE (FIRST)
CHIRAL-FLAT LIMIT

We first study the (first) chiral-flat limit, for which the
projected kinetic term is Hy = 0, and wg = 0 < ws.
The Hamiltonian thus has the (first) chiral symmetry C
(which ensures €, ,(k) = —€_, n(k)). Here we choose
the gauge fixing Cc;r(’nm’&,C'*1 = inncL_nm,s for n = +1
(see Ref. [109], see also App. A2a). In total, due to
the C' and C5,P symmetries, the projected Hamilto-
nian H = Hj in this limit has a U(4)xU(4) symme-
try in the band-valley-spin space, which has 32 gener-
ators S¢0 = Zk(s’ib)mnsnn S/CL 7n,n,sck1nm’,5’ (a,b =
0,2,y,2), where s%° = (CO +(¥) 7% /2 (see Ref. [109],
see also the brief review in App. A4c).

It is convenient to transform into another basis which
we call the Chern (band) basis defined in Refs. [108, 109]
(see also App. A 3):

f .
t _ Gt TV o s _
dk,€Y7U7s - V2 o (ey ==£1). (8)

As proved in Refs. [108, 109], for fixed 7 and s, dk ey s
form the basis of a Chern number ey band. We note
that the Chern basis (8) is adiabatically equivalent to the
Chern basis defined in the first chiral limit in Ref. [72],
while we show in Ref. [108] that this Chern basis can still
be defined by Eq. (8) away from the first chiral limit,
which is also discussed in Ref. [74].

With the chiral symmetry C, one can show that
a1(k,q+ G) = asz(k,q+ G) = 0 in Eq. (5). Therefore,
under basis (8), the operator Oq.¢ in Eq. (4) reduces to

Oq,c =08,G :Z Z VV(ia+G)

kns ey =%£1

(9)
X MSY (kv q + G) <dI<+q ey,'ﬂ,sdkveYﬂ]’S -

1
25q,0> )

where we have defined M., (k,q+ G) = ap (k,q+ G) +
ieyas (k,q+ G).
At integer filling v relative to the CNP (—4 < v < 4),



we define a spin-valley polarized Fock state

v v_
72 78 T T
|\Ilu+ > - H H dk,+l,77j1,5j1 H dk,—l,n;ys’. |0>7

k ji=1 ja=1 2
(10)

where v, v_ € [0, 4] are two integers satisfying v, +v_ =
v +4, k runs over the MBZ, |0) is the zero electron state
of flat bands, and {n;,, s;, } and {n},, s’ } can be chosen
arbitrarily. This is a state with N, = (v4 + v_ )Ny
electrons fully occupying v Chern number +1 bands of
valley and spin indices {n;,,s;, } and v_ Chern number
—1 bands of valley and spin indices {7},, s}, }, while all
the other Chern bands are empty. It is straightforward
to verify that if we define

e = 7 VV(G) Y an(k. @), (11)
k

we have for any q and G:
(Oq,c = NmAcqo)|¥") =0. (12)

Assume either the flat metric condition (7) is satisfied,
or that v = 0 (where the flat metric condition (7) is not
needed). By rewriting the Hamiltonian as Eq. (6), we
see that the first two terms in Eq. (6) are constants only
depending on v, and thus the state |¥,""") at integer
filling v with any vy,v_ is an exact ground state in the
(first) chiral-flat limit. Furthermore, such a ground state
with any v,v,,v_ has gapped charge excitations, as we
will show in Refs. [110, 111]. This is because there is no
remaining symmetry protecting a gapless electron spec-
trum: the electrons in valley n will be gapless if valley
71 (for a fixed spin s) is half-filled and the spinless Cy, T
symmetry is preserved, due to the C5,T protected fragile
topology [43-46, 48, 76, 116, 117]. This is not satisfied by
state |¥,7"7), since a half-filled valley 1 (of a given spin
s) always fully occupies one Chern band, which breaks
the Cy, T symmetry.

If the flat metric condition (7) is not satisfied, ¥, """ )
in Eq. (10) is still an eigenstate of H = Hj, since Og.c
in the first term of Eq. (6) satisfies

Oo,c|Vy+"~) =v\/V(G) Y ag(k, G)[TLr") . (13)
k

Therefore, |, """~ ) will remain the ground state at filling
v unless the flat metric condition (7) is sufficiently vio-
lated to bring down the energy of another eigenstate into
the lowest. (Notice that in Ref. [110], the spectrum is de-
rived and gapless due to the goldstone mode; this mode
has always energy above the |¥,™""), even when it is
not a ground state.) In particular, for v = 0, [¥g™"")
is always the ground state without the flat metric con-
dition (7), since Op.g|¥,""") = 0. We will show in
a different paper [110, 111] that |¥,""") at all integer
fillings v € [—4,4] remains the ground state for realis-
tic parameters in the chiral-flat limit, although the flat
metric condition (7) is violated.

By definition (10), the ground state |¥,""~) carries a
Chern number

Ve =vy —v_ , (14)

which can take values vo =4 — |v],2 — |v|,--- ,|v| — 4.
These ground states with different Chern numbers v¢ at
filling v are exactly degenerate in the chiral-flat limit.

Due to the U(4)xU(4) symmetry in the chiral-flat
limit, the ground states fall into irreducible represen-
tations (irreps) of U(4)xU(4). For instance, different
choices of {n;,, sj, } and {n;,, s}, } in Eq. (10) give differ-
ent states in the same irrep multiplet. We label the irreps
of the U(4) group by their Young tableau as [A1, Az, )4
(abbreviated as [{A;}]4), where X\; (i < 4, A\; > A\ij1)
is the number of boxes in row ¢ of the Young tableau
(A; will be omitted if A; = 0) (see App.B1). Note that
the usual Young tableau notation for U(4) only requires
three rows, here for convenience [A1, Az, A3, A\g]s should
be understood as [A1 — Ag, A2 — Ag, A3 — Ag]s. The irreps
of U(4)xU(4) are then given by the tensor products of
irreps [{A1,:}]a of the first U(4) and irreps [{A2,;}]s of
the second U(4), which we denote as ([{A1,:}a, [{A2,i}]4)
(see App.B2). In Ref. [109], we showed that for each
k, the creation operators dLJrL s and del,n,s occupy
U(4)xU(4) irreps ([1]4,[0]4) and ([0]4, [1]4), respectively,
where [1]4 and [0]4 are the fundamental irrep and iden-
tity irrep of U(4). The U(4)xU(4) irrep of ground state
|W, "~ can then be shown to be (see App. C2a)

(IN3f 1as [Ny Ja) (15)

where [AP]4 (p < 4) is short for the U(4) irrep [A\, A, - ]a
with p number of A. Within each U(4) of Chern bands ey,
the U(4) irrep [Ny;¥ |4 of |U;*""") is maximally symmet-
ric, thus is a U(4) FM with the maximal possible spin-
valley polarization at filling v.,, within the Chern basis
ey. The U(4) FM polarizations of the eyr = 1 Chern ba-
sis are unrelated in the chiral-flat limit (Fig. 1(b)). Thus,
the ground state |¥, """ ) is a U(4)xU(4) FM state.

IV. GROUND STATES IN THE
NONCHIRAL-FLAT LIMIT

We now turn to the nonchiral-flat limit, where the
projected kinetic term Hy = 0, and w; > wy > 0.
Without chiral symmetry C, the Hamiltonian H = Hj
only has a global U(4) symmetry [109], with gener-
ators S = Zk(sab)mﬂ%S;H,U',S'c;r(,m,r,,sck-,nm',s'7 where
5 = {(079=gb (yrvYst} (b = 0,x,y,2) (see derivation
in Ref. [109], and App. A4b for brief review). One can
still define the Chern band basis (8), under which the
operator Og g in Eq. (4) decomposes into

Oq.c =02 g+ 0l.a (16)



where Og,G is given in Eq. (9), and

a=y_, >, nV(a+G)

kns ey =%£1 (17)
x Fe, (k,q+ G)d;rc—i-q —ey,m, sk,ey s

with the coefficient F,
ieyag (k, q + G)

We first show that exact ground states can be obtained
for even integer fillings v = 0, £2 (the trivial band insu-
lators at v = 4 are not discussed). We define a state
with Chern number zero at even filling v as:

Y(k7q+ G) = O (kaq+G) +

(v+4)/2

H H dT»"‘la”hvSJT

where {n;,s;} can be chosen arbitrarily. This state has
(v +4)/2 valley-spin flavors {n;,s;} fully occupied, and
the rest (4 — v)/2 valley-spin flavors fully empty. By
choosing coefficients Ag as given in Eq. (11), one can
verify that

0y, (18)

k,—1,m;,s;

(Oq,¢ — NvAgdgo)|P,) =0, (19)

with Oq,¢ given in Eq. (16). Therefore, if the flat metric
condition (7) is satisfied or v = 0, the state |¥,) gives the
exact ground state in the nonchiral-flat limit. Since no
valley-spin flavor is half-occupied (although Co.T sym-
metry may persist), we expect state |¥,) to be a gapped
insulator.

If the flat metric condition (7) is unsatisfied, |¥,) is
still an eigenstate of H = Hj. For v = 0, |¥y) is the
ground state with or without the flat metric condition
(7). For v = £2, we expect the states |Uis) to remain
the ground states unless the flat metric condition (7) is
violated beyond a threshold.

In Ref. [109], we showed that the Chern band basis

di ..
ey ,n,s
irrep [1]4 of the nonchiral-flat U(4) symmetry, with the

generators represented by

for each k and ey occupies a fundamental U(4)

sab(ey) = {TOSb, ey%s?, eyrYs?, TZSb}. (20)

Accordingly, the ground state |¥,) in Eq. (18) occupies
a maximally symmetric U(4) irrep (see App. C3)

[(2Nar) /2]y (21)

which is thus a U(4) FM state with maximal possible
U(4) polarization. However, the physical valley polar-
izations of the ey = +1 Chern band basis differ by a w
valley rotation about z axis (Fig. 1(c)), as can be seen
from their representation matrices in Eq. (20) (which are
relatively twisted between eyx = £1 by a unitary transfor-
mation 7, ), although they occupy the same fundamental
irrep of the nonchiral-flat U(4).

Such exact analytical many-body eigenstates, however,
do not occur at odd integer fillings or states carrying a

nonzero Chern number at even integer fillings. Therefore,
we consider all integer fillings v at small wg > 0, where we
can treat O} ¢ in Eq. (16) as perturbation to the (first)
chiral-flat limit. We note that such a perturbation anal-
ysis becomes exact for zero Chern number states at even
fillings, leading to the exact ground states in Eq. (18).

This perturbation O . favors as many fully occupied
or fully empty valley- spln flavors {n, s} as possible (see
App. D1 for details), as also showed by Ref. [72], since it
gives zero when acting on a fully occupied (empty) valley-
spin flavor {n, s} and lowers the total interaction energy
Hj;. Thus, it selects the following subset of states in the
chiral-flat limit multiplet |¥,""") (vy +v_ = v +4) as
the lowest states of Chern number vo = vy — v_:

vy VC H H dTHrl,nJ,sJ H dT k,—1,1;,s; |O> ) (22)

k j=1 j=1

which fully occupies valley-spin flavors {7, s;} with 1 <
j < min(vq,v_). The nonchiral-flat U(4) irrep of state
¥, ) is (see App. D1)

(2N Irel+ 072 Npel) (23)

which can be understood as a nonchiral-flat U(4) FM
with the maximal possible U(4) polarization for fixed v
and vo. The ey = 41 subspaces of Chern basis thus
have a nonchiral-flat U(4) FM coupling between them.
However, since the representation matrices of the Chern
basis ey = =41 differ by a unitary transformation 7,
the physical valley polarizations of Chern basis ey = +1
differ by a 7 valley rotation about the z-axis (Fig. 1(c)).
The perturbation energy of the state |¥, ) up to order

wg is (see App. D1)

EM) = |ug|Na(Uy — v2Us) (24)

v,ve

where we have defined

1
Ui = IN Vet Z V(a+G)|Fi(k,a+G)|*, (25)
k,q,G

and Us is from the second order perturbation of the
nonchiral interaction term 01_q7_GOg,G. U, is defined
in Eq. (D9) of App. D1 and has a more complicated ex-
pression. Both U; and Us are proportional to w%. In
particular, one has Us = 0 if the FMC in Eq. (7) holds.
We note that the energy U; here is equivalent to the
coupling A in Ref. [72]. For wy & 0.8w;, our numerical
calculation shows Uy & 1.2meV (which does not depend
on whether FMC holds), and Uz ~ 0.10meV without the
FMC (see Fig. 5(b)). In particular, our numerical calcu-
lation shows that U; — 12Uy > 0 for any 0 < wp/wy <1
and |v| < 3 (Fig. 5(b)). Therefore, the states with the
smallest Chern number |v¢| are prefered as the ground
states. Note that for even fillings v = 0,+£2, the Chern
number ve = 0 state |U, o) is simply the exact ground
state |U,) in Eq. (18). For odd fillings v = £1,+£3, the
Chern number vo = £1 states ¥, 4; give the perturba-
tive ground states.



V. THE (FIRST) CHIRAL-NONFLAT LIMIT

We now study the (first) chiral-nonflat limit, where the
kinetic term Hy # 0, and the U(4)xU(4) symmetry in
the (first) chiral-flat limit is broken down to a U(4) sym-
metry (different from the nonchiral-flat U(4)). The U(4)
generators are 5% = 37, (39),,, s’ Cle . s Ckomor' 87
where 39 = (7% (a,b = 0,z,y, 2) (see derivation in
Ref. [109] and brief review in App. A4d). To see how
Hy perturbs the chiral-flat limit ground states |¥,""")
in Eq. (10), we note that Hy in the chiral limit can be
rewritten as

Hy=Hj = >

k,ey,n,s

where €4 (k) = ey (k) = [e11 4+ (k) — e-1,+(k)]/2 due to
the chiral symmetry C. Since Hj is off-diagonal in the
Chern band basis, the first-order perturbation energy of
states |W,""") by Hy is zero (Hp has no matrix elements
among different Chern insulator states, as this requires
exciting every electron in one Chern band to another,
which is Njs-th order). Note that Hy excites |[¥, ")
into neutral excitations in all the half-filled valley-spin
flavors {n, s}, while gives zero when acting on fully filled
(empty) valley-spin flavors. Therefore, the non-positive
second order perturbation energy due to Hy favors as
many half-filled valley-spin flavors {7, s} as possible (see
App. E2 for details), as also shown in Ref. [72], which is
opposite to the effect of Oé,G in the nonchiral-flat limit.
Hj hence selects the following chiral-nonflat U(4) sub-
set of the previously chiral flat U(4) x U(4) multiplet
|W, ") at filling v = v + v_ — 4 and Chern number
ve = vy — v_ as the lowest states:

4
1/ l/c H H dk ,+1,m5,85 H di‘-(,fl,nj,s]» ‘0> ’ (27)

k j=1 Jj=5—v_

e, (k)df

k7—ey,n,sdka€Y77hS )

(26)

where {n;,s;} are the 4 valley-spin flavors arbitrarily
sorted in j (1 < j < 4). This state has 4 — |v| valley-spin
flavors half-occupied, and has a second order perturba-
tion energy

E? —_(4-

v,vc

V)N o (28)

Here the energy Jy = N Ml oo Eé‘)—/KE‘D,V
|(€,n, s, U, """ |Ho|¥, """~ )| are the amplitudes to neutral
excitations |/, ey, n,s, ¥, """) in a half-filled valley-spin
flavor {n, s} (which is independent of 7, s, see App. E 2 for
a short review and Ref. [110] for a detailed calculation),
E; are the unperturbed energies of the excited states
I,ey,n,s, U, 7" "), and Ep, is the unperturbed energy of
state |¥,,"""~) (which only depends on v = vy +v_ = 4).
We note that the energy Jy here in Eq. (28) is equivalent
to the coupling J in Ref. [72]. Numerically, the coupling
Jo is given by Jo = J; = J5 in Tab. I at wg = 0.

Since E‘,S?,Zc in Eq. (28) is independent of v¢, the chiral-

, where |Yy| =

nonflat U(4) multiplet states |¥, ) (which are subsets

valley polarizations
valley K, s=AV valley K’, s=4V y P (V

(a) (b
n=+1 n=+1
n=-1 n=-1
kinetic band basis
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54
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Chern number ey band basis

ey =+1

ey=-1

chiral- nonﬂat limit nonchlral nonflat

FIG. 1. (a) Illustration of the n = =1 kinetic band basis
and the Chern number ey = +1 Chern band basis. (b)-(e)
The preferred valley polarization for a Chern number ve = 0
state in the (b) (first) chiral-flat limit, which has a U(4) FM
within each Chern basis ey space, while the polarization of
ey = +1 subspaces are unrelated; (c) nonchiral-flat limit,
where electrons occupying Chern basis ey = £1 have valley
polarizations differ by a 7 rotation about the z-axis; (d) (first)
chiral-nonflat limit, where electrons in the Chern basis ey =
+1 prefer opposite polarizations; (e) nonchiral-nonflat case,
where electrons in the ey = 41 Chern basis polarize in the
valley z-y plane and oppositely.

of the chiral-flat multiplets |¥;""~) in Eq. (10)) for a
fixed v with different Chern numbers v = 4 — |v],2 —
|v|,--- ,|v| — 4 are degenerate up to the second order
perturbation of Hy. We expect this degeneracy between
different Chern number states to be broken by the 4-
th order and higher order perturbations, since there is
no symmetry protecting their degeneracy. Such higher
order perturbations are difficult to be done analytically.
However, as we will show numerically in a separate paper
[111], the states with the lowest possible Chern number
|ve| wins and becomes the ground state in the chiral-
nonflat limit. We will take this conclusion here, and leave
the numerical verification to Ref. [111].

In the state |¥,,.) in Eq. (27), electrons of Chern
basis ey = %1 tend to have distinct chiral-nonflat U(4)
spin-valley polarizations (Fig. 1(d)). The chiral-nonflat
U(4) irrep of |, is close to [Na; V], i.e., only differs
from it by a few Young tableau boxes (the analogue for
a SU(2) spin system would be an irrep with a total spin
close but not equal to the maximal ferromagnetic value,
see a discussion in App. E2). Therefore, one could view
the state as having a chiral-nonflat U(4) AFM coupling
between the two ey = %1 subspaces of the Chern basis.

VI. THE NONCHIRAL-NONFLAT CASE

In realistic systems, the magic angle TBG has wg ~
0.8w; [112-115], and the ratio between the energy scales



of Hy and Hy is S 0.1 [14, 18]. If we view both wyq
and Hy as perturbations to the first chiral-flat limit, our
earlier analysis has shown that the nonchiral interaction
due to wg and the kinetic term Hy perturb the ground
state energies at the first order (Eq. (24)) and the sec-
ond order (Eq. (28)), respectively. Here we will first de-
rive the nonchiral-nonflat ground states by perturbing
the nonchiral-flat ground states in Egs. (18) and (22)
with the kinetic term Hy. We will then show that the
same nonchiral-nonflat ground states can be obtained by
perturbing the chiral-nonflat ground states in Eq. (27)
with the nonchiral terms.

A. Kinetic perturbation to the nonchiral-flat limit

In this subsection, we regard the kinetic term Hj as a
perturbation to the nonchiral-flat limit. In the nonchiral
case without chiral symmetry C, we can rewrite Hy as
Hy = Hi + Hj, where H{ is given in Eq. (26), and

HE = Z ne— (k)dL,ey,n,sdk,eYanaS . (29)
k,ey ,n,s
Here e_ (k) = —e_(—k) = [e41,+ (k) + e_1,+(k)]/2. Since

Hjy breaks the nonchiral-flat U(4) symmetry down to
U(2)xU(2) of the spin-charge rotations of two valleys,
the nonchiral-flat U(4) multiplet |, ,.) in Eq. (22) will
no longer be degenerate, and a particular U(4) polariza-
tion will be favored. The first order perturbation of Hy
is zero (see App. E3). The second order perturbation of
Hy = Hf + H, yields an energy dependence on the val-
ley polarization of the state in the valley Bloch sphere.
Here we consider a state obtained by applying a U(4)
rotation

Ups) = eiSY0 (P1+01)/45iSV (pr—py) /4 (30)

onto the state in Eq. (22), where ¢, (s =1,J) gives a
valley rotation in the spin s sector, and we sort {n;,s;}
in Eq. (22) in the order {+,1}, {+,1}, {— 4}, {—, 1}
S are the nonchiral-flat U(4) generators (see Eq. (20)).
Since the state in Eq. (22) is valley polarized in the +z
direction of the valley Bloch sphere, and since the S¥°
(b = 0,2,y, z) representation matrices of the ey = +1
basis are opposite (proportional to ey, see Eq. (20)), the
valley polarization direction of spin s electrons in the
ey = +1 basis will be rotated oppositely away from the z
axis by angle ¢, in the valley Bloch sphere, as illustrated
by the blue (ey = +1) and red (ey = —1) arrows in

Fig. 1(c). In App. E3, we show that the second order
perturbation energy of such a state is given by
E£2V;( =—Nuy z [ ) Jy cos? g
s=1,1 (31)

+ (VS(Q)JQ + 1/8(3)J3) sin? @, |,

where J; (i = 1,2,3) are functions of wy (we assume
wy = 110meV fixed) and the twist angle 6 (which controls

wo/w1 Jl (meV) JQ (meV) J3 (meV)
0 0.3018 0.3018 0
0.2 0.2650 0.2626 0.0004
0.4 0.1735 0.1675 0.0013
0.6 0.0751 0.0701 0.0020
0.8 0.0174 0.0157 0.0012

TABLE I. The numerically calculated perturbation energies
Ji (i =1,2,3) at twist angle § = 1.05° with the FMC imposed
(Eq. (7)), and Coulomb screening length £ = 10nm. The
calculation is done in a 12 x 12 MBZ momentum lattice (large
enough to simulate the thermodynamic limit). Their values
depend on wg (we assume w; = 110meV is fixed), and are
independent of filling v with the FMC imposed. These values
of J; are almost equal to that calculated without the FMC in
Tab. IV. Note that J2 > J1 — J2 > J3 > 0 for all wg > 0.
Besides, when wg = 0, we have J; = Jo = Jo, with Jy defined
in Eq. (28).

the bandwidth), while the three numbers v (j = 1,2, 3)
are defined in App. E3 below Eq. (E35) and given in
Tab. III (the left table). Their summations over spin are
given by > Y = ZII v = 4—|v|,and ), ¥ =

— vy — 2| = |v— —2|. The energies .J; and J» come from
the second order perturbation of Hy in Eq. (26) alone,
while J3 comes from the second order perturbation of
Hy in Eq. (29) alone and the cross terms between Hy
and H; (see Eq. (E35) in App. E3). In general, one
has 1/(2) > uﬁ” and V§2) > 1/5(3) for any filling v and any
Chern number v¢. In particular, when the Chern number
lve| =4 — |v|, we have v = 1 > ¥ The numerical
values of J; for § = 1.05° and wo/w; € [0,0.8] with the
FMC (Eq. (7)) imposed are given in Tab. I, which are
independent of filling v. These values are almost the
same as the values of J; without the FMC given in Tab.
IV in App. E 3, which indicates the validity of the FMC.
For small wy and single-particle bandwidth ¢, we have
J1 — Jo w%t2 and J3 o w%tQ.

Generically, we always find Jo > (J; — J2) > J3 > 0
when wg > 0. As a result, by minimizing the energy in
Eq. (31), we find the lowest insulator state at integer

filling v with Chern number v¢ favors ¢, = 7/2 if v >

§ ), and favors ¢ = 0 if Véz) = l/gl), regardless of V( )

(see App. E3 for details). The wave function of this
lowest insulator state can be generically expressed as (see
App. E3 Eq. (E40))

6 77 eYd . g
n _nf ] [ l [ H key,n ,85 J k,ey,—n;,s
\I] CVC ( — \/§ ’ J)

k j=1 ey=%

vr+|vel|
+
X H dk»sgn(vc)’ﬂjvsj‘m’
Jj=vr+1
(32)

where vo = vy —v_ and v = vy +v_ — 4, and we have
defined v, = min(vy,v_), while {n;,s;} (1 < j < 4) are
sorted in the order of {+,1}, {+,4}, {—, 4}, {—, 1} 7 is



an angle that can be chosen arbitrarily. More concretely,
we can divide the insulator states in Eq. (32) into the
following three classes:

(i) For zero Chern number v¢ = 0 states, which is only
possible for even fillings v, we have ¢+ = ¢ = 7/2 (if
the spin 1/] sector is not empty), and the insulator state
is fully intervalley coherent. All the electrons in such a
state have a valley polarization in the z-y plane of the
valley Bloch sphere with an in-plane angle v (up to )
as shown in Fig. 1(e). The average number of electrons
in valley K and K’ are equal, which are coherent with
each other. These zero Chern number intervalley coher-
ent states agree with the K-IVC states at even fillings
proposed in Ref. [72].

(ii) For low Chern number 0 < |v¢| < 4—|v| states, we
find ¢4 = /2 and ¢ = 0. So the lowest insulator state is
partially intervalley coherent: it has intervalley coherence
in the spin 1 sector (where each valley before the U(4)
rotation U(yp;) are fully occupied or empty), while it is
valley polarized (in the z direction of the valley Bloch
sphere) in the spin | sector (where at least one valley
is half occupied). The average number of electrons in
valleys K and K’ are unequal.

(iii) For the highest Chern number |v¢| = 4—|v| states,
we have oy = ¢, = 0, and v, = 0 in Eq. (32). The
lowest insulator state is then fully valley polarized (in the
z-direction of the valley Bloch sphere). In this case, the
number of electrons in valleys K and K’ are maximally
imbalanced.

All the U(2)xU(2) rotations of state \\Illrjcugf> in Eq.
(32) form a U(2)xU(2) multiplet of degenerate states
(see App. E3). The |vg| = 4 state at v = 0 and
the |vc| = 2 state at v = £2 in Eq. (32) are singlets
of U(2)xU(2). In all the other cases, the state |¥2S2F)
in Eq. (32) spontaneously breaks the nonchiral-nonflat
U(2)xU(2) symmetry, and the remaining symmetry lit-
tle group for different v, v is given in Tab. V in App.
E 3. We can decompose the nonchiral-nonflat U(2) xU(2)
symmetry into SU(2) g xSU(2) g xU(1)cxU(1)y, where
SU(2),, is the spin rotation symmetry of valley n (gener-
ated by (1% +n7.)s?/2), U(1)¢ is the global charge U(1)
symmetry (generated by 7°s%), and U(1)y is the valley
U(1) symmetry (generated by 775%). In this notation, the
U(1)c symmetry is always unbroken due to the charge
conservation. The valley U(1)y symmetry is unbroken
when |v¢| =4 — |v|, and is broken when |v¢| < 4 — |v|.

B. Nonchiral perturbation to the chiral-nonflat
limit

An alternative approach is to treat the nonchiral terms
of Egs. (17) and (29) as perturbations to the chiral-
nonflat U(4) multiplet |¥,,,..) in Eq. (27). This yields
the same ground state as given in Eq. (32), which is
shown in details in App. E4). In fact, one could see this
most easily by noting that the U(4) rotated state |[¥nSnf)

v,vc

in Eq. (32) (and its U(2)xU(2) rotations) is a state si-

multaneously in the nonchiral-flat U(4) multiplet of state
|¥,.,.) in Eq. (22) and the chiral-nonflat U(4) multiplet
|\Tll,ﬁ,,c> in Eq. (27) (see proof in App. E4). Therefore,
for a fixed filling v and Chern number v, state |\Illn,c,,gf>
in Eq. (32) simultaneously minimizes the nonchiral inter-
action energy and the kinetic energy, thus is favored as
a candidate of the lowest state. We note that, however,
for [vg| =4 — |v|, one has v, =0 or v_ =0 (if v < 4),
and the entire nonchiral-flat U(4) multiplet (22) is the
same as the chiral-nonflat U(4) multiplet (27). In this
case, we cannot easily determine the favored U(4) polar-
ization, and a careful higher order energy calculation is
needed to see that the valley polarized state is favored
(App. E3). For a similar reason, for 0 < |veo| < 4 — |v|,
the valley polarization of the spin | sector has to rely on
a higher order energy calculation (App. E3).

C. An intuitive picture

For insulator states with Chern number vc = 0 which
have electrons equally occupying the two Chern basis
ey = =1, their intervalley coherence can be more in-
tuitively understood with the valley Bloch sphere. For
example, consider the insulator state with Chern num-
ber vo = 0 at filling v = 0, which has 2 ey = +1 Chern
bands and 2 ey = —1 Chern bands fully occupied. We
assume the electrons within each Chern basis ey = +1
subspace form a spin singlet with maximal valley polar-
ization along certain direction of the valley Bloch sphere,
as illustrated by the blue and red arrows in Fig. 1(b)-
(e) (the north/south pole of the Bloch sphere represent
valley K and K’, respectively). In the chiral-flat limit,
the valley polarizations of the occupied Chern +1 basis
and Chern —1 basis are unrelated due to the U(4)xU(4)
symmetry (see Sec. III), as shown in Fig. 1(b). When
reduced to the nonchiral-flat limit with a nonchiral-flat
U(4) symmetry, we have shown in Sec. IV that the cou-
pling between the U(4) polarizations of electrons in the
Chern ey = 41 subspaces is ferromagnetic. Because of
the relative unitary transformation 7, between the Chern
ey = =1 basis irreps (Eq. (20)), the physical valley po-
larizations of the ey = 41 Chern basis differ by a valley
z-axis 7 rotation, as illustrated by Fig. 1(c). In con-
trast, when reduced to the chiral-nonflat limit which has
a chiral-nonflat U(4) symmetry, we have shown in Sec. V
that the two ey = =41 subspaces have a chiral-nonflat
U(4) AFM coupling in between. Since the chiral-nonflat
U(4) irreps of the ey = £1 Chern basis are identical
(without differing by a unitary transformation), the val-
ley polarizations of the ey = +1 subspaces are opposite
(AFM) to each other in the valley Bloch sphere, as illus-
trated by Fig. 1(d). It is then straightforward to see that,
in the nonchiral-nonflat case, to compromise between the
valley polarization configurations in Figs. 1(c) and (d),
the valley polarizations of the electrons in the ey = £1
Chern basis will be pinned in the z-y plane of valley Bloch
sphere and opposite to each other, as illustrated by Fig.
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FIG. 2. Illustration of filling of the band occupation of the
nonchiral-nonflat ground states at integer fillings (a) v = —3,
(b) v = =2, (¢) v = =1l and (d) v = 0. |K), |K’) stand
for the single-particle basis at valley K and K’, and « is an
arbitrary phase. The solid lines stand for valley polarized ba-
sis (eigenbasis of 7., z-direction polarized in the valley Bloch
sphere), while dashed lines stand for the intervalley coherent
basis (in-plane polarized in the valley Bloch sphere). Each
band is labeled by its Chern number ey = =+1 (blue and
red for Chern numbers £1, respectively) and spin s =1, ],
and the dashed line represents the Fermi level. As we have

shown, the v = —3 ground state has |vc| = 4 — |v|, thus is
valley polarized; the v = —2, 0 ground states have vc = 0 and
are fully intervalley coherent, while the v = —1 ground state

has 0 < |vc| < 4 — |v] and is partially intervalley coherent.

1(e). Thus the state is intervalley coherent.

The same argument can be made for the intervalley
coherence in the spin 1 sector of the insulator states with
Chern number 0 < |v¢| < 4—|v|, which has equal number
of electrons occupying the spin T ey = 1 Chern basis.
However, for the states with |v¢| = 4 — |v], or the spin
down sector of the states with |vo| < 4 — |v|, only one
of the Chern basis ey = £1 subspaces is occupied (when
v < 0). The valley polarization configurations of the
nonchiral-flat limit and the chiral-nonflat limit are then
no different, and the above argument fails. Higher order
calculations are therefore necessary to show that the po-
larization along z-direction of the valley Bloch sphere is
favored (i.e., valley polarized).

D. The ground states

nc-nf

The total perturbation energy of the state U752 in

Eq. (32) can be calculated by E, .. (ps) = E,El,zc +
Ef,?y)c (ps) with @5 = 0 (valley polarized) or 7/2 (in-

tervalley coherent), where E,Sl,zc and El(,2,2/c (ps) are de-
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fined by Eq. (24) and (31), respectively. We thus find
the ground states in the nonchiral-nonflat case are the
insulator state [¥2S2) in Eq. (32) with Chern number
ve =0 (ve = £1) for even (odd) filling v. In particular,
(i) at v = 0,+£2, the ground states have Chern num-
ber vo = 0 and are fully intervalley coherent, which are
about 0.05 ~ 0.5meV (of order J; = J3, thus depend-
ing on wy) per electron lower than the valley polarized
state with the same Chern number at § = 1.05°. (ii) At
v = %1, the ground states with Chern number vc = +1
are partially intervalley coherent, where the spin 1 sector
is intervalley coherent, while the spin | sector is valley po-
larized. At 8 = 1.05°, the intervalley coherent spin sector
is 0.05 ~ 0.5meV (around J3) per electron lower than its
valley polarized counterpart, while the valley polarized
spin sector is only about J; —Js—Js = 0.001 ~ 0.005meV
(depending on wy) per electron lower than its intervalley
coherent counterpart. This means the partially interval-
ley coherent ground state at ¥ = £1 is 0.05 ~ 0.5meV
per electron lower than a fully valley polarized state, and
is only ~ 0.005meV per electron lower than a fully inter-
valley coherent state. (iii) Lastly, at v = £3, the Chern
number vo = £1 ground state is valley polarized, which
is only about J; — Jo — J3 = 0.001 ~ 0.005meV per moiré
unit cell lower than the intervalley coherent state with
Chern number v = 1 at § = 1.05°. All of these en-
ergy differences are expected to be proportional to t2,
with ¢ being the single-particle bandwidth. The occu-
pied bands and valley polarization of the ground states
at integer fillings v < 0 are illustrated in Fig. 2.

The ground state we find in Eq. (32) at v = 0 with
Chern number v = 0 is a spin-singlet, and exactly
agrees with the v = 0 K-IVC state found in Ref. [72].
In Ref. [72], the K-IVC state is shown to preserve an
anti-unitary Kramers time-reversal symmetry 7" = i, T,
which is the spinless time-reversal multiplied by a valley
rotation i7,, and satisfies 72 = —1 (in contrast to 7% = 1
of the physical spinless time-reversal T'). By noting that
the physical time-reversal T flips ey — —ey and valley
n — —n, it is easy to verify that the state |[¥§G™) in
Eq. (32) at v = 0 satisfies

T/|\I/8,C6nf> _ (_efi'y)leM ‘\I/IO],C(;nf> , (33)
thus is invariant under the Kramers time-reversal T".
The v = —2 Chern number 0 state | 233{) we found
also agrees with the K-IVC state suggested for v = —2
in Ref. [72], while we have further identified the FMC
Eq. (7) as the sufficient condition for it to be the ground
state. The state | Il%‘f}f) is also similar to the v = —2
ground state found by Ref. [71], but our Hamiltonians
are different (see discussions in Ref. [109]). The valley
coherence/polarization of the ground states at odd inte-
ger fillings and the higher Chern number low-lying states
at all integer fillings that we have identified in Eqgs. (32)
have not been analytically studied before. The valley po-
larized Chern number +1 state at v = —3 we identified
here is also verified in our exact diagonalization study in
Ref. [111]. Besides, we note that the ground state val-
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FIG. 3. (a) The phase diagram near integer fillings v =

+1,4+2 with respect to the nonchiral interaction strength
wo /w1, single-particle bandwidth ¢ and out-of-plane magnetic
field B. A first-order phase transition from an insulator with
Chern number vc = sgn(vB)(2 — |v|) (fully/partially inter-
valley coherent) to vc = sgn(vB)(4 — |v]) (valley polarized)
happens with respect to B. (b) The expected dominant Lan-
dau fan diagram with respect to filling v and out-of-plane
magnetic field B based on our theory, where the lines indicate
the positions of Chern gaps with their Chern numbers labeled
(red lines stand for Chern number zero). Interaction-driven
first-order transitions are expected at certain magnetic field
B, for fillings v = £1, 42, and our theory gives B = 2B5.
For 6 = 1.05°, wo = 0.8w1 and top/bottom screening lengths
¢ ~ 10nm, our numerical calculation estimates B} = 0.5T
and B5 ~ 0.2T.

ley coherence/polarization at integer fillings v we found
here (fully/partially intervalley coherent at v = 0, £1, +-2
and valley polarized at v = £3) are in agreement with
the Hartree-Fock calculation in Ref. [89]. However, the
ground state Chern numbers are not studied in Ref. [89].

VII. FIRST-ORDER PHASE TRANSITIONS IN
MAGNETIC FIELD

We now discuss the effect of an out-of-plane mag-
netic field B on the TBG insulator ground states in the
nonchiral-nonflat case by examining their free energies.
As we will show, the magnetic field B can drive phase
transitions between insulator states with different Chern
numbers.

By Eq. (6), we find the chemical potential for realizing
the insulator states \\Ifgcugf> is approximately p, = vUy,
where

2
Uy = m ZG:V(G) (Zk: ao(k,G)> ) (34)

In the nonchiral case, we have shown that states with
the lowest Chern numbers |v¢| are preferred at all in-
teger fillings v (Eq. (24)). When an out-of-plane mag-
netic field B is added, the Streda formula [118] implies
that the number of occupied electrons N adiabatically
change by AN(B) = vaNy®/Pg, where & = BQy,
is the magnetic flux per moiré unit cell area €j;, and
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®y = h/e is the flux quanta. Since the orbital magnetic
moments [119] of the flat bands are zero in the flat limit
Hy = 0 (App. F), we expect the interaction energy to
be roughly unchanged at small B. Therefore, the change
of the free energy F = (H; — p, N) is approximately
AF(B) = —u,AN(B) = —vve Ny Ug®/Pg. Thus, with
the nonchiral perturbation energy in Eq. (24), and ne-
glecting the kinetic perturbation energy in Eq. (31) which
has a negligible v dependence (see App. F), we find the
state |US1F) has a free energy (up to vo independent

v,ve

terms)

e
Foue(B) ~ Nag el (U =v2Uz) —vwcUs S B, (35)
where Uy, Uy and Us are defined by Egs. (34) and (24).
When v = +1, 42, and as B increases to a magnitude

g U=V h

TR )

EQM ’

we find the ground state at filling v undergoes an
interaction-driven first order phase transition from the
lowest Chern number ve = sgn(vB)(2 — |v|) (which
is fully or partially intervalley coherent) to the highest
Chern number vo = sgn(vB)(4 — |v|) (which is valley
polarized), as illustrated in Fig. 3(a). Note that we
numerically find U; — v?Uy > 0 for any |v| < 3 and
0 < wo/wy < 1 without the FMC, so B} > 0. For
filling v = +£3, the ground state always have a Chern
number vo = sgn(vB). For v = 0, the magnetic field
B has no contribution in Eq. (35), and we expect the
Chern number vo = 0 state to stay robust. This leads
to a predicted dominant Landau fan diagram as shown
in Fig. 3(b), with interaction-driven first order transi-
tions between different Chern numbers at finite B near
v ==+1,42. Near v = 0, we expect no interaction-driven
phase transition, but has the Landau fan contributed
by Landau levels at the CNP (which we expect to be
spin 2-fold degencrate, since the ground state |P5G™) we
found in Eq. (32) is a spin-singlet thus spin degenerate,
but breaks valley U(1) symmetry thus valley nondegen-
erate). For wg ~ 0.8w; near the magic angle [112-115],
and top/bottom gate screening length £ ~ 10nm, we es-
timated that Uy /Uy & 0.02 and Us /Uy = 0.0015 without
the FMC (see App. F Fig. 5(b)), which gives a critical
field Bf ~ 0.5T at fillings v = %1, and B3 ~ 0.2T at
fillings v = £2.

Remarkably, our prediction (Fig. 3(b)) is well sup-
ported by the recent experimental discoveries by scan-
ning tunneling spectroscopy [20, 21| as well as trans-
port experiments [22-24], where Chern number vo =
sgn(vB)(4 — |v|) interacting gaps are found to arise
above a certain magnetic field B near all integer fillings
v # 0. The hysteresis loop [4, 23] and Pomeranchuk ef-
fect [26, 27] observed in transport in magnetic field B > 0
near v = £1 [23] also suggest the presence of first-order
phase transitions therein, thus supporting our prediction
of the nonzero B field first-order phase transitions. In



particular, the hysteresis near v = +1 in transport exper-
iments is observed around a magnetic field 1T in Ref. [4]
and around 3T in Ref. [23], which have the same order of
magnitude as our estimations (~ 0.5T), considering that
unknown realistic complications (sample strain, etc.) are
not taken into account in our calculations.

VIII. THE STABILIZER CODE LIMIT

Lastly, we study the many-body states in a stabilizer
code limit revealed in Ref. [109] (see also Sec. H). The
stabilizer code limit is defined as the chiral-flat limit plus
the condition that the form factors M) (k,q+ G) in
Eq. (5) are independent of k for all q, G. As a result,
one will have [Og,c,Oqg,a’] = 0, and thus all the terms
of the Hamiltonian H = H; in Eq. (3) commute with
each other (see Ref. [109]):

[quﬁGOq’Gvqu’,fG’Oq’,G’] =0. (37)

By a Fourier transformation into the real space, the
Hamiltonian H; can be rewritten into an extended Hub-
bard model (App. H):

PR

ey,s,mey,s",n R, Ry,

ey Ey

— RM_RM ns s’

Hy= EY,RMneg,,RQM’
(38)

where Rj; are the AA stackmg center sites of TBG,

n,8 _ gt

ney,RM - d€Y7777s,R1\4 dey 1,8, Rar _T and we have defined
— 1 ik- R]\/j

ev,ms;Rv = /Na dke dy ey st The extended

Hubbard interaction is given by (see App. H)

/ 1 . /
U;{y’e_YR, = Z el(q“’G)'(RM—RM)
MTEM Qo .G (39)

X /BEY (q+ G)Be'},(_q - G) y

where S.,. (q+ G) VV(G+q)M., (k,qg+ G) is k-

independent in this hmlt Due to the Wannier obstruc-

tion of a Chern band, one expects Ug" g, to be long
M M
range.
Since [nZ;iRM,n"/ R, ] = 0, the many-body eigen-

states of Hj is snnply glven by the Fock states of all

the on-site electron occupation configurations, where
n,s _
Ney Ry = +1/2.

Generically, this stabilizer code limit cannot be reached
by realistic TBG parameters. However, it provides us
a rough understanding of the TBG physics in terms of
Hubbard subbands, as suggested by the recent scanning
tunneling spectroscopy experiments [14, 18, 20].

IX. CONCLUSION AND DISCUSSION

Under the influence of Coulomb interactions, we have
shown that under the FMC in Eq. (7), or if the FMC is
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not strongly violated, exact Chern insulator Fock ground
states of Chern number ve = 4—|v|,2—|v|,- -, |v|—4 can
be obtained at all integer fillings v of TBG in the (first)
chiral-flat limit (defined by wo = 0) with a U(4)xU(4)
symmetry. In Refs. [107, 110, 111], the validity of the
FMC (that it is not strongly violated) is justified by both
analytical and numerical calculations. Exact Chern num-
ber 0 Fock ground states can also be derived at even fill-
ings v = 0,£2 in the nonchiral-flat limit with a U(4)
symmetry, which are similar to the exact ground state of
Kang and Vafek at v = —2 in Ref. [71]. At odd fillings
v = +1,43 in the nonchiral-flat limit, we find pertur-
bative Chern insulator ground states with Chern num-
ber vo = 1. In the chiral-nonflat limit, we find differ-
ent Chern number states at each filling v are degenerate
up to the second order perturbation; while our exact di-
agonalization calculation in Ref. [111] suggests that the
higher order perturbations favor the lowest Chern num-
ber state. The expressions of these exact/perturbative
insulator states allow us to further calculate the charge
excitations and neutral Goldstone collective modes of
TBG, which is studied in Ref. [110]. The charge gaps
of the insulating states in this paper will also be stud-
ied in Ref. [110, 111]. In particular, the exact charge £1
excitations derived in Ref. [110] for the exact insulator
states here are equivalent to the Hartree-Fock bands of
these insulator states (see App. G).

In the perspective of the ey = £1 Chern basis, all
these low-energy insulator states we have found can be
viewed as U(4)xU(4) FM in the (first) chiral-flat limit,
where the spin-valley U(4) polarizations of electrons in
the ey = &1 Chern basis are unrelated to each other. In
the nonchiral-flat limit, the nonchiral-flat U(4) polariza-
tions of the ey = £1 Chern basis have a FM coupling
between each other. In contrast, in the (first) chiral-
nonflat limit, the chiral-nonflat U(4) (different from the
nonchiral-flat U(4)) polarizations of the ey = +1 Chern
basis effectively have an AFM coupling in between. We
note that all of these spin-valley magnetizations (polar-
izations) have an orbital region, because of the absence
of spin-orbital couplings in graphene.

In the nonchiral-nonflat case which corresponds to the
experimental reality, due to the kinetic energy, the in-
sulating states with zero Chern number vo = 0 (e.g.,
the ground states at v = 0, £2) are further aligned into
fully intervalley coherent, where electrons occupying the
Chern basis ey = +1 have opposite in-plane valley Bloch
sphere polarizations. The insulating states with Chern
number vo = 4 — |v| (e.g., the v = £3 ground states
with the highest Chern number vo = +1) are pinned
to be valley polarized, with a maximal number of elec-
trons imbalance between the two valleys. Besides, the
states with low Chern numbers 0 < |vg| < 4 — |V
(e.g., the ground state at v = +1 with Chern number
ve = =+1) are found to be partially intervalley coher-
ent. However, for 0 < |vg| < 4 — |v|, the lowest state
(valley polarized if |vo| = 4 — |v| and partially valley
coherent if 0 < |vc| < 4 — |v|) is only ~ 0.005meV per



electron lower than the fully intervalley coherent state,
making the latter still a competitive state. The lowest
Chern number state at each filling v is generically fa-
vored, while the higher Chern number states are compet-
ing low-lying states. In particular, the fully intervalley
coherent states with Chern number vo = 0 at even fillings
we found agree exactly with the K-IVC states studied in
Ref. [72]. We also note that the ground state valley
coherence/polarization we found at all integer fillings v
agrees with that from the Hartree-Fock calculations in
Ref. [89], but the ground state Chern numbers are not
discussed in Ref. [89].

Further, we showed that for v = +1,+2, the TBG
ground state undergoes first order transitions from Chern
number vo = sgn(vB)(2 — |v|) (intervalley coherent)
to ve = sgn(vB)(4 — |v|) (valley polarized) can be
driven by an out-of-plane magnetic field around a nonzero
critical field B} (Bf ~ 0.5T, B; ~ 0.2T in our nu-
merical calculations). This explains the Chern number
ve = sgn(vB)(4 — |v]) insulating states arising in mag-
netic fields as observed by recent scanning tunneling spec-
troscopy experiments [20], and by transport experiments
[22-24, 26, 27].

When the nonchiral interaction terms are large (i.e.,
large wp/wi), our perturbative treatment for odd fill-
ings ¥ = +1, 43 may become invalid, in which case the
Chern number v¢ = £1 ground states at these odd fill-
ings v may give way to an unpolarized metallic state, or
translation and/or rotational symmetry broken phases
as proposed in Refs. [68, 71]. Further, if the bandwidths
of the active bands become large (e.g., away from the
magic angle), the insulator ground states at all integer
fillings v we discussed in this paper will eventually give
way to weakly interacting unpolarized metallic phases.
We leave the studies of these situations for our numerical
paper [111] as well as for future theoretical analysis.
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Appendix A: Review of Notations: Single-Particle and Interaction Hamiltonian

This appendix is devoted to a very brief review - for self-completeness- of the single-particle Hamiltonian and
interaction Hamiltonian of TBG. The detailed discussion of the TBG Hamiltonian can be found in Ref. [109].

1. Single-particle Hamiltoian: short review
a. Continuum model Hamiltonian

The single-particle Hamiltonian of TBG for small twist angle 8 known as the Bistritzer-Macdonald continuum model
[1] takes the form (see e.g. Refs. [107-109])]

Ho= 3 33 [ ] chanastcamnss (A1)

keMBZ nafs QQ’

where k takes value in the moiré Brillouin zone (MBZ), and k = 0 is chosen at the center (I'y; point) of the MBZ.
The momenta Q € Q4 runs over the sets QO+ = £q; + Qp, where we have defined momenta q; = kgcg,';l(o, nr
(j = 1,2,3), with kp = 8msin(6/2)/3ag for graphene lattice constant ag = 0.246nm, and C3, being 3-fold rotation
about z axis. Qq is the triangular reciprocal lattice generated by the moiré reciprocal vectors 61 = q3 — q; and
BQ = q3 —qo. n = * is the graphene valley index for valley K and K’, respectively, s is electron spin, and o, 8 = A, B
are indices for the graphene A and B sublattices. hg?Q, (k) is the first-quantized momentum space Hamiltonian at

valley 77 in the sublattice space, and Q,Q’ € Q., which is independent of spin s due to the absence of spin-orbital
coupling (SOC). At valley n = =+, they take the form

3
hit (k) =vr(k— Q) - odqq + Y Tjdqq+a, - (A2)

j=1



3
hg b (k) = —vr(k— Q) - 0*dq.q + I _(0:1j02)0Q.q'q, (A3)
j=1

*

where vp is the graphene Fermi velocity, o = (0,,0), 0* = (04, —0y), and the matrices

2r(j— 1)
3

2n(j—1)

- (A1)

T; = woop + w |:UI cos + oy sin
Here 0, 04,0y, 0. are the 2 x 2 identity matrix and Pauli matrices in the space of sublattice indices, while wy > 0 and
wip > 0 are the interlayer hoppings at the AA and AB stacking centers of TBG, respectively. Generically, in realistic
systems wop < wy due to the lattice relaxation. In the absence of lattice relaxation, one has wg = w; [1].

The single-particle Hamiltonian can be diagonalized into

IA{O - Z Z €n,n (k)clnnscknnsa (A5)

k nns

where

Cenans = D Uuinn (K) el pas - (A6)
Qo

is the energy band electron basis, while €, ,(k) and uqanny(k) are the eigen-energy and eigenstate wavefunction of

band n of the first quantized Hamiltonian hg?Q, (k) in valley 1. The wavefunction satisfies the Bloch periodicity with

unit embedding matrix uQa;ny (k + Bi) =UQ_Bainn (k). In each valley and spin, we shall use integers n > 0 to label

the n-th conduction band, and use integer n < 0 to label the |n|-th valence band (thus n # 0). The lowest conduction
and valence bands in each valley-spin flavor is thus labeled by n = +1.

b. Discrete symmetries

The discrete symmetries of TBG include spinless (due to absence of SOC) unitary discrete rotational symmetries
Cs., C3, and Cy,, and the spinless anti-unitary time-reversal symmetry T (see Refs. [107, 108] for more details).
Furthermore, there is a unitary particle-hole transformation P which anti-commutes with the single-particle Hamil-
tonian, namely, {P, Hp} = 0 [43, 108]. Lastly, in the (first) chiral limit when wy = 0 < w;, there is another chiral
transformation C' which anti-commutes with the single-particle Hamiltonian, {C, Ho} = 0 [37, 108].

The operations of a symmetry operator g can be generically represented by

i o1 i
9% Qunasd = D D@)QwsquaCicqryp.s - (A7)
Qs

where D(g) is the representation matrix of the symmetry operation g in the space of indices {Q,n, a}, and gk is the
momentum after acting g on momentum k. In particular, Cy,k = Tk = Pk = —k, while Ck = k. The representation
matrices for the discrete symmetries of TBG that will be used in this paper are given by

[D(Caz)lQn s.Qne = 0q,—Qdy,—n(02) ga [D(T)lqr s.Qna = 6Q',—Q0y',—n98.a, (A8)
[D(P)]q'ns.Qne = 0q/,-Qdy n08,0(Q [D(O)]qns.Qre = 0q/,Q0y ,4(02)8,a - (A9)

The C5,, T and P symmetries imply that
enn(K) = €n—n(=k),  enpk)=—c_ny(-k). (A10)

Furthermore, in the (first) chiral limit wo = 0, we further have
enn(k) = —€ny(k) . (A11)

The detailed properties of these symmetries are given in Refs. [108, 109].
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2. Interacting Hamiltonian: short review

Here we review the full Hamiltonian of TBG under Coulomb interaction, and the symmetries of the Hamiltonian
in the nonchiral-flat, (first) chiral-flat and (first) chiral-nonflat limits. The detailed full discussion has been given in
Ref. [109].

The Coulomb interaction is assumed to be screened by a top gate plate and bottom gate plate at distances £ away
from TBG, which takes the form of V (r) = U > >7 — D" with Ue = €2 /(e€). As an approximate estimation,

V (/)7 4n?’
we choose £ = 10nm, and € =~ 6, which yields Us = 24meV. This agrees with the experimental observations of Ref. [14],
which suggest an on-site Hubbard interaction ~ 25meV in magic angle TBG.

The full Coulomb interaction Hamiltonian can be written in the momentum space as

~ 1
Hr =
! 2Qtot

Z Viqa+ G)op_q-cpgta (A12)
GEQpqeMBZ

where

_ E tanh (£q/2)

V(a) ; .

(A13)

is the Fourier transform of V (r), and

1
dpara = > > (CL+q,Q—G,n,a,sck:Q»"!o"s B 25“’06(}’0) ' (AL4)

n,0,s kKEMBZ QEQ 1

is the Fourier transform of the total electron density at momentum q + G relative to the filling of the graphene charge
neutral point (CNP).

a. Projected Hamiltonian and gauge fizing

Near the magic angle, since the lowest two bands n = +1 per spin-valley are almost flat and away from higher
bands, we can project the TBG Hamiltonian into the 8 flat bands (2 per spin-valley). The projected Hamiltonian H
can be written as two terms H = Hy+ H; (note that here we denote projected Hamiltonian in notations without hat,
to distinguish with the full Hamiltonian Hy and H; which have a hat). The kinetic Hamiltonian is simply given by

HO = Z Z Z 6”7’7(k)CLnnsck”7I$ . (A15)

n=+1 ns keMBZ
As derived in detail in Ref. [109], the projected interaction Hamiltonian can be written as
1

= E E O—_q,-G0q,G ; (A16)
2% ot
qeMBZ GeQq

Hy

where we have defined a set of operators

———— 1
OCL,G = Z Z V(q + G)Mr(nn,)n (k7 q-+ G) <p£,q,m,n,s - 26q,06m,n> . (A17)

kns m,n==%1

Here pﬁ,q,m,n,s = CL-s-q,m,n,sck,n,ms is the density operator within the flat bands, and we have defined the wavefunction

overlap matrix

M7(7:7,)n (k7 q + G) = Z Z ua—G,a;mn (k + q) U’Q,(X;””I (k) . (AIS)
a QEQ+

In particular, one has [109] [Og.a,Oq .a’] # 0 unless q = q’ or G = G’. Therefore, different terms in the interaction
Hamiltonian H; do not commute, unless certain special conditions are satisfied (see the stabilizer code limit defined
in Ref. [109], and the exact solutions in App. H)
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For convenience, we gauge fix the wavefunctions by the TBG symmetries Cy,, T and P, which are discussed in
details in Ref. [109]. In the energy band basis, a symmetry g acts as

gclt,n,n',sgil = Z[Bg(k)]mn,nn’cgk’m)n)s s (Alg)

mn

where BY(k) is called the sewing matrix of g. Hereafter we use (% and 7% (a = 0,2, y, z) to denote the identity and
Pauli matrices in the energy band n = £1 space and the valley space, respectively. Throughout this paper, we choose
the following k-independent gauge fixings:

BT (k) =7,  B®Pk)=¢rv, B%(k)=(7", BY(k)=-iC'r", (A20)
Furthermore, we require the k-space continuous condition for the single-particle wavefunctions

lim uf, (k + @)ty (k) = ul, ) (K + @),y (k)| = 0 (A21)
q—0 ’

—n,n

for any k and q. Egs. (A20) and (A21) are shown to be consistent with each other in Ref. [109]. Under the gauge
fixing of Eq. (A20), the overlap matrix in Eq. (A18) in the band-valley space is fixed into the form

M(k,q+G) =("7%a0(k,a+ G) + (*T*a1(k,q + G) +i(*mas(k, g + G) + *r7as(k, q + G). (A22)

where ag.12,3(k,q + G) are all real functions. We denote the matrix coefficient of «;(k,q + G) in Eq. (A22) as M;.
These real functions satisfy the following conditions:

aqk,q+G)=a.(k+q,—q—-G) fora=0,1,3, as(k,q+ G) = —as(k+q,—q — G), (A23)

a(k,q+ G) =a,(-k,—q— G) fora=0,2, a,k,q+ G) = —a,(-k,—q—G) fora=1,3. (A24)
In particular, the combination of Eqgs. (A23) and (A24) implies that at q = 0, we have
ap(k,G) = ap(—k, G) , a;(k,G)=—0;(-k,G), (j=1,2,3). (A25)

Furthermore, in the (first) chiral limit wy = 0 which has the chiral symmetry C, given the gauge fixings in Eq. (A20),
we can fix the sewing matrix of C' into a k-independent form

BY(k) = ¢¥7* . (A26)

It was proven in Ref. [109] that the chiral symmetry C restricts the functions aq(k,q + G) = az(k,q+ G) = 0 in
Eq. (A22), and thus the M matrix coefficient will become

M(k,q+G) =("7%a0(k,a+ G) + ! az(k, q + G). (A27)

We will use this result in the discussions of many-body states in the chiral limit.

b. Many-body charge conjugation symmetry of the projected Hamiltonian

It was also shown in Ref. [109] that the full projected Hamiltonian H = Hy+ H has a many-body charge-conjugation
symmetry P., which ensures that all the physical phenomena is PH symmetric about the filling of the charge neutrality
point (CNP) at v = 0. The many-body charge conjugation P, is defined as the single-particle transformation Co,T P
followed by an interchange between electron annihilation operators ¢ and creation operators ¢!, namely,

Pcclt,n,7l,s7>;1 = C—kvmm'ys[BCZZTP(k)]mT]’J”?(k)a IPCCkJLJLS,P;l = CT—k,mﬂ)',s[BCZZTP* (k)]mn’mn : (A28)
Under the gauge fixings of eq. (A20), one has Bg’j;,?;ﬁ] = Bin,’nn = (—iCY7T*)my .ny (Eq. A20). It can then be proved

that P.HoP. ' = Hp + const., and Pch,Gpgl = —0gq,c, which indicates the projected interaction in Eq. (A16)
satisfies [P., H;] = 0. In total, one has the P, symmetry

P.HP.' = H + const. (A29)

for H = Hy+ H;. P. maps a many-body state at filling v to filling —v, where v is the number of electrons per moiré
unit cell relative to the CNP. This ensures the TBG ground states at v and —v are PH symmetric.
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3. The Chern band basis

A useful electron basis in the discussion of many-body states in this paper is the Chern (band) basis within the
lowest two bands (in each valley-spin flavor) n = £1 defined in Refs. [108, 109]. Under the gauge fixings of Eqgs. (A20)
and (A21), it is given by

1
T _ i ; i
Ticer s = \/§(Ck»+1,n,s + ZeYCk,—lm,s) ’ (A30)

where ey = +1. As proved in Ref. [109], the Chern basis le( ey s Of all k for a fixed ey, n, s correspond to a Chern
band carrying Chern number ey . In total, the projected Hilbert space contains 4 Chern number ey = +1 bands, and
4 Chern number ey = —1 bands (which are not single-particle energy eigenstates).

4. Symmetry review

We now review the enhanced continuous symmetries of the TBG Hamiltonian in various limits, which have been
proved in Ref. [109]. Hereafter, with the understanding that we assume the gauge fixing given by Eq. (A20), we shall
use €%, 7%, s* to denote the identity matrix (a = 0) and Pauli matrices (¢ = z,y, z) in the band n = %1, valley n = +
and spin s =T, | bases, respectively.

a. U(2)xU(2) symmetry in the nonchiral-nonflat case

The total projected Hamiltonian H = Hy + H; in bands n = %1 enjoys a U(2)xU(2) symmetry of the spin-charge
rotations in each valley. The 8 generators S? (a =0, z, b = 0,z,v, 2) of the U(2)xU(2) symmetry take the form

SP= Y 6 st . (@=0.2 b=01y.2), (A31)
k,m,n,s;n,n’,s’
where the matrices
0b — (07040, 57 = (0r= s, (b=0,z,y,2). (A32)

In particular, S° and S** give the global spin-charge U(2) rotations and the valley spin-charge U(2) rotations,
respectively.

b. U(4) symmetry in the nonchiral-flat limst

The nonchiral-flat limit is defined as the limit where the projected kinetic Hamiltonian in Eq. (A15) becomes exactly
Hy = 0, while both wg > 0 and w; > 0 in Eq. (A4). In this case, the total projected Hamiltonian is H = Hj, and
C5. P becomes a symmetry of the system, namely, [C2, P, Hy] = 0. Note that Cs, P preserves the electron momentum
k. This enhances the U(2)xU(2) symmetry in Eq. (A32) into a U(4) symmetry. The 16 generators of this U(4)
symmetry are

59 = Z (Sab)m,n,s;n,n’,s/CLm)n)ka,n,n’,s/ ) (a,b=0,2,y,2), (A33)

k,m,n,s;n,n’,s’
where
ab — {<0T08b7 CYrTst, CYr¥st, COTZsb}, (a,b=0,z,y,2) . (A34)

The U(4) single-electron irreducible representations (irreps) in the nonchiral-flat limit are given by the Chern band

basis dL ey m,s At 2 fixed k and ey = +1, where the representation matrices of the U(4) generators when acting on
the space of single-electron states dk ey m,s|0) are
5% (ey) = {Tosb, ey7%st, eyrYs?, Tzsb}. (A35)

The irrep occupied by di at a fixed k and ey is the fundamental irrep [1]4 of the U(4) group (the notation [1]4

k,ey ,n,s
will be explained in App. B). However, we note that the ey = +1 and ey = —1 irreps differ by a « valley rotation
€™ /2 about the z axis.
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c. U(4)xU(4) symmetry in the (first) chiral-flat limit

In the (first) chiral-flat limit where one has both flat bands Hy = 0 and the chiral condition that wy = 0 < wy, the
symmetry of TBG is enhanced into U(4)xU(4). The detailed proof is given in Refs. [72, 109], and we summarize the
conclusions here.

At wy = 0, the interaction Hamiltonian acquires an additional chiral symmetry C, namely, [C, H;] = 0. Note that
C preserves the electron momentum k. The symmetries C' further enhances the U(4) symmetry in the nonchiral-flat
limit (Eq. (A34)) into a U(4)xU(4) symmetry. The generators of this U(4)xU(4) group is given by the 16 operators
S in Eq. (A33) and the 16 operators S'®* defined by

5t = Z (Slab)m,msmm’,ycL,m,n,ka,nm’ys’ ) (a,b=0,2,y,2) , (A36)

S S
k,m,n,s;n,n’,s’

where

rab __ 0.b 0 _x_b 0 b z.b _

$ _{CyTS7CTS7<TyS7<yTS}a (avb_oaxaywz)' (A37)
It is more useful to linear combine the generators into

ab __ ab T
SE = E (Si)mm,smm’,s/Ck,m,n,ka,nm’,s/ ) (A38)
k,m,n,sin,n’,s’

where

1
Sj:b = i(coicy)’fasb y (a,b:07$7y72)' (A39)

In this form, the 16 generators S’ib generates the first U(4), and the 16 generators S% generates the second U(4), and
[S49b,5¢4] = 0. Therefore, in total they give a U(4)xU(4) symmetry in the (first) chiral-flat limit.

The U(4)xU(4) single-electron irreps in the chiral-flat limit are given by the Chern band basis d;ey’n’s at a fixed
k and ey = %1, for which the representation matrices of the U(4)xU(4) generators are

1
5% = B (1+ey)rs" . (A40)

At a fixed k, the irrep U(4)xU(4) occupied by dL,H,n,s is ([1]4, [0]4), while the irrep U(4) xU(4) occupied by dLHm’S
is ([0]4,[1]4). Here ([A1]4,[A2]a) stands for the U(4)xU(4) irrep given by the tensor product of an irrep [A1]4 of the
first U(4) and an irrep [As]4 of the second U(4). More detailed explanations of the irrep notations will be given in
App. B. We note that these two different irreps ([1]4, [0]4) and ([0]4, [1]4) subduce into the same nonchiral-flat irrep

(but differ by a unitary transformation, see Eq. (A35)).

d. U(4) symmetry in the (first) chiral-nonflat limit

In Ref. [109] it was proved that, in the (first) chiral-nonflat limit where wy = 0 < w; but the bands are no longer
exactly flat, namely Hy # 0, the Hamiltonian still has a remaining U(4) symmetry. This is due to the combined
symmetry C'Cy, P of the Hamiltonian. The 16 generators of this U(4) group are given by a subset of the U(4)xU(4)
generators in Eq. (A39), and we redefine their notations as

Seb = Z (§ab)mm,s;nm’,(s/clt,m,n,sckﬂlm’,s/ ) (Ad1)

k,m,n,sin,n’,s’
where
5% = (Oragh, (a,b=0,z,y,2) . (A42)
Note that the chiral-nonflat U(4) symmetry here is simply the valley-spin rotation symmetry without transformations

in the band basis, which is different from the nonchiral-flat U(4) symmetry in Eq. (A34).
Since the generators are all proportional to ¢?, either the energy band basis an s of a fixed band n = +1 or the

Chern band basis dL ey s of a fixed ey = £1 at certain momentum k is occupying a single-electron fundamental
U(4) irrep [1]4 in the chiral-nonflat limit. We note that these U(4) irreps are simply the subduction of the U(4)xU(4)
irreps into its chiral-nonflat U(4) subgroup. The representation matrices of the U(4) generators are

agh (a,b=0,2,y,2) . (A43)

T
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Appendix B: Brief Review of the U(4) group

In this appendix, we briefly review the group representations of the U(4) and U(4)xU(4) groups, which will be
useful for our discussions of many-body states in this paper.

1. The U(4) Irreps

The U(N) group is defined by all the N x N unitary matrices U satisfying UTU = Iy, where Iy is the identity
matrix. The matrices U are generated by all the linearly independent N x N Hermitian matrices, thus the total
number of generators is N2. In particular, for the U(4) group, the 16 generators can be represented by the tensor
product of two sets of 2 x 2 identity and Pauli matrices 7% and s* (a =0, z,y, z) as

sgb =79 | (a,b=0,z,y,2) . (B1)
We denote their commutation relations as

(56", 56 = fop sy’ (B2)
Then f:})":d are the group structure constants, which are the same for all representations of U(4) group.

The representations of the U(N) group are the same as that of the SU(N) group plus a U(1) generator which is
proportional to the identity matrix. The basis for the irreps are the same for U(N) and SU(N). Therefore, it is
sufficient to discuss the SU(N) irreps, which we will briefly review (in particular for N = 4) in this appendix.

The set of all the N x N traceless matrices U defines the N-dimensional fundamental irreducible representation
(irrep) of the SU(N) group, and the representation matrices of the SU(N) generators are given by all the linearly
independent traceless Hermitian N x N matrices. These matrices act on an N-dimensional complex vector basis V,
(1 <a < N). For the SU(4) group, the 15 generators in the fundamental irrep are exactly given by Eq. (B1) with
ab # 0. There is also a 1-dimensional trivial identity irrep for group SU(N), in which the representation matrices of
all the SU(N) generators are given by 0.

In this paper, we shall use the following notations to denote the fundamental irrep and trivial identity irrep of the
U(4) group (which is the same as that of SU(4), except that there is an additional U(1) generator):

U(4) fundamental irrep: 1], U(4) trivial identity irrep: [0]4 , (B3)

which will be explained below. In particular, we assume the additional U(1) generator S (compared to SU(4)) has
a representation matrix si° given by Eq. (B1) in the fundamental U(4) irrep [1]4, while its representation matrix is
simply 0 in the trivial identity irrep [0]4.

(@) a1 af,za1,s.|a1,4l-- (b) © D:I:‘ @ | | | | | | |

az1(ak2

€% V hook

FIG. 4. Young tableau.

The irreducible representations (irreps) of the SU(N) group can be labeled by the Young tableau as shown in Fig. 4.
All the irreps of SU(NN) can be obtained by decomposition of the tensor product of the fundamental N-dimensional
SU(N) representation. Assume the fundamental SU(N) representation acts on the basis of an N-dimensional complex
vector V, with component index 1 < a < N. A rank-m tensor product representation then has a tensor basis

Valag-uam = Va1 Vaz e Vam . (B4)

These basis form a reducible representation. It can be reduced into an irrep by symmetrization among a subset of
indices and anti-symmetrization among the rest indices, which can be conveniently represented by a Young tableau.
As shown in Fig. 4(a), a Young tableau consists of rows of boxes, where the number of boxes in the i-th row is no
smaller than that in the (¢ 4+ 1)-th row. It can be conveniently denoted by

A1 A2, v, (B5)
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where A; is the number of boxes in row ¢ (\; > A;+1). Note that in general, only the first N — 1 rows are provided
in such a notation. For convenience, we will add the N-th row (the number of boxes will then match the number of
particles, i.e. the U(1) charge) and we will identify [A1, Ao, -+, An]n with [A1 — An, Ao — An, -+, An—1 — An]n. By
putting a number a; ; in each box at row 7 and column j, we obtain a basis

A1 Ao,
Vitan (B6)
with indices a; ;, which is obtained by symmetrizing/anti-symmetrizing the indices of the tensor basis Eq. (B4) of
rank >, A;, such that the indices in the same row are symmetric among each other, and the indices in the same

column are antisymmetric among each other. A complete set of the independent basis of this irrep is given by all the
possible indices satisfying

1<aij <aij41 <N, 1<a;j<aiy1,; <N . (B7)

It is then clear that a Young tableau cannot have number of rows larger than N.
The number of set of indices {a; ;} satisfying Eq. (B7) gives the dimension of the irrep. Alternatively, the dimension
of an SU(N) irrep represented by a Young tableau [A1, A2, - -] can be conveniently computed by the Hook Rule:

N+j—i
dp‘l*A?v“']N = H hij ’ (B8)
2%

where (4, j) runs over all the boxes at row ¢ and column j of the Young tableau, and h;; is the hook number of box
(i,7) defined as follows: one first defines the hook of box (7, ) as the path starting from the rightmost box of row ¢
going leftwards to box (4, ), and then going downwards to the end of row j (see red arrowed dashed line in Fig. 4(a)).
The hook number h;; is then the number of boxes passed by the hook of box (4, j).

For convenience, if a Young tableau consists of p identical rows of length A, we denote the corresponding irrep
[\, A, -+ ]n in short as [A\P]y. Note that by this notation, [\°]y = [0]x is the one-dimensional trivial irrep.

There are two special cases: a Young tableau [A]y with only one row of A boxes has all the indices of basis Eq. (B6)
symmetric; while a Young tableau [1P]x with only one column (m rows) has all the indices antisymmetric. Their
corresponding irrep dimensions are given by

b _(NEA- S
Dy = Yoo e = DN —p)!

AN = 1)!
In particular, [1]y is the fundamental irrep of SU(N), [1V]y is an SU(IV) singlet irrep identical to [0]y, and [1V~P]x
is the conjugate irrep of [17]y. Lastly, We note that our notation for the fundamental irrep [1]x and identity irrep
[0]n are simply special cases of the general notation Eq. (B5) for SU(N) or U(XN) irreps.

(B9)

2. The U(4)xU(4) Irreps

The irreps of the U(4)xU(4) group are simply given by the tensor products of an irrep [{A1:}]a = [A1.1,M1.2, 4
of the first U(4) and an irrep [{A2;}]a = [A2,1, Aa,2,- - - |4 of the second U(4), where the notations for U(4) irreps are
from Young tableau as we explained in Eq. (B5). We denote such a U(4)xU(4) irrep as

({A1iHa HAzit]a) - (B10)
Appendix C: Exact Ground States in Different Limits

In this appendix, we show that exact ground states can be derived in different limits at appropriate integer fillings
v (the number of electrons per moiré unit cell). All of these exact ground states are of the form of many-body Fock
states.

1. Chemical potential shift

To identify the exact ground states at certain filling v, we note that interaction can in general be rewritten as

1
Hy = > [(Z(Oq,G — AcNm0q,0)(O-q,~G — A—GNM5—q,o)> +2A_gNuOoc — A_gAcNj| , (Cl)
q
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where N, is the total number of moiré unit cells, and Ag is some arbitrarily chosen G dependent coefficient satisfying
Ag = A* . Note that the first term in Eq. (C1) is semi-positive definite.

If we further have the following condition - which we call the ”flat metric condition” (see Eq. (7), see also Ref. [110])
that the form factors

Flat Metric Condition: M), (k,G) = &(G)6p.n (C2)

s

is independent of k (which is always true for G = 0, but generically not true for G # 0), one would have the term
Oo.c proportional to the total electron number N. Accordingly, the second term in Eq. (C1) term

1 1 : 1
20 XG: 2A_gNyOo e = o (%: A_g/ V(G)ﬁ(G)) Z (Ck,m,n,sck,mm»s - 2) (C3)

k,m,n,s

is simply a chemical potential term with chemical potential

"= NMlQM S AGVV(G) Y MY, (K G) =D A-cVVIG)E(G)/ s . (1)
G k G

where Qpr = Qiot/Ny is the area of moiré unit cell. For a fixed total number of electrons, N =
Zk,m,n,s CL,m,n,sck,m,n,s = (v + 4)Nys is a constant, where v is the filling fraction (number of doped electrons per
moiré unit cell) relative to the charge neutrality point (CNP). In this case, the second term and third term in Eq. (C1)
are all constant, and the ground state is solely determined by the first semi-positive definite term. In particular, if a
state |U) at certain filling v satisfies

(Oq,¢ — AcNardq,0)|¥) =0 (C5)

for any q, G with some chosen coefficients Ag, the state |¥) is necessarily a ground state of the Hamiltonian H; at
filling v, if the flat metric condition Eq. (7) is satisfied. Otherwise, it will be an eigenstate, but not necesarily the
ground state.

In the below, we discuss the exact ground states of the (first) chiral-flat U(4)xU(4) limit and the nonchiral-flat
U(4) limit, respectively. As we will show, this requires a suitable choice of coefficients Ag in Eq. (C1) depending on
the filling fraction.

2. Exact ground states in the (first) chiral-flat U(4)xU(4) limit

We first discuss the (first) chiral-flat limit with exact flat bands and chiral symmetry, where the projected Hamil-
tonian has the highest U(4)xU(4) symmetry with generators in Eq. (A39). We note that in addition to the unitary
U(4)xU(4) symmetry, there is also the anti-unitary time-reversal symmetry 7T

As we have discussed in App. A4c, the single-particle U(4)xU(4) irreps in the chiral-flat limit are given by the
Chern band basis (A30). Because of the chiral symmetry, the coefficients M,(,Z)n(k,q) satisfies Eq. (A27), so the
operator Oq,ig in Eq. (A17) can be rewritten under the Chern band basis (A30) as Eq. (9), which we reprint here for
convenience:

1
Oq,G = O?l,G = Z V(k + G)MEY (k, q + G) (di+q,8y,'r7,sdk7er77xS - 26(:1,0) . (CG)

k,ey,n,s

It is diagonal in the valley index 7, spin index s and Chern band index ey, and we have defined the coefficient
Mey (ka q-+ G) = Qo (ka q-+ G) + ieYOQ (k, q+ G) ) (07)
which satisfies M, (k,q + G) = M} (k +q, —q — G) due to Eq. (A23).

We now discuss the ground state at integer filling v. Since we have assumed the flat condition, the projected kinetic
term Hy = 0, and the Hamiltonian is solely the interaction term H = Hj.
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a. Chern insulator eigenstates without the flat metric condition (7)

We first prove that the following Fock state of integer Chern number v¢ with integer (v + 4) fully occupied Chern
bands is an eigenstate of Hy (without assuming the flat metric condition Eq. (7)):

v_

Vi
| ZE 7 T T
wer) = T1 (T dhor oy TL g, o, | 0 (©3)

keMBZ \ji=1 ja=1

where
vy —V_ =vo (C9)
is the total Chern number (integer) of the state, and
vi+v_=v+4 (C10)

is the total number of electrons per moiré unit cell in the projected bands, with 0 < vy < 4, and k runs over the
entire moiré BZ. Here v, v and v are all integers. The occupied spin/valley indices {n;,, s;, } and {n},,s’ } can be
arbitrarily chosen. To see it is an eigenstate, we can calculate the following expression:

Oq,c|¥,"")
N 1 1% 1%

= Z VV(G+ q)apk, g+ G) +ieyas(k,q+ G)] (diJrq’er’sdkerm,s - 25%0) |Wo+v=)

k,ey,n,s

. 1 V. 1%
g0 3 VVIGTan(k G) +ieyas( Gl (dhey gt e~ ) 1EE)
k,ey ,m,s
(C11)
—VV(G)dqo | D [y +v- —dao(k, G) +i(vy —v-)as(k, G)] | [W)+")
K

=VV(Gloao (Z [vao(k, G) + ivcas(k, G>1> )

K
=VV(G)lao Z vao(k, G)[W)H"") = 6q,0Ac Nu |¥777)
K

where in the last step we have used the fact that as(k, G) = —as(—k, G) as given in Eq. (A25), and we have defined

Ag = NL\/V(G) > vag(k,G) . (C12)
M k

Therefore, we find |¥,7"") is an eigenstate of operator O4 g, where the eigenvalue is zero if q # 0, and is nonzero if
q = 0. Since the interaction Hamiltonian H; is a quadratic form of O &, we conclude that this state Eq. (C8) is an
eigenstate of the Hamiltonian in the chiral-flat limit, and the eigenvalue is given by

Vi,V 1 § : Vi,V V2 § : § : 2 Vi,V
HI‘\III/-F, _> = 2Qt ¢ O—Cl»—Gqu,Gr|\I/u+7 _> = 2Qt ¢ V(G)< Oéo(k, G)) |\Iju+’ _> ’ (013)
" q,G ot G Kk

where we have used the fact that ag(k, G) = ag(k, —G) is real (Eq. (A23)).

Any U(4)xU(4) rotation of this state is also an eigenstate degenerate with this state, and together they form a
U(4)xU(4) multiplet. The U(4)xU(4) irrep of this multiplet is given by ([N}/]4,[Ny;]4) (the irreps of U(4) and
U(4)xU(4) are reviewed via the formalism of Young tableau in App. B). To see this, we first recall that each Chern
number ey = +1 electron occupies a fundamental irrep [1]4 in the first U(4), which is represented by a Young tableau
of one box. In the subspace of Chern number ey = +1 bands, the wavefunctions of Nj; occupied electrons in each
fixed valley-spin flavor {7;,s;} are antisymmetric in k and symmetric in the valley-spin indices, thus should occupy
Njs boxes in the same row in a Young tableau of the first U(4) (recall that U(4) is defined in the valley-spin space).
Meanwhile, the wavefunctions of several electrons in the same k but different valley-spin favors are symmetric in k
and antisymmetric in valley-spin indices, thus should occupy boxes in the same column in a Young tableau of the
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first U(4). This shows the irrep of the multiplet of states |¥,""~) should occupy an irrep [N,/ ]4 of the first U(4).
Similarly, it should occupy an irrep [Ny, |4 of the second U(4), thus its U(4)xU(4) irrep is given by ([Ny/]a, [Ny ]a).

In particular, for a fixed filling factor v, from Eq. (C13) we find that the states with different Chern number v are
all degenerate.

In the special case of charge neutrality v = 0, the U(4)xU(4) multiplet of eigenstate state |¥y""") with Chern
number v¢o = vy —v_ = 0,£2, 4 has exactly zero energy. Therefore, all these vo = vy —v_ = 0, £2, =4 states are
exact degenerate ground states.

At nonzero fillings v, generically we cannot guarantee that these eigenstates are ground states (without the flat
metric condition Eq. (7)).

b. Chern insulator ground states with the flat metric condition (7)

When the the flat metric condition (7) is satisfied, namely, when
aok,G) =¢(G),  ax(k,G)=0 (C14)
for any k, G in the chiral limit, the eigenstates in Eq. (C8) at nonzero integer fillings v # 0 become exact ground

states. Then we can rewrite the interaction into the form of Eq. (C1), and the coefficient Ag in Eq. (C11) can be
simpliefied as

Ag = V(G S vao(k, G) = v /V(GIE(G) - (C15)
k

N

By Eq. (C11), we then have
(Oq,c — AcNrdgo)|¥, ") =0, (C16)

for any ve = v —v_. Therefore, we find the first nonnegative term in the rewritten Hamiltonian Eq. (C1) annihilates
the state |¥,,"""~), and thus all the eigenstates |¥, """~ ) with any Chern number vc = v, — v_ are degenerate ground
states at filling v.

These ground states |W, """ ~) will generically be insulators with gapped charge excitations, as we will demonstrate
analytically and numerically in Refs. [110, 111]. This is because there is no remaining symmetry protecting a gapless
electron spectrum. At integer fillings v, the electron spectrum in valley 7 can be gapless only if valley n (for a fixed
spin s) is half-filled and the spinless Co,T symmetry is preserved, so that the Co,T protected fragile topology [Ref:
fragile] of TBG protects the existence of two gapless Dirac points. This is never satisfied by state |¥, "), since if
a valley 1 (of a given spin s) is half-filled, the electrons always fully occupy one Chern band, which breaks the Co,T
symmetry because of the Chern number of the Chern band.

Lastly, we note that the eigenstates |¥;"~) at integer fillings v # 0 would remain the exact ground states of
chiral-flat limit if the flat metric condition Eq. (7) is weakly broken. This is because |¥,""") are eigenstates of the
Hamiltonian H = H; regardless of the flat metric condition Eq. (7), so the ground states will not change unless
the flat metric condition Eq. (7) is largely broken such that other eigenstates (which are above states |¥,""") by a
finite gap when the flat metric condition Eq. (7) is satisfied) are brought down to energies lower than that of states
|W,7"7). One could believe that since the spectrum is gapless due to the FM goldstone [110], the state |¥,™"")
could stop being the ground state as soon as leaving the flat metric condition Eq. (7). However, this is not true, as
the ” Goldstone” excitation spectrum moves with the state when the flat metric condition Eq. (7) is broken [110].

3. Exact ground states in the nonchiral-flat U(4) limit at even fillings

In this subsection we turn to the nonchiral-flat case, which has a U(4) symmetry with generators in Eq. (A34).
Without the chiral symmetry, Oq ¢ is no longer diagonal in the Chern band basis (in the form of Eq. (C6)) or any
certain band basis. Nevertheless, Oq,g is still diagonal in 7 and s. More explicitly, under the Chern band basis

dT

k,ey ,m,s

in Eq. (A30), using Eq. (A22), we can rewrite operator Oq g as

Oq,c = 08,(} + O}l,@ (C17)
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where O g is defined in Eq. (C6), and

Ofll,G = Z Z nVV(a+G)Fey (k,q+ G)dI(-&-q,—eym,sdkveY’"’s’ (C18)

kns ey =%£1
with coefficients defined by
Fey(k,q+ G) = (k,q+ G) +ieyas (k,q+ G) . (C19)

The term Oé,c; therefore is not diagonal in the Chern band basis, and only arises when wy > 0.

In this case, we cannot obtain analytical exact ground states (neither eigenstates) at odd integer fillings v = 41, £3.
However, for even fillings v = 0,42, +4, one can still write down the following Chern number v = 0 eigenstate:

(v+4)/2 (v+4)/2
_ T T _ T T
) = H H 45,55 Ok, — 5 10) = H H dk7+1777j15jdk771a77j75j 0} (C20)
k j=1 k j=1
where {n;,s;} are distinct valley-spin flavors which are fully occupied. Here we have expressed the state both in
the energy band basis c;r( m and in the Chern band basis dL ey.ms- TO see it is an eigenstate, we note that each

spin-valley flavor is either ﬁﬁfy occupied or fully empty, from which we find
Oqcl¥,) = vV(qg+G)

1
X Z |:M8y k,a+G) (dJlrc-',-q,ey,n,sdkerWﬁ - 25(1170) +nkFe, (k,q+ G)dL—Fq,—ey,n,sdkaeYﬂ%S 1)

k,ey,n,s (021)
=v/V(G)q0 > ao(k,G)|T,),
k,m,n,s

where we have used the properties of a; (k, G) in Eq. (A25). This shows that the state |¥,) is an eigenstate of Oq G,
and therefore |¥,) is an eigenstate of the interaction Hamiltonian H;. Note that the flat metric condition Eq. (7) is
not needed for |¥,) to be an eigenstate.

Any U(4) rotation of the state |¥,) is also an eigenstate. The multiplet of |¥,) here occupies a nonchiral-flat
U(4) irrep [(2Ny;)@+9/2),. This is because the 2N electrons occupying the same valley-spin flavor in state |¥,) of
Eq. (C20) are symmetric in valley-spin indices, thus occupy the same row of Young tableau of the U(4) irrep; while
the electrons at the same k and Chern band ey but in different valley-spin indices have wavefunctions antisymmetric
in valley-spin, thus they occupy the same column in the Young tableau of U(4) irrep.

From the expression in the Chern band basis, it is clear that the U(4) multiplet of ground state |¥,) here in
Eq. (C20) is a subset of the U(4)xU(4) multiplet of state |¥,""") with vy =v_ = (v +4)/2 in Eq. (C8).

If the flat metric condition Eq. (7) is further satisfied, we can rewrite the interaction Hamiltonian into the form of
Eq. (C1) by choosing coefficient Ag as given in Eq. (C15). After this, we find (Ogq,c — AcNr0q,0)|¥,) = 0, which
indicates |¥,) is a ground state for even fillings v. Note that away from the chiral limit, the ground states |¥,) for
even fillings we found here all carry Chern number 0, as they correspond to filling both Chern-basis bands.

In particular, at the CNP where v = 0, the state Eq. (C20) is always a ground state with or without the flat metric
condition (Eq. 7).

Appendix D: Nonchiral Perturbation of (first) Chiral-flat Exact Ground States

To understand the low energy states at odd integer fillings and nonzero Chern number states at even integer fillings
in the nonchiral-flat limit, we consider the nonchiral interaction perturbation to the chiral-flat exact ground states in
this appendix, while keeping the single-particle bands exactly flat (Hy = 0). Our treatment is generic for all integer
fillings v and Chern numbers v¢. In particular, we note that for Chern number 0 states at even fillings v = 0, +2, the

ground states derived from the perturbation theory here become the same as the exact ground states we obtained in
Eq. (C20).



31

1. Perturbation energy of Chern insulators

In this subsection, we keep the projected bands exactly flat (Hy = 0), and discuss the nonchiral perturbation
(namely, treating wy > 0 as a small number) of the Chern insulator states defined in Eq. (C8), which are exact ground
states in the U(4)xU(4) (first) chiral limit.

Away from the (first) chiral limit, we have shown in Eq. (C17) that Oq g takes the form

Oq.Gc = 03,G + Ocll,G ) (D1)

where OO c and ol q.c are defined in Egs. (C6) and (C18), respectively. By definition, OO c and O . are diagonal
and off- dlagonal in the Chern basis ey = +1, respectively.

The term O}LG only arises when wg > O, namely, when the chiral symmetry is broken. If we treat wy > 0 as
a perturbation, the term O<11,G is proportional to wg at small wy, and the nonchiral interaction terms containing
operators Oé,(; will yield a perturbation energy to the U(4)xU(4) exact ground states in Eq. (C8). To calculate
this perturbation energy, we denote the interaction Hamiltonian as Hy = Hf + H}¢, where the chiral part Hf and
nonchiral part H;¢ are given by

1
Hne — 1 1 . Do
i = QQtot ZO_q’ GOq G ! 200t qX(:;(O q,— GO G T O—q GO ey O_q GO a) (D2)

For later convenience, we further divide the nonchiral part into two parts:

1
2Qtot

ne nec(l nc(2 ne( nc(2
HI :HI()+HI()’ HI Zoq GOqG7 I():

2(0101 GO G+qu GO c)- (D3)
2Qtot

a,G

Note that Hlnc(l) keeps the ey index of an electron invariant, while H?C(Z) flips ey of an electron.
For a Chern insulator ground state |¥,""~) defined in Eq. (C8), it can be annihilated by OS,G — AgNarég,0, and

c(1)

has conserved number of electrons in each Chern number ey subspace. As a result, only H? contributes a first

“2) ig non-diagonal in ey and only contributes at the second order. We note that

nc(l)

order perturbation energy, while H;

o wi and an(z) o< wg.
ne(1)

since Og & Is of order 1 and Oé a is of order wy in the expansion of wy, we have H;

Therefore, to calculate the energy up to order wg, we need to calculate both the first order perturbation of H;

nc(2) ne(l) .

and the second order perturbation of H; The first order energy contribution of H;“" is given by

ED = (Pr+v- ‘H?C|\I/Z+’V’> = (TVv- ‘H?C(l)lq],ﬁ%y*)

v, Ve
1 1 2
_ yv- ot O Yrtr—) = Via+ G) |Fii1(k,q+ G
s U 10 Ohal ) =g 3 Y Vit @)Pakat
q, j€half occ k,q,G
=Ny Y, U,
j€half occ
where the energy
1 2
e — G)|Fii(k G)|” > D
0= Sty 2 V(@O IFlca+ GF 20, (D5)
and j labels all the spin-valley flavors {n;, s;} where only either the ey = +1 or ey = —1 Chern basis are occupied in

Eq. (C8), namely, half occupied. This is because if both Chern basis bands of a valley-spin flavor {n, s} are occupied
(empty), O1 g Wwill give zero upon acting on the subspace of flavor {n, s}, and yield zero perturbation energy. Since
0} .q is off- dlagonal in the Chern basis ey index, if a valley-spin flavor {n, s} only has one of the two Chern basis
bands occupied, O}LG will not vanish when acting on {7, s}, and thus contribute a positive perturbation energy to it.
Note that the energy U; we defined here is equivalent to the coupling A in Ref. [72] (but Us in Eq. (D9) below is not
considered in Ref. [72]). Also, note that this also means for Chern number zero states at even fillings, the perturbation
energy (D4) is exactly zero for the states |¥,) we defined in Eq. (C20), in agreement with our analysis in App. C 3.

At small wg, the matrix elements Fyi(k,q+ G) are proportional to wg, so the nonchiral perturbation energy Uy
per unit cell is proportional to w3. Fig. 5(b) shows the numerically calculated value of U; as a function of wq (with
w1 = 110meV fixed) for twist angle § = 1.05°.
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We denote Ey . = (V7" |HS + H}lc(l) |W, 7"~ ) as the energy of state |¥,7"~) (with the first-order perturbation
energy E\'). in Eq. (D4) added). The second order contribution of the term H"“® is then given by

nc(2) 2
Vi, V_ nec(2 c c\— ne(2 v |Y ‘
El(/2lzc - <\IIV+, ‘HI ( )(EO,V,UC - HI) 1HI ( )|\I}l/+7 = Z Z Ec Ec¢ ? (DG)
j€half occ £ O.vve
where Y"C(2) (6, "= | Hp“® W= s the amplitude within a half occupied spin-valley from the state |W5™"~)

to excited eigenstates [¢, U5~ ) at energies ES = (¢, U5t~ [HS|¢, W5+ ). Note that since H® o 04 @ o wo, this

perturbation energy E,E BC is also proportional to w3. The action of H, "e(2) 4n the state | W, 7"~ can be simplified by

noting that

1 1

0 T
2040t Z[O -G O al= 200t Z nVia+G)[M_., (k+a,—qa-G)F, (k,q+ G)dk,—ey,n,sdk,ey,n,s
q,G q,G.k,ey
Me, (k+q,—q— G)Fey (k,q+ Gl .. ., ditaeyn.s]
1 . .
=50 Y wVia+G)M’,, (k,q+ G)F., (k,q+G) - M., (k,q+G)F*, (k,q+G)ld _, . dicy.ns
tot q,G k,ey
(D7)
where we have used the fact that M} (k,q+ G) = M_., (k,q+ G) = M*_ (k+q,—q— G), and F*_ (k,q+
G) = Fe,(k,q+ G) = F*_ (k+q,—q — G). Therefore, using OO G|‘1/VJr 7Y = AgNumbqolPy ") with Ag =

/V(G) Yy ao(k, G) (see Eq. (1)), we have

H @) =

0 1 Vi Vo \ 1 vy, Vo
QQMZV a+G)(10% _a:Ohcl +204 0%, ¢ ) [Wy-") = QtotZO‘q GOY Vo)

l/ V. vV_
~ L Y V@R, &-G) (Zao(k/’(})> G el W)
(e} kl

G.ey k,n,s

(D8)

This shows that the amplitude YZ"CQ) is proportional to the filling v, and thus generically we have the second order
perturbation energy

Yn6(2)|2
E®) =-N U, | : D9
mre M Z v Uz = NIV[ZE = Eo e lvi=1 (D9)
j€half occ
where Uy > 0.
In particular, if we impose the FMC in Eq. (7) which implies F,, (k, G) = —F,, (—k, G) = 0, we find that
Hy*@lwyr-) =0, (D10)
and thus
v =0, =0, EZ =0, (D11)

namely, the second order perturbation energy of H?C(Z) is zero. Note that Eq. (D10) also indicates that in the presence
of FMC, the eigenstate wavefunction |¥; """~} is not only accurate to the zeroth order, but also accurate to the first
order of the perturbation H*®. Since H7*® o wy and H" « w2, this means the wavefunction |¥5""") is
accurate to the linear order of wg with the FMC.

Without the FMC, the numerical values of Us with respect to wg/wy (with w; = 110meV fixed) at § = 1.05° is
shown in Fig. 5(b). The numerical calculations are done by summing over all the one electron-hole pair charge neutral
excitations which are exactly solvable in the chiral-flat limit by diagonalizing a one-body Hamiltonian, as derived in

Ref. [110]. This is because H}w( ) only excites to states one electron-hole pair away from the state |U, 7)) as we
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demonstrated in Eq. (D8). We take a 12 x 12 momentum lattice discretization of the MBZ, which is sufficiently close
to the thermodynamic limit.
Therefore, we find the total perturbation energy proportional to w3 is given by

E() =Bl +EZ, =Nu Y (Ui—vT). (D12)

j€half occ

We note that the perturbation due to O} q.G 18 a nondegenerate perturbation. This is because the nonchiral inter-
action terms O | GOl g (or 0%, O} o, O, cOY @) either leave the state [, ""~) invariant, or flip the index
ey of 2 (or 1) electrons. However, an operation flipping ey does not belong to the chiral-flat U(4)xU(4) symmetry
group (which can be seen from the generators in Eq. (A40)), thus the resulting state cannot be a U(4)xU(4) rota-
tion of the state |¥,7"~) (or in other words, a Goldstone mode of zero momentum), but necessarily has an energy
cost. Therefore, the nonchiral perturbation is nondegenerate, and our above nondegenerate perturbation calculation
is valid.

In particular, our numerical calculation shows that U; — 12Uy > 0 for any 0 < wo/w; < 1 and any |v| < 3. It is
therefore clear that the nonchiral interaction perturbation favors the lower Chern number |v¢| insulator states, with
as many spin-valley flavors fully occupied or fully empty as possible. Such a state can be generically written as

Yove) H H dk A+1,m5,85 H dT k,—1,m5,5; 0) , (D13)
j=1

k j=1

which fully occupies valley-spin flavors {n;,s;} with 1 < j < min(vy,v_). Any chiralnonflat U(4) rota-
tions of the state |¥,,.) are also degenerate, and all the degenerate states form a chiral-nonflat U(4) irrep
[(2NM)("*|”C|+4)/2,N]‘\ZC‘L;. This notation means the irrep of a Young tableau with 2/N); boxes in each of the
first (v — |ve| + 4)/2 rows, and Njs boxes in each of the next |v¢| rows. This is because there are (v — |ve| + 4)/2
valley-spin flavors where both Chern bands are fully occupied, and the 2N,; electrons in each of these flavors are
antisymmetric in k and symmetric in the valley-spin U(4) space, thus lying in the same row of Young tableau. Then
there are |v¢| flavors where only one Chern band is occupied, and the Ny, electrons in such a Chern band are anti-
symmetric in k and symmetric in valley-spin space, thus lying in the same row of Young tableau. Note that the U(4)
multiplet of state |V, ) is a subset of the U(4)xU(4) multiplet of state |¥,,"""~) in Eq. (C8). By Eq. (D12), we find
the perturbation energy of state |¥, ) in Eq. (D13) up to order w3 is

E() = |ve|Na(Uy — v*Ua) | (D14)
with U; — 12Uy > 0 for any |v| < 3. For v = 44, the only available state has Chern number vc = 0, thus the
perturbation energy is zero. This clearly indicates that the states with a lower Chern number |v¢| have a lower energy
in the nonchiral-flat limit.

In particular, we note that for even fillings v = 0,£2,+4 and v = 0, the states |¥, ) in Eq. (D13) become the
exact ground states |¥,) in Eq. (C20).

2. Summary of U(4) irreps of various ground states

This appendix summarizes the ground states we discussed in Apps. C and D above, which are listed in Table II.
Since the system is PH symmetric about v = 0, here we only list those ground states with integer filling fraction
v < 0, and we have labeled under which limit they are exact. A ground state exact under the nonchiral-flat U(4)
limit is also exact under the (first) chiral-flat U(4) xU(4) limit.

Appendix E: Kinetic Term Perturbation to the Ground States

In this appendix, we consider the perturbation effects of the kinetic term on the exact ground states in App. C and
the nonchiral-flat states in App. D. Throughout this appendix, we shall assume the flat metric condition Eq. (7) holds
exactly or approximately, so that the eigenstates |¥,™"~) and |¥,) we discussed in App. C are the ground states in
the absence of the kinetic energy. We discuss the U(4) case and the chiral limit U(4) xU(4) case separately.
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filling v|{Chern number v¢ |nonchiral-flat U(4) irrep |chiral-flat U(4)xU(4) irrep |exact under |if nonchiral-flat GS
-3 +1 [Na)a ([Nar]a, [0]4) U(4)xU(4) | yes (perturbative)
-2 0 [2N]\/[]4 ([NM]4, [N]W]zl) U(4) yes (exact)
2 s [NZls (N5, ) T@xU() no
—1 +1 [2Nns, Narla ([N%]a, [Na]s) U(4)xU(4) | yes (perturbative)
-1 3 LA ([V31]a, [0]2) U@ =U() o
0 0 [Nl (AMLEAR) 0 yes (exact)
0 +2 [QNM,NA{,NML; (NJ%/[ 4, N]u 4) U(4)><U(4) no
0 +4 [0]4 ([0]4, [0]4) U(4)xU(4) no

TABLE II. Representations of various TBG insulating Phases we derived. Njs is the number of moiré unit cells, and the number
of electrons is N = (v + 4)Nas. Here U(4)xU(4) refers to the first chiral limit. In the table, we only list the U(4)xU(4) irrep
({A1}H4, [{A2}]4) of the state with Chern number ve > 0, while the state with Chern number —v¢ in the same line has irrep
({A2}H4, [{A1}]4)- In the nonchiral-flat U(4) limit, the states with smaller Chern number |v¢| would have a lower energy. The
last column denotes whether each state is the ground state (GS) in the nonchiral-flat limit, either exactly or in the perturbation
theory.

1. The kinetic Hamiltonian

Before we proceed to perturbations, we first recall and rewrite the projected kinetic Hamiltonian of TBG. By
Eq. (A15), the TBG kinetic energy term has the form

HO: Z Gm-,n(k)cl,m,n,sck,mmysv (El)

k,m,n,s

where the single-particle energy satisfies €p, (k) = €p,—n(—k) = —€_p (—k) = —€_p, (k) due to Cs, symmetry
and the anti-commuting unitary symmetry P. The kinetic term breaks the Cs, P in the nonchiral-flat U(4). We can
rewrite the kinetic energy term into two parts:

Ho=H{ +Hy , Hf =Y ep(R)el (e, Hy =Y e (ke ("), (E2)
k k

where band, valley and spin indices are written into the matrix form, cy is the column vector of the eight fermion
operators i m.,s of all band, valley and spin indices, and e4 (k) = [e41,4 (k) F e—1,4(k)]/2. These two functions
satisfy

es(k) = ey (—Kk) . (E3)

In the chiral limit, we have additionally €, ,(k) = —€_y, (k). This ensures that H; = 0 in the chiral limit, so the
kinetic term is solely Hy = HO+ . Accordingly, in the chiral-nonflat limit there is a remaining U(4) symmetry unbroken
by Hy, with generators given by (7%s’ (see Eq. (A42) and details in Ref. [109]).

2. Kinetic perturbation in the (first) chiral-flat U(4)xU(4) limit

In this subsection, we study the perturbation of the kinetic term up to the second order on the exact ground states
|W, ") in the (first) chiral-flat U(4)xU(4) limit given in Eq. (C8). We note that here we do not require the FMC
in Eq. (7) to hold, we only require that |0, """~ ) are ground states in the chiral-flat limit without the FMC (which is
verified in our exact digonalization in Ref. [111]).

In the chiral limit, the kinetic term is simply Ho = Hy, since the term H, = 0 as discussed in App. E 1. After adding
the kinetic term H", there is still a remaining U(4) symmetry with generators proportional to (°7%s (a,b = 0, z,y, 2,
see Eq. (A42)), so one is free (without energy cost) to rotate valley n and spin s without affecting the space of band
indices.

When the perturbation Hy is added, we want to find the lowest state among the U(4) x U(4) multiplet of the Chern
insulator state | ¥, """~ defined in Eq. (C8). For a fixed filling v = v, + v_ — 4 and Chern number v = vy —v_, we
examine which choice of occupied valley-spin flavors for the Chern number ey = +1 bands gives the lowest energy.
The kinetic Hamiltonian can be rewritten in the Chern band basis as

HO = H(;r = Z €+(k) (dI{,Jr,n,sdkv*J]»S + dirc,f,n,sdkﬂrﬂ%s) ’ (E4)
k,n,s
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which flips the Chern band index ey of an electron within the same valley and spin. Such flipping of Chern band
index ey in a valley-spin flavor {, s} is possible only if the valley-spin flavor {#, s} is half-occupied, namely, only one
of the ey = +1 Chern band basis is fully occupied.

Second order perturbation. Since H is off-diagonal in the Chern band basis, it does not yield a first order
perturbation energy to the state |[¥, 7" ~). It does give a 2nd order perturbation energy by exciting the ground state
into some high energy states.

We now consider the Hilbert space of such reachable excited states by acting Hy once on the state |¥;,""~). Assume
the valley-spin flavor {7, s} has its Chern band basis —ey fully occupied and its Chern band basis ey fully empty.
We consider the following sets of states

k, ey, n, s, Uyt) = dj dk7—6Y7777S|\IJZ+7V_> ) (E5)

— “kiey,n,s

| Z

which can be reached by acting Hp onto the ground state |¥,*""~) (restricted within the valley-spin flavor {n, s}),
where the amplitude is e (k). These states are not eigenstates of the interaction Hamiltonian H;. The eigenstates
will be found and discussed in Ref. [110]. However, we here show, for self-consistencey, that these states of different
momentum k with fixed ey, 7, s form a closed subspace under the interaction H;. To see this, we note that in the
chiral limit, the operator Oq ¢ in H; is given by Eq. (C6). Note the fact that

(Oacdicey sicev s

(E6)
= V(q + G)(MSY (k7 q + G)dir(—l-q,ey,n,sdka*eY’??’S - M*EY (k —q949 + G)d“l-c,ey,n,sdk*Qaerm’S) ’

and the equality M., (k,q+ G) = M} (k+q,—q— G) (due to Eq. (A23)), we find the interaction Hamiltonian H;
satisfies (see the calculation of charge neutral excitations in Ref. [110] for details):

1
|:HI - ,LLN, dLEY,”Iank’_ey’n’S:| == m g Sey;—ey (k, 0, q)dL+q7€Y’n,sdk_i,_q’eY,n?S R (E?)
where (see Ref. [110] for notations)
. — 2 / / 2
Serimer (k,0:0) =23 { = V(@ + G) M,y (k. a+ G) + 840 >_V(d + G)|Mey (ko' + G2 . (E8)
G ql

This expression in the chiral limit is independent of filling v, and does not require the FMC in Eq. (7) (see derivation
in Ref. [110]). Moreover, by Eq. (E6), and using the fact that ), as(k, G) =0 at q = 0, we have

OO,G|k7 €y, 1,S, \IJZ+’V7> = NMAG‘kv 6Y777757\IJZ+’V7> ) (Eg)

where Ag depends on filling v as given by Eq. (11). As a result, we find H; is closed within the Hilbert subspace of
states |k, ey, n, s, ¥, """, and satisfy

(HI - EO,V)|k7 €y, 1, s, \IJZ+’V7> = ZHi‘;g,ﬁ|k + q,€ey,1,S, \IIZ+,V7> ) (ElO)
q

where Ej, is the unperturbed energy of the ground state |¥,,""*~) (which only depends on v but not ve = vy —v_),
and the sub-Hamiltonian

s 1
Hle:;,g:k - msey;—ey (ka Oa q) . (Ell)

Note that we do not need to assume the flat metric condition Eq. (7) here. In particular, one finds the sub-Hamiltonian
Heyms = (H e ™%)* and is independent of 7 and s. Therefore, we conclude that in each sector of {ey, 7, s}, the eigen-
states in this subspace of excited states have identical spectrum. We denote these eigenstates as |[¢,ey,n, s, U, """ ),
which has energy E, under H; (or equivalently, the sub-Hamiltonian H®¥>"° + Ey ,) independent of {ey, 7, s}. These
eigenstates can be interpreted as exciton states on top of the occupied Chern band ey within valley 1 and spin s
[110]. We note that these excitations flipping ey are all gapped, since the operation of flipping ey is not within
the U(4)xU(4) symmetry group (which can be seen from the generators in Eq. (A40)), so the perturbation is non-
degenerate. Instead, it can be proved that the excitations not flipping ey (but change valley/spin, discussed in
Ref. [110]) contain the Goldstone modes [110].
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This leads to the following 2nd order perturbation energy:

Blo-= ¥ YREpi-e Y a. e Yplie. @
v,ve T E M 0> 0 — N E — E 5
{ev.,n,s} £ 0w {n,s}€half occ My ¢ 0w

where the summation is over all valley-spin flavors {n,s} which are half-occupied, and FEy, denotes the un-
perturbed ground state energy of the chiral-flat state |[U,"""). We have defined the amplitude Y, =
(,ey,m, s, U, """ |Ho|¥,"""), which is nonzero and has a norm independent of ey, 7, s if the Chern basis of {ey, 7, s}
is empty and {—ey,n, s} is fully occupied. For short, we denote the norm of these nonzero amplitude Y,”"* inde-
pendent of ey, n, s as |Y;|. We note that this perturbatlon energy per moiré unit cell Jy is equivalent to the coupling
J defined in Ref. [72].

Therefore, the second order perturbation energy is the lowest if the state |, """~ ) has as many half-occupied valley-
spin flavors {17, s} as possible. However, all the states |¥;, """ ) with equal number of half-occupied valley-spin flavors
{n, s} have the same the second order perturbation energy, and are still degenerate. This selects the following subset
of the multiplet |¥,""~) at filling v = v; +v_ — 4 and Chern number vc = v, — v_ as the lowest states:

ViV

4

””C HH k,+1,m5,8; ]._.[ dL—1771;',Sj|0>’ (El?’)

k j=1 Jj=5—v_

where {n;, s;} are the 4 valley-spin flavors arbitrarily sorted in j (1 < j < 4). This state has 4 — |v| valley-spin flavors
half-occupied, and has a second order perturbation energy

E®), =—A—v)Nuo . (E14)
Note that E’l(,zy)c is independent of vo. Therefore, the states |\TJV7,,C> for fixed v with different Chern numbers v
are degenerate up to the second order perturbation of Hy. This degeneracy between different absolute values of the
Chern numbers |v¢| is expected to be broken at higher order perturbations, since there is no symmetry protecting
this degeneracy (the v and —v¢ states have to be degenerate with each other due to time-reversal symmetry).

If v = 0,4 or vy = 0,4, in which case ve = £(4 — |v|), the state \{Iv'l,)l,c> in Eq. (E13) falls into a U(4) irrep
[N;f[l'/l]z;. However, if both vy and v_ are nonzero and not equal to 4, the state |‘T’u,uc> in Eq. (E13) is not in a
U(4) irrep that is easy to write down, but resembles a U(4) version of the Neel-ordered antiferromagnetic state (if
vy = v_) or a ferrimagnetic state (if vy # v_). This is because, in the expression of the wavefunction |\AIVJV’,,C> in
Eq. (E13) (which is not exact), it is not clear whether the occupied electron at momentum k in Chern basis ey = +1
in valley-spin flavor j = 1 and the occupied electron at momentum k in Chern basis ey = —1 in valley-spin flavor
j = 4 are symmetric or antisymmetric in the U(4) valley-spin indices (because they occupy different ey basis). If at
all momenta k such two electrons are considered antisymmetric in valley-spin flavors (as suggested by the fact that
they occupy different valley-spin ﬂavors) they should occupy the same column in a Young tableau, and the U(4) irrep

of state |¥,, ) will be given by [ it I] . However, this cannot be exact (similar to the Neel order state in a SU(2)
spin system, where the ground state cannot be a total antisymmetric singlet due to symmetry breaking), so we would

expect the irrep of state |\T/w,c> to be close to [N;(/[_‘Dl]4, differing from it only by a few boxes (< Njs) moved among
different rows in the Young tableau.

Lastly, we note that both the operator O}LG in the nonchiral-flat limit and the kinetic term H flip the Chern
basis ey. Thus the criteria for their energy perturbations both rely on half occupied spin-valley flavors. However,
and as opposed to the nonchiral-flat limit (where the perturbation is in fact first order given by a positive operator
ot a, GO o), here in the chiral-nonflat limit the kinetic term H{ is one-body. As a consequence, Hy only contributes
in the becond order perturbation, involving higher states and thus lowering the energy.

3. Kinetic perturbation in the nonchiral-flat U(4) limit

We now consider the kinetic term perturbation to the nonchiral-flat ground/low-energy states, which makes the
system nonchiral-nonflat, and corresponds to the experimental situation. In the case where the wavefunctions in Eq.
(D13) (see also Eq. (E15)) are not exact eigenstates in the nonchiral-flat limit (when the Chern number v¢ # 0), we
assume the single-particle bandwidth ¢ < wg, such that we can regard the kinetic term Hj as a small perturbation to
the nonchiral-flat limit (exact or approximate) eigenstates.

In the nonchiral-flat U(4) limit, we have a set of approximate/exact insulator states |V, ,.) in Eq. (D13) with
Chern number v¢ at integer fillings v, where ve =4 — |v[,2 — |v|,--- ,—4 4 |v|. The U(4) rotations of |¥, ) form
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a degenerate U(4) multiplet of states. In particular, for even fillings v = 0, £2, +4, the insulator states |¥, ) with
Chern number vc = 0 become the exact ground states |¥,) defined in Eq. (C20) for even fillings v. We shall assume
the nonchiral interaction terms due to nonzero wp are larger than the energy scale of the kinetic term Hy (which
is the case near magic angle with a realistic wy & 0.8w1), so that Hy can be treated as perturbation on top of the
nonchiral-flat exact/approximate insulator states |¥, ).

We shall examine the perturbation of kinetic term Hy to the state |U, .. ). Since Hy breaks the U(4) symmetry
down to the U(2)xU(2) spin-charge rotational symmetry of two valleys, one expects it to select a subset of the U(4)
multiplet |U, .. ) as the lowest states. To examine which states in the U(4) multiplet are preferred, we start with the
state |¥, ,.) in Eq. (D13) with the valley-spin flavors {n;,s;} (1 < j < 4) therein sorted in a certain order (which
will be specified below). We then consider the following U(4) rotated state relative to the expression of |¥, ,.) in
Eq. (D13):

Vi

Voo (@s)) = Ulps)[Woe) = Ulps) H H dL,+1,n_j,s_j dL,—l,nj,s]' |0) , (E15)
Kk j=1 j=1

where s =1, | stands for spin, and we have defined the following generic U(4) rotation in terms of the angles ¢;:

Ulpy) = e95"/26i68% /2 5 _ @ 4= @ : (E16)
Here S are the generators given in Eq. (A33), which have representation matrices s%(ey) =
{19, ey 723, ey7Ysb, 775°} under the Chern basis ey (see the derivation in Ref. [109]). Note that the first generator
SY% rotates the valley polarization in the spin 1 and | subspaces oppositely, which changes the spin configuration;
while the second generator S¥° rotates the valley polarization as a whole without affecting the total spin. Therefore,
the valley polarization of the spin 1 and | electrons are rotated differently by angles ¢4 and ¢, respectively. Also,
note that the state |¥, ) in Eq. (E15) has as many fully occupied (or fully empty) valley-spin flavors as possible,
due to the nonchiral perturbation energy in Eq. (D12).

The energy of state |¥, ,.(¢s)) in Eq. (E15) depends on the order of the valley-spin flavors {7;,s;} chosen, and
the angles s (s =1,)). One is further allowed to do arbitrary spin-charge rotations in each valley to the state
[P, (¢s)) in Eq. (E15), which would not affect the energy due to the remaining U(2)xU(2) symmetry. Therefore,
for the purpose of examining energies, it is sufficient to consider states of the form in Eq. (E15).

While the calculations below are generic for any order of valley-spin flavors {n;,s;} in Eq. (E15), for concreteness
we will dominantly present the case where the 4 valley-spin flavors {7;,s;} (1 < j <4) in Eq. (E16) are sorted in the
order of

{77j7sj} = {+7T}7 {‘th}, {77\”’7 {*aT} ) (1 <j< 4), (E17)

which turns out to give the lowest nonchiral-nonflat states at all integer fillings v. This is because such an order of
{n;,s;} makes the state |¥, ) in Eq. (D13) maximally valley polarized (always filling the valley nn = + first), thus it
gains as much perturbation energies (with proper rotation angles ;) from the kinetic term which breaks the SU(2)
valley rotational symmetry (a subgroup of the U(4)). Another order of {1;, s;} that maximizes the valley polarization
of state |¥,, ) is

{773'75]'} = {+aT}’ {+7\L}7 {_7T}7 {_a\l'} ) (1 <J< 4)7 (EIS)

which is also compared in Tab. III, but always yields an equal or higher energy state than the order of Eq. (E18).
All the other flavor orders which do not maximize the valley polarization yield even higher perturbation energies, and
will not be presented here.

a. Action of the kinetic term

In the absence of the chiral symmetry, the kinetic term Hy = Hy + H; is given by Eq. (E2), which can be rewritten

into the Chern band basis dL oy (defined as the row vector of 4 spin-valley components dL . as

y,n,s)

Hy=Hf +Hy , Hy =Y e (kd_, (T )die, , Hy =Y e_(k)d, (77s")dxe, (E19)

k,ey k,ey
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where ey (k) = +eg (—k). For later use, here we examine the action of Hy on the wavefunction |¥, .. (¢s)) in Eq. (E15)
(not the more accurate wavefunction in Eq. (E26)). Recall the representation matrices of $% under the Chern band
basis are given by Eq. (A35). Therefore, the action of Hy on the rotated state Eq. (E15) is then

Hol Wy, (ps)) = (Hy + Hy )U(05) [P0,
(¢s) Z {e4 (k)dL_EY [70(5% cos p cos ¢ — 57 sin psin @) + iey 7Y (s” sin p cos ¢ + 57 cos psin ¢)]di ey

k,ey

E20
+ ef(k)dlt’ey [7% (5" cos p cos ¢ — 57 sin psin @) + ey 77 (s” sin @ cos ¢ + 57 cos @ sin )] dk.ey H Wb e ) (20)
=U(ps) Z {WLS cos s — (Wy s — W3 5) sin cps} Yo s
where
Wio= D erl0dic ey putierms s Was= D evnes(di , e ms
k,ey,n . k,ey,n (E21)
W3’5 = Z ey €— (k)dk,ey,—n,sdkﬁeifﬂlvs ’
k,ey,m

and we have used the relation ¢, = ¢ + s¢ for s =7, ], and have used the fact that )", e_(k) = 0. It is easy to verify
that (¥, . (0s)|[Ho|¥, o (0s)) = 0, since the unrotated state |, ,) is diagonal in ey, n and s.

b. Perturbation to the exact nonchiral-flat ground states at even fillings

For the exact ground states |¥, ) = |¥,) at even fillings v = 0,42, the first term W;, in Eq. (E20) with
coefficient cos ¢ gives 0 when acting on |¥, o). Besides, all the other terms only excite the state |¥, o) into gapped
excitations (instead of gapless Goldstone modes): (1) any operators flipping ey (regardless of whether flipping 7, s
or not) will not be generators of the nonchiral-flat U(4) symmetry group (see the U(4) generators in Eq. (20)).
Therefore, the term Wy s in Eq. (E20) will map the state |V, o) to gapped excitations rather than Goldstone modes
(the Goldstone modes are obtained by acting U(4) generators on the state |¥, )). (2) The operator W3 , in Eq. (E20)
does not flip ey. But the U(4) generators that flip n and yields a gapless Goldstone mode (at zero momentum), e.g.,

S0 =5 " Ley —pskey s (Which generate a Goldstone mode 5201w, o)), satisfy

v
(v V0|510W35|\I}V0 _| |Z (E22)

Thus, we conclude that the resulting states of Eq. (E20) are orthogonal to the gapless Goldstone modes. This allows
us to use nondegenerate perturbation theory.

From Eq. (E20), we can see that the first order perturbation energy is (¥, o(¢s)|Ho|Pu,0(vs)) = 0.

Now we examine the (nondegenerate) 2nd order perturbation energy. Since Wi 5 in Eq. (E20) yields zero, we find
the 2nd order perturbation energy is given by

B = (Wy0(pa)| Ho(Eoo — Hi) ™ HolWu0(00)) = —NarJ'(wo) Y vesin® o, | (E23)
s=1,}

where v, = 1 if only one valley of the spin s sector in the state |¥, o) is fully occupied, and vs = 0 if both valleys of
the spin s sector in the state |¥, o) are fully occupied or fully empty. The perturbation energy per moiré unit cell
J'(wp) (which depends on wp, and here we assume w; = 110meV is fixed) is defined by

Y |?
E24
Z E¢—Eou0 (E24)

where Ey o stands for the unperturbed energy of state |¥, ) in the nonchiral-flat limit, while ¢ runs over all the
excited states |¢, ¥, o) reachable by the operator Ws s — W3 ¢ from a state |¥,, o) with both bands in valley-spin flavor
{+, s} are fully occupied and both bands in valley-spin flavor {—, s} are fully empty. The corresponding amplitude
is defined as Y; = (¢, ¥, 0)|Wa s — W35|¥, ). The unperturbed energies of the excited states in the nonchiral-flat
limit are denoted by Fy. From the more generic expression in Eq. (E37), one can see that J'(wg) = Jo(wp) + J3(wp),
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where J;(wp) is defined in Eq. (E35). Generically, since Ey > Ey , 0, we have J'(wg) > 0. Therefore, it is clear that
the lowest energy is reached when ¢, for all s with v; =1 are at

s =72, (E25)

namely, when the valley polarizations of both spins s are maximally polarized in the valley x-y plane. This corresponds
to ¢ =7/2 and ¢ =0 in Eq. (E16).

c. Perturbation to the generic nonchiral-flat Chern states (part I): 1st order

For generic approximate (Chern) insulator states with Chern number vo # 0, the state |¥, ) in Eq. (E15) is
only an approximate eigenstate in the nonchiral-flat limit, which is obtained by adding nonchiral perturbations to
the chiral-flat limit. Since we are going to further add the kinetic perturbation Hy to the nonchiral-flat limit, we
want to start from a more accurate eigenstate of the nonchiral-flat limit. Recall that as defined in Eq. (D3), the

nonchiral interaction terms an(l) 06 Oiq —GO};,G o wg, and H}Lc@) o quﬁGO};,G o wg. Therefore, we define the
wavefunction accurate up to order w? in the nonchiral-flat limit, which includes the first order perturbation of the

nonchiral term H"") and second order perturbation of H*® to the chiral-flat limit (see Ref. [120] for the generic

expression of the second order perturbed wavefunction in quantum mechanics):

_ _1,nc(1) ne
W () = N7V20 () [1+ (B — HE) (A 4 1)

v,ve

c c\— nc(2 N nec(2
+ (EO,D,UC - HI) 1‘FII ( )(Eguuc - H;) 1];II ( )} |\Ilu,uc>
nell) (E26)

=NV (B — BT + D)

c c\— nc(2 _ nec(2
+ (EO,D,VC - HI) 1I:[I ( )(Eg,u,uc _Hf) 1HI ( )j||\:[ll/,uc(905)> .

Here the overlined operator @ = Q — (¥, ,,,|Q|V, .. ) stands for the part of operator @ not mapping back to state
¥y ve), and Ef , . is the chiral-flat part of the energy of state |¥, ) defined by Hf|V, ,.) = E§, ,.|¥u.ue). N is
the normalization factor.

We shall now regard the state |\If(;‘5,§ (ps)) in Eq. (E26) as an accurate eigenstate of the nonchiral-flat interaction
Hamiltonian H; = H¢ + H7°, on top of which we add the kinetic perturbation Hy = Hy + H, . Generically, if we
define t as the energy scale of the kinetic term HSF , the other kinetic term H; will be of order wyt, since H; vanishes
when wo = 0.

(acc)

The first order perturbation energy of Hy to the state |U, . (ps)) in Eq. (E26) is then given by

ESD. (ps) = (W5 (0s) | Ho WS ()

:N<\I/V,IJC (‘Ps)| |:1 + (an(Q) (Eguvc _ Hc) 1an(2) + an(?) +H

—nc(1) c N _
V(ES e = HY) ' (HE + Hy)  (m27)

nec(2 nec(2 — nc(2
O O (B Hy) V)] [ ()

x 1+ (E§ e — H) 7 (H

We now show this first order perturbation energy is zero. To see this, we first define a unitary k flipping operation [
which acts as

I1=4q

—k,ey,nm,s ?

Id!

k,ey ,n,s

Idk,EY,T],S]_l = d*k,ey,n,s . (E28)

Note that because of the properties of coefficients a;(k,q + G) in Eq. (A24), we have IOSLGI_1 = O0 _¢ and
10} gI™" = -O', . Besides, the kinetic terms satisfy THEI' ™Y = £HE, because er(k) = :I:ei( k).
ne(

Since the chiral term Hf o« Y7, 0%, Og g, and the nonchiral terms H}w(l) X e 0t -cOha: Hf Y
Yac 0%q.-c0d s we find that
TH{I Y = Hy . THO -t = gre® o pEre® et = —gre® D THE = £ HE (E29)

Furthermore, one can see that the operators

Hf | an(l) JHy do not flip the index ey of an electron , (E30)
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and
H® Hf flip the index ey of an electron . (E31)

Then, note that the state |¥, ,.) has conserved number of electrons in each ey sector, and satisfies I|¥,, ) =
e'wo|¥, ) under the k flipping operation I, where «,,,. being some phase. Therefore, an operator @) can
have nonzero expectation (¥, ,.|Q|¥, ) only if it contains a part that is even under I and does not flip ey.
However, we find every term in Eq. (E27) either is odd under I, or flips the ey index of at least one elec-

Hc) lH”C(Q)(EC — HIC>_1HO+F?C(1)
an(Z) (Ec H}:)le}lc(Q) (E07V,I/C _ HI) 1HO HI

ne(2) (Ec

0,000 will flip ey, while the term

tron. For instance, the term H;

0,v,vc
nc(l)
O,v,vc

conclude that the first order perturbation of Hy is zero:

is odd under the k flipping operation I. Therefore, we
1 _
E8) (p) =0, (E32)

d. Perturbation to the generic nonchiral-flat Chern states (part I1): 2nd order

For the second order perturbation of Hy, since the energy scale of the second-order perturbation of Hy is smaller

(than the first-order perturbation of Hy, if nonzero), it is sufficient to approximate the nonchiral-flat state |\I/£“5§) (ps))
in Eq. (E26) as the less accurate expression |¥, ,.(¢,)) in (E15) for the purpose here. Similar to the argument in
Eq. (E22), all the resulting states of Eq. (E20) are orthogonal to the gapless Goldstone modes and thus are gapped,
so we can employ the nondegenerate perturbation theory. The second order perturbation energy is then given by

EZ)(98) = (Voo (90) Ho(Eo e — H) ™ HolWou0 (25)) (E33)

where H; is the nonchiral-flat interaction Hamiltonian, and Ey ..o = (Yy o |Hr|¥0,) is the energy of the state
|V, ) in the nonchiral-flat limit. All the terms W, , (1 < j < 3) in Eq. (E20) contribute here, and yield a 2nd order
perturbation energy expression:

ER).(ps) = —Nar ) [ (D J1(wo) cos® o, + sin ws( £2’Jz(wo)+V§3)J3(wo))}, (E34)
s=1,4

where the three different coefficients are given by

|V,0|? +Y2gYae+YzeY”

Y1, Y2 0|?
w J3(w
o) NMZEe Eovve’ J2(wo) NMZEe Eove’ 3(wo) = NMZ Ey —

EO v,ve

(E35)
In the main text Eq. (31), we simply write J; = J;(wp) for short, while here we keep the variable wg to remind the
readers that they depend on wg. The three terms in Eq. (E34) are from the following second order perturbations:

(1) By the amplitudes Y7 o = (£, ¥, ., |[Wi 5|V, ) of the term Wy o =", €+(k)dl1l<,fey,77}sdk7€}’ﬂ77s (see Eq. (E21))
from the insulating state |¥, ) to all the excited states |¢, ¥, ), where the band {ey,n, s} is occupied while the
band {—ey,n,s} is empty. The energies of the excited states |¢, ¥, ,.) relative to the energy of state |¥, ,.) are
denoted by Ey — Eo ... The number of such indices {ey,n, s} for a fixed s is denoted by 1/§1) > 0.

(2) By the amplitudes Y5 ¢ = (¢, ¥, ., |Wa2 s|¥, . ) induced by the term Ws , = >, ey (k) k,fey,fn,sdk,evmﬁs (see
Eq. (E21)) from the insulating state |¥, ,.) to all the excited states |¢, ¥, ,), where the band {ey,n, s} is occupied
while the band {—ey, —7, s} is empty. The number of such indices {ey,n, s} for a ﬁxed s is denoted by v > .

(3) By the amplitudes Yz o = (£, ¥, . |[W3,5|V, ) of the term W3, =3, e_(k )di Koy —n.sdicey s (see Eq. (E21))
from the insulating state |¥, ) to all the excited states |¢, ¥, ,), where the band {ey7 7,8} is occupied while the
band {ey,—7,s} is empty. Both |Y3,|?> and the cross terms between Y, and Y3, contribute. The number of such
indices {ey,n, s} for a fixed s is denoted by 1/5(3) > 0.

For numerical calculations of the coefficients J;(wo) (see App. E3e for results), we only restrict the excita-
tion levels |¢, ¥, ) within the exactly solvable excitations found in Ref. [110] in the sub-Hilbert space of basis
dlt,e;,,n,sdk@i/,nﬂs’ |U,...) (of any k, ey, n, s, €5, 1, s"). These excitations can be obtained by diagonalizing a one-body
Hamiltonian matrix in this sub-Hilbert space [110]. Such excitations are the ones Hy|¥, ,.) dominantly overlap with,
since Hj excites only one electron-hole pair with zero total momentum.
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flavor order {+,71}, {+,1}, {— i} {—,1} (giving the lowest state) flavor order {—|— T} {—|— i} { ,T} {—, 1}

filling v | Chern number |vc||v; D VT 2 14 ) I/il) z/i ) (3) o1 | @ v ||vel l/$ 2 ) l/T ¢ vy @) Vi ot | @y
0 0 CTET e o2 72 (7/2 0[ 0022022272
0 2 0|22 |2]2]0|n/2]0 0| 2 1 1 1 1 1 1 010
0 4 2121012 12]01]0]O0 0| 4 212|102 2101010
-1 1 0 2| 2 1 1 1 |w/2| 0 1101 02| 2 1 1 1 |(x/2| 0
-1 3 1 1 1 212101070 -1 3 21210 1 1 1 010
-2 0 022|000 |m/2] - 2002|2000 |x/2 -
-2 2 1 1 1 1 1 1 010 -2 2 1 1 1 1 1 1 010
-3 1 1 1 1 0701 0]O0 - 301 1 1 1 0[]0 0]O0 -

TABLE III. (a) Left table: the coefficients v of state (E15) and the optimal U(4) rotation angles ¢, for different integer
fillings v < 0, where the valley-spin flavors {n;, s;} (1 < j < 4) in state (E15) are sorted in the order of {+,1}, {+,1}, {—, 1},
{—,1} (this flavor order maximizes the valley polarization of state (E15) and minimizes the perturbation energy in Eq. (E37)).
When o5 is filled by “-”, it means there is no electron in the spin s sector. (b) Right table: the coefficients v{ and the optimal
rotation angles ¢, if the valley-spin flavors of state (E15) are sorted in the order {+,1}, {+,{}, {—, 1}, {—,}}. This flavor
order yields an equal or higher perturbation energy according to Eq. (E37) compared to the flavor order in the left table, as
one can easily verify.

In particular, when the interaction H; is in the chiral limit (wg = 0), we would have the contribution of the [Y7 /|
term being exactly the same as that of the |Y5 4| term, which is no different from the amplitude |Y;| in the chiral limit
in Eq. (E12). Indeed these two terms are related by a chiral-flat U(4) xU(4) rotation in the Chern number —ey basis.
Besides, H, = 0 when wy =0, so |Y3¢| = 0 as well. Therefore, in the chiral limit wy = 0, we have

Jl(wo = 0) = JQ(U}Q = 0) = Jo s Jg(’wo = O) =0 s (E36)

where Jp is the coupling in the chiral limit defined in Eq. (E12). When wq > 0 is small, we have J; (wg)—J2(wq) o< wit?,
where ¢ is the bandwidth. This is because the differences between the excitation energies E; o and Ey ¢ are proportional
to the coefficients ny (k,q + G) o< wg. Besides, the third coupling Js(wg) oc w3t?, which can be seen by noting that
the kinetic term H, o e_(k) oc wot, and the fact that the cross terms are proportional to coefficients e_ey Fe, . We
also note that by definition, the coupling J'(wg) in Eq. (E23) is equal to J'(wg) = Ja(wg) + J3(wp).

From the definition of the state |¥, ), and recall that v; +v_ =4+ v and vy — v_ = v, one can calculate

Véj ) in Eq. (E34), which depend on the order of valley-spin flavors {n;, s;} chosen. For the valley-spin flavor orders

defined in Egs. (E17) and (E18), the values of v for all integer fillings v < 0 and different Chern numbers v are
summarized in Tab. III. In both cases, the perturbation energy expression in Eq. (E34) holds.

One can then rewrite the 2nd order perturbation energy as

BE) (o)~ =Nar Y [V 1 (wo) + (w2 Jauwo) = v Ty (wo) + 1) s (wo) ) sin? o, (E37)
s=1,|

Since the 1st order perturbation energy is zero (Eq. (E32)), the lowest state is determined by the 2nd order pertur-
bation energy in Eq. (E37). Therefore, from Eq. (E37), given a particular valley-spin flavor order (which determines

(J))

the coeflicients v we find the lowest state is achieved when

s =7/2 (or 0) if v (wo) — v Ty (wo) + v J5(we) > 0 (or < 0) . (E38)

e. Perturbation to the generic nonchiral-flat Chern states (part III): numerical calculation

We numerically evaluate the values of J;(wg) by dividing the MBZ into a 12 x 12 momentum lattice (sufficiently large
to simulate the thermodynamic limit), and summing over all the one electron-hole pair neutral excitations |¢, U, )
we analytically derived in Ref. [110] (which are obtainable by diagonalizing a one-body Hamiltonian). The numerical
values of J;(wg) with the FMC (Eq. (7)) for twist angle § = 1.05° are given in Tabs. I, which are independent of
the filling v. We also calculated their values without the FMC in Tab. IV, which are almost the same as that
in the presence of the FMC, although they gain a very small v dependence. This implies that the FMC is good
approximation. Generically, we find Ja(wo) > J1(wo) — J2(wo) > J3(wg) > 0 for wy > 0.

We then examine the 1/(3 ) coefficients of all possible valley-spin flavor orders, and identify the lowest states by
Eq. (E38). We find that among all possible valley-spin flavor orders, the flavor order of Eq. (E17) (i.e., {n;,s;}
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wo /w1 |filling v |J1(wo) (meV)|J2(wo) (meV)|J3(wo) (meV)

0 -3 0.3018 0.3018 0

0.2 -3 0.2650 0.2625 0.00008
0.4 -3 0.1735 0.1674 0.0003
0.6 -3 0.0751 0.0701 0.0004
0.8 -3 0.0174 0.0158 0.0003
0 -1 0.3018 0.3018 0

0.2 -1 0.2650 0.2625 0.0003
0.4 -1 0.1735 0.1673 0.0010
0.6 -1 0.0751 0.0699 0.0014
0.8 -1 0.0174 0.0156 0.0009

TABLE IV. The numerically calculated perturbation energies J; (i = 1,2, 3) at twist angle 8 = 1.05° without the FMC (Eq. (7)),
and Coulomb screening length ¢ = 10nm. The calculation is done by dividing the MBZ into a 12 x 12 momentum lattice. Their
values depend on wo (we assume w; = 110meV is fixed), and slightly depend on filling v. These values are approximately equal
to that calculated with the FMC imposed in Tab. I.

(1 < j < 4) sorted in the order of {+,1}, {+,1}, {—, 4}, {—,T}) yields the lowest states for all v and vo. The
coefficients yéj ) for this flavor order are summarized in the left table of Tab. ITI, which satisfy

S0 s —v =l S il A -2 -2 (E3)
S S

S

In particular, one has ugl) < y§2) for each s. For any v and v¢, we have ) 1/§2> >3 z/gl) and 1/§2) >3 u§3).
Besides, when the Chern number |vo| = 4 — |v|, we have v = 1® > 1. The conditions for the lowest states
(which are achieved with the flavor order in Eq. (E17)) can be summarized as follows:

(i) if |ve| = 0, the lowest state favors oy = ¢y = 7/2, namely, full intervalley coherence with the valley polarization
of all electrons in the z-y plane of valley Bloch sphere. This agrees with our rigorous conclusion in Eq. (E25) for the
exact ground states at even fillings ¥ and Chern number vo = 0.

(ii) if 0 < |ve| < 4 — |v|, the lowest state prefers ¢4 = m/2 and ¢; = 0. Therefore, the ground state is partially
intervalley coherent: the spin 1 electrons are intervalley coherent, while the spin | electrons are valley polarized.

(ili) if ve = 4 — |v|, the lowest state has o4 = ¢ = 0, namely, fully valley polarized (polarized in the z direction of
valley Bloch sphere).

From Eq. (E15), we can explicitly write down the lowest many-body wavefunctions for any v = vy + v_ — 4 and
ve = vy — v_ as follows:

129 dl Jrn_eydf vi+|vel
nc-n k,ey,n;,s; J k,ey,—1;,8;
oy =11 H(H s ) ] s | 19 (E40)

k |j=1 \ey=+ j=vp+1

where we have defined v, = min(v4,v_), and {n;,s;} (1 < j < 4) are sorted with j in the order of {+,1}, {+,1},
{—,1}, {—,1}. Note that this expression of wavefunction covers all the three cases, the vc =0, 0 < |v¢| < 4 — |V|
and |ve| =4 — |v|. One can always further rotate the spin and charge within each valley without changing the total
energy. As a result, one finds the generic ground state is given by

VL di +eMinjey dl vrtlvel

nf JA . k,ey,m;,X;58n; k.ey,—1n;,Xj8—n; +
Wie s (7:84,8-)) = H H H ’ V2 ’ H dkasgn(l/c)mjax]‘énj 07

k |j=1 \ey=% j=vr+1

(E41)
where d;ey’ 1.6 1s the electron basis of band m and valley n with spin polarization along the direction of unit vector s,

and {n;,x;} (1 <j <4) are in the order of {+,+}, {+,—}, {—, =}, {—,+}. The unit vector parameters v+,84,5_
can be chosen arbitrarily, which are all degenerate.
In particular, for the Chern insulators with the highest possible Chern number v = 4 — |v|, the ground states are
valley z polarized, meaning that their wavefunctions are simply
(O2Te) = Wone(ps = 0) = [Woue) s (el =4—v]) (E42)

v,ve

with |¥,, ) defined in Eq. (E15). Any further U(2)xU(2) rotations of these states are also degenerate.
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filling v | Chern number |v¢| Little group Little group generators valley U(1)y symmetry
0 0 U(1)exU(1) 7050 V5% no
0 2 U(1)exU(1)xU(1) 7980, 7057 77(s% — 57) /2 no
0 4 U(2)xU(2) r0s0mY:7 750y, yes
-1 1 U(1)exU(1)xU(1) 7980, 7057 77(s% — 57) /2 no
-1 3 SUR)rkxUL)exU1)yxU(1) | %%, 7067, 775° 7257 (77 + 7)Y /2 yes
-2 0 U(1)exU(1)xU(1) 7980, 7057 77(s% — 57)/2 no
-2 2 U(2)xU(2) r0s0mY:7 7 g0y, yes
-3 1 SU(2) k' xU(1)exU(1)yxU(1)|7%°, 7087, 725°, 7757, (10 — 7,)s™¥ /2 yes

TABLE V. Little group (remaining symmetry subgroup of the nonchiral-nonflat U(2)xU(2) group) of the nonchiral-nonflat
state in Eq. (E40). We decompose the U(2)xU(2) symmetry into SU(2) x xSU(2) g xU(1)cxU(1)v, with SU(2), being the
spin rotation symmetry of valley n (generators (7° 4+n7.)s*/2), U(1)c being the global charge U(1) symmetry (generator 7°s%),
and U(1)v being the valley U(1) symmetry (generator 7°s°).

Generically, the nonchiral-nonflat state in Eq. (E40) break the nonchiral-nonflat U(2) xU(2) symmetry, except for
the |vo| = 4 — |v| states at even fillings v. Tab. V shows the remaining symmetry little group of the states in Eq.
(E40) at v < 0. Note that if [vo| < 4—|v|, one has vz, > 0 in Egs. (E40) and (E41), and the state W35, (v1,84,5_))
is spontaneously breaking the valley U(1)y symmetry generated by S*° = 725, This can be seen by noting that

eiﬁ5z0/2|anc—nf

v, Vg )

(74,84,8_)) = eiP/2|gnent

v,vc )

(’Y:l: _57é+7é—)> ) (E43)
namely, iB5™/2 maps the state with angles v4 to a different (but degenerate) state with angles v+ — 8. In fact, as
shown in Tab. V, such states with |ve| < 4 — |v| still have multiple U(1) remaining symmetry groups, but these U(1)
are combination of valley and spin rotations, instead of pure valley U(1)y rotations.

Due to the nonchiral interaction energy (see Eq. D14), the state with the lowest |v¢| at a fixed filling v is the lowest,
and will be the ground state of filling . We note that the v = 0, 2, v = 0 states we find here agree with the K-IVC
state proposed in Ref. [72] at v = 0, £2.

4. Another viewpoint: nonchiral perturbation to the (first) chiral-nonflat limit

As an alternative to the study of the nonchiral-nonflat ground states, we can treat the nonchiral interaction terms
as perturbation to the chiral-nonflat Chern insulator states we found in Eq. (27). Here we assume wg < t, so wg can
be viewed as a perturbation to the approximate eigenstates in the chiral-nonflat limit. As we will show in this section,
this will lead to the same lowest state as that given by Eq. (32) (see also Eq. (E40)).

To see this, we consider the following valley rotated state by

vy 4
Use (93)) = U () Wue) = U () [T T 1ye, T1 iy s, 0 (E44)
k j=1 j=5—v_
where |U,,,,.) is defined in Eq. (27), and ¢, (s =1, ) are two angles parameterizing the rotation. The rotation
U'(ps) = ot (o1 01)5Y0 /4 i1 —p,) ¥ /4 (E45)

is given by the chiral-nonflat U(4) generators Sab (the representation matrices in the Chern basis are 7%s%), so ¢, is
the valley rotation angle in the spin s sector.

Generically, we need to compare the energy of the states in Eq. (E44) with all possible valley-spin flavors {n;, s;}
(1 <j<4). As an example, in this section we will only present the results for the flavor order of Eq. (E17), namely,
{nj,s;} (1 < j <4)sorted as {+,1}, {+,1}, {—, 4}, {—, 1} Similar to that in App. E3, we checked all the flavor
orders, and find this flavor order in Eq. (E17) yields the lowest energy state for all v and v.

a. 1st order perturbation

Before we add nonchiral perturbations to the chiral-nonflat limit, we want to get a more precise expression for the
eigenstate | ¥, . (¢s)) in the chiral-nonflat limit to start with. We include the perturbation of Hy (the kinetic term
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in the chiral-nonflat limit) to the wavefunction |¥,,,.(¢s)) in Eq. (E44) (which is exact in the chiral-flat limit) up
to order t2 (¢ being the bandwidth of term H ). Namely, the wavefunction in the chiral-nonflat limit which we start
with is given by (see Ref. [120] for the generic perturbation theory):

U5 (00)) = NTV2 L+ (Boe — HY) " (H + Hy (Bowwe — H) " H W0 (95)) (E46)
where Q = (U, (05)|Q|¥,.0(0s)) is the part of operator @ not mapping back to the state |¥,, . (ps)) itself,
N=1+(¥,,, (fs)|H0 (Bowwe —HE)"2HF W, (@s)) is the normalization factor up to order 2, and Ey,,,, is the
energy of state |¥, ) in the chiral-flat limit.

We then treat the state |\I/£“55 (ps)) in Eq. (E46) as the accurate eigenstate in the chiral-nonflat limit, and add the
nonchiral interaction H7¢ = ?C(l) + H}w@) (defined in Eq. (D3)) and the second kinetic term H as perturbation
to the state |\f'f,a§g)(goé)> This ensures all the energies in this section are calculated up to order w3t?.

We now examine all the first order perturbations:

(1) The first order perturbation energy of the nonchiral term an(2) = ﬁmt Z%G(qu,_GO}LG + Ol—q,—GOg,G) is

ESOL(HP® [ pg) = (B8 (o) | Hy P |0 (0,)

= N "YWy ue ()L + (H (Bowwe — Hf) " Hy + Hy ) (Bowe — Hf) " H} " (E47)
X [1 + (EOJGVC - Hf)il(HS_ =+ HS_(EO,V,VC - ch)ilH(_)F)”\I/V.,VC (SDS» .

Using the properties we identified in Egs. (E29)-(E31), we find both H?C(Q) and Hy flips the index ey, while H?C(Q)
(Hy") is odd (even) under electron momentum k flipping operation I (defined in Eq. (E28)). Therefore, we find every

term in Eq. (E47) either flips ey of at least one electron, or is odd I. Since state |¥, . (¢s)) has a conserved electron
number in each ey sector and is invariant under I, we find

EQ(HP P ) =0 (E48)

(ii) The first order perturbation energy of the nonchiral term H"c(l) = Qle Zq,G Ol_q7_GO(117G is given by

ne(l acc ne(l acc " ne(l nc(l
B0 (70 0) = (W50 (o) IHT V|00 (00) = B (™, 00) + B2 (1Y o) + B (H™, 04
(E49)
where E\;Y (H}w(l), ¢s) is proportional to w2, while ES;2 (an(1) ©s) and El(,l,j? (H?C(l), ¢s) are proportional to
wit? (see definition below). The other terms are either zero because of properties in Eqs. (E29)-(E31), or are of order
higher than w2t2. For instance, the term (U, .. (0s)|[Hy "M (Eoywe — HE) " HF |, (¢s)) (proportional to w3t) are
zero, because H;Lc(l) does not flip index ey of an electron, while H; flips ey. An example of higher order term is

(LTHD LY where L = (Eo e — H) Y Hi (Eo e — HS)~VHG, which is of order w2t! and is thus ignored.

The first term in Eq. (E49) is given by

" ne 1 ~ ~ 1 ~
Elslulc) (HI (1)7905) = 2Qt A Z<\IJV,VC(@S)|O£q,7GO(1;1,G|\IIV,Vc(@S)> = QQt . Z<\Pu,uc‘U/T((pS)Olq GO GU (4,05)|\I/,, I/C’>
o o
G

> V(g+G)(T,,,| Z F_o (k,q+ G)*df e (72008 0y + o 5Ny )it g 04y
q

X Z F., (k,q+ G)d;LJF,Jl ey $(T2cos s + Ty singg)di ey s |\Tl,,,,,c>

k,s,ey

= QQ Z Z V(a+G)|Fi(k,q+G)? [ 2 cos? , + v sin? @,
o sl k,a,G
= Ny U Z {I/f) cos? s + v sin? SDS} ’
s=T4

(E50)
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where U; is defined in Eq. (25), and the coefficients v are the same as those given in Tab. III (the left table). The
second term in Eq. (E49) is

" nc(l I c\— )~ U
El(/,lfc) (HI ( )7905) = 2ot Z<\IJV1VC|HJ(EO,V,VC — Hj) 1UIT(QOS)Ol—q,—GOé,GU/(‘PS)(EO,V,VC — Hj) 1H(;r‘\IIV,Vc>
ot g G
— " ne(l
+ W= B (HpW)

1 ~ _ . ,
T > Vi(a+G) (Voo H (Bowwe —H) ™' [ D Foey (k,q+ G) des;’s, (72 €08 P + T SIN @ )i qer, o
[0} q,G

'’
k,s’ey,

X Z F., (k,qg+ G)d;r(+q7_ey7s(72 COS s + Ty 8in s )dk ey s | (Eovwe — HIC)*IHJ|\AIV/U7VC>

k,s,ey

+ (Nfl _ I)E(l,l)" (H;w(l)’ 0s) -

v,vc

(E51)

Since the energy scale of HS' is smaller than that of the nonchiral interaction Hf (which is needed for the perturbative
wave function |\Tfy7yc> to be the ground state in chiral-nonflat limit), we can approximately regard exr = N — 1 =
<\Tfl,,l,c (o) Hy (Eope — Hf)_2H0+|\T!V,VC(<pS)> as a small quantity, and thus to the leading order of ey we have
N~1 —1 ~ —ep. With this approximation, and restricting the action of all the operators in Eq. (E51) within the

sub-Hilbert space of the one electron-hole pair exact excitations of the state \(Iv/l,),,c> we derived in Ref. [110], we arrive
at an energy

L2 (7, 00) m NulJi(wo) — Ja(wo)] 3 v sin g, (552)
s=T.4

where J; (wp) and Jo(wp) are as defined in Eq. (E35). The fact that the energy coefficient is approximately [J1(wg) —
Ja(wp)] can be seen by expanding the definition of J; (wg) and Ja(wo) in Eq. (E35) with respect to the nonchiral term
H? up to the wit? order.

The third term in Eq. (E49) is given by

E3)"gre) L) =
v,vo ( I 7(10) 2Qtot

D (W e U ()01 —cO04.cU' (95) (Bowve — HY)  Hg (Eo e — HY) " HG [Wy,00) + hec.
q,G
(E53)

which is of order w2t?. Note that the operator H{ (Eo ... — H§)~'Hy is the part of Hy (Eo,.. — H¢) " H{ not
mapping back to the state |¥, ). Since HS' creates an electron-hole pair by flipping ey, and Hf conserves ey,

one finds that Hy (Eo .. — Hf)*lHJﬁ/l,,yc) is necessarily a state with two electron-hole pairs away from the state

[W,..) (ie., a state of the form clclesey| W, ,,.) with electron operators c1,2,3,4 all different). However, in this paper,
we are numerically calculating all the perturbation energies by restricting ourselves in the sub-Hilbert space of the one

electron-hole pair exact excitations we found in Ref. [110] (i.e., of the form ci 02|\le7”0> with different ¢; o). Therefore,
under this restriction, we have

ELDHPW o) =0, (E54)

v,vc

which we will adopt in this section. This completes the calculation of the three terms in Eq. (E49).
(ili) The first order perturbation energy of H; is zero. To see this, we first note that

H(ﬂqlu,m (ps)) = H(;U/(SDS)|\IIVW0> =U'(ps) Z Ef(k)d;ey,s(fz COS  + Ty sin @)dk,6y’5|\ﬁfju’uc>

k,s,ey

= U'(ips) Z sin(pse,(k)dLey’Sdek,eY,s|\T/,,’VC> .

k,s,ey

(E55)

We stress that the resulting state of Eq. (E55) is orthogonal to the gapless Goldstone modes of the chiral-nonflat
U(4) [110], since ), e_(k) = 0 (similar to the argument in Eq. (E22) for the nonchiral-flat limit). Therefore, the
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perturbation by H, is nondegenerate. Then, using the properties in Egs. (E29) and (E30), we find

ES)T(Hy ) = (08 (0,) [ Hy [T ()

= NN W0 (01 + (He (Bovwe — Hf) ' Hy + H ) (Bo e — Hf) "' Hy
X [1 + (EO,V,VC - Hf)il(H(;r + H(;F(EO,VJ/C - ch)ilHJ)”\I’V,VC (Sﬁs»

(E56)

=0,

which can be seen from the fact that the terms Hg, Eo,.,. — Hf and the state |¥,, . (¢s)) are invariant under the
k flipping operation I (defined in Eq. (E28)), while H changes sign under I (see Egs. (E29) and (E30)).
In summary, the total 1st order perturbation energy is given by

nec(2 _
EWN (ps) = B (HP P o,) + BSY (HP M o) + B (Hy )

v,ve

=Ny Z {Ul {142 cos® g5 + vV sin? gas} + [J1(wo) — Ja(wp)]p? sin cps} .
s=T.{

(E57)

b. 2nd order perturbation

Now we proceed to examine the 2nd order perturbations away from the chiral-nonflat limit. Since this is of higher

order, the energy scale is smaller, and we shall approximate the chiral-nonflat wavefunction [¥559 (¢,)) in Eq. (E46)

into the less accurate expression \‘1/,, vo (s)) in Eq. (E44), which is sufficient for the purpose here. Since H, ne(l) wd,

H?C(Z) o< wo, and Hy oc wot, if we assume the FMC and keep only the perturbation energy up to order wit?, we find

the total 2nd order perturbatlon energy

c(1)

” ~ —nc(1) ne(2 _ eN—1 /75 nec(2 T
E®(05) = (Wone (0 )| H; ™ + HF® + Hy )(Eo e — HY) NH; ™ + HP® 4 Hy) Wy 0 (00))

(E58)
I nc(2 — e\ — — nc(2)y\ |3
~ (Ve (00) [(H P + Hy )(Bo e — HY) T (Hy + Hy )Wy 00 (04))
where H?C(l) =H"Y (0, ()| HF DT, . (,)). Here we have used the fact that
T nec(2 c\ — e
(Coe () H] P (Bo e — H) T H [Wy00(90)) = 0. (E59)

—nc(1)

<\IJV7VC’ (‘PS)lHO_(EO,V,Vc - HI) H |\IIV ve (805)> =0,

which can be seen by noting that the former term flips ey, and the latter term is odd under the k flipping op-
eration I, as can be seen from Egs. (E29-E31). Besides, we have ignored the term (E'W,C (gps)|ﬁ?c(1)(E07,,7yc -

H)~1 nc(1)|\I/l, ve(s)), which is of higher order wg. Therefore, from Eq. (E55) and the identities

U/T(SDS)Ollc,GU(SDS) = Z Fe, (k,q+ G)dL+q —ey, s(TZ oS Qs + Tz SN Ps)di ey s | UIT(‘PS)OIQ,GU(‘PS) = Olg,G )

k,s,ey
(E60)
we find the 2nd order perturbation energy taking the form
El(,Q,Zg (ps) = =Ny Z { 2U2|: ) cos? g 4+ M sin? g | + 13 J5(wp) sin? nps} , (E61)

s=1)

where Uy is defined in Eq. (D9), and the coefficient J5(wq) is approximately equal to the expression for Js(wp) defined
in Eq. (E35) to the w3t? order. Note that the Us term has the same form as the U term of the first order perturbation

energy of an( ) in Eq. (E50).

c. The total perturbation energy

We have calculated the 1st order perturbation energy El(,ly); (ps) in Eq. (E57), and the 2nd order perturbation

energy B2 ZC (ps) in Eq. (E61). The total perturbation energy is then E,///’VC (ps) = E,Slgc((ps) + E£23C(g05) which can



47

be written as

By, () =Ny > {(Ul — v’ U)v? — (V) — v (D) (UL — v2U) = VP (J1(wo) — Ja(wo)) + V§3)J3(wo)} sin” ‘Ps} '
s=1.d
(E62)

For the flavor order in Eq. (E17), v/ (j = 1,2,3) are the same as those given in Tab. III (the left table). By the
numerical values of the interaction constants, we generically have Uy —v2Us > J; —Jy > J3 > 0 for any 0 < wo/w; < 1
and |v| < 3. Thus, we find the lowest energy is achieved at exactly the same ¢, we found below Eq. (E38) and in
Tab. IIT (the left table), namely,

(i) pr =9, =7/21if vc =0,

(i) pr =m/2 and ¢, =01if 0 < |ve| <4 —|v|, and

(iil) or = ¢, = 0if Jvo| =4 —v|.

Therefore, again we find the same conclusion as that we found below Eq. (E38). In particular, one can check that
the wave functions of these states here are also exactly the same as that in Eq. (E40) (see App. E4d below for an
example).

d. Coincidence of ground states obtained from perturbations to the nonchiral-flat and chiral-nonflat limits

Generically, when @4 = ¢ = m/2, using the fact that n4_; = —n; and s4—; = s;, we find the rotated state is given
by

v_

V4
e (05 = 7/2)) = U'(m/2) [T T sy, LT A1y 0,100

k j=1 j=1
vy gt T v gt f
_ H f[ dkHrlJIj:Sj + njdk#lﬁnjxsj H dkﬁlﬁmwsj B njdll,*lﬂbwsj 10) (E63)
kK j=1 V2 j=1 V2
Ve i ) T
_ 1 m. (1—ey)/2dk>6Y»m"Sj +meydk-ﬁy,*m-ﬁj 0
=11 II IICG-n NG |0) .
k ey=+ j=1

When ve = 0 (ie., vy = v_), this chiral-nonflat U(4) valley rotated state |\T/U,,,C (ps = m/2)) is the lowest state
we found below Eq. (E62), and it is exactly the same as the nonchiral-flat U(4) valley rotated state (with rotation
angle ¢, = 7/2) for vo = 0 in Eq. (E40). Namely, the lowest nonchiral-nonflat state we found by perturbing the
nonchiral-flat limit is the same as that we found by perturbing the chiral-nonflat limit. This is because the state of
Eq. (E63) with rotation angles ¢, = m/2 is not only a state in the chiral-nonflat U(4) multiplet, but also belongs
to the nonchiral-flat U(4) multiplet of |¥, ). For vo = 0, this is true only if ¢, = n/2. Thus, for v = 0, we
find the intervalley coherent state Eq. (E40), which is equal to the state in Eq. (E63), simultaneously minimizes the
kinetic energy and the nonchiral interaction energy, therefore should be the ground state in the entire perturbative
nonchiral-nonflat regime. _

For the states with vc = 4 — |v|, however, the chiral-nonflat U(4) rotated wavefunction |¥, .. (¢s)) becomes no
different from the nonchiral-flat U(4) rotated wavefunction |¥, ,(¢s)) in Eq. (E40) for any ¢s. The same is true
in the spin | sector of states with 0 < |vg| < 4 — |v|, where the state |U,,.(s)) with ¢ = 7/2 and any ¢, is a
state in both the chiral-nonflat U(4) multiplet and the nonchiral-flat U(4) multiplet. Therefore, in these cases, we
cannot easily identify the lowest state valley polarization angle ¢ (in the spin | sector in the 0 < |v¢| < 4 — |v| case).
Instead, we need perform calculations at finer energy scales (oc wat?), from which we have showed that a z-direction
valley Bloch sphere polarization is preferred.

Appendix F: Perturbation of the out-of-plane Magnetic Field

We now counsider the effect of an out-of-plane magnetic field B. Since the Zeeman energy (~ 0.1meV per Tesla) is
much smaller than the interaction energy, we only consider the orbital effects of B. The most important orbital effect
of magnetic field B for a gapped insulator of Chern number v¢ is given by the Streda formula [118], which gives the
change of number of occupied electrons N = v Ny, as

dN

m = NMZ/C 5 (Fl)
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where ® = B, is the magnetic flux per unit cell, 2, is the moiré unit cell area, N, is the total number of moiré
unit cells, and ®¢ = h/e is the flux quanta. Electrons are adiabatically pumped between the conduction and valence
states via the edge states of the Chern insulator [48, 121].

We consider the Chern insulator states |¥, ) defined in Eq. (D13) in the nonchiral-flat limit. We want to estimate
the free energy change of the state. The increased number of electrons of the insulator state due to the Streda formula
is thus

AN(B) = N(B) — N(0) = ve Nar—- = Nywo-B-
T, hQ

(F2)
However, since the vector potential of the magnetic field B breaks the translation symmetry of moiré unit cells, it
makes the calculation of interaction energy in magnetic field B generically difficult. As an estimation, we can use
the orbital magnetic moment M of the projected Hamiltonian H = Hy 4+ H; to estimate the change in energy (H)
as —MB. However, due to the PH symmetry P, as explained in the next paragraph, under the exact flat band
assumption Hy = 0, one can show that the orbital magnetic moment [119] of the flat bands is zero. For many-body
states within the flat bands, the total orbital moment is thus zero, implying the interaction energy to be nearly
unchanged at small B.

The action of P is the same as inversion and hence it keeps the direction of magnetic field unchanged. (Magnetic
field is a pseudo-vector that transforms as a vector under proper rotations and is invariant under inversion.) Thus, the
variation of Hamiltonian (which is proportional to the orbital moment M ) due to the magnetic field B still respects
the P symmetry, i.e., M anti-commutes with P. Since in each Chern band M is a number, the only solution for
anti-commuting with P is M = 0. This conclusion can also be verified by computing dlrectly the orbital magnetic
moment [119] using the Bistritzer-Macdonald TBG model (with exact P symmetry).

Meanwhile, the chemical potential for Chern insulator state |¥, ) can be estimated by Egs. (C4) and (C12) as

2
Hy = N]%/[TM %:V(G) (21{: Oéo(ka)> =vlo, (F3)

where we have defined
) 2
Up = ——— V(G apk, G . F4
= sy SV (St (P

Therefore, the change of the free energy F' = (H; — p,N) of the Chern insulator state |¥, ) for small B is
approximately

AF(B) = — iy AN(B) = —vweUs Ny~ = —uwoly EoM

B. F
D, hQus (F5)

Therefore, for B > 0, we find that the state with larger vvc > 0 gains more free energy.
In Eq. (D14) we have estimated the interaction energy El(,n,fc) of the Chern number v¢ state to be linear in |v¢| due

to the nonchiral interaction terms. Besides, when the kinetic term is taken into account, the valley polarization (z
direction or in-plane in the valley space) of the ground state also contributes an energy El(,230 (see Eq. (E37)). In a

magnetic field B, we therefore estimate the free energy (the |vc| dependent part) of the Chern insulator state |¥, )
as

Fyue(B) = ES) + EX) + AF(B)

€NM
“Mp
Ry (F6)

= Nu <VC(U1 —V2Us) — (4 — [V [J1(wo) — Ja(wo) — J3(wo)]0pe a—ju — vveUs q;) ;

= NM|Vc|(U1 — V2U2) — NM(4 — |VD[J1(’U)0) — JQ(’wo) — Jg(wo)]éyc)4,|u| - VucUo

where Uy and Uj are defined in Egs. (D5) and (D9), and J;(wp) is defined in Eq. (E35). Since |Ji(wg) — Ja(wg) —
J3(wp)| < Uy,Usy (see Tabs. I and IV) and Fig. 5), we can ignore the |J; (wg) — J2(wp) — J3(wp)| term, thus the free
energy is approximately given by Eq. (35) in the main text. Besides, for |v| < 3, we always have U; — v2U, > 0 (Fig.
5). Therefore, for B > 0 and v = +1, +2, we expect the ground state to transit from the lowest Chern number state
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with ve = sgn(v)mod(v, 2) to the largest Chern number state with ve = sgn(v)(4 — |v|) to become the ground state
when

U1 — I/2U2 h

B> B; = —_—
v v|Us  eQp

; (F7)

and this transition is a first-order transition. In particular, the critical magnetic field for transition is lower if |v| is
larger. For v = +£3, there are just the Chern number vo = +1 states, so the transition with B does not exist.

(a) 80 (b) 1.2 (c) 0.02
/// 1 /
60 — 0.015
— %, 0.8 Uy / U1/UO
2 E /|3
£ 40 > 0.6 ~ 0.01
- > / 5
=) [0} U1'9U2
< 04 _ /
L _ ~
20 o 7 0.005
0.2 7
/ Us U2/U0
0 0 - 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
wow woiw wo/w ’

FIG. 5. Energies Uy (a), U1 and Uz (b) calculated with respect to wo/wi for twist angle # = 1.05° and screening length
& = 10nm, where the FMC is not imposed. The calculation is done by discretizing the MBZ into a 12 x 12 momentum lattice
(which is large enough to simulate the thermodynamic limit). Generically, we find U; — v2Us > 0 for any 0 < wo/w1 < 1 and
any |v| < 3. The values of Uy and U; are independent of whether the FMC holds, while Uz = 0 if FMC holds. The ratio U1 /Uy
and Uz /Uy are also shown in (c).

As an estimation, near the magic angle § = 1.05° and relaxation wy ~ 0.8wy, if we take the top/bottom gate
screening length £ ~ 10nm (see definition in Eq. (A13)), we numerically find (see Fig. 5)

Ui /Uy = 0.02 Us /Uy =~ 0.0015 . (F8)
This gives a critical magnetic field for v = +1,+2 as

B} ~ 0.5 Tesla , Bj =~ 0.2 Tesla . (F9)

Appendix G: Hartree-Fock Hamiltonian for Chern insulator states

We here derive the effective Hartree-Fock Hamiltonian for the exact Chern insulator ground states |¥,""") in
Eq. (C8) in the (first) chiral-flat limit:
Vi v_
Vivoy T t
(W) = H dk,+1ﬂ7j175j1 H dk7—1,n§27832 10) (G1)
keMBZ \j1=1 j2=1

and for vc = 0 at even fillings in the nonchiral-flat limit (where the state is still exact). We note that the FMC
is not needed for the derivation of Hartree-Fock Hamiltonian here. The fact that all the exact ground states we
found (in the chiral-flat limit and nonchiral-flat limit) are Fock states indicates that Hartree-Fock may provide a good
approximation in these cases.

1. The chiral-flat limit

In the chiral-flat limit, the interaction Hamiltonian is H = H; = ﬁ > qemBz 2-Geg, O-a,-G0q,G, with the
operator Oq,c = Oq g = Pkey s Fla,Grey (dli-s-q,ey,n,sdkveym,s — %6%0) given by Eq. (C6). We can calculate the
Hartree-Fock mean fields using the ground state |, ""~), thus obtaining a quadratic Hartree-Fock Hamiltonian as

HHF(|\IJZ+,V7>) = Z Z h?ﬁ'ﬁfuc (k)dl,ey,n,sdk,eyﬂl,s ’ (G2)

k n,s.ey
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where the single-particle Hartree-Fock Hamiltonian is defined by

ey, m,8 1 1
Wi e (K) = - ; V@) (Y Mok G)My (K =GNl ey — 3))

/ / YAy
k’,eyn’,s

1
) (V(q +G) Z |Me, (k,q+ G)| <dI(+q ey, sdk+a,ey ,ms — dk+q,ey,n,sdl+q,ey,n,s>)}
a

:Qi > (W (@)lao(k, G) +ievas(k, G)) Y ag(K, ~G) (G3)
ot G Kk’
~ Wer s~ 5) V@t Glao(l,a+ G + sl a+ G
zgi > (1 (Gag(k, G) D ao(K, ~G) = (Vey s - %) > Via+G)laolk,a+ G +as(ka+ G)Y) |
ot G K q

where ve, 5 s = 0 or 1 is the filling of the Chern band ey,n,s in state |W, "=, In particular, this Hartree-Fock
Hamiltonian is exactly equal to the electron Hamiltonian for the exactly solvable electron (hole) excitations in an
empty (occupied) Chern band ey, 7, s we derived in Ref. [110], where the electron (hole) excitations correspond to the
conduction (valence) Hartree-Fock bands here. Note that h%;;"", (k) is simply a 1 x 1 matrix, thus the Hartree-Fock
band energy is simply

Wey s (K) = Wiy (K) - (G4)

2. The nonchiral-flat limit

In the nonchiral-flat limit, if v is even and vc = 0, the state | ¥, 7"~) = |¥,) is still an exact ground state. Note that
the state | ¥, ) has each valley-spin flavor either fully occupied or fully empty. In this case, the effective Hartree-Fock
Hamiltonian under the energy band basis n = +1 can be written as

HHF |\Ij Z Z |:hHF1/Vc ):| mn dir(,m,n,sdk’nﬂ?ﬁ ’ (G5)

k n,s,m,n

with a 2 x 2 Hartree-Fock Hamiltonian matrix

Wi 0] = e S V@( 0 MO GMLL =G bt = o)
G k’ m’.n/ ,,7/ s’
- %(V(q t G) Z [M(ﬁ) (k q+ G)]mm’M(n) (k q+ G)<dk+q n’,n, 9dk+q m’,n,s korq,m’77l,sd1T<+q77:,’Jl7S>):|
q,m’,n’
= g 2 [PV (@M Q) )20k, ~G) — (v~ D (Via+6) Y M a+ G, M, 0k a+ @)
o a am’

(G6)

This Hartree-Fock Hamiltonian is also equal to the Hamiltonian of the exactly solvable electron (hole) excitations in
an empty (occupied) valley-spin flavor 7, s in the nonchiral-flat limit derived in Ref. [110], with the electron (hole)
excitations therein corresponding to the Hartree-Fock conduction (valence) bands here.

Appendix H: The stabilizer Code Limit

As shown in Ref. [109], in the chiral limit wg = 0, if MT(,?)n (k,q + G) is independent of k, the Hamiltonian H = H;
becomes similar to a stabilizer code with all of its terms O_q,—gOq,e¢ mutually commuting. In this section, we show
that all the many-body eigenstates are exactly solvable.

In this stabilizer code limit, by Eq. (C6) we have

1
q,G = Z Bey q+ G)( k-+q.ey,n, Sdk,ey,n,s - 5) ) (Hl)

k,ey ,n,s
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where dLe (ey = £1) is the Chern basis defined in Eq. (A30), and

Y158

/Bey (q + G) = V(G + q)MeY (kv q-+ G) =V V(G + q) [Oéo(k, q-+ G) + ieYa?(k7 q-+ G)] ) (H2)

and we have assumed ag(k,q + G) and az(k,q + G) are independent of k. One then has [Oq.a, O ,c/] = 0 and
thus the Hamiltonian H; in Eq. (A16) is a sum of commuting terms, and thus is similar to stabilizer Code (see proof
and discussion in Ref. [109]).

We now show that the Hamiltonian in this stabilizer code limit can be transformed into an extended Hubbard
model with zero hopping, i.e., a purely classical electrostatic problem. It is not difficult to find that

i ik-R
dPYJ} s,Ram \/7 Z Md k ey 41,8 (H3)

form a complete orthonormal basis, and satisfies

—iq'R
[O(LG7 diy,n,s,RM] = Bg(q + G) o Mdly,n s,Rar 2 (H4)
where Rjs are the moiré unit cell sites defined at AA stacking centers of TBG.
Using this new basis, we can define a Fourier transformation of O4 g in continuous space as
1 , 1
G G
O(I‘ Qtot Z@ at )rO ,G = Qtot Z Bey (q + G)el(q+ ) (dI(_A,_q ey ,n, qdk,ey,n,s - 5)
k,q,G,ey,n,s
1 G 1
= G Z By (q + G)eila+C)r-illcta) Ry +ik Ry (diy,n,g,RMdev%&RM - 5)
k,q,G. R, R ey m;:
1 N G Ry (ot 1 (H5)
= o Z Bey (q+ G) i(q+G)-r—iq- Ry, (dey _ RMdey,n,s,RM _ 5)
O

quvRAl seY 47,8

1
= Z Bey (r— RM)(dey 7,5 RMdEYJI’S,RM - 5) )

Rar,ey ,m,s

where f., (r) is the Fourier transform of S, (q). The interaction Hamiltonian is then given by

1 2 2
= §/d rO(r)” . (H6)

From the form of O(r), we know the Hamiltonian consists of density-density interaction between different moiré sites.
Equivalently, we can rewrite the interaction Hamiltonian as

1 e el
Hp = 5 Z Z };\4 YR/ Ney ,n,s,RarTlel, 7/ ,s" R, (H7)

ey,s,m,ey,8",n" Ry, R,
where
UE{);;?RM :/d2rgey(r_RM)/§e' ( RI\/I Q ZB@Y q+G)/Be ( q—- G) UatG) (R —Riy) )

1

_ gt
Ney ,n,s,Rp — dey,n,s,RMdfiYJ],S,RM - 5 .

(H8)

U;‘j\l’ej’R}J is the density-density interaction between site Rjs and R/, which only depends on Rjs —R/);. The number

operator ne, n s R, at each Ry can be —1/2 or 1/2. The many-body eigenstates and energies are then given by
assigning each electron occupation operator ne, R, & Dumber 1/2.

We note that the function 55,,( ) is not necessarily local. In fact, the fermion operator df cannot be local,

ey ,n,8,Rnm
because dk ey s form a Chern band basis and do not have global gauge in the moiré BZ. However, dl
different RM are indeed orthogonal.

ey,n,8,Rum at
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